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Abstract

When the rate at which any given blueprint can be replicated is subject to

decreasing returns, it is optimal to replicate high-quality blueprints more quickly

than low-quality blueprints. The cost of introducing high-quality “start-up” blue-

prints will also rise with the rate at which they are introduced, and so low-quality

blueprints will continue to enter the population. This naturally leads to persistent

heterogeneity in blueprint quality. If quality begets quality and firms are identified

with collections of blueprints derived from the same initial blueprint, then firms

grow at a constant mean rate along the balanced growth path. A firm size distri-

bution with the thick right tail observed in the data can then arise only when the

number of blueprints in the economy grows over time. When calibrated to match

the firm entry rate and the right tail of the size distribution, a homogeneous qual-

ity version of this model implies that the median age among firms with more than

10,000 employees is about 750 years. If the relative quality of a firm’s blueprints

depreciates over time, then firm growth rates are not constant but slow down with

age. If the successful replication of new blueprints is rapid but noisy, and high

relative quality is sufficiently persistent, this version of the model can explain high

observed entry rates, the thick-tailed size distribution, and the relatively young

age of large U.S. corporations.

1. I

Why does the employment size distribution of firms look like a Pareto distribution, with

Pr[number of firm employees ≥ n] ∼ n−ζ and a tail index ζ ≈ 1.05 that is only slightly
above 1, when ζ > 1 is needed for the distribution to have finite mean? Why are some
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firms so much larger than others, and how did they grow to be so large? What is the

relation between firm size and productivity? Why do unproductive firms not simply

copy productive firms? What do answers to these questions suggest about the role of

firm formation in determining aggregate output?

One possible set of answers attributes the highly skewed size distribution entirely to

a highly skewed productivity distribution. In turn, such a productivity distribution can

arise from random firm-level productivity growth, combined with selection of relatively

productive firms. Random growth incorporates a strict form of Gibrat’s law, which says

that firm growth rates are independent of size. This is often thought to be a reason-

able first approximation to the data. If incumbent firms become more productive at an

average rate that does not exceed the productivity growth rate of new entrants, and un-

productive firms are driven out of business, then a stationary size distribution will result.

This distribution will have a tail index ζ just above 1 when there is only a small gap

between entrant and incumbent mean productivity growth rates (Luttmer [2007]). Ran-

dom firm-level productivity growth can also account for the observed declining hazard

rates with which firms exit.1

Figure I shows the employment histories of 25 large firms that all had more than

10,000 employees in 2004. The U.S. Census reports that there were close to a thousand

such firms in 2004, and that firms in this size class accounted for slightly over a quarter

of U.S. employment. The employment data reported in Figure I are from Compustat,

filings with the Securities and Exchange Commission, and company web sites.2 Included,

for comparison, is an artificial non-stochastic growth path for the Procter & Gamble

Company that would have resulted if employment at this company had grown, since its

foundation in 1837, at the U.S. population growth rate. The mean employment growth

rate across all firms reported in Figure I is a little over 18% per annum, and there is

considerable variation. In particular, firm growth rates seem to be persistently much

above average when firms are relatively small. And they decline significantly when firms

1The ζ = 1 asymptote is known as Zipf’s law. See Axtell [2001] for recent evidence on the firm size
distribution showing that ζ slightly above 1 fits the data well. Well-known empirical studies on Gibrat’s
law for firms are Evans [1987] and Hall [1987]. Sutton [1997] surveys the literature. Gabaix [1999] uses

Gibrat’s law to interpret the city size distribution and contains many useful references on the history of
the subject. Rossi-Hansberg and Wright [2006] develop a model of the firm size distribution in which
there are many industries and the firm size in any given industry follows a stationary process, instead
of the non-stationary process implied by Gibrat.

2Davis et al. [2007] point out the difficulties associated with self-reported employment statistics such
as these.
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become large. Most of the sample paths reported in this figure are unlikely to have been

generated by the geometric random walk implied by Gibrat’s law.3

This paper goes back to, interprets, and builds on the type of growth process initially

proposed by Yule [1925] and Simon [1955] to generate Pareto-like stationary distribu-

tions. Yule [1925] was concerned with the number of species in biological genera, and

Simon [1955] with word frequencies, city sizes and income distributions. Simon and

Bonini [1958], Ijiri and Simon [1964], and many others since, studied firm growth. To

generate the Pareto tail, these papers rely on growth in the number of firms and a weak

form of Gibrat’s law: mean growth rates are independent of size. Here, the Gibrat as-

sumption is relaxed to account for the type of evidence shown in Figure I, in a way that

continues to imply a Pareto-like stationary distribution that matches the empirical size

distribution of U.S. firms. An explicit formula is obtained for the tail index ζ in terms

of the parameters of the growth process of firms.

In the model, firms produce differentiated commodities using labor and commodity-

specific blueprints. An entrepreneur can set up a new firm by creating a blueprint of a

certain quality. Once set up, the firm can use labor and any of its blueprints to create

new blueprints of the same quality. Individual blueprints can also become obsolete. The

arrival rates of these two events are independent and independent across blueprints.

If blueprint qualities are constant, apart from complete obsolescence, then the mean

growth rate of a firm with more than a single blueprint is constant. In this environment,

firms with high-quality blueprints have stronger incentives to replicate their blueprints,

and hence grow faster, than firms with low-quality blueprints.

Whether or not blueprints vary in quality, a setup like this can generate a firm size

distribution with a thick right tail, provided that the aggregate number of blueprints

grows at a strictly positive rate and some types of firms gain blueprints at almost this

rate. If the aggregate number of blueprints were constant, then the fact that there is

entry would imply that incumbent firms must lose blueprints on average. When the

mean growth rate of firms is constant, this rate must be negative, and few firms can

become very large. The size distribution in Klette and Kortum [2004] has a thin right

tail for precisely this reason.

Calibrating an economy with homogeneous blueprints using the tail index ζ ≈ 1.05
and the observed firm entry rate of about 10% per annum implies that the median firm

with 10,000 or more employees is about 750 years old. In U.S. data, the median age of

3Besides Procter & Gamble, the only other firms in Figure I that were founded in the 19th century
are Abbott (1888), GM (1897), and IBM (1889).
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such firms is about 75 years–although the Procter & Gamble Company was not built

in a day, or even 75 years, it did not take 750 years. To capture this, it is assumed that

blueprint quality can depreciate without becoming completely obsolete. A new firm

enters as a “high-quality firm” with a high-quality blueprint. After some random time,

the quality of the firm and all of its blueprints reverts to “normal,” or low quality. As

a result, firms initially grow at a faster rate than they will eventually, as appears to be

the case in Figure I. Depending on the shape of the replication technology, these growth

rate differences can be large even for small differences in blueprint quality. In contrast

to Luttmer [2007], for example, small differences in quality can lead to large differences

in size. Rapid initial growth is consistent with a stationary size distribution if the mean

duration of the initial growth phase is not too long. For a tail index ζ near 1 and a

population of relatively young large firms to arise it must be that the initial growth rate

is high, that the terminal growth rate is not too close to the population growth rate, and

that the transition from the high- to the low-growth phase does not, on the other hand,

happen too quickly. High observed entry rates imply that growth must be noisy, so that

small firms have a high chance of exiting in spite of the quality of their blueprints.

Entry decisions and blueprint replication rates are endogenous in this economy, de-

pending ultimately on the talent distribution of entrepreneurs, the productivity of the

blueprint replication technologies, and the extent to which the replication of any sin-

gle blueprint is subject to decreasing returns. All agents can supply labor or develop

new blueprints, but talented agents have a comparative advantage in producing new

blueprints. If the entrepreneurial talent distribution has unbounded support, then some

entry will take place at any combination of wages and blueprint prices, and the balanced

growth path forces entry and replication rates to be such that the size distribution is

stationary.4 For simple cases, one can examine the dynamics away from the balanced

growth path and confirm that the balanced growth path is stable. The speed of adjust-

ment can be slow and depends on whether the number of blueprints is above or below

the balanced growth path. Learning about these aspects of the model requires more

than the age and employment size data considered in this paper.

As already indicated, this paper solves the thin-right-tail problem in Klette and

Kortum [2004]. It does so in an analytically tractable and inevitably stylized setup.

Lentz and Mortensen [2007] use a version of the Klette and Kortum [2004] economy

4In Luttmer [2007], incumbent growth rates are exogenous but a spillover makes the entry and
aggregate productivity growth rates endogenous. There, a weak spillover gives rise to a size distribution
with a thick right tail.
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with additional and more flexible sources of heterogeneity. They do not address the

thin-right-tail problem but estimate their model using panel data on Danish firms.5 The

Danish firm size data do not appear to exhibit the striking Pareto shape that is found

reliably in U.S. data. The small size of the Danish economy may well account for this–

there are as many firms in the U.S. as there are people in Denmark. When it comes

to examining the right tail of the size distribution, a model economy with a continuum

of firms could simply be a better abstraction for the U.S. than for a small country like

Denmark. In addition, small countries will have fewer very large firms if the replication

of blueprints across national boundaries or outside language areas comes at additional

costs.

Firms in this paper are organizations that operate in (monopolistically) competitive

markets and grow through continuous investment in new blueprints, at a level that is

proportional to the size of the firm. One can alternatively view a firm as a trading post

or network in which agents trade. Gibrat’s law and the observed size distribution arise

if there is population growth and agents search for firms by randomly sampling other

agents and matching with the firm with which the agent sampled is already matched.

A simple version of such a model is described in Luttmer [2006]. Related models of

network formation are presented in Jackson [2006] and Jackson and Rogers [2007], and

the extensive literature cited therein.

The economy is introduced in Section 2 and its balanced growth path is described

in Section 3. The Gibrat version of the stationary size distribution is derived in Section

4. The version with initial rapid growth and the associated formula for the tail index

ζ are given in Section 5. Section 6 constructs the age distribution conditional on size.

These results are used in Section 7 to interpret age and size data on U.S. firms. Section

8 concludes.

2. T E

Time is continuous and indexed by t ∈ [0,∞).

2.1 Consumers

There is a growing population of consumers measured by Ht = Heηt at time t. The dy-

nastic preferences of the representative consumer over aggregate consumption sequences

5See also Seker [2007] for related work on Chilean establishments.
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Ct are determined by

E0
∞

0

e−(ρ+η)tHt [Ct/Ht]
1−γ dt .

The parameters η, ρ and γ are positive and γ = 1 is interpreted as logarithmic utility.

Consumers face standard budget constraints and markets are complete. The resulting

interest rate in consumption numeraire is

rt = ρ+ γ
DCt
Ct
− η . (1)

Consumption is a composite good that consists of a continuum of differentiated com-

modities produced by producers who are of types taken from a countable set Z. There
is a measure Nz,t of producers of type z ∈ Z, and all these producers charge the same
price pz,t in equilibrium. Aggregate consumption of a commodity trading at a price p is

Ct(p). The composite good is as in Dixit and Stiglitz [1977],

Ct =
z∈Z

Cβ
t (pz,t)Nz,t

1/β

, (2)

with β < 1 restricted to also be positive so that consumers have a preference for variety.

Consumers choose Ct(·) to minimize the cost of acquiring Ct. The resulting demand
functions are

Ct(p) =
p

Pt

−1/(1−β)
Ct, (3)

where Pt is the price index

Pt =
z∈Z

p
−β/(1−β)
z,t Nz,t

−(1−β)/β

. (4)

In this setup, consumers are all the same. It is not difficult to extend the formal model

to allow consumers to differ in the collection of differentiated commodities they can con-

sume, say because they are in different locations. Real interest rates would be location-

specific.

Note that prices of differentiated commodities are quoted in some arbitrary nu-

meraire. All other prices will be expressed in units of the composite commodity.

2.2 Producers

A producer charging a price p must supply Ct(p) and this generates revenues equal to

C1−βt Cβ
t (p), measured in units of composite consumption. The production of a differenti-

ated commodity requires a blueprint. Given a type-z blueprint, a producer can use l units
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of labor to produce zQtl units of its differentiated commodity. The labor-augmenting

productivity component Qt is common to all producers and evolves exogenously accord-

ing to Qt = Qeθt. One possible interpretation is that Qt is labor-augmenting human

capital that agents choose to accumulate at a constant rate. Alternatively, the model

can be expanded to include vintage equipment as a factor of production. Then Qt would

represent the average quality at time t of equipment used by commodity producers. In

either case, a commodity producer’s type z augments the productivity of inputs that

are used by all producers.

At time t, a type-z producer chooses labor inputs l to maximize C1−βt (zQtl)
β −wtl.

The solution is

lz,t =
βzQt
wt

β/(1−β)
βCt
wt
. (5)

Measured in units of labor, this yields revenues ψlz,t, where ψ = (1− β)/β. All type-z

producers charge the price pz,t implied by (3) and supply

Ct(pz,t) = zQtlz,t. (6)

units of their differentiated commodity. Inserting this into (2) and solving for wt gives

wt = βQt
z∈Z

zβ/(1−β)Nz,t

(1−β)/β

. (7)

Note that the elasticity of wages with respect to proportional increase in all Nz,t is ψ.

2.3 New Blueprints

A type-z producer needs a type-z blueprint to produce. Blueprints depreciate in one-

hoss-shay fashion at an average rate λz,t. New blueprints can be created by using labor

to replicate existing blueprints, or from scratch by entrepreneurs. The respective rates

at which this occurs in equilibrium are denoted by μz,t and νz,t. The number of new

type-z blueprints therefore evolves according to

DNz,t = (νz,t + μz,t − λz,t)Nz,t (8)

and an initial condition determines Nz,0, for each z ∈ Z.
Below, a firm is taken to be a collection of blueprints derived from the same initial

blueprint, and entrepreneurs are viewed as setting up new firms by introducing initial or

prototype blueprints. The extent to which growth in the number of blueprints is due to

replication or entrepreneurial activity is the key determinant of the firm size distribution.
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2.3.1 Replication of Existing Blueprints

A new blueprint of type z can be created from an existing type-z blueprint. The new

blueprint arrives following an exponentially distributed waiting time with mean μz,t =

f(iz,t), where iz,t is labor employed in the replication process. An existing blueprint

is lost following an exponentially distributed waiting time with mean λz,t = g(jz,t),

where jz,t is labor used to “maintain” the blueprint. Note that an existing blueprint

generates revenues from its use in the production of a commodity, and as an input in

the production of new blueprints.6 The value vz,t of a type-z blueprint must satisfy the

Bellman equation

rtvz,t = max
μ≤f(i)
λ≥g(j)

{wt (ψlz,t − [i+ j]) + (μ− λ)vz,t +Dtvz,t} , (9)

together with a transversality condition. The blueprint production function f is increas-

ing and exhibits strictly decreasing returns to scale. The blueprint depreciation function

g is assumed to be strictly decreasing and convex, and g(0) represents the rate at which

blueprints are lost without any effort. For convenience, both f and g are assumed to

sufficiently smooth with unbounded slopes near zero.7 The optimal investment in new

blueprints is determined by

μz,t = f(iz,t), λz,t = g(jz,t), vz,tDf(iz,t) = −vz,tDg(jz,t) = wt. (10)

The technology assumptions ensure that μz,t and −λz,t are increasing in vz,t. High-value
blueprints are replicated more quickly and maintained better than low-value blueprints.

2.3.2 New Designs by Entrepreneurs

New blueprints can also be designed from scratch by agents acting as entrepreneurs,

without the input of an existing blueprint. Not every new blueprint is of the most

productive type because entrepreneurs must weigh the value of high-quality blueprints

against the cost of the time it takes to design them. At any point in time, every agent in

the economy is endowed with one unit of effort that can be assigned to various tasks–

supply labor, or attempt to produce a type-z blueprint for some z ∈ Z. Every agent
has a skill vector (x, y), where x = {xz}z∈Z are the rates at which the agent can develop

6The model of how Wal-Mart has expanded since 1962 described in Holmes [2006] has this feature.
7The replication and maintenance technology is the same for all types of blueprints. It is conceptually

straightforward to allow for heterogeneity across types, and this could very well be an important source
of variation in firm growth rates.
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new blueprints of different types and y is the amount of labor the agent can supply per

unit of time. Given wages w and a vector of blueprint prices v = {vz}z∈Z , define

Xz[v, w] = (x, y) : vzx = max
z�∈Z

{vz�xz�} ≥ wy

for all z ∈ Z, and
Y [v, w] = (x, y) : wy ≥ max

z�∈Z
{vz�xz�} .

Comparative advantage determines occupational choice. Ignoring ties, agents with a

skill vector in Xz[v, w] choose to be entrepreneurs who design type-z blueprints, and

agents with a skill vector in Y [v, w] will choose to be employees. Given prices (v, w), an

agent with skill vector (x, y) earns max{(vzxz)z∈Z , wy} per unit of time.
There is a time-invariant talent distribution T defined over the set of all possible skill

vectors, as in the Roy model of Rosen [1978]. The resulting per-capita supply of type-z

entrepreneurial effort is

Ez(vt, wt) =
Xz[vt,wt]

xzdT (x, y) (11)

for z ∈ Z. The per-capita supply of labor is

L(vt, wt) =
Y [vt,wt]

ydT (x, y). (12)

Clearly, Ez(·) and L(·) are both homogeneous of degree 1, and the supply of every
activity is increasing in its own price –blueprint price or wage– and decreasing in

all other prices. As in the discrete-choice problem of McFadden [1974] and the trade

model of Eaton and Kortum [2002], suppose skills are independent Fréchet, T (x, y) =

exp(− z∈Z(xz/ξz)
−σ − (y/ξy)−σ). Then the supplies of entrepreneurial effort (11) and

labor (12) equal Γ(1 − 1/σ) times ξz(ξzvz,t/D[vt, wt])σ−1 and ξy(ξywt/D[vt, wt])
σ−1, re-

spectively, where Γ is the gamma function and D[vt, wt] = [ξywt]
σ + z∈Z [ξzvz,t]

σ 1/σ
.

2.4 Equilibrium

Given a per-capita supply of entrepreneurial effort Ez(vt, wt) and a stock of type-z blue-

prints Nz,t, the rate νz,t at which entrepreneurs add new type-z blueprints is determined

by

νz,tNz,t = HtEz(vt, wt) (13)

for each z ∈ Z. Labor market clearing requires that

z∈Z
Nz,t (lz,t + iz,t + jz,t) = HtL(vt, wt). (14)

10



The equilibrium is determined by (1)-(14), initial conditions {Nz,0}z∈Z , and transversal-
ity conditions for {vz,tNz,t}z∈Z .
Because the product market distortion arising from monopolistic competition is the

same in all markets, and because agents supply their time inelastically, it turns out that

the equilibrium allocation is efficient. If there is only one type of blueprint, then it is

possible to characterize the dynamics in terms of only one state and one costate variable,

and construct an equilibrium that converges over time to a balanced growth path.8

3. B G

Along a balanced growth path, the measure of blueprints of every type grows at the rate

η, and thus Nz,t = Nzeηt for some Nz. The allocation of labor per type-z blueprint is

constant at (iz, jz, lz). Because of (2), (6) and (7), per capita consumption and wages

grow at the rate κ = θ + ψη. The implied interest rate is r = ρ + γκ. Using (5),

production labor per type-z blueprint can be written as

lz = z
1/ψl, z ∈ Z, (15)

for some positive l. The resulting revenues per blueprint are necessarily positive and

hence blueprint prices will be positive. Wages wt = weκt and blueprint prices vz,t = vzeκt

must satisfy the present-value condition

vz
w
=

ψlz − [iz + jz]
r − κ− [μz − λz]

, z ∈ Z, (16)

and (iz, jz) and (μz,λz) are determined by the optimality requirements

μz
λz

=
f(iz)

g(jz)
,

vz
w

Df(iz)

−Dg(jz)
=

1

1
, z ∈ Z. (17)

Since positive revenues net of replication and maintenance costs are feasible, (16) must

hold with ψlz > iz + jz and r − κ > μz − λz. The fact that the aggregate number of

blueprints grows at the rate η implies that entrepreneurs must contribute new blueprints

at the non-negative rate η − [μz − λz]. If Ez(v, w) is positive, then the entrepreneurial

8The rate at which blueprint capital is accumulated in this economy depends intricately on the shape
of the production and depreciation functions f and g, and the shape of the talent distribution. It is
possible to generate slow and asymmetric adjustment to the balanced growth path. A detailed analysis

is beyond the scope of this paper.
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supply of blueprints (13) determines the number of blueprints via

Nz
H
=

Ez(v, w)

η − [μz − λz]
, z ∈ Z. (18)

Alternatively, Ez(v, w) = 0 and (η − [μz − λz])Nz/H = 0. Along a balanced growth

path, the labor-market clearing condition (14) becomes

z∈Z

Nz
H
(iz + jz + lz) = L(v, w). (19)

Given some positive scale factor l, the balanced growth conditions (15)-(17) determine

the blueprint prices vz/w, the labor allocations (iz, jz, lz), and the resulting accumulation

rates μz and λz. The supply of blueprints (18) and the labor-market clearing condition

(19) then pin down the level of l. Note that these equilibrium conditions only depend

on blueprint prices relative to wages. The level of wages follows from (7) and (18).

Aggregate consumption can be obtained from (5).

The present value of aggregate consumption must be finite, and this requires pa-

rameter values so that r > κ + η. Since the number of blueprints grows at the rate

η along any balanced growth path, replication of existing blueprints can contribute at

a rate of at most μz − λz ≤ η, and this will hold for all small enough iz and jz as

long as η > f(0) − g(0). Together, these inequalities imply r − κ > μz − λz for all

z ∈ Z, and this ensures finite present values. The optimality of iz and jz implies that
(r − κ)vz/w ≥ ψlz − [iz� + jz� ] + [μz� − λz� ]vz/w for any z� ∈ Z, and thus

(r − κ− [μz� − λz� ])(vz − vz�)/w ≥ ψ(lz − lz�)

for any two z and z� in Z. This implies that vz/w is increasing in z, since lz is increasing
in z, by (15). The assumption that f and −g are concave then implies the same for μz
and −λz. A similar argument implies that the blueprint prices vz/w that satisfy (15)-
(17) are increasing in l. In turn, the entrepreneurial supply of blueprints is increasing in

blueprint prices. The left-hand side of (19), taking into account (15)-(18), is therefore

increasing in l. In particular, the demand for labor grows without bound as l increases

to a point where μz − λz approaches η for the most productive blueprint. The supply

of labor on the right-hand side (19) is decreasing in l, again taking into account how

blueprint prices depend on l via (15)-(17). Together these observations can be used to

prove the following.

P 1 Suppose that ρ + γκ > κ + η and η > f(0) − g(0). Take the set
of blueprint types Z to be finite and suppose that the talent distribution is such that

12



Ez(v, w) > 0 for all z ∈ Z and all strictly positive (v, w). Then (15)-(19) defines a

unique balanced growth path that satisfies η > μz − λz for all z ∈ Z. The employment
levels iz, jz and lz as well as the accumulation rates μz and λz are increasing in z.

As will become apparent in Section 4, the result η > μz − λz is what guarantees a

stationary firm size distribution. The assumption that Z is finite is the simplest way to
ensure that there is a most productive type of blueprint. Together with Ez(v, w) > 0

this then implies that the η − [μz − λz] are positive and bounded away from zero. An

equilibrium with Ez(v, w) = 0, possibly for all z ∈ Z, can arise if the talent distribution
has bounded support. In such an equilibrium, new blueprints are only produced using

replication from an initial stock of blueprints. Since η − [μz − λz] is decreasing in z, it

must then be that Nz > 0 and η = μz−λz for the most productive blueprint, and Nz = 0
and η > μz −λz for all other blueprints. These possibilities are ruled out in Proposition

1 by assuming that the entrepreneurial supply of blueprints is strictly positive at all

positive blueprint prices.

3.1 The Productivity Distribution

The distribution of productivities across blueprints is determined by (18). This dis-

tribution depends on both the rate Ez(v, w) at which entrepreneurs introduce type-z

blueprints and the net rate μz − λz at which these blueprints are replicated. The rates

Ez(v, w) depend on the skill distribution. For example, low-z blueprints may be preva-

lent in the economy, despite the fact that vz/w is low, simply because many agents in

the economy have the skill to introduce low-z blueprints. But high-z blueprints have the

advantage that they will be replicated at a higher rate. Especially if μz−λz is close to η,

this can easily swamp the fact that entrepreneurs introduce high-z blueprints relatively

infrequently. In such a situation, the distribution of productivities can have most of its

mass near the upper end of Z.

4. T S D F

The economy described so far has agents who are consumers and who also supply labor

or act as entrepreneurs. Everyone can own blueprints and there are no firms. In this

section, a transaction cost argument is used to motivate a definition of what firms are.
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4.1 Transaction Costs

Consider an entrepreneur who has just developed a new blueprint. To hire labor to

produce the associated commodity and develop further copies of the same blueprint, the

entrepreneur can set up a firm at no cost. This defines a firm entry. Claims to firms

can be traded freely. But there is a potentially very small cost involved in firms hiring

entrepreneurs to develop new blueprints from scratch, in selling blueprints to firms, and

in merging firms. There are no cost advantages to any of these transactions, and so they

will not occur in equilibrium.9

A firm will therefore only gain new commodities through its use of the technology

for replicating its existing blueprints. The firm only loses commodities as its blueprints

become obsolete. A firm that has lost all its commodities is shut down and exits. In

this environment, firms differ only by the number of commodities they produce, and this

number can be used to measure the size of a firm. In the following, the distribution of

firm size is derived assuming that the economy is on a balanced growth path.

4.2 Mechanics

For notational simplicity, assume there is only one type of blueprint, and drop the type

index z. The measure of firms with n commodities at time t is denoted by Mn,t. Since

every commodity is produced by one and only one firm,

Nt =
∞

n=1

nMn,t. (20)

Over time, the change in the number of firms with one commodity is

DM1,t = λ2M2,t + νNt − (λ+ μ)M1,t. (21)

where μ, λ, and ν = η − [μ− λ] are equilibrium rates that are constant along balanced

growth path. The number of firms with one commodity increases because firms with

two commodities lose one, or because of entry. The number declines because firms with

one commodity gain or lose a commodity. Similarly, the numbers of firms with more

than one commodity evolve according to

DMn,t = λ(n+ 1)Mn+1,t + μ(n− 1)Mn−1,t − (λ+ μ)nMn,t, (22)

9Of course these transactions do occur in the data. This is a familiar and important failure of the
type of model described in this paper. Chatterjee and Rossi-Hansberg [2006] provide an interesting
model of firm size in which adverse selection makes it difficult for firms to hire entrepreneurs.
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for all n−1 ∈ N. The joint dynamics ofNt and {Mn,t}∞n=1 is fully described by DNt = ηNt

and (21)-(22). At the initial date, (20) defines N0 in terms of {Mn,0}∞n=1. The accounting
that gives rise to (21)-(22) implies that (20) holds at all subsequent dates.

4.3 The Stationary Size Distribution

A stationary distribution of firm size exists if (21)-(22) has a solution for whichMn,t/Nt

is constant over time. Since Nt grows at a rate η, this means that DMn,t = ηMn,t for all

n ∈ N. Given that Nt and Mn,t grow at the common rate η, one can define

Pn =
Mn,t
∞
n=1Mn,t

for all n ∈ N. This is the fraction of firms that produce n commodities. Analytically
more convenient is the fraction of all commodities produced by firms of size n, which is

given by

Qn =
nMn,t
∞
n=1 nMn,t

for all n ∈ N. The mean number of commodities per firm can be written in terms of the
two stationary distributions {Pn}∞n=1 and {Qn}∞n=1 as

∞
n=1 nMn,t
∞
n=1Mn,t

=
∞

n=1

nPn =
∞

n=1

1

n
Qn

−1

.

The numerator of the left-hand side adds up to the total measure of commodities in

the economy. This is finite by construction. Hence the mean firm size is well defined

and finite by construction. The right-hand side is the reciprocal of the mean number of

firms per commodity, provided that this mean is calculated against the distribution of

commodities by size of firm producing the commodity.

Given ν = η − [μ− λ] and the definition of {Qn}∞n=1, (21) can now be written as

ηQ1 = λQ2 + η − (μ− λ)− (λ+ μ)Q1, (23)

and (22) implies that

1

n
ηQn = λQn+1 + μQn−1 − (λ+ μ)Qn, (24)

for n− 1 ∈ N. Condition (20) corresponds to the requirement that the fractions Qn add
up to one,

∞

n=1

Qn = 1. (25)
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Any sequence {Qn}∞n=1 ⊂ [0, 1] that satisfies (23)-(25) defines a stationary size distrib-
ution {Pn}∞n=1 via Qn ∝ Pn/n. Note that the equations (23)-(25) only depend on the
parameters μ/λ and η/λ–the stationary distribution does not depend on the units in

which time is measured.

0 0.5 1 1.5
0

0.5

1

1.5

β
n

β n+
1

n = ∞ 

 n = 1

λ/μ 

F II. The Dynamics of {βn}∞n=1.

Equation (24) is a second-order difference equation in {Qn}∞n=1. It comes with two
boundary conditions, (23) and (25). To solve (23)-(25), it is convenient to introduce a

sequence {βn}∞n=1 and reduce (24) to a first-order equation in the variables

Zn+1 =
1

βn+1
Qn − βn+1Qn+1 , (26)

for all n ∈ N. Specifically, set β1 = 0 and

βn+1 = 1 +
η + μn

λn
− μβn

λ

−1
(27)

for all n ∈ N. Then the initial condition (23) translates into

Z2 =
1

λ
[η − (μ− λ)] (28)

and (24) can be written as

Zn+1 =
μβn
λ

Zn (29)
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for all n − 1 ∈ N. The recursion (27) is depicted in Figure II for the case μ > λ.

Note in particular that the curve defined by (27) shifts upwards as n increases. Using

this observation one can verify that {βn}∞n=1 converges monotonically from β1 = 0 to

min{1,λ/μ}.
The sequence {Zn}∞n=2 is completely determined by (28)-(29). Observe from (26)

that Qn = βn+1(Qn+1 + Zn+1). The boundary condition (25) together with the fact

that βn ≤ 1 implies that QK K
n=1 βn must converge to zero as K becomes large. Thus

one can iterate forward to obtain the solution for {Qn}∞n=1. The following proposition
presents this solution and provides upper and lower bounds for Qn when n is large.

P 2 Suppose that μ, λ, η and ν = η − (μ − λ) are positive. Define the

sequence {βn}∞n=1 by the recursion (27) and the initial condition β1 = 0. This sequence

is monotone and converges to min{1,λ/μ}. The solution to (23)-(25) is given by

Qn =
ν

λ

∞

k=n+1

k

m=n+1

βm
μβk
λ

−1 k

m=2

μβm
λ
. (30)

Take any ε > 0. If μ > λ then

ν

(1 + ε)μ− λ
1+ε

≤
n

m=2

μβm
λ

−1

Qn ≤
ν

μ− λ
(31)

for all large enough n. If μ < λ then

ν

(1 + ε)λ− μ
1+ε

≤
n

m=2

μβm
λ

−1

Qn ≤
ν

λ− μ
(32)

for all large enough n.

The proof is in Appendix A. The distribution {Pn}∞n=1 follows immediately from Pn ∝
Qn/n. The bounds given in (31) can be used to obtain accurate numerical estimates of

Qn for large n.

4.4 The Right Tail

As shown in (31)-(32), the size distribution satisfies

Qn ∼
n

k=2

μβk
λ

(33)

17



for large n. When λ > μ, the properties of this product are quite different from what they

are when μ < λ. If λ > μ, then Qn is bounded above by a multiple of the geometrically

declining sequence (μ/λ)n. On the other hand, if μ > λ then μβn/λ ↑ 1, and hence
the right-hand side of (33) declines at a rate that is slower than any given geometric

rate. The proof of Proposition 2 shows that the right-hand side of (33) is nevertheless

summable. The following proposition gives a further characterization of the right tail of

the distribution.

P 3 Suppose that η > 0, μ > λ and η > μ − λ. Then the right tail

probabilities of the stationary firm size distribution satisfy

lim sup
K→∞

Kz
∞

n=K

Pn = 0

for any z smaller than the tail index ζ = η/(μ− λ).

The proof is in Appendix B. This proposition implies that

ln
∞

n=K

Pn ∼ c− ζ ln(K) (34)

for some constant c. The limiting tail index ζ = 1 associated with Zipf’s law arises when

the entry rate ν = η − [μ− λ] converges to zero.

For comparison, consider the economy of Klette and Kortum [2004]. There, η = 0

and μ < λ. The resulting firm size distribution is R.A. Fisher’s logarithmic series

distribution which has Pn ∝ (μ/λ)n /n. As a result, right tail probabilities converge

to zero even more quickly than a geometric sequence. Firms must grow on average to

generate a thick right tail, and in the economy described here this can only be if there is

population growth. It is also critical that firms grow exponentially. If firms accumulate

new blueprints at some constant rate μ, instead of μn, then the size distribution would be

Poisson-like, and this would also imply right tails that decline faster than geometrically.

4.5 Firm Entry and Exit Rates

The flow of blueprints introduced by new firms is νNt. Each new firm starts with one

blueprint, and so νNt is also the flow of new firms that enters per unit of time. The firm

entry rate as a fraction of the number of incumbent firms, denoted by φ, is therefore equal

to νNt divided by the number of firms in the economy,
∞
n=1Mn,t = Nt/

∞
n=1 nPn. An

alternative way to calculate the firm entry rate φ is to note that the only firms that can
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exit in this economy are firms with one remaining blueprint. The proportion of such

firms is P1, and they exit at a rate λ. The resulting balance φ − λP1 of firms entering

and exiting per unit of time must equal the rate η at which the number of firms grows

over time. These two calculations can be summarized as

φ = ν
∞

n=1

nPn = η + λP1. (35)

Clearly, the firm entry rate can be no less than the population growth rate, and this

lower bound is attained only when firms never lose blueprints and therefore never exit.

The two equations given in (35) and Q1 = P1/
∞
n=1 nPn imply φ/η = 1/(1− (λ/ν)Q1).

Together with (30) this yields an explicit formula for the firm entry rate relative to the

population growth rate. In turn this implies an explicit formula for the mean firm size

φ/ν.

4.6 A Convenient Limiting Case

Suppose η and λ are bounded away from zero and let μ−λ approach η from below so that
the rate ν at which blueprints are introduced by entrepreneurs goes to zero. Observe

that this is exactly when the tail index ζ = η/(μ−λ) approaches one from above. In the

limit, the recursion (24) for Qn ∝ nPn can be written as Pn = λ
μ
(Pn+1 +Xn+1) together

with Xn+1 = n−1
n+1

Xn for all n− 1 ∈ N. This implies Xn+1 = (2/[n(n + 1)])X2 for all
n ∈ N. Iterating forward on the recursion for Pn and requiring the resulting Pn to add
up to one yields

Pn =
1

ln (μ/η)

∞

k=n

(λ/μ)k+1−n

k(k + 1)
.

This distribution does not have a finite mean. The implied right tail probabilities satisfy

lim
K→∞

K
∞

n=K

Pn = lim
K→∞

1

ln (μ/η)

∞

m=0

K

K +m

λ

μ

m+1

=
1

ln (μ/η)

1

μ/λ− 1

by the dominated convergence theorem (see Appendix C.) Thus the right tail probabili-

ties behave like 1/K, and the log right tail probabilities expressed as a function of ln(K)

must asymptote to a straight line with slope −1.
At the same time as the rate ν at which blueprints are introduced by entrepreneurs,

the average number of blueprints per firm goes to infinity. But the entry rate of new

firms satisfies φ = η + λP1, and this converges to a positive value. A calculation yields

φ = λ/ ln(μ/η), and then μ− λ = η gives

φ

η
=

μ/η − 1
ln (μ/η)

. (36)
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This allows one to infer μ/η and λ/η = −1+μ/η simply from the ratio of the firm entry

rate over the population growth rate φ/η, in situations when most blueprints are created

by incumbent firms, when the size distribution has a tail index close to 1.

5. G ’ L , H B ,

F T T

For simplicity, the stationary firm size distribution was constructed in Section 4 while

abstracting from heterogeneity in blueprint types. A firm was defined as the collection

of blueprints produced by replication from some initial blueprint. With the same firm

definition and blueprint heterogeneity, a firm will have one type of blueprint and this

type can be taken to be the firm’s type. The results of Section 4 then apply to firms of

the same type.

Along the balanced growth path, firm growth rates satisfy Gibrat’s law conditional

on type, and the size distribution of type-z firms will have a tail index η/(μz−λz). Since

high-type blueprints are replicated more quickly than low-type blueprints, this implies a

thicker right tail for the distribution of high-type firms. The right tail of the overall size

distribution will inherit the tail index of the type with the highest z, since this implies

the lowest tail index η/(μz − λz). Most firms far out in the right tail of the distribution

will be high-z firms. Since these are the firms with the highest mean growth rate in the

economy, this induces a positive association between firm size and firm growth rates.

Most empirical studies suggest that Gibrat’s law is violated in the other direction:

small firms tend to have higher growth rates than medium or large firms; see Evans

[1987], Hall [1987], Dunne, Roberts and Samuelson [1989], and the survey of Sutton

[1997]. At the root of the problem is the assumption that firms have one type of blueprint

and that this type is permanent. As a consequence, mean growth rates are permanently

different across firms. The data shown in Figure 1 suggest, instead, that firms initially

grow at rates that far exceed the restriction μz − λz < η implied by Proposition 1, and

that these growth rates decline as firms age.

To account for this slow-down in growth rates, and to examine what they imply for

the stationary size distribution, suppose that Z = {zL, zH} for some zL < zH, and that
new firms enter as type-zH firms and then transition to type zL following an exponentially

distributed waiting time with mean 1/δ. More precisely, new firms enter with a type-zH
blueprint, accumulate more of these blueprints, and then at some random point in time

all blueprints of the firm turn into type-zL blueprints, permanently. Any new blueprints
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created by the firm thereafter will be of type zL. A possible interpretation is that

some aspect of the environment for which the initial blueprint was created has changed

permanently.10

The incentives to invest continue to be determined by (17) along a balanced growth

path. But the present-value condition for blueprint values (16) in the initial phase must

be modified to account for the loss in value that occurs when a blueprint transitions

from high quality to low quality. This yields

vzH
w
=

ψlzH − [izH + jzH ]− δ
vzH
w
− vzL

w

r − κ− [μzH − λzH ]
.

In the terminal phase, vzL/w continues to satisfy (16). Along the balanced growth path,

the number of type-zH blueprints is NzH/H = EzH(v, w)/(η + δ − [μzH − λzH ]). Type-

zL blueprints are created by replication and because a flow δNzH of type-zH blueprints

depreciate in quality. The resulting number of type-zL blueprints is therefore NzL/H =

δ(NzH/H) /(η−[μzL−λzL ]). Given this, the labor market clearing condition (19) becomes

EzH(v, w)

η + δ − [μzH − λzH ]
lzH + izH +

δ[lzL + izL ]

η − [μzL − λzL ]
= L(v, w).

If the talent distribution for entrepreneurs is unbounded, EzH(v, w) is positive at all

positive prices. This then implies that η + δ > μzH − λzH and η > μzL − λzL in equilib-

rium. Using the first of these inequalities together with r − κ > η one can apply the

same argument as before to show that optimality implies that izH > izL and jzH > jzL.

While their quality advantage lasts, type-zH firms have stronger incentives to invest in

replicating blueprints than type-zL firms. They lose blueprints a lower rate and gain

new ones at a higher rate. Firms grow faster in the initial phase.

P 4 Suppose firms enter with productivity zH and transition to productivity

zL < zH at a positive rate δ. Then, along the balanced growth path, μzH ≥ μzL,

λzH < λzL, η + δ > μzH − λzH and η > μzL − λzL. The stationary size distribution has a

tail index ζ given by

ζ =
η + δ

μzH − λzH
if 1 <

η + δ

μzH − λzH
<

η

μzL − λzL
+

10Atkeson and Kehoe [2006] interpret the observed slow-down in firm growth rates by assuming that
firm productivity growth rates decline with age. Here the interpretation is a decline in the level of
productivity relative to everyone else. A plausible cause for such a decline is competing firms catching
up with a firm’s initial innovation. Although the economics is quite clear, describing this in a way that
yields an analytically tractable growth process is more challenging.
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and

ζ =
η

μzL − λzL
if 1 <

η

μzL − λzL
≤ η + δ

μzH − λzH
.

The right tail of the size distribution declines geometrically otherwise.

The fact that the technology implies μzH − λzH ≥ μzL − λzL is used in the statement

of this proposition but plays no role in determining the tail index. The actual size

distribution and a proof of Proposition 4 are in Appendix D. If ζ = η/(μzL − λzL) then

the fact that all firms eventually grow at a rate that is close to the population growth

rate accounts for the thick right tail observed in the firm size distribution. Alternatively,

if ζ = (η + δ)/(μzH − λzH), then large firms arise because of the rapid growth of new

firms lasts sufficiently long. In an extreme example, one can set δ equal to μzH−λzH and

make this arbitrarily large. New firms then either become large almost instantaneously,

or exit.

6. F A S

The early histories of large firms are often known in some detail, and this makes the

age distribution among large firms a useful tool for choosing among alternative inter-

pretations of the firm size distribution. As will be shown in Section 7, a model with

rapid initial growth can match the median age of large firms, while a model that imposes

Gibrat’s law cannot.

6.1 The Size Distribution of a Cohort

Consider a cohort of firms that enter at the same time, not necessarily with a single

blueprint. As in Section 5, suppose these firms are initially in a “phase one” in which

they gain and lose blueprints at certain rates. Firms that have not exited transition into

a “phase two” following an exponentially distributed waiting time with mean 1/δ. Let

s−1(a) denote the fraction of firms in the cohort that have made this transition by age
a and define sn(a) to be fraction of all cohort firms that are in phase one and have n

goods. In phase one, firms with n goods gain new goods at a rate μn and lose existing

goods at a rate λn. In particular, firms that lose their last good will remain zero-good

firms forever–they exit. Since only firms in phase one that have not yet exited can

transition into phase two,

Ds−1(a) = δ [1− s−1(a)− s0(a)] . (37)
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Exits occur when firms lose their last good, and hence

Ds0(a) = λs1(a). (38)

The number of firms of a cohort that are still in phase one and that have n goods by

age a must satisfy

Dsn(a) = (n− 1)μsn−1(a) + (n+ 1)λsn+1(a)− [δ + (μ+ λ)n] sn(a) (39)

for all n ∈ N. Note that the −δsn(a) term is not scaled by n, reflecting the assumption

that the transition probability from phase one to phase two is independent of size. The

probability distribution {sn(a)}∞n=−1 is determined by (37)-(39) and an initial condition
for the size distribution of a cohort at entry.

P 5 For any μ > 0 and λ ≥ 0 define γ(a) = (e(μ−λ)a − 1)/(e(μ−λ)a − λ/μ).

Fix some k ∈ N and for any δ ≥ 0 define

T−1,k(a) = δ
a

0

e−δb 1− λ

μ
γ(b)

k

db

and

T0,k(a) = λk
a

0

e−δb 1− λ

μ
γ(b)

λ

μ
γ(b)

k−1
[1− γ(b)] db,

as well as

Tn,k(a) = e−δa
min{n,k}

m=1

k

m

n− 1
m− 1 1− λ

μ
γ(a)

m
λ

μ
γ(a)

k−m
[1− γ(a)]m γn−m(a),

for all n ∈ N. Then sn(a) = Tn,k(a) solves (37)-(39) for the initial condition given by
s1(0) = k and sn(0) = 0 otherwise.

For δ = 0 and k = 1 this solution can be found and Klette and Kortum [2004]. The

probability generating function for δ = 0 and k ∈ N is in Kendall [1948]. Using the fact
that γ(a) goes to zero as age goes to zero one can verify that Tk,k(a) ↑ 1 as age goes to
zero. The solution for T0,k(a) follows directly from T1,k(a) and integrating (38). Summing
Tn,k(a) over all n ∈ N gives 1−T−1,k(0)−T0,k(0) = e−δa(1− [γ(b)λ/μ]k) and then T−1,k(0)
follows from integrating (37). The proof of Proposition 5 can be completed simply by

computing the derivative of Tn,k(a) and checking (39) for any n ∈ N. Appendix E gives
a more constructive proof based on the observation that, conditional on no transition
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from phase one to phase two, a firm with n goods gains and loses goods with the same

probabilities as does the aggregate of n independent firms with one good each.

Suppose δ = 0. If μ < λ so that firms decrease in size on average, then T0,k(a)→ 1

as the age of a cohort grows without bound. After a long time, virtually all of a cohort

of firms will have exited the economy. On the other hand, if μ > λ, then T0,k(a)→ λ/μ.

A fraction 1 − λ/μ of any cohort of firms survives and grows forever, giving rise to a

thick-tailed size distribution.

6.2 Age Given Size

Now consider the setup of Proposition 4: a cohort of firms initially produces goods with

a blueprint quality zH, and that this quality depreciates permanently to zL following

an exponentially distributed waiting time with mean 1/δ. Write TH,n,k(a) and TL,n,k(a)
for the solutions to (37)-(39) associated with (μzH ,λzH , δ) and (μzL ,λzL , 0), respectively.

Then the cohort size distribution {pn(a)}∞n=0 is given by

pn(a) = TH,k,1(a) + δ
a

0

∞

k=1

TL,n,k(b)TH,k,1(a− b) db (40)

for all n + 1 ∈ N. The infinite sum on the right-hand side of (40) can be calculated

explicitly, as reported in Appendix E. The first term on the right-hand side of (40) ac-

counts for the firms that are still in the initial growth phase. The second term represents

firms that have transitioned into the second phase by age a. A flow δTH,k,1(a − b) of
firms in the initial growth phase transition into the second phase at age a− b. Adding
up over all ages and accounting for their subsequent growth gives the second term. Note

well that (40) includes n = 0, and so the sum of pn(a) over all n ∈ N gives the fraction
of firms that have survived up to age a.

Along a balanced growth path, the measure of new firms entering is growing at a

rate η. Consider the population of all firms that have entered up to a particular point

in time, including those that have since exited. The exponential rate η at which entry

cohort sizes grow implies an exponential age distribution 1 − e−ηa for this population.
Because {pn(a)}∞n=0 includes firms that have exited, the joint distribution of age and size
is ηe−ηapn(a) among all firms that have ever entered. The age density among all firms
of size n ≥ N is then

hN(a) =
∞
n=N ηe−ηapn(a)

∞
n=N

∞
0

ηe−ηbpn(b)db
. (41)

In particular, for N = 1 this defines the age density among all surviving firms.
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7. U.S. E F

U.S. Internal Revenue Service statistics contain more than 26 million corporations, part-

nerships and non-farm proprietorships. Business statistics collected by the U.S. Census

consist of both non-employer firms and employer firms. In 2002 there were more than

17 million non-employer firms, many with very small receipts, and close to 6 million

employer firms. In the following, Census data on employer firms assembled by the U.S.

Small Business Administration (SBA) will be considered. For employer firms, part-time

employees are included in employee counts, as are executives. But proprietors and part-

ners of unincorporated businesses are not (Armington [1998, p.9]). This is likely to

create significant biases in measured employment for small firms. The SBA reports firm

counts for 24 size categories, ranging from 1 to 4 employees to 10, 000 and more employ-

ees, as well as the number of employer firms with no employment in March but some

employment at other times during the year. Over the 1990’s, SBA data show that the

number of firms grows roughly at the population growth rate of about 1% per annum,

as predicted by the model.

Age data on firms with more than 10,000 employees in 2006 are also used below. Two

measures of firm age are reported. One is based on the date a firm was incorporated.

Corporate restructuring can cause this measure of age to be much below the age of

the underlying organization that constitutes the firm. An alternative measure uses the

earliest date a firm or any of its components are known to have been in operation. A

more detailed description of how this data was collected is given in Appendix F. Clearly,

the complicated genealogy of many large corporations is not captured by the models

described in this paper.

7.1 Gibrat Implies 750 Year Old Firms

Panels (i) and (ii) of Figure III show the fitted employment size distribution assuming

there is only one growth phase. The fractions #{firms with employment ≤ n}/#{all
firms} and #{firms with employment ≥ n}/#{all firms} observed in the data are dis-
played after merging the category of employer firms with no employment in March with

the category of 1 to 4 employees. The right-tail of the size distribution, shown in panel

(ii), is clearly well approximated by n−ζ, and the slope of the log tail probabilities with
respect to n is about ζ ≈ 1.05. Note that this estimate does not depend on the units in
which firm employment is measured. U.S. population growth is around 1% per annum.

The formula for the tail index ζ = η/(μ − λ) then implies that firms grow at a rate

μ− λ = η/ζ ≈ .95% per annum.
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To decompose μ − λ, consider first the Yule process obtained by setting λ = 0

and μ = .0095. The only remaining free parameter is then the number of employees

per blueprint i + j + l. Changing this parameter causes parallel shifts in the curves

representing the model shown in panel (ii) of Figure III. The close fit of the right tail

shown in panel (ii) is obtained by setting i + j + l = 2. Panel (i) shows that the left

tail is also well approximated. The stationary size distribution of a Yule process fits

the empirical size distribution quite well. But this model of firm growth has deficiencies

that show up very clearly in dynamic data. Actual firms do decline and exit, and entry

rates are much higher than the population growth rate. The SBA reports a firm entry

rate of about 10% per annum over the 1990’s. Instead, the Yule process implies a firm

entry rate φ = η + λP1 = η and this only equals about 1%.

To match the evidence on firm entry along with the shape of the right tail of the size

distribution, one can raise μ and λ subject to the constraint μ− λ = η/ζ ≈ .0095 until
the implied entry rate φ reaches the .1 value observed in the data. Solving the ζ ↓ 1
approximation (36) of the firm entry rate gives μ = .3615 and λ = .3615. A precise

calculation for ζ = 1.05 gives μ = .3695 and λ = .36. Choosing the number of employees

per blueprint to match the right tail of the size distribution now gives i + j + l = .25.

The associated left and right tails are again shown in panels (i) and (ii) of Figure III.

The increased transition probabilities μ and λ raise the variance (μ+λ)/n of the growth

rate of a firm with n blueprints, and this implies that surviving firms are more likely

to have many blueprints. Fitting the right tail of the employment distribution therefore

requires fewer employees per blueprint than in the case of a Yule process. But then the

left tail of the size distribution no longer fits well. The higher variance cuts down, too

much, on the number of small firms–they either exit or grow large.

The age distributions displayed in the upper panel of Figure IV show a much more

dramatic failure of the one-phase model of firm growth. At μ = .3695, λ = .36 and

i + j + l = .25, the median age of firms with more than 10,000 employees is about 750

years. The Yule process fitted above implies a median large firm that is a couple of

centuries older still. In the data, the median age of these large firms is closer to 75

years. Given Gibrat’s law, firms all grow at the same average rate, and this must be

equal to μ− λ = η/ζ ≈ .0095. At this pace, it takes a very long time for a firm to grow
from its initial size of i+ j + l = .25 employees to one with 10, 000 employees–perhaps

not quite the ln(40,000)/.0095 ≈ 1,115 years implied by deterministic growth, but still,
a very long time.11

11In Luttmer [2007], Gibrat’s law holds in a strong form: both the mean and the variance of firm
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7.2 Rapid Initial Growth

As Figure I suggests, many large firms started out small and became large during rela-

tively short periods of rapid growth, at rates far above the population growth rate. This

can account for the fact that the median large firm is only 75 years old. Proposition 4

indicates how this can also be made consistent with the observed right tail of the size

distribution. Firms can grow initially at a high rate μH − λH and then transition at a

rate δ to a regime with a growth rate μL − λL that must be below η. If the tail index

is determined by the effects of initial rapid growth, then ζ = (η + δ)/(μH − λH). Given

ζ ≈ 1.05 and η ≈ .01, this implies that μH − λH must be close to δ. An initial phase

with very rapid growth is possible as long as this phase is of sufficiently short average

duration. The fact that transition times are exponentially distributed implies that some

firms grow rapidly for much longer than the average duration. This results in relatively

young large firms.

Panels (iii) and (iv) of Figure III and the lower panel of Figure IV show the size and

age distributions when μH = .8575, μL = .5925, and λH = λL = .6, together with δ = .25

and employee numbers per blueprint equal to iH+ jH+ lH = .30 and iL+ jL+ lL = .275.

These parameters give rise to a firm entry rate of 10% and a median age among firms

with more than 10, 000 employees of 75 years. The parameters were chosen to match

these two features of the data, and to approximate the left and right tails of the size

distribution, subject to the theoretical restrictions implied by the model. Roughly, the

mean growth rates μH − λH and μL − λL are important for the median age, and the

variance parameters μH + λH and μL + λL are important for the entry rate. Increasing

μH−λH lowers the median age while increasing μL−λL causes the median age to rise as

firms that have become large stay around longer. Increases in μH+λH and μL+λL raise

the entry rate as firms spread out and exit more quickly. If iH+ jH+ lH and iL+ jL+ lL
are reduced along with these increases to keep the frequency of large firms in line with

the data, then the median age of large firms does not change much.

The two-phase model introduces variation in mean growth rates that is correlated

with firm size. Figure V shows the mean and standard deviation of firm growth condi-

tional on size, with size measured by the number of blueprints employed by the firm.

A logarithmic scale is used to accentuate variation over the full range of the data. The

graph shows that beyond 300 blueprints, or about 100 employees, the implied mean firm

growth rates are independent of size. The fact that the variance does not decrease with size makes
it easier for selection to produce large firms. But it still takes annual growth rates with a standard
deviation as high as 40% per annum to account for the observed age distribution of large firms.
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growth rate is essentially constant. This can explain why many researchers have found

that Gibrat’s law is a good approximation for firms that are not too small (e.g. Hall

[1987] and Evans [1987].) Small firms grow much faster on average, and the model also

predicts an intermediate size range in which firms are most likely to be in the low-growth

phase.
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Over short intervals of time, the variance of firm growth in regime i is (μi + λi)/n

for a firm with n blueprints. The resulting estimated standard deviation of a firm with

n blueprints is about 1.21/
√
n in the high-growth phase and 1.09/

√
n in the low-growth

phase. A firm with 30 employees has around 100 blueprints, and hence the standard

deviation of its growth rate will be in the 10%− 12% range. For firms with more than

10,000 employees, these standard deviations are on the order of .5% to .6%, numbers

that are small even relative to aggregate employment fluctuations in the U.S. economy.

As emphasized by Klette and Kortum [2004], the empirical evidence suggests that the

variance of firm growth rates declines more slowly than 1/n. Hymer and Pashigian [1962]

compared standard deviations of firm growth rates across size quartiles and found that

firms in the largest quartile were significantly more volatile than predicted by the 1/n

rule. More recently, Stanley et al [1996] and Sutton [2002] find that the variance of the

growth rate of Compustat firms behaves like 1/n1/3. Tentative interpretations are given

in Stanley et al [1996] and Sutton [2002, 2007].
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7.3 What Could Those Blueprints Be?

For the Yule process, i + j + l = 2 is the level of employment per blueprint that best

fits the empirical employment size distribution. If μ and λ are increased to match the

observed firm entry rate, then employment per blueprint drops to i+j+ l = .25. Similar

estimates of employment per blueprint are obtained if there is an initial growth phase.

Increasing employment per blueprint and increasing the variance of the firm growth

process both cause the stationary employment distribution to spread out. The observed

dispersion of employment therefore puts tight restrictions on employment per blueprint

and the variance of the firm growth process. If the employment per blueprint is high,

then the variance of the growth rate must be low, and vice versa. The Yule process has

the lowest variance consistent with the observed tail index, and hence the highest level

of employment per blueprint.

Therefore, if the model is to fit the distribution of all firms in the SBA collection

of firms, employment per blueprint can be at most 2. Such a low number rules out

several a priori plausible interpretations of what blueprints could be. Plants, organi-

zational departments, or geographically distinct subsidiaries typically have more than

two employees. Projects, tasks, sales accounts, or individual job descriptions might be

better interpretations. Strictly within the model, blueprints are associated with differen-

tiated commodities, and the small number of employees assigned to each differentiated

commodity suggests an extremely differentiated set of commodities.

Figure VI shows an alternative way to interpret part of the SBA data. The empirical

distribution displayed in this figure is the distribution of all firms with at least five

employees. That is, firms with 0 employees in March and those with 1-4 employees are

not included. Within the context of the model, one could interpret these small employer

firms as intermediaries that supply labor services to organizations that are classified as

firms–those that have more than five employees. Conditioning on firms with at least

five employees causes the log of the empirical right tail frequencies reported in panel

(ii) to shift up by a constant. This is what allows one to match the data with a larger

number of employees per blueprint. In Figure VI, this is taken to be the minimum size

of 5 employees. As before, δ = .25 ≈ μH − λH, but μH + λH and μL + λL now have

to be smaller to match the right tail of the distribution. Panel (iii) shows that the

median large firm is now younger than the observed 75 years, while other percentiles are

above what is found in the data. The overall age distribution is still in the range of the

empirical age distribution.
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8. C

Data on U.S. firms show (i) a size distribution with many small firms and a very thick

right tail, (ii) high firm entry rates, (iii) relatively young large firms, and (iv) growth

rate standard deviations that decline with firm size at a rate that is slower than one over

the square root of firm size. Luttmer [2007] and the current paper provide alternative
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interpretations of (i). Both papers require large amounts of randomness or high tran-

sitory growth rates to deal with (ii) and (iii). The two models seem to be on opposite

sides of the data when it comes to (iv). In one case all shocks are firm-wide, while in

the other independent within-firm shocks average out. But neither model has industry

or aggregate shocks. Evidence on the slow decline of the variance of firm growth rates

tends to come from sources, such as Compustat, that do not include very small firms.

It is possible that this misses a rapid decline in variance with size.

Skewed firm size distributions are interpreted as reflecting skewed productivity dis-

tributions in Hopenhayn [1992], Atkeson and Kehoe [2006], and Luttmer [2007], among

many others. The current paper attributes size differences not only to productivity

differences but also to stochastic variation in the number of markets in which a firm

operates, as in Klette and Kortum [2004], Lentz and Mortensen [2007], and Arkolakis

[2007]. Firms with productive blueprints grow faster and are more likely to be large.

But small productivity differences may give rise to large size differences. In Lucas [1978],

all variation in firm size is determined by heterogeneity in managerial talent. In Holmes

and Schmitz [1995], Gabaix and Lanier [2007] and Tervio [2007], both firm-specific pro-

ductivity and managerial productivity play a role. Much remains to be done to sort out

relative importance of each of these interpretations of firm heterogeneity.

Figure I and the relative young age of large firms are interpreted here using a two-

phase pattern of growth in which all new firms start out with a high-quality blueprint

and become firms with all low-quality blueprints after some random time. This is an

abstraction that helps to characterize the type of growth mechanisms that can explain

the size distribution and the age distribution of large firms. The framework set out in

this paper already allows for heterogeneous quality in the blueprints of start-up firms,

and this can account for firms that linger and never “take off.” A natural extension

would allow for start-up blueprints that are initially of uncertain quality. This would

bring in the selection considerations emphasized by Jovanovic [1982]. Also, the random

declines in relative blueprint quality should probably be more gradual. Importantly,

they may not be random from the perspective of the firm. If blueprints are location

specific, and locations are known to differ in how profitable they can be, then firms

with new ideas will initially implement these in the more profitable locations, and only

then expand at a slower pace into less attractive locations. This could be an alternative

interpretation of the growth patterns shown in Figure I, although it remains to be seen

how this can account for the Pareto-like size distribution.

One possibility arises from static models of Pareto-like size distributions. A well-
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known example is the Beckmann [1958] model of hierarchies of cities. More recently,

Hsu [2007] describes an equilibrium model of hierarchies of firms and cities that produces

Zipf’s law. These static models could be viewed as long-run equilibrium conditions

for a dynamic economy, and then the rapid initial growth shown in Figure I would

simply reflect the fact that setting up large firms is costly and does take some time.

Market values of firms will reflect the available information about future firm growth

opportunities, if growth opportunities are valuable, and this could help to discriminate

between these alternative interpretations of the data.

A close examination of the early histories of large U.S. corporations, such as the ones

shown in Figure I and the ones described in Appendix F, shows that mergers, acquisi-

tions, and spin-offs are not infrequent. It is possible to interpret a small acquisition as

the production of a new blueprint, but other interpretations are more natural. Spin-offs

can give rise to firms that enter at a relatively large size, instead of the common mini-

mum size assumed in this paper. It would be interesting to know how these aspects of

firm growth can be made consistent with the observed size distribution. And of course,

these phenomena can shed light on what keeps the components of a firm together.

A P P 2

Write the candidate solution (30) as

n

m=2

μβm
λ

−1

Qn =
ν

λ

∞

k=n+1

k

m=2

βm
μβk
λ

−1 k

m=2

μβm
λ

Since βn ≤ min{1,λ/μ} this implies the upper bounds in (31) and (32). Take some ε > 0.
The lower bounds rely on βn ↑ min{1,λ/μ}. If μ > λ, then eventually βn ≥ (λ/μ)(1+ε),

and this gives the lower bound in (31). If μ < λ, then 1/(1 + ε) ≤ βn for all large

enough n, and this implies (32). Thus the sums defining {Qn}∞n=1 converge and (31)
and (32) hold. By construction, the candidate solution satisfies (23)-(24). It remains to

prove the adding-up condition (25), which ensures that {Qn}∞n=1 is in fact a probability
distribution.

Define F1 = 1 and

Fn = n
n

k=2

μβk
λ
,

for all n ∈ N \{1}. Note from the bounds (31)-(32) that the sequence {Qn}∞n=1 is
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summable if and only if {Fn/n}∞n=1 is summable. Define

Xn = n
μβn
λ
− 1

for all n ∈ N. The recursion (27) is equivalent to

Xn+1 = 1 +
1

n

Xn − η
λ

η+nμ
nλ
− 1

n
Xn

(42)

Observe from this that Xn+1 < −1 if and only if Xn satisfies

Xn <
η − (μ− λ)

λ
− 1 (43)

Since η > μ − λ, this is true if Xn ≤ −1. But this follows by induction starting from
X1 = −1. The fixed point for the n = ∞ version of (42) is −η/(μ − λ) < −1. One
can verify that Xn converges to this fixed point starting from X1 = −1. The fact that
limn→∞Xn < −1 implies that {Fn/n}∞n=1 is summable, by Raabe’s test. The inequality
Xn+1 < 1 is equivalent to Fn+1 < Fn, and so Fn ↓ F∞ for some F∞ ≥ 0. Therefore

K

n=2

1

n
Fn ≥ F∞

K

n=1

1

n

for all K. Since the left-hand side is summable, it must be that F∞ = 0.
Write (23) as ηQ1 = λ [Q2 −Q1] + η − (μ− λ)− μQ1 and (24) as

ηQn = λn [Qn+1 −Qn]− μn [Qn −Qn−1] ,

for n ∈ N \{1}. Adding up gives over all n gives

η
∞

n=1

Qn = η − (μ− λ) + λ
∞

n=1

n [Qn+1 −Qn]− μ Q1 +
∞

n=2

n [Qn −Qn−1] . (44)

Note that n[Qn+1 −Qn] = (n+ 1)Qn+1 − nQn −Qn+1 and n[Qn −Qn−1] = nQn − (n−
1)Qn−1 −Qn−1, and observe that the candidate solution (30) satisfies limn→∞ nQn = 0,
since F∞ = 0. Using summation-by-parts for the two sums on the right-hand side of

(44) one obtains

∞

n=1

n [Qn+1 −Qn] = Q1 +
∞

n=2

n [Qn −Qn−1] = −
∞

n=1

Qn. (45)

Together with η > μ− λ, (44) and (45) imply that the sequence {Qn}∞n=1 adds up to 1.
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B P P 3

Recall that Pn ∼ Fn/n2 and define RK = ∞
n=K Fn/n

2. Observe

KzRK =
∞

n=K

K

n

z

nz−1
n

k=2

μβk
λ
≤

∞

n=K

nz−1
n

k=2

μβk
λ
.

If the sum on the right-hand side is finite, then limK→∞KzRK = 0. A sufficient condition

for the sum to converge is a version of Raabe’s test, limn→∞Xn > 1, where now

Xn = n 1− 1
n

z−1
λ

μβn
− 1 .

The recursion (27) for βn is equivalent to

Xn+1 = 1 +
1

n
An + 1− 1

n

z−1
η

μ
+

λ

μ

Xn −An
1 + 1

n
Xn

where

An = n 1− 1
n

z−1
− 1 .

Observe that limn→∞An = 1− z. The limiting recursion for Xn is therefore

Xn+1 − [1− z] ≈
η

μ
+

λ

μ
(Xn − [1− z]) ,

and this has the unique fixed point 1− z + ζ. One can verify that Xn converges to this

fixed point starting from X1 = −1. Thus z < ζ guarantees convergence.

C T L C ν ↓ 0

Write

Pn = ξ
∞

k=n

(λ/μ)k+1−n

k(k + 1)
,

and note that

1

ξ

∞

n=K

Pn =
∞

n=K

∞

k=n

(λ/μ)k+1−n

k(k + 1)

=
∞

m=0

λ

μ

m+1 ∞

n=K

1

(m+ n)(m+ n+ 1)
=

∞

m=0

λ

μ

m+1
1

m+K
.
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For K = 1 this gives:

1

ξ

∞

n=1

Pn =
∞

m=1

1

m

λ

μ

m

= − ln 1− λ

μ
,

and hence ξ = − ln(1 − λ/μ) = ln(η/μ). Using the fact that η = μ − λ, one can write

the entry rate as

η = η + λP1 = η +
λ

− ln 1− λ
μ

∞

k=1

(λ/μ)k

k(k + 1)
= λξ,

which is the result reported in (36).

D P P 4

In this Appendix, write (μH,λH) for (μzH ,λzH) and (μL,λL) for (μzL ,λzL).

LetMH,n,t andML,n,t denote the measures of firms with n blueprints in the high- and

low-growth regimes, respectively. As before, Nt =
∞
n=1 n(MH,n,t+ML,n,t) measures the

number of blueprints, and νNt is the flow of blueprints introduced by new firms. The

evolution of MH,n,t is determined by the differential equations (21) and (22), modified

to include an additional term −δMH,n,t on the right-hand side. Note that this term is

not scaled by n, since the transition probability from high to low growth is assumed

to be independent of size. The differential equations for ML,n,t are (21) and (22), with

an additional term +δMH,n,t on the right-hand side, and without the term νNt that

appears in (21). All entering firms are assumed to start out in the high-growth regime.

Starting from an initial condition {MH,n,0,ML,n,0}∞n=1, the resulting system of differential
equations determines the joint distribution of firms by size and growth regime at all

times.

Along a balanced growth path, [MH,n,t,ML,n,t, Nt] = eηt[MH,n,ML,n, N ], where η is

the population growth rate. Given (μH,λH) and (μL,λL), the entry parameter ν must

adjust so that the flow of new commodities introduced by new and incumbent firms

equals ηNt. This requirement corresponds to

η = ν + α(μH − λH) + (1− α)(μL − λL), (46)

where

α =
1

N

∞

n=1

nMH,n
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is the fraction of all blueprints employed by firms in the high-growth phase. The steady

state distribution of blueprints by firm size is determined by α and the conditional

distributions

QH,n =
nMH,n
∞
n=1 nMH,n

, QL,n =
nML,n
∞
n=1 nML,n

.

Using the differential equations for {MH,n,t}∞n=1 one obtains

(η + δ)QH,1 = λHQH,2 +
ν

α
− (λH + μH)QH,1 (47)

and
1

n
(η + δ)QH,n = λHQH,n + μHQH,n−1 − (λH + μH)QH,n (48)

for all n− 1 ∈ N. Similarly, the differential equations for {ML,n,t}∞n=1 imply

ηQL,1 = λLQL,2 − (λL + μL)ML,1,t +
αδ

1− α
QH,1 (49)

and
η

n
QL,n = λLQL,n + μLQL,n−1 − (λL + μL)QL,n +

αδ

1− α

1

n
QH,n (50)

for all n− 1 ∈ N. In addition, the {QH,n}∞n=1 and {QL,n}∞n=1 sequences must be distrib-
utions,

∞

n=1

QH,n =
∞

n=1

QL,n = 1. (51)

The balanced growth distribution of blueprints across firms is now defined by the fraction

α ∈ (0, 1) and the non-negative sequence {QH,n, QL,n}∞n=1 that solve (46)-(51) for some
positive entry parameter ν.

Observe that (47), (48) and the adding-up condition (51) for {QH,1}∞n=1 exactly match
the steady-state conditions (23)-(25) of a one-regime economy, provided that ν and η

in the one-regime economy are replaced by ν/α and η + δ, respectively. The solution

to (47)-(48) is proportional to ν/α (recall (28)-(29) and the subsequent remarks about

the one-regime case.) Imposing the adding-up condition therefore implies that ν/α =

η + δ − (μH − λH). Combining this equation with (46) gives the solution for α and ν,

α =
η − (μL − λL)

η + δ − (μL − λL)
, ν = α [η + δ − (μH − λH)] .

Note that the equilibrium conditions for a balanced growth path ensure α ∈ (0, 1) and
ν > 0. Following the one-regime case, define βH,1 = βL,1 = 0 and

βH,n+1 = 1 +
η + δ + μHn

λHn
−

μHβH,n
λH

−1
,

βL,n+1 = 1 +
η + μLn

λLn
−

μLβL,n
λL

−1
,
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for all n ∈ N. As in Proposition 2, βH,n ↑ min{1,λH/μH} and βL,n ↑ min{1,λL/μL}.
Proposition 2 and the above solution for ν/α now imply

QH,n =
η + δ − (μH − λH)

μH

∞

k=n

1

βH,k+1

k+1

m=n+1

βH,m

k+1

m=2

μHβH,m
λH

(52)

for all n ∈ N, Furthermore, (49) and (50) correspond to

QL,n = βL,n+1 (QL,n+1 + ZL,n+1)

and

ZL,n+1 =
μLβL,n
λL

ZL,n +
1

λL

αδ

1− α

1

n
QH,n

for all n ∈ N, starting from ZL,1 = 0. This last recursion and its initial condition

determine {ZL,n}∞n=1. Solving the recursion for QL,n forward then gives

QL,n =
1

μL

αδ

1− α

∞

k=n

1

βL,k+1

k+1

m=n+1

βL,m

k

l=1

k+1

m=l+1

μLβL,m
λL

1

l
QH,l. (53)

The overall firm size distribution is determined by [αQH,n+(1−α)QL,n]/n and (52)-(53).
The rate at which the right tail of this distribution decays is determined by the

slowest rate of decay of QH,n/n and QL,n/n. For the high-growth regime, Proposition 3

shows that the size distribution has a tail index (η+δ)/(μH−λH) if μH > λH. It remains

to determine the properties of the right tail of QL,n/n.

The bounds given in Proposition 2 imply that there are positive Q > Q so that

QL,n ∈ Q,Q
∞

k=n

k+1

m=n+1

βL,m

k

l=1

1

l

l+1

m=2

μHβH,m
λH

k+1

m=l+1

μLβL,m
λL

for all n ∈ N. By dropping all but the l = 1 or l = k terms one obtains the lower bounds

QL,n ≥
n+1

m=2

μLβL,m
λL

Q
∞

k=n

k+1

m=n+1

βL,m

k+1

m=n+1

μLβL,m
λL

and

QL,n ≥
n+1

m=2

μHβH,m
λH

Q
∞

k=n

k+1

m=n+1

βL,m
1

k

k+1

m=n+1

μHβH,m
λH

for some positive Q. The right-hand sides of these inequalities are finite because of

Proposition 2 and its proof. Their leading products imply that the tail index can be at
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most (η + δ)/(μH − λH) if μH > λH and η/(μL − λL) if μL > λL. Completing the proof

requires upper bounds for QL,n. Define

σn = max
μLβL,n
λL

,
μHβH,n
λH

and note that σn is bounded above by 1. Then one upper bound is

QL,n ≤
n

m=2

σm Q
∞

k=n

k+1

m=n+1

βL,m k
k+1

m=n+1

σm.

If μH < λH and μL < λL then the σn decline geometrically, and hence the QL,n are

bounded by a geometrically declining sequence–the distribution has thin tails. Alter-

natively, if μL > λL then βL,n ↑ λL/μL < 1. This ensures that the infinite sum defining

the above upper bound converges. Finally, if μH > λH and μL < λL, then μHβH,n/λH ↑ 1,
μLβL,n/λL ↑ μL/λL < 1, and an alternative upper bound is

QL,n ≤
n

m=2

σm Q
∞

k=n

k

l=1

1

l
QH,k

for some positive Q. The second inequality follows because μHβH,n/λH is bounded above

by some multiple of QH,n, by Proposition 2. Approximating the integral
k

1
x−1dx from

below shows that k
l=1 1/l ≤ 1 + ln(k) for all k ∈ N, and so

QL,n ≤
n

m=2

σm Q 1 +
∞

k=n

ln(k)QH,k .

It remains to show that ln(n)QH,n is in fact summable. To see this, note that the proof

of Proposition 3 shows that nz−1QH,n is summable for any z < (η+ δ)/(μH−λH). Since

η + δ > μH − λH this means that nεQH,n is summable for some ε > 0. But ln(n) ≤ nε

for all but finitely many n, and so ln(n)QH,n is summable.

In all these cases, the tail behavior is determined by n
m=2 σm. As already noted,

this implies a geometrically bounded tail if μH < λH and μL < λL. If μH > λH and

μL < λL then the tail index is (η + δ)/(μH − λH); if μH < λH and μL > λL then it is

η/(μL − λL). For the case μH > λH and μL > λL, define

BH,n = n 1−
μHβH,n
λH

, BL,n = n 1−
μLβL,n
λL

.

One can use the recursions for βH,n and βL,n to set up recursions for BH,n and BL,n.

These show that BH,n → (η + δ)/(μH − λH) and BL,n → η/(μL − λL). Hence

lim
n→∞

n
μHβH,n
λH

−
μLβL,n
λL

= lim
n→∞

(BL,n −BH,n) =
η

μL − λL
− η + δ

μH − λH
.
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This pins down σn for all but finitely many n, and from this the proposition follows.

E P P 5

5.1 Preliminaries

Suppose {Xi, Yi}ki=1 are 2k independent random variables with Pr[Xi = n] = (1−γ)γn−1,
n ∈ N, Pr[Yi = 0] = θ, and Pr[Yi = 1] = 1 − θ. Define Zk =

k
i=1XiYi and let

Kk =
k
i=1 Yi.

As can be verified using moment generating functions, the sum of i.i.d. geometrically

distributed random variables has a negative binomial distribution,

Pr
m

i=1

Xi = n =
n− 1
m− 1 (1− γ)mγn−m

for all m ∈ N and n+ 1−m ∈ N. Given the independence assumptions,

Pr [Zk = n] = Pr
k

i=1

XiYi = n =

min{k,n}

m=1

Pr
m

i=1

Xi = n Pr [Kk = m]

for all n ∈ N. Using the binomial distribution of Kk, this implies

Pr [Zk = n] =

min{k,n}

m=1

k

m

n− 1
m− 1 (1− θ)mθk−m(1− γ)mγn−m (54)

for all n ∈ N. The complementary probability is Pr[Zk = 0] = θk since Zk = 0 if and

only if all Yi are zero.

Now suppose that K is drawn from the geometric distribution (1 − σ)σk−1, k ∈ N.
Then the distribution of ZK is determined by

(1− σ)
∞

k=1

σk−1 Pr [Zk = n] =
(1− σ)γn

σ(1− θσ)

n

m=1

n− 1
m− 1

σ(1− θ)(1− γ)

(1− θσ)γ

m

(55)

for all n ∈ N. The right tail probabilities of this distribution are

(1− σ)
∞

n=N

∞

k=1

σk−1 Pr [Zk = n] =
1− θ

1− θσ

(1− σ)γ + σ(1− θ)

1− θσ

N−1
(56)

for all N ∈ N. For N = 1 this yields Pr[Zk = 0] = (1− σ)θ/(1− σθ).
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5.2 Sketch of Proof and Computation

Suppose δ = 0. Consider a firm that starts out with one blueprint. As reported in

Klette and Kortum [2004], by age a such a firm will have exited with probability s0(a) =
λ
μ
γ(a). Conditional on survival, its size distribution is the geometric size distribution

sn(a)/[1 − s0(a)] = [1 − γ(a)]γn−1(a). This can be verified directly by checking (38)-
(39). The size distribution at age a of a firm that starts out with k blueprints is simply

the distribution of the aggregate of k independent firms that start with one blueprint.

Applying (54) gives {Tn,k(a)}∞n=1 for the case δ = 0. Now suppose δ > 0. Transitions

from the first to the second phase occur at a rate δ, as long as no exit has taken place.

This means that only a fraction e−δa of surviving firms remain in the initial phase.
This determines {Tn,k(a)}∞n=1. The formulas for T−1,k(a) and T0,k(a) then follow from
integrating (37)-(38), as described in the text.

The infinite sums needed in (40) and (41) follow from (55) and (56). Age densities

(distributions) can then be computed using a univariate (bivariate) numerical integra-

tion.

F F A D

The firm age data for large firms used in Section 7 is collected from several sources.

Large firms are taken to be all Compustat firms with more than 10,000 employees,

about 600 companies, together with about 300 firms in that same size category that

appear on a list of large private companies published by Forbes magazine. For these

firms, two age measures were collected. One is the incorporation date obtained from

the Mergent data base. The second measure is the earliest reference to the company,

or any of its predecessor companies, that can be found in any of three different sources:

Mergent (formerly Moody’s manual), Dun and Bradstreet, and company web sites. A

predecessor company can be a company that was broken up into parts, or it can be a

component of the company that was initially independent. For firms that are in the

Mergent database, fairly extensive histories are reported, and these histories contain

information about predecessor companies. Company web sites of large corporations

often include extensive company histories that tend to emphasize the very old roots of

the company. The company age data together with the source for each age observation

are available at www.luttmer.org.
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