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B1. Other Proofs

Proof of Proposition 1:

1) Substitutes. Note thatM(g) = 0 whenever πy ≤ 0. When πy > 0, however,
M(g) weakly decreases in the size of gq1 (with strong substitutes) and in
individuals’ degree in gq2 (with non-strong substitutes). Since both gq1 and
ki(g

q2) are weakly larger in a denser network, then M(g) must be weakly
smaller in denser networks. Consider next the case of complements. Note
that M(g) = 1 whenever πy > 0. When πy ≤ 0, however, M(g) weakly
increase in the size of gq2 (with strong complements) and in individuals’
degree in gq1 (with non-strong complements). Since both gq2 and ki(g

q1)
are weakly larger in a denser network, thenM(g) must be weakly larger in
denser networks.

2) Substitutes: From Theorems 2 and 3, we know that an individual i will
choose yi = 1 if and only if: one, πy > 0; and two, she is not in the q1-core
(in the case of strong substitutes) or her degree in the q2-core is smaller than
q3 (in the case of non-strong substitutes). Hence, it is the least connected
individuals who adopt the market action. In the case of complements, an
individual i will choose yi = 1 if and only if: one, πy > 0; or two, she is
in the q2-core (in the case of strong complements) or her degree within the
q1-core is larger than q4. Hence, it is the most connected individuals who
adopt the market action.

3) We prove this part for strong substitutes and complements; the proof for
general complements and substitutes follows directly from this proof and is
omitted.

Substitutes. We already know that M(g) = 0 whenever πy ≤ 0. When
πy > 0, M(g) depends negatively on the size of gq1 . Hence, an increas-
ing q1, which has the effect of weakly reducing gq1 , increases M(g). From
equation (6), we know that an increase in πy increases q1, while increasing
returns to x reduce q1. Hence, M(g) increases with πy and decreases with
the returns to x.
Finally, an increase in the degree of complementarity between x and y can
have non-monotonic effects on M(g) when x and y are not strong sub-
stitutes. The following example illustrates this possibility. Consider the
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Left: θ = −0.3. Center: θ = −0.24. Right: θ = −0.05.

Figure B1. Market participation: non-monotonicity in θ

network on Figure B1, and consider again the payoffs function in Example
1. Suppose that py = 0 and px = 1.5. When θ = −0.3, market participation
is maximal. When θ rises to −0.24, however, individuals in the periphery
find it profitable to adopt x along with y. This raises the payoffs to x for
core individuals, who then switch from a∗i = (1, 1) to a∗i = (1, 0) (second
effect). When θ falls to −0.05, the cost of adoption of y (in terms of fore-
gone payoffs to x) is again small enough for core individuals to return to
a∗i = (1, 1) (first effect).

Complements. We already know thatM(g) = 1 whenever πy > 0. When
πy ≤ 0, M(g) depends positively on the size of gq2 . Hence, a decrease in
q2 (which weakly increases gq2) increases M(g). From equation (7), we
know that an increasing πy, increasing returns to x, and increasing degree
of complementarity between x and y all reduce q2. Hence, M(g) increases
with πy, the returns to x and the degree of complementarity between x and
y. �

Proof of Proposition 2: The proof to Proposition 2 for the case of substitutes
is provided in the main text (Example 3). The proof of Proposition 2 in the case
of complements is as follows. First note that x∗i,0 ≤ x∗i,1 for all i ∈ N , where
x∗i,0 (x∗i,1) denotes i’s network action before (after) the introduction of markets
at the ME. Indeed, from Theorem 2, we know that x∗i,0 = 1 implies that i ∈ gq1 ,

which in turn must imply that x∗i,1 = 1.1 It follows that χ∗i,0 ≤ χ∗i,1 for all i ∈ N .
Since individual i’s payoffs are weakly increasing in χ∗i , i’s payoffs must weakly
increase, for all i ∈ N . �

1Observe that when x and y are not strong complements, x∗i,1 = 1 if and only if i ∈ gq1 . When x and

y are strong complements, x∗i,1 = 1 if and only if i ∈ gq2 ; however, since q2 < q1 in the case of strong

complements, then it must again be the case that i ∈ gq1 .
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Proof of Proposition 3: We start by proving that in a regular network, the
maximal equilibrium is efficient. From Theorem 2 we know that in a regular
network, all individuals adopt the same strategy in the ME. The first step in the
proof is the following Lemma.

Lemma 1: In a regular network, the efficient outcome is generically symmetric.

Proof. Suppose a contrario that at the efficient outcome a∗, there exist two in-
dividuals i and j such that a∗i 6= a∗j and Φi(a

∗
i ,a
∗
−i | g) 6= Φj(a

∗
j ,a
∗
−j | g). Assume

without loss of generality that individual i is actually the best-off individual and
j the worst-off. This means that Φi(a

∗
i ,a
∗
−i | g) > Φj(a

∗
j ,a
∗
−j | g), which entails

that x∗i = 1 and since j is the worst-off, x∗j = 0.2 Now, construct a profile â
with âl = a∗i for all l ∈ N . Note first that individual i must be weakly better
off in â than in a∗ as the number of her neighbours choosing x = 1 has weakly
grown: hence, Φi(a

∗
i , â−i|g) ≥ Φi(a

∗
i ,a
∗
−i|g). Note further that individual j is

necessarily strictly better off, and since the network is regular, it must also be
true that Φj(âj , â−j | g) = Φi(a

∗
i , â−i | g) ≥ Φi(a

∗
i ,a
∗
−i | g) > Φi(a

∗
j ,a
∗
−j | g). All

individuals in between i and j are also clearly (weakly) better-off. It follows then
that W (a∗|g) < W (â|g). This contradicts our hypothesis that a∗ is the efficient
outcome. This completes the proof of Lemma 1. ♣

The next step is the following Lemma.

Lemma 2: In a regular network, the efficient outcome is an equilibrium.

Proof. The proof is by contradiction. We start with the efficient outcome.
We argue that if it is not an equilibrium then it must be inefficient. Note first
from Lemma 1 that the efficient outcome is symmetric. Suppose that the efficient
outcome a∗ is not an equilibrium. Then, there must be some individual j who
wants to deviate from a∗j = (x∗j , y

∗
j ) to a′j ∈ {(1− x∗j , y∗j ), (x∗j , 1− y∗j ), (1− x∗j , 1−

y∗j )}. If j wants to deviate from a∗j to a′j , then Φj(a
′
j ,a
∗
−j | g) > Φj(a

∗ | g).
It is easy to check that if this is the case for j, then all individuals can strictly
improve their payoffs by choosing a′j , which contradicts the hypothesis that a∗ is
the efficient outcome. ♣

The final step is to show that the efficient outcome is the ME. This is clearly
true: if this were not true then there would exist another equilibrium that Pareto-
dominates the efficient outcome, a∗. But this would contradict the hypothesis that
a∗ is efficient. Thus the efficient outcome is a ME. As the ME is (generically)
unique, the proof that the ME is efficient in regular networks is thus complete.

We complete the proof by showing via an example that the ME in non-regular
networks may be inefficient. Consider the CP network introduced in Figure 3.

2Indeed, suppose by contradiction that xj = 1. The only way i can achieve higher payoffs that j
is thus if χi > χj . Since the network is regular, then there must exists an individual k ∈ Nj(g) with
xk = 0. But then this entails that Φ(aj ,a

∗
−j|g) 6= Φ(ak,a

∗
−k|g), which contradicts the hypothesis that j

is the worst-off individual.
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Suppose the payoff function is as in Example 1. Suppose first that θ = −0.9,
and suppose that py < px < 1. At the ME, periphery individuals choose x = 0
and y = 1, while core individuals choose x = 1 and y = 0, yielding us W(g) =
25− 5px − 5py. Now construct a profile â, where x̂i = 1 and ŷi = 0 for all i ∈ N .
The resulting aggregate welfare is W (â | g) = 30−10px. Since W (â | g)−W(g) =
5− 5px + 5py > 0, then the ME is clearly not efficient. �

Proof of Proposition 4:

1) Observe first that the payoffs of individuals outside the q-core, for the
threshold values q1 and q2, are always independent of the size and den-
sity of the q-core. Thus, making the network denser and expanding the size
or density of the relevant q-core leaves the payoffs of those individuals un-
changed. Second, observe that the payoffs of individuals within the q-core
always weakly increase in its size and density. Hence, increasing the size or
density of the relevant q-core always weakly enhances aggregate welfare.

2) The proof here follows from a similar argument and from the observation
that individuals inside the relevant q-core (who always choose x = 1) could
always achieve the same payoffs as individuals outside the q-core by adopting
the action of individuals outside the q-core (who always choose x = 0). The
fact that they do not entails that they must have higher payoffs.

3) Note that πy, the returns to x and the degree of complementarity between
x and y have two effects on W(g). The first (direct) effect is the income
effect : when payoffs increase, individuals’ payoffs increase consequently.
The second (indirect) effect relates closely to q-core: recall that aggregate
welfare always depends positively on the size and density of the q-core at the
threshold values q1 and q2, and that these values depend on the payoffs to x
and y.3 Note first that q1 and q2 are both decreasing in the returns to x and
the degree of complementarity between x and y; hence, increasing returns
to x and degree of complementarity between x and y always weakly increase
the size of the q-core for any of these threshold values. Since the income
effect and the q- core effect of an increase in the returns to x and/or the
degree of complementarity between x and y onW(g) are both positive, then
clearlyW(g) increases in the returns to x and the degree of complementarity
between x and y.
Observe that if x and y are complements, then an increasing πy always has
a weakly positive q-core effect (since an increase in πy weakly reduces q2).
In that case, the income effect and the q-core effect of an increasing πy on

3Note also that the thresholds q3 and q4 alre depend on the payoffs to x and y. Recall however that
q3 and q4 are thresholds values of χi for a individual i to adopt (or not) the market action when i has
adopted the network action. As such, they do not impact the number of individuals who choose the
network action. Hence, the impact of the payoffs to x and y on q3 and q4 is captured entirely in the
income effect.
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W(g) are both weakly positive, and soW(g) increases in πy. However, when
x and y are substitutes, the income effect and the q-core effect oppose each
other as q1 weakly increases with πy. Example 3 in the main text shows
that this can lead to non-monotonic effects on W(g). �

B2. Extension: Generalized Network Exchange

In our benchmark model, described in Section I, it is assumed that the returns to
network exchange depend only on the number of (direct) neighbours who choose
x = 1. However, in principle a individual could benefit from the neighbours’ of his
neighbours (and so forth). This section develops a model to capture such indirect
network benefits.

We shall say that individual i’s returns to x increase with another j choosing
xj = 1 if and only if i has access to j, and we assume that those returns decrease
with the access distance between i and j. For a given action profile a, i has access
to j if either gij = 1 and xj = 1 or if there exists an access path between i and
j, i.e. if there is a set of individuals {i1, i2, ...ij−1, j} such that xi1 = xi2 = ... =
xij−1 = xj = 1 and gii1 = gi1i2 = ... = gij−1j = 1. An access path between i and j
is thus a path on which all individuals choose x = 1. The access distance between
i and j, denoted by dij , is the length of the shortest access path between i and j;
if there is no such access path, we assume dij =∞.

To account for indirect benefits, we simply redefine χi(a), given in equation (1),
as:

(B1) χi(a, δ) =
∑
j∈N

f(dij(a), δ)

where f is non-decreasing in its arguments and at f(·) ∈ [0, 1]. For concreteness
and for ease of exposition, let us suppose that:4

(B2) f(dij(a), δ) = (δ)dij−1

The parameter δ ∈ [0, 1] is the decay factor and thus captures the extent to
which distance affects payoffs. Equation (B2) tells us that when δ = 0, decay
over distance is maximal and we are back at the basic model: individuals do
not benefit from distant neighbours. At the other extreme, when δ = 1, there
is no decay and so individuals benefit from distant neighbours as much as from
immediate ones. In this case, our model approximates a standard formulation
in the development and industrial organization literature: network benefits are
defined by the size of the group (or the network component, in our case). As

4Our results extend to a general f where f12 < 0, and the corner conditions for δ = 1 and δ = 0 are
satisfied; we adopt the present formulation due to its expositional simplicity.
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before we assume that Assumptions 1 and 2 hold, after suitable rewording to
account for equation (B1) and (B2).

Define the q-central core of g, denoted by cq(g), as the set of individuals with
at least q − 1 decay centrality in the sub-graph formed only by the individuals
in cq(g). Note that the definition of the q-central core is analogous to that of
the q-core. The algorithm to attain cq(g) is analogous to Algorithm 1: instead
of eliminating nodes with q or fewer links, delete nodes with q or smaller f value
(or decay centrality) at each step.

Top left: δ = 0. Top right: δ = 0.1. Bottom: δ = 1. Coloured nodes are in the 4-central core.

Figure B2. The 4-central core

We illustrate the role of δ in shaping the relevant q-central core on Figure B2
using the same network as on Figure 1. We look for the 4-central core. When
δ = 0, the 4-central core corresponds to the 4-core, as illustrated on Figure 1.
When δ rises to 0.1, however, individuals gain access to other individuals that
are not directly connected to them. These indirect connections push individuals
3, 4, 5, 9 and 13 into the 4-central core. When δ rises to 1, finally, it is as if all
individuals were directly connected, since distant neighbours count as much as
immediate ones. Hence, the maximal q-central core any individual belongs to is
determined by the size of the component she lies into. Since this size is larger
than 4 on Figure B2, then all individuals are in the 4-central core when δ = 1.
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Theorem 4: Suppose that Assumptions 1 and 2 hold. Assume that f(dij(a), δ)
is given by (B2). Let a∗ = (a∗1, a

∗
2, ..., a

∗
n) be the ME.

1) Strong Substitutes. a∗i = (1, 0) if and only if i ∈ cq1(g). If i /∈ cq1(g),
then a∗i = (0, 0) in case πy ≤ 0, and a∗i = (0, 1) otherwise.

2) Strong Complements. a∗i = (1, 1) if and only if i ∈ cq2(g). If i /∈ cq2(g),
then a∗i = (0, 0) in case πy ≤ 0, and a∗i = (0, 1) otherwise.

The proof to Theorem 4 is analogous to that of Theorem 2 and is omitted.
Observe that, other things being the same, the value of a neighbour switching

to action x depends very much on the location of the neighbour in the network. A
neighbour who creates access to many new networks members has a much larger
effect than an isolated neighbour. Thus certain individuals may be important for
network exchange because they connect different parts of a network. This is in
the spirit of the idea of structural holes (Burt, 1992). To see this in the simplest
possible way consider a star (or hub-spoke) network with n nodes and 1 as the
centre and with n − 1 nodes linked only to it. It is then easy to see that for a
peripheral node, the value of the hub switching to x is of the order [δ(n − 1)],
while the value to the hub the value of a spoke node switching is only of the order
δ. This difference in value between the hub and spoke individual grows with δ.
The central individual spans a structural hole in the network: without her, the
network would be completely fragmented. The presence of large indirect benefits
clarifies the role of ’key’ individuals in shaping behavior.

We illustrate further the role of structural holes with Figure B3. Suppose that
two separate communities (individuals 2 to 6 and 7 to 11) get connected by a new
individual, 1. Without individual 1, the largest q for which individuals 2 to 11
are in the q-central core for any δ is 4− ε, with ε the smallest value greater than
0. However, individual 1 connects the two communities: the benefits of indirect
exchange brought by individual 1 depend on δ. When δ = 0.5, for example, than
the largest q such that individuals 2 to 11 are in the q-central core increases to
5.25 − ε. When δ = 1, then that largest q increases to 10 − ε: in such case,
individual 1 more than doubles the value of network exchange due to indirect
payoffs!

We conclude by noting that (suitably reworded versions of) Propositions 1 to
5 hold in the extended model.

B3. Heterogeneity in returns to market action

The framework developed so far highlights the implications of individuals’ het-
erogeneity with respect to network position. Individuals may be heterogeneous in
other dimensions that affect the extent to which they can benefit from markets
(e.g. human capital, initial wealth). This motivates a study of the combined
effect of network heterogeneity with other types of heterogeneity. In the following
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Figure B3. Generalized Network Exchange

analysis, we assume that the benefits from the market action, πy, differ among
individuals. We assume that this heterogeneity does not affect the other deter-
minants of the payoff function (i.e. returns to x and degree of complementarity
between x and y).

Let πiy denote individual i’s payoffs from y. Note that the thresholds q1, q2, q3

and q4, given respectively by (6), (7), (8) and (9), are now heterogeneous. For
each individual i, there exist unique thresholds qi1 ≥ 0, qi2 ≥ 0, qi3 ≥ 0, qi4 ≥ 0
such that for any χi > qi1, χi > qi2, χi > qi3 and χi > qi4, respectively:

φ0(χi) > max{0, πiy}(B3)

φ1,i(χi) > max{0, πiy}(B4)

φ0(χi) > φ1,i(χi)(B5)

φ0(χi) < φ1,i(χi)(B6)

We next adapt the definition of the q-core introduced earlier.

Definition 2: Generalised q-core. Consider a vector q = {qi}i∈N ascribing
value qi to each individual in N . The generalised q-core of g, denoted by gq(i), is
the unique largest subgraph of g wherein all individuals have strictly more than qi
links to other individuals in gq(i).

We provide a characterization of equilibrium for the cases of strong substi-
tutes and complements. The extension to general substitutes and complements
is analogous.

Theorem 5: Suppose Assumptions 1 and 2 hold. Let a∗ be the ME. For all
i ∈ N :

1) Strong Substitutes. a∗i = (1, 0) if and only if i ∈ gq1(i). If i /∈ gq1(i), then
a∗i = (0, 0) in case πiy ≤ 0, and a∗i = (0, 1) in case πiy > 0.

2) Strong Complements. a∗i = (1, 1) if and only if i ∈ gq2(i). If i /∈ gq2(i),
then a∗i = (0, 0) in case πiy ≤ 0, and a∗i = (0, 1) in case πiy > 0.
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To illustrate this result, we proceed with an example close to Example 1. Sup-
pose that the payoff function is given by:

(B7) Φi(ai,a−i|g) = (1 + θyi)xiχi(a)− pxxi + πiy

with θ = −0.9. Suppose that individuals have either “high” or “low” returns from
y, with πHy = 3 and πLy = −1. With these parameters, it is easy to compute that

qH1 = 3 + px while qL1 = px, implying that high individuals require much higher
returns to x to renounce to y. Figure B4 shows the patterns of adoption of x
and y for different values of px for the network introduced in Figure 1. Figure B4
shows that those who are the promptest to adopt y are not only poorly connected
individuals, but also those who have high πiy (top right network). Further, with
heterogeneity, it is possible for the market action to be adopted as a stand-alone
by certain individuals, while others opt for a∗ = (0, 0) (bottom network).

Top left: px = 0.5. Top right: px = 1.5. Bottom: px = 2.5.

Figure B4. The qi-core in an arbitrary network, with qH = 2 and qL = 5

Note that the results presented in Propositions 1 and 4 are robust to hetero-
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geneity in the market action returns, πy. The results on inequality, however, may
change considerably, e.g. if πiy is negatively related to membership in the q-core.
To see why, consider for example the case of substitutes. Recall that in our bench-
mark model, only poorly connected individuals, i.e. those out of the q1-core, may
opt for the market action. Those individuals are also the worst off, which explains
why inequality always goes down with the introduction of markets in the case of
substitutes. Suppose now that poorly connected individuals have high returns to
y while others have no returns at all. In such case, the introduction of y may
make the poorly connected individuals the best-off individuals, which may well
increase inequality.

B4. Gini Coefficient

We discuss the effect of the introduction of y on the Gini coefficient. Given g, we
denote the Gini-coefficient in the ME by G(g). The following result summarizes
the impact of markets on G(g).

Proposition 6: When x and y are strong substitutes, the introduction of the
market action y (weakly) decreases G(g) if it also (weakly) increases W(g). If x
and y are not strong substitutes or if the introduction of y decreases W(g), its
effect on G(g) is ambiguous. When x and y are not strong complements and there
is at least one individual who adopts x without adopting y, the introduction of y
(weakly) increases G(g). If they are strong complements or if all individuals who
adopt x also adopt y, its effect on G(g) is ambiguous.

Proof. We start by introducing new notation. Consider the sequence of in-
dividuals (1, 2...j, ...n) such that Φj(aj ,a

∗
−j | g) ≤ Φj+k(aj+k,a

∗
−(j+k) | g) for all

j ∈ N and k ∈ (1, n − 1).5 The Lorenz curve, at a given individual i under
equilibrium a∗, is given by:

(B8) L(i | g) =
Φi(ai,a

∗
−i | g) +

∑
j<i Φj(aj ,a

∗
−j | g)

W(g)

Observe that L(0 | g) = 0 and L(n | g) = 1, by definition. We denote by ∆L(i | g)
the slope of the Lorenz curve at an individual i, with

(B9) ∆L(i | g) =
Φi(ai,a

∗
−i | g)

W(g)

Given the ordering of individuals from lowest to highest (in payoffs), the Lorenz
curve is increasing and convex: this means that ∆L(j | g) ≤ ∆L(i | g) if and only
if j < i in the support. Furthermore, we say that a Lorenz curve A, LA(i | g),

5As multiple individuals can have the same payoffs, this sequence may not be unique.
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dominates a Lorenz curve B, LB(i | g), if LA(i | g) ≥ LB(i | g) for all i ∈ N ,
with inequality strict for at least one i. Denote by L0(i | g) and by L1(i | g) the
Lorenz curve before and after the introduction of y, respectively, and define G0(g)
and G1(g) analogously. Observe that it is sufficient to show L0(i | g) dominates
L1(i | g) to prove that G0(g) ≤ G1(g), and vice-versa.

Substitutes. We start by proving that the introduction of the market action
y when x and y are strong substitutes (weakly) decreases G(g) if and only if it
also (weakly) increases W(g). Note that we ignore trivial cases whereM(g) = 0,
wherein G(g) is obviously left unchanged by the introduction of y.

Recall that when x and y are strong substitutes and πy > 0, individuals always
prefer either a = (0, 1) or a = (1, 0). There are thus two cases possible after the
introduction of y ifM(g) > 0: all individuals adopt only y; and some individuals
adopt x while all others adopt y. In the first case, note that all individuals have
the same payoffs, and so G1(g) = 0: clearly G1(g) ≤ G0(g).

Consider now the second case. We show that either L0(i | g) dominates L1(i | g)
or L0(i | g) = L1(i | g). We partition individuals into two groups, namely those
who choose a∗i,1 = (1, 0) and those who choose a∗i,1 = (0, 1). Label the former
group A and the latter group B. The support of L(i | g) can be written as
{1, 2, ...nB, nB + 1, ...n}, and so B = {1, 2...nB} and A = {nB+1, ...n}. Recall
from Proposition 4 that Φi(ai,1,a

∗
−i,1 | g) > Φj(aj,1,a

∗
−j,1 | g) for any i ∈ A and

j ∈ B. Hence, L1(i | g) > L1(j | g) and ∆L1(i | g) > ∆L1(j | g) for any i ∈ A
and j ∈ B. In other words, B forms the left support of L(i | g), while A is its
right support.

Since we know that x∗i,0 ≥ x∗i,1 for all i ∈ N in the case of substitutes, we know
that if an individual j chooses a∗j,1 = (1, 0), then a∗j,0 = (1, 0) and Φj(aj,1,a

∗
−j,1 |

g) ≤ Φj(aj,0,a
∗
−j,0 | g). Since W1(g) ≥ W0(g), then ∆L1(j | g) ≤ ∆L0(j | g) for

any j ∈, and:

(B10)

∑
j∈A Φj(aj,1,a

∗
−j,1 | g)

W1(g)
<

∑
j∈A Φj(aj,1,a

∗
−j,1 | g)

W0(g)

Note that L1(nB | g) > L0(nB | g) (since the total share of payoffs going to
individuals in A falls, that going to individuals in B must rise).

It thus follows that L1(i | g) dominates L0(i | g) over its support segment
A. To see why, suppose a contrario that there exists a j ∈ A such that L0(j |
g) > L1(j | g). Remark that L0(n | g) = L1(n | g) = 1 by definition. Since
both L0(i | g) and L1(i | g) are continuous and strictly increasing and that
L1(nB | g) > L0(nB | g), L0(j | g) > L1(j | g) entails L0(i | g) and L1(i | g)
must cross each other at least once. Such crossing implies that there must be
at least one l ∈ A such that ∆L1(l | g) > ∆L0(l | g). This implies in turns
Φl(al,1,a

∗
−l,1 | g) > Φl(al,0,a

∗
−l,0 | g), which is a contradiction.
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We now show that L1(i | g) must dominate L0(i | g) over its support segment
B too. Suppose a contrario that there exists a j ∈ B such that L0(j | g) >
L1(j | g). Recall first that L0(i | g) is convex by definition. Further, since
Φi(ai,1,a

∗
−i,1 | g) = πy for all i ∈ B, then ∆L1(j | g) is the same for all j ∈ B. In

other words, L1(j | g) is a straight line over B. Since L1(j | g) is a straight line
over B, L0(j|g) is convex, L1(0 | g) = L1(0 | g) = 0 and there exists a j such
that L0(j | g) > L1(j | g), then it must be that L1(nB | g) < L0(nB | g). Again,
this is a contradiction since the share of payoffs going to individuals in B must
increase. This completes the proof.

We now show with an example that if the introduction of y decreases W(g),
then G(g) can either increase or decrease. Consider the network on Figure B5,
and fix px = 0.75. Before the introduction of y, the payoffs of individuals 1 to
5, 6 to 10 and 11 to 15, respectively, amount to 4.25, 3.25 and 0.25, entailing
W0(g) = 38.75 and G0(g) = 0.3441. Now suppose that y is introduced at a price
py = 0.7. The individual payoffs of individuals 1 to 5, 6 to 10 and 11 to 15,
respectively, then amount to 4.25, 2.25 and 0.3. While the payoffs of individuals
11 to 15 increase in comparison to those of individuals 1 to 5, the payoffs of the
latter clearly increase in proportion of W(g) due to the important fall in the
payoffs of individuals 6 to 10. As a result, W1(g) = 34 and G1(g) = 0.3873,
indicating a rising G(g). Now suppose that py = 0.2. Then, W1(g) = 36.5 and
G1(g) = 0.3150, indicating a falling G(g) compared the situation without y.

Figure B5. A three-layer society

We finally prove by construction that when x and y are not strong substitutes,
then G(g) can either increase or decrease even when W(g) increases. Consider
the network on Figure B6, and assume that θ = −0.15 and px = 0.9, entailing
that W0(g) = 55.2 and G0(g) = .177. Suppose first that y is introduced at
py = 0.5: then, W1(g) = 55.6 and G0(g) = .178, showing increasing welfare and
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inequality. Suppose second that y is introduced at py = 0.2: then, W1(g) = 65.2
and G0(g) = .152, showing increasing welfare and decreasing inequality. This
completes the proof for substitutes.

Figure B6.

Complements. We now prove that when x and y are not strong complements
and there is at least one individual who adopts x without adopting y, the intro-
duction of y (weakly) increases G(g). Recall from Lemma 3 that when x and
y are not strong complements, then x∗i,1 = x∗i,0 for all i ∈ N . Recall also from
Proposition 2 that in such case, the introduction of y strictly increases W(g).

Note that individuals can be partitioned into three groups, namely those who
choose a∗1 = (1, 1), those who choose a∗1 = (1, 0) and those who choose a∗1 =
(0, 0). Label these groups respectively A, B and C. The support of L(i | g)
can be written as {1, 2, ...nC , nC + 1, ...nB, nB + 1, ...n}, and so C = {1, 2...nC},
B = {nC + 1, ...nB} and A = {nB + 1, ...n}. Recall from Proposition 4 that
Φi(ai,1,a

∗
−i,1 | g) > Φj(aj,1,a

∗
−j,1 | g) for any i ∈ A and j ∈ B, and Φj(alj1,a

∗
−j,1 |

g) > Φl(al,1,a
∗
−l,1 | g) for any l ∈ C and j ∈ B. Our proof now proceeds in three

steps.

Step 1. We first show that L1(i | g) = L0(i | g) over its support segment C.
Recall first that a∗i,0 = a∗i,1 = (0, 0) for any i ∈ C. Hence Φi(ai,0,a

∗
−i,0 | g) =

Φi(ai,1,a
∗
−i,1 | g) = 0 for all i ∈ C. This entails that over its segment support C,

L1(i | g) = L0(i | g).

Step 2. Second, we show that L1(i | g) < L0(i | g) over its support segment
B. From Lemma 3, a∗i,0 = a∗i,1 = (1, 0) for any i ∈ B. Hence Φi(ai,0,a

∗
−i,0 | g) =

Φi(ai,1,a
∗
−i,1 | g) for all i ∈ B. Since W1(g) > W0(g), then clearly ∆L0(i | g) >

∆L1(i | g) for all i ∈ B, which implies that L1(i | g) < L0(i | g) over its support
segment B.

Step 3. Lastly, we show that L1(i | g) < L0(i | g) over its support segment A.
Recall again from Lemma 3 that a∗i,0 = (1, 0) and a∗i,1 = (1, 1) for any i ∈ A. The
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payoffs to an individual i ∈ A before and after the introduction of y, respectively,
can thus be written as follows:

(B11) Φi(ai,0,a
∗
−i,0 | g) = φ0(kj(g

q1))

(B12) Φi(ai,1,a
∗
−i,1 | g) = φ0(kj(g

q1)) + πy + ξ(kj(g
q1))

Note that both Φi(ai,0,a
∗
−i,0 | g) and Φi(ai,1,a

∗
−i,1 | g) are increasing in kj(g

q1).
Consider next the following Claim.

Claim 1: If ∆L1(i | g) > ∆L0(i | g) for one i ∈ A, then ∆L1(j | g) > ∆L0(j |
g) for all j such that kj(g

q1) ≥ ki(gq1).

Proof. Using equations (B9), (B11) and (B12) and rearranging terms, observe
that ∆L1(i | g) > ∆L0(i | g) implies that:

(B13)
φ0(kj(g

q1)) + πy + ξ(kj(g
q1))

φ0(kj(gq1))
>
W1(g)

W0(g)

Note that the RHS of inequality (B13) is a constant and its LHS is strictly
increasing in kj(g

q1). Hence, if inequality (B13) holds for an individual i ∈ A, it
must also hold for all j ∈ A for whom kj(g

q1) > ki(g
q1). ♣

We now complete the proof by showing that L1(i | g) < L0(i | g) over A.
Suppose a contrario that L0(i | g) does not dominate L1(i | g) for every i ∈ A,
such that there is a j ∈ A with L0(i | g) < L1(i | g). Since we know from Step
2 that L0(nB | g) > L1(nB | g), then there must exist at least one i ∈ A with
Φi(ai,1,a

∗
−i,1 | g) ≤ Φj(aj,1,a

∗
−j,1 | g) such that ∆L1(i | g) > ∆L0(i | g). But

since L0(i | g) and L1(i | g) are both convex and L0(n | g) = L1(n | g) = 1, then
there must exist one l ∈ A such that Φi(ai,1,a

∗
−i,1 | g) ≤ Φi(al,1,a

∗
−l,1 | g) and

∆L1(l | g) < ∆L0(l | g). This, however, contradicts Claim 1. This completes the
proof.

Next, we show that when x and y are strong complements, then G(g) can go up
or down. We proceed through an example. Consider Figure B7 and suppose that
payoffs are given by Example 1. Fix py = 1.5. Suppose first that px = 7.1. Before
the introduction of y, all individuals’ payoffs amount to 0 (as all individuals
choose x = 0), and W0(g) = 0 and G0(g) = 0. After the introduction of y,
only individuals 9 to 16 adopt both x and y, while all other individuals choose
x = y = 0. As a result, W1(g) = 51.2 and G1(g) = 0.5, indicating a rising
G(g). Now suppose that px = 3.5. Before the introduction of y, individuals 9 to
16 choose x = 1, while all others choose x = 0. As a result, W0(g) = 28 and
G1(g) = 0.5. After the introduction of y, individuals 1 to 4 and 9 to 16 all choose
x = y = 1, while individuals 5 to 8 stick to x = y = 0. As a result, W1(g) = 88
and G1(g) = 0.4318, indicating a falling G(g).
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Figure B7.

Next, we show that even if x and y are not strong complements, G(g) can go
up or down when there is no individual who does not adopt x without adopting
y. Consider the network on Figure B8. Suppose that payoffs are given by:

(B14) Πi(a|g) = xiχi(g) + yi + xiyi(χi(g))
1
4 − 1.5xi − pyyi

It is easy to check that the payoff function (B14) satisfies Assumptions 1 to 3
and that x and y are not strong complements. Before the introduction of y, only
individuals 5 to 15 adopt x, entailingW0(g) = 33.5 and G0(g) = 0.3264. Suppose
first that y is introduced at py = 2.2. After the introduction of y, only those
individuals choose x = y = 1, and W1(g) = 36.34 and G1(g) = 0.3262, indicating
a falling G(g). Suppose second that y is introduced at py = 2.3. Again, only
individuals 5 to 15 choose x = y = 1, and W1(g) = 35.24 and G1(g) = 0.3280,
indicating a rising G(g).

Figure B8.

Lastly, we show that when M(g) = 1, G(g) can go up or down. Consider
again Figure B7 and suppose that payoffs are given by Example 1. Fix py = 0.5.
Suppose first that px = 7.1. Before the introduction of y, all individuals’ payoffs
amount to 0, and so W0(g) = 0 and G0(g) = 0. After the introduction of y,
the payoffs of individuals 9 to 16 rise to 7.3 (as they now choose x = y = 1),
while those of all other individuals rise to 0.5. As a result, W1(g) = 63.2 and
G1(g) = 0.4367, indicating a rising G(g). Now let px = 3.5. Prior to introduction
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of y, individuals 9 to 16 choose x = 1, while all others choose x = 0. As a
result, W0(g) = 28 and G1(g) = 0.5. After the introduction of y, the payoffs of
individuals 9 to 16, 1 to 4 and 5 to 8 are respectively 11, 3 and 0.5. As a result,
W1(g) = 102 and G1(g) = 0.3873, indicating a falling G(g). �

B5. Application: Informal risk-sharing and formal insurance

Informal risk-sharing is pervasive in developing countries. There is a vast lit-
erature on the mechanisms and the limits of such insurance and it remains an
active field of research in economics; recent work includes Bramoullé and Kran-
ton (2007), Bloch, Genicot and Ray (2008), Ambrus, Mobius and Szeidl (2014),
Ambrus, Chandrasekhar and Elliott (2015) and Munshi and Rosenzweig (2016).
Until recently, however, relatively little attention had been given to the interac-
tion between formal insurance markets and informal risk-sharing in networks, see
e.g., Kinnan and Townsend (2012) and Mobarak and Rosenzweig (2012).6

We will follow Mobarak and Rosenzweig (2012) who empirically study the in-
teraction between informal risk-sharing and the demand for index insurance. In-
dividuals face village level rainfall shocks that are common to other households in
their village, as well individual-level shocks (e.g. health shocks). Index insurance
is typically issued by government/state agencies and is based on the observable
level of local rainfall. Over 30 million farmers worldwide are covered by index
insurance.

Mobarak and Rosenzweig (2012) begin by analyzing how (sub-caste) networks
insure against village-level rainfall shocks and individual losses. They uncover a
positive correlation between the size of the network within a village and the level
of both types of insurance. In addition, they find that if a sub-caste network
covers rainfall shocks, then its members are less likely to buy index insurance. In
contrast, if a sub-caste network covers idiosyncratic risks then its members are
more likely to demand index insurance. Finally, they find that households that
had both individual and village levels risks covered through networks, were more
likely to opt for riskier portfolios. Thus insurance cover has first order effects on
risk taking and earnings.

We now map this empirical context to our model. Action x represents partici-
pation in (sub-caste) networks, while index insurance is represented by action y.
A household’s returns to x depend on the size of the network. In contrast, returns
to y do not depend directly on other households’ activity. Mobarak and Rosen-
zweig (2012) show that if the (sub-caste) network offers insurance on individual
risks then x and y are complements; if the networks offer rainfall (or village level)
cover then informal insurance and index insurance are substitutes.

Our model predicts that ‘well-connected’ households are more likely to adopt
y, when x and y are complements; the converse is true if x and y are substitutes

6A notable exception is Arnott and Stiglitz (1991); they show that due to moral hazard problems a
developed informal insurance system can hamper the development of formal insurance markets.
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(Theorem 2 and Proposition 1). This is consistent with the findings of Mobarak
and Rosenzweig (2012). We also make predictions on welfare and inequality
(Propositions 2-5) that go beyond the empirical evidence presented in Mobarak
and Rosenzweig (2012).

We conclude our discussion by noting that the formal model in Mobarak and
Rosenzweig (2012) contains two agents engaged in mutual risk-sharing; it ab-
stracts from social structure considerations. Our main results Theorem 2 and
Proposition 1 bring out the role of q-core, and its variants, in shaping behavior.
Ambrus, Mobius and Szeidl (2014) report that informal networks of risk-sharing
have rich structures; to understand demand for formal insurance in different real
world contexts, it is therefore important to understand the role of decay in net-
work benefits, and thus the empirical relevance of q-cores.
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