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Abstract

This appendix provides formal details to accompany the forthcoming article “Multidimensional Plat-

form Design” in the 2017 American Economic Review Papers and Proceedings and available at https:

//ssrn.com/abstract=2891806.

1 Model Setup

A monopolistic platform chooses a vector of characteristics ρ ∈ Rn and a special “distinguished” characteristic

p ∈ R. p is viewed as harmful by all users and is always beneficial to the platform; it may represent price

but need not. There is a unit mass of potential users each characterized by a type vector θ ∈ Rm distributed

according to a full-support, strictly positive density, f : Rm → R++. The type vector θ determines both

the contribution that users make to the platform’s value and their taste for using the platform. Let φ (θ)

be a vector of user characteristics that impact both the platform’s profit and its perceived value to users at

large. We assume that the profits of the platform and its value to users depend only on the aggregate value

of these features. That is, if the set of users participating in the platform is Θ, then platform profits and

user utilities are functions of ρ and Φ ≡
∫

Θ
φ (θ) f (θ) dθ. Moreover, given the platform’s characteristics, a

user’s utility also depends on the particular user’s type. Assume that a function u exists such that users

participate on the platform exactly if u (ρ,Φ; θ) ≥ p. The platform earns profits given by π (ρ,Φ, p) that are

strictly increasing in p everywhere. Then we have Θ = {θ : u (ρ,Φ; θ) ≥ p}. Assume that f , φ and π are

continuously differentiable in all of their arguments. Finally, let ∂Θ = {θ : u (ρ,Φ; θ) = p} denote the set of

marginal users.
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2 Proposition 1

Proof. The platform faces the following maximization problem:

max
ρ,p

π (ρ,Φ, p)

s.t.
∫

Θ
φ (θ) f (θ) dθ = Φ.

The Lagrangian associated with this problem is defined by

L (ρ,Φ, p, λ) = π (ρ,Φ, p) + λ>
(∫

Θ

φ (θ) f (θ) dθ − Φ

)
. (1)

It is convenient to decompose θ = (ζ, τ), where ζ has one less dimension than θ, and τ ∈ (τ , τ) ⊆ R.

We assume a dimension of type τ exists such that ∂u(ρ,Φ;ζ,τ)
∂τ > 0 and ∀ (ρ,Φ, ζ), lim

τ→τ
u (ρ,Φ; ζ, τ) = ∞

and lim
τ→τ

u (ρ,Φ; ζ, τ) ≤ 0. Given this assumption, a unique function τ̃ = τ̃ (ρ,Φ, p; ζ) exists such that

u (ρ,Φ; ζ, τ̃ (ρ,Φ, p; ζ)) = p.

First, we use the implicit function theorem on the equation that defines the margin, u (ρ,Φ; ζ, τ̃ (ρ,Φ, p; ζ))−

p = 0, to obtain

∂τ̃

∂p
=

1
∂u
∂τ (ρ,Φ; ζ, τ̃)

,
∂τ̃

∂ρi
= −

∂u
∂ρi

(ρ,Φ; ζ, τ̃)
∂u
∂τ (ρ,Φ; ζ, τ̃)

,
∂τ̃

∂Φj
= −

∂u
∂Φj

(ρ,Φ; ζ, τ̃)

∂u
∂τ (ρ,Φ; ζ, τ̃)

.

Now we have more convenient expressions of Θ and ∂Θ:

Θ = {θ : τ ≥ τ̃ (ρ,Φ, p; ζ)} , ∂Θ = {θ : τ = τ̃ (ρ,Φ, p; ζ)} .

Thus, the density of users in this marginal set M is given by

M ≡ − ∂

∂p

∫
Θ

f(θ) dθ = − ∂

∂p

∫
ζ

∫ τ

τ̃(ρ,Φ,p;ζ)

f (ζ, τ) dτ dζ =

∫
ζ

(
∂τ̃

∂p

)
f (ζ, τ̃) dζ =

∫
ζ

f (ζ, τ̃)
∂u
∂τ (ρ,Φ; ζ, τ̃)

dζ.

In light of this expression, for an arbitrary smooth function z (x, θ), the expectation conditional on ∂Θ is

defined as (not standard)

E [z (x, θ)| ∂Θ] ≡ 1

M

∫
ζ

z (x, ζ, τ̃)
f (ζ, τ̃)

∂u
∂τ (ρ,Φ; ζ, τ̃)

dζ.

From ∫
Θ

φ (θ) f (θ) dθ =

∫
ζ

∫ τ

τ̃(ρ,Φ,p;ζ)

φ (ζ, τ) f (ζ, τ) dτ dζ,

we obtain the first-order derivatives:

∂

∂p

∫
Θ

φ (θ) f (θ) dθ =

∫
ζ

(
−∂τ̃
∂p

)
φ (ζ, τ̃) f (ζ, τ̃) dζ = −

∫
ζ

φ (ζ, τ̃) f (ζ, τ̃)
∂u
∂τ (ρ,Φ; ζ, τ̃)

dζ = −ME [φ| ∂Θ] ,

and similarly,

∂

∂ρi

∫
Θ

φ (θ) f (θ) dθ = ME
[
∂u

∂ρi
φ

∣∣∣∣ ∂Θ

]
,

∂

∂Φj

∫
Θ

φ (θ) f (θ) dθ = ME
[
∂u

∂Φj
φ

∣∣∣∣ ∂Θ

]
.
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Note that the first-order necessary conditions of the Lagrangian (1) give

0 =
∂L
∂p

=
∂π

∂p
+ λ> (−ME [φ| ∂Θ]) , (2)

0 =
∂L
∂ρi

=
∂π

∂ρi
+ λ>

(
ME

[
∂u

∂ρi
φ

∣∣∣∣ ∂Θ

])
, (3)

0 =
∂L
∂Φj

=
∂π

∂Φj
+ λ>

(
ME

[
∂u

∂Φj
φ

∣∣∣∣ ∂Θ

])
− λj . (4)

From equation (2), we obtain

∂π

∂p
= Mλ>E [φ| ∂Θ] , (5)

which proves the first equation in Proposition 1.

From equation (3) and (5), we obtain

− ∂π
∂ρi

= Mλ>E
[
∂u

∂ρi
φ

∣∣∣∣ ∂Θ

]
= M

∑
j

λj

(
Cov

[
∂u

∂ρi
, φj

∣∣∣∣ ∂Θ

]
+ E

[
∂u

∂ρi

∣∣∣∣ ∂Θ

]
E [φj | ∂Θ]

)

=

∑
j

σρiφjλj

+
∂π

∂p
E
[
∂u

∂ρi

∣∣∣∣ ∂Θ

]
,

which implies that

−∂π
∂ρ

= Σρφλ+
∂π

∂p
E
[
∂u

∂ρ

∣∣∣∣ ∂Θ

]
,

fulfilling the proof of the second equation in Proposition 1.

Remark. From equation (4) and (5), we obtain

λj =
∂π

∂Φj
+Mλ>E

[
∂u

∂Φj
φ

∣∣∣∣ ∂Θ

]
=

∂π

∂Φj
+M

∑
j′

λj

(
Cov

[
∂u

∂Φj
, φj′

∣∣∣∣ ∂Θ

]
+ E

[
∂u

∂Φj

∣∣∣∣ ∂Θ

]
E [φj′ | ∂Θ]

)

=
∂π

∂Φj
+

∑
j′

σΦjφj′λj

+
∂π

∂p
E
[
∂u

∂Φj′

∣∣∣∣ ∂Θ

]
,

which implies that

λ =
∂π

∂Φ
+ ΣΦφλ+

∂π

∂p
E
[
∂u

∂Φ

∣∣∣∣ ∂Θ

]
⇔ λ = (I − ΣΦφ)

−1

(
∂π

∂Φ
+
∂π

∂p
E
[
∂u

∂Φ

∣∣∣∣ ∂Θ

])
.

3 Insulation

In this section we use a series of examples to explore the issue, discussed in subsection II.B. of the main text,

of when insulation and related strategies are possible.

3.1 When is insulation possible?

Consider a setup in which users are heterogeneous along two dimensions θ = (θ1, θ2) with a smooth distribu-

tion on R2
++ whose first moment exists. In addition to the price, p, there is a single dimension of exogenous
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quality, ρ. There are two dimensions of endogenous quality, Φ1 and Φ2. All users contribute equally to

Φ1, i.e., φ1 (θ) = 1, for all θ, but they contribute to Φ2 in proportion to θ2, i.e., φ2 (θ) = θ2. Users have

gross utility u (ρ) = θ2 (Φ2 + ρ) + αΦ1 + θ1. This specification captures, roughly speaking, an “undirected

heterogeneity in usage intensity” setup; users who contribute more to the platform also derive more value

from both its socially-oriented and non-socially oriented features.

A strategy of the platform is a vector function mapping from the Φ-space of endogenous quality to the

(p, ρ)-space of exogenous quality (that the platform controls directly). Let Φ̃ =
(

Φ̃1, Φ̃2

)
denote users’

expectation and let Φ̂ =
(

Φ̂1, Φ̂2

)
denote the endogenous quality at the outcome targeted by the platform.

Definition 1 (Insulating Strategy). A strategy is said to be insulating if for any expectation, Φ̃, held

commonly among users, the aggregate endogenous quality of users who optimally join is Φ̂.

Case 1 (Endogenous Quality of Lower Dimension than Exogenous Quality). Let us begin by considering the

case where ρ can take on any value in R. Suppose that Φ1 is suppressed: α = 0 and profits do not depend

on Φ1, so we can treat it as if it does not exist. In this case, endogenous quality is unidimensional and the

platform has two exogenous instruments with full range: p and ρ. The platform can thus achieve any desired

level of Φ2 that is feasible (that is, less than Φ2 ≡ E [θ], the maximum achievable value of Φ2) in many

ways. Raising ρ and/or lowering p both lead to a monotonic increase in Φ2. Increasing p to ∞ drives out

all users, forcing Φ2 to 0, and decreasing ρ to −∞ does the same. Doing the reverse achieves the maximum

possible Φ2, namely Φ2 ≡ E [θ2]. Thus, for any given expectation of endogenous quality Φ̃2, and for any

target outcome with endogenous quality Φ̂2 ∈
(
0,Φ2

)
, there exists a curve of values in the (p, ρ)-space, all

of which lead to endogenous quality Φ̂2, when users behave optimally, given their expectation. Therefore, in

this case, for any Φ̂, there exist many insulating strategies.

Case 2 (Endogenous Quality of Higher Dimension than Exogenous Quality). In an opposing case, suppose

that α > 0 so Φ1 matters but that ρ takes on a fixed value that cannot be adjusted by the platform and is

thus effectively irrelevant. Now consider an arbitrary expectation Φ̃, and consider a target Φ̂ such that Φ̂1

is sufficiently large but Φ̂2 is sufficiently small. In this case, the platform can set p to achieve Φ̂1 or Φ̂2, but

not both. This is because the unidimensional price can be used to attract any given number of users (Φ̂1)

or any given average quality of users (Φ̂2) but, typically, not both at the same time. Therefore, under this

setup, for some targets, there exists no insulating strategy.

Case 3 (Endogenous Quality of Equal Dimension to Exogenous Quality). Now consider the case where

α > 0 and both p and ρ can each be set over the full range of R. Note that, under this specification, the

endogenous avergage quality of participating users, Φ2, and the platform’s exogenous quality, ρ, are perfect

substitutes from the perspective of users considering whether to join. Hence, it is straightforward to see that,

for any “incorrect” expectation of endogenous quality Φ̃2 6= Φ̂2, there is a unique way to adjust exogenous

quality, ρ, to maintain the desired sum of the two. Similar logic implies that, for any “incorrect” expectation

of total user participation, Φ̃1 6= Φ̂1, there is a unique way to adjust p in order to attract the desired demand
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level. Moreover, due to the full range assumption, for any given expectation, the implied values of p and ρ are

feasible. Therefore, under this setup, for any target, Φ̂, that is consistent with basic demand requirements,1

there exists a unique insulating strategy.

Now consider a variation on case 3, above, in which the feasible range of exogenous quality is limited

to an interval
[
ρ, ρ
]
, where −∞ < ρ < ρ < ∞. Here, then insulation may once again be infeasible. The

trouble is that the set of values of Φ2 + ρ that are achievable depends on the expectation Φ̃2. In an extreme

case, suppose that Φ2 � ρ = ρ + 1. Then, for some target Φ̂2 high enough, if expectation Φ̃2 is low, then

adjusting exogenous quality up to its maximum value, ρ, is not sufficient to achieve the required sum. Thus,

an insulating strategy cannot be guaranteed to exist. Essentially, if the feasible range of ρ is limited, so too

may be its usefulness as a tool for insulation.

We conjecture that the basic pattern illustrated above applies much more broadly than to just the

environment we have assumed in this subsection. We expect that, in a significantly broader class of models,

(i) if the dimensionality of exogenous quality (including price) is lower than that of endogenous quality,

insulation is impossible,

(ii) if the dimensionality of endogenous quality is lower than that of exogenous quality and the feasible

range of exogenous quality instruments is sufficiently large, then many insulating strategies exist, and

(iii) if exogenous quality and endogenous quality have the same dimension, and the feasible range of exoge-

nous quality instruments is sufficiently large, then there exists a unique insulating strategy.

Formalizing this conjecture in a way with meaningful operational and/or intuitive content is an interesting

project for future research.

3.2 Quasi-insulation in a social network

To simplify exposition and provide the cleanest example, we now depart somewhat for the technical bound-

aries of our model. This example can be embedded as a limit case of our model, but it is simpler to exposit

it in slightly different terms.

Suppose that there are two distinct groups of users each with a type uniformly drawn from the interval

[0, 1] and a single dimension of exogenous quality ρ that the platform can set to any level in [−1, 1]; there is

no “price” p. Endogenous quality dimension i, Φi, for i = 1, 2 is the fraction of users from group i that join

the platform. Users in group 2 join if and only if their expectation, Φ̃1, is weakly greater than their type;

these users do not care about exogenous quality. In group 1, users join if Φ̃1 + ρ is weakly greater than their

type. The platform’s profit depends only on the level of exogenous quality, ρ, and the level of Φ2.

1Note that some vectors (Φ1,Φ2) are not valid target outcomes, such as one in which all users participate and the average

quality of user is “only the best”, i.e., Φ2. Insulation provides a robust way to implement outcomes that are valid as targets,

not a way to enlarge the set of such outcomes. A valid outcome can be defined as one that is part of a Nash equilibrium in the

subgame played by users for some constant vector (p, ρ).
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In this setting, we extend the notion of user expectations in the following manner: members of each

group share the same expectation, but expectations can be different among groups, thus forming a profile of

expectations. Under this setup, for a given target Φ̂, there may exist no insulating strategy. For example, if

group 2 users’ expectation is for minimal participation among group 1, there is no way for the platform to

counteract this.

However, if group 2 users know that the platform employs an insulating strategy, with a particular

target, vis-à-vis group 1, then it seems reasonable to exclude the expectation on the part of group 2 that

some other, non-targeted outcome will arise in group 1. We formalize this idea by defining allowable profiles

of user expectations as follows. All profiles of expectations are allowable, except, if the platform’s strategy

satisfies the criterion of insulation for a particular group, i, then all other groups’ expectation for group i

must be consistent with this target. Using this restriction on expectations, we now define quasi-insulating

strategies.

Definition 2 (Quasi-insulating Strategy). A strategy is said to be quasi-insulating if for any allowable profile

of expectations, Φ̃, the aggregate endogenous quality of users who optimally join is Φ̂.

In the current setting, the platform can quasi-insulate Φ1. To achieve Φ̂1 ∈ [0, 1], it sets ρ = Φ̂1 − Φ̃1.

Having thus targeted Φ̂1 using an insulating strategy, group 2 users expectations are set to the targeted

level, thus guaranteeing Φ̂2.

The above discussion can be extended to the case of K > 2 groups. To do so, however, the set of

allowable expectations may need to take into account higher-order considerations. For instance, suppose

K = 3, and that ρ directly influences only group 1, group 2 cares only about group 1 participation, and

group 3 is concerned only about group 2 participation. Then, group 2’s expectation regarding group 1

could be pinned down by the platform’s insulation of group 1, as in the 2-group case. However, group 3’s

expectation regarding group 2 must be pinned down by appealing to the fact that group 3 users know that

group 2 users know that the platform insulates group 1. Thus, quasi-insulation might be said to combine

the logic of insulation with that of backwards induction, although the analogy to the latter is not perfect,

given that we assume the different groups to move simultaneously.

More broadly, we suspect that there are many richer and less toy-like cases in which quasi-insulation or

something close to it may be feasible. Exogenous quality (e.g. the ability to view high quality images of

and find classmates) may be used to make a platform robustly attractive to a core group of “high prestige”

users (e.g., Harvard undergraduates) who then are attractive to a somewhat lower prestige group of users

(e.g., Yale undergraduates) who are then attractive to an again larger and slightly lower prestige group

(e.g., Columbia and Princeton undergraduates), etc. Deriving conditions on primitives that allow for this

sort of quasi-insulation, in richer settings, seems like a useful direction for future research. This seems

particularly true, because, as we describe in Subsection III.B of the main text, such strategies of “cascading”

quasi-insulation may provide a more insightful model, relative to full insulation, of the dynamic strategies

platform start-ups use (or can benefit from using) in the real world.
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