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This online appendix contains all the proofs and background analyses to the main text.
We characterize a price-taking equilibrium and a strategic equilibrium simultaneously, with
general 1 € (0,1] and w € (0,1]. We label endogenous variables in a strategic equilibrium
with “st” (e.g., [T, G5, and G*' etc). Whenever it is necessary to do so, “pt” is used for a
price-taking equilibrium.

The rest of this appendix is organized as follows:
1. Proofs for the main text.
2. Background analysis.
2.1 Equilibrium with 7. > 0 (Lemma A1l).
- Information aggregation (Lemma A2).
- Trade volume, hedging effectiveness, price impact (Lemma A3).
- Equilibrium as n — oo (Lemma A4).
2.2 Equilibrium with 7. = 0 (Lemma A5).
2.3 Ex ante profits.
- Interim characterization (Lemma AG6).
- Ex ante characterization (Lemma A7 through A10).
2.4 Optimal market size.
- For pw =1 (Lemma A1l).
- For pw < 1 (Lemma A12).
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1 Proofs for the main text

Proof of Lemma 1

Set p = w = 1 in Lemma Al(a) to obtain the equilibrium demand function g; (p).
See Lemma A1(c) for the expression of the price informativeness ¢. The limit result
follows from p* = g—; (v+E) — g—;@, ¢ = B,(ei —€) — B, (e; —€), and the expression of

(B Be: B,). M (L1)

Proof of Lemma 2

See Lemma A6(a) for the derivation and the decomposition of the interim profit
I1;. m (L2)

Proof of Proposition 1

The results immediately follow from the expression of exp (2pIl) shown after Proposition
1 in the main text. This expression of exp (2plIl) is derived in Lemma A10 (substitute
X =" (1-¢y),exp(2plI") =1—q, and a = % to obtain the exact expression shown in

1+n eTv
the main text). From the expression of the lower bound for n* derived in Lemma A11(a)
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(i.e., 4/ %0 (1 + :—:) ), any comparative statics that implies ¢ = (1 + ) — 0 also implies

n* — oo. H (P1)

Proof of Lemma 3
See Lemma A3(a,b) for trade volume and hedging effectiveness. See Lemma A5 for
the characterization of equilibrium with 7. = 0. m (L3)

Proof of Lemma 4
See Lemma A4(c). H (L4)

Proof of Proposition 2
See Lemma A12(b) for the ex ante profit. See Lemma A3(a,b) for trade volume and
hedging effectiveness. H (P2)

Proof of Lemma 5
See Lemma A3(a) for trade volume. See Lemma A10 for the ex ante profit. |
(L5)

Proof of Proposition 3
See Lemma A11(b) for the ex ante gains from trade. See Lemma A3(c) for price
impact. See Lemma A3(b) for hedging effectiveness. H (P3)

2 Background analysis

This section presents a background analysis for the main text. We use the following notations
throughout this section:




Our main objective is to characterize the ex ante payoff IT and gains from trade (henceforth

GFT) G, defined as below.

Definition 1 (ex ante profits)

The ex ante profit is II = —log (Eexp (—pm;)]).

The ex ante no-trade profit is II"* = —log (Elexp (—pve;)]).
The ex ante gains from trade is G = 11 — II"™.

Definition 2 (interim profits)

The interim profit is II; = — log (E;lexp (—pm;)]).

The interim no-trade profit is IIM = —log (E;[exp (—pve;)]).
The interim gains from trade is G; = II; — T,

Note that II is the right ex ante welfare measure because exp (—1II) = Elexp (—pm;)].
We use interim profits and interim gains from trade only for the intermediate step in the
characterization of ex ante profits. We also define G = —log (E[exp (—pG})]). Due to risk
aversion, E [IT;] = II does not hold.! For the same reason, G and G are not equivalent.

2.1 Equilibrium with 7. > 0

We characterize the equilibrium where traders submit the order
@i (p) = Bsi — Beei — Byp. (1)
We define the balance of motives by B = = ’B—P

Lemma A1l (equilibrium with 7. > 0)
(a) A price-taking equilibrium exists for all n > 1 and the optimal order has coefficients
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where T = (Var; [v]) ™" and ¢ € (0,1) are characterized in the proof.
(b) A strategic equilibrium exists if and only if

1 11—
nt < — (’0.
n—1 w ¢

0<

n=1l_ (14, 1l-w
The optimal order has coefficients 35 = —= ( lto; n )“"Bgt for x € {s,e,p}.

(c) B, ¢ and traders’ beliefs are the same in both equilibria.

'Similarly, E; [r;] = II; does not hold.



If jw =1, then B=1 and ¢ = (1 +a.) "

Remark. If pw < 1, we show below that ¢ decreases in n and lim ¢ = 0 (Lemma

n—oo

A2). Hence, the condition (2) implicitly defines a unique n > 1 such that a strategic
equilibrium exists for all n > n. If uw = 1, then part (c) implies that this n is determined

ntl
b a1 = Qe

Proof.
(a,b,c) We proceed in three steps:
1) Characterize beliefs E;[0], 7 = (Var; []) ", Ei[v], and 7 = (Var; [v]) .
2) Derive the optimal order g;(p).
- a price-taking equilibrium and a strategic equilibrium.

3) Characterize the balance of motives B = %g— and the price informativeness .

[Step 1] Characterize E;[v], 7, E;[v] and 7.
From the conjectured order (1) and the market-clearing condition, information in p from
trader i’s perspective is summarized by

nﬁpp_Ql ~ _
=r - _ E_; —
ng, (

where £_; = /1 — weg + /we_;. Hence, [T, s;,e;, hi] "

a covariance matrix

Be_
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is jointly normal with mean zero and

hi (3)
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Let ¥ be the variance-covariance matrix of [s;, e;, hi]T. By Bayes’ rule,

11 .
E; = |—,0,—| X [si, e, hi]
7 = [0 s e
_ 1 1 117"
7= - [—,O, —] »t [—,O, —] .
Ty Ty Ty Ty
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to write the variance of the second term in (3) as
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Computing E;[v] and 7T using this ¢,

7_6(1—gp)si—i-wgo{g—Zei—i-g—Z(n—i-l)p}
Eilo] 7 1+4(1—-w)(wn—1)¢ ’ ©)

and

I+ (wn—(1-w))e 6)
I+ (1-w)(wn—1)¢ (
Note that ¢ is the right measure of price informativeness, because setting ¢ = 0 attains the
lower bound 7, + 7. for 7 (i.e., with only one signal), while setting ¢ = 1 attains the upper
bound 7, + TEH(H—”)n for 7 (with 1 4 n signals).

1—w

Write Ei[v] = \/pE;[0] = 7,8 + 7.6 + 7,p, so that

T="Ty+ Te
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=@ wn - Db+ (1= {1+ (1 -w) wn-1e+ 2 {1+ wn—(1-w)e}}

To 1+ (1-w)(wn—1)p+ ={l+ (wn—(1-w))p}

11+ 0 -w)(wn =1+ 1 —p)={l+(wn-(1-w)p}

7o 1+l -w)(wn=-1)p+={l1+(wn—(1-w)) e}

Thus, the belief updating with respect to variance is summarized by

To I+ (I-w)(wn=1)p+ 1 —p)={l+(wn—(1-w)) e}
B 1+ (1-w)(wn—1)p+ {1+ (wn—(1-w))p}

(8)

From (4), (6) and (7), the equilibrium beliefs depend on the strategy (1) only through the



ratios % and % Using the definition of the balance of motive B = %%, ¢ in (4) can be
written as 9

e=(1+ aEB2)_1 ,  where a, = TfTe. 9)
Finally,
T 1 I 1
e T B 1o
1

T e (—w)
L+ (1 B M)Hl+(17w)(wnfl)iz

1+ (1 -w)(wn—1)¢
1+(1—w)(wn—1)(,0—|—(1—,u):—z{1+(wn—(l—w))gp}'

[Step 2] Derive g;(p;e;, s;i).
We derive the optimal order given the belief E;[v] and 7 derived above. From the con-
jecture (1) and the market-clearing condition » ¢; +¢; = 0,

JF
—qi =Y 45 =B, _s; — B> e —nb,p.
JF J#i J7
Solving for the price, we obtain
p=Dpi+ g, (11)
where 5 5 )
pi = _sg_i — —eé_i and A\ = —.
By By np,
Trader ¢ maximizes E;|— exp (—pm;)] = — exp (—pll;). Because of the normality of v condi-

tional on each trader’s information, the objective becomes
p
I; = E;[v] (¢; + €;) — 5‘/@7’1' [v] (¢i + 62‘)2 — P4 (12)

subject to (11). The first-order condition is

E;[v] — g (g; + €;) = pi + 2)q;,
which, by (11), becomes
Ejlv] — é (g +e) = p+ A\gi. (13)
The second-order condition is
ox+ 250 (14)
T



From (13), we obtain
Ei[v] —p — Ze;
A2

g (p) = (15)
By substituting E;[v] = v,s; — 7.€; — 7,p into (15),

_/}/ssi_(é_ve)ei_(l_pr)p
B A+2 '

qi (p)

By substituting (7), we have three best response coefficients:

-~ Te 11— T
= = 5 16
B )\T—i-pl—l—(l—w)(wn—l)goT\/ﬁ (16)

R (1 - W “ﬁ”ﬁ), an

:)\T—l—p 1+(1—w)(wn—1)gp?ﬁ_s?

~ T _ we (n—l—l)n@
ﬂp_)\Tij(l I+(1-w)(wn—-1)¢ 7T ﬁs\/ﬁ) (18)

An important observation is that the value of A\ affects the level of coefficients (BS, Be, B,;);

but not their ratios. Since the equilibrium price p* = %E— %é and the associated information
P P

g—;, g—;), equilibrium beliefs (i.e. ¢, E;[v], T, 7) are

identical in a strategic equilibrium and in a price-taking equilibrium. This proves that B, ¢

and traders’ beliefs are the same in both equilibria (the first claim in part (c)).

aggregation depend only on the ratios <

For both types of equilibria, using (16) and (18), solving the fixed point problem B—” = g—p
yields
&: T 1+(1—w)(wn—1)g0' 19)
3, " Vi T+ {fon— (1—w)}y
Substituting 7 given in (6),
By _ 1 {1+(1-w)(wn—-1)p}+7{l+ (wn—(1-w)) ¢} (20)

Bs Vi Te{l+{wn—(1-w)}e}

1 21+(1—w)(wn—1)gp
- AT ety

[A price-taking equilibrium]
By setting A = 0, (13)-(15) characterize a price-taking equilibrium. Hence (14) is satisfied
in a price-taking equilibrium. From (16) with A = 0 and (19),
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Combining this with the balance of motive B = T—;%, and (10), (B’;t, B Bgt) is obtained.
Therefore, the optimal order in a price-taking equilibrium has coefficients

1—0 TeT
pt = 21
g 1+(1—w)(wn—1)g0\/ﬁp’7:’ (21)
e
Te
gt~ T 1—¢
P

pl+{won—(1—-w)le

Using these results, (p*, ¢) can be computed by

4 (P") = Bs(si=5) —Pc(ei—e).
Using (10) in (21),

pt o \/ﬁ(l—@)
“0) = i) en Dt (- @)= 1+ @n—(1—2)9) (22)
L T 1+(1-w)(wn—1)¢
X{ b Vip 14+ {wn — (1 -w)}e }

Substituting 7 given in (6), coefficients can be written as
Bpt _ L—¢ \/ﬁE
’ 1+ (1-w)(wn -+ 1-—p={l+(wn—(1-w)p}t " p’
pt 1_90
S I Y (RS § SRy G 7§ T oy s PR
g 1+ (1 —w)(wn—1)p+ 2= {1+ (wn — (1 -w)) ¢} 1—¢ To.

I+ (1-w)(wn—1e+ 1 —p)={l+(wn—(1-w))p}l+(wn—(1-w))ep
The expression of 52 will be simplified in Step 3 after characterizing B.

[A strategic equilibrium]
From (19),
I 1 7oy l4+{wn—(1-w)le

nBt nBt T Ol+(1—w)(wn—1)¢

p S

A:

Combine this and (16) to solve for 3%
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From (19),

BSt T n_ (1 +w— ) ¥
oo 1+{wn—(1—w)}sﬂ
Notice that 3% is — <11+w(p ) times 3%, and ' is also —2 (?WW_i)@ times 32'. Be-
cause the balance of trading motives B = %g is the same in both equilibria, 3% is also
" (l—i-w——) t L
T times (2.
Next, we check the second order condition for a strategic equilibrium. Substitute A = - gst
p
into (14) to obtain 5st +2>00<1+72 ﬁ,st Substituting the expression of B
27 1
np By
_ 142 2 1—|—{wn—(1—w)}gp
ntt = (I+w—152)p
_ 14 2{1+ (wn — (1 —w)) ¢}

n—1—-{1+wn—(1-w)}y
Pl (L hw)n— (1w} et 2(en—(1-w)p
n—1—-{1+wn—(1-w)}e
nt+l1—{1+wn—(1-w) —2wn—(1-w)}e
n—1—-{1+wn—>1—-w)}e
n+l—{1—-wn+(1l-w)}e
n—1-{(1+w)n—(1-w)e
m+ {1 -(1-wep}
1 {0 te)n - (-wie
(m+D{1-(1-wep}
{1-1+wetn—{1-(1-w)e}

Because 1 — (1 — w) ¢ > 0,

1 11—
QQ@O<H+ <7

Be
A and .

In both equilibria, solving a fixed point problem

[Step 3] Characterize B = =
- g_: from (16) and (17) yields

mm>|m>

7536 CTl+(1-w)(wn—-1)p
R P (23)




Using B = —6& this becomes

T 1+(1—-w)(wn—1)¢

VHT I1—(1—-w)p ’

where ¢ depends on B through the expression given in (9). Combining (9) and (24) defines
a cubic equation in B:

E:

(24)

F(B) = (a:B* +w) {\/EB— (1+(1—g):—i)} <1—w+(1—,u)78)n:0.

Usel—l—(l—u):—i:%and1—w+(1—u):—i:%—wtowritethisas

F(B) = (0.B* +w) <\/ﬁB - 11__”CZ€> — (11__“625 - w) n=0. (25)

Because lim F(B) = —o0, lim F(B) = o0 and F'(0) < 0, the cubic equation (25) has at

—pd, :
o —w>0,any solution

must satisfy \/uB > 1—_%. The uniqueness follows because F” (B) > 0 for all B that satisfies

B > =% This unique solution to (25) characterizes B = Be Substituting this back
K T~d- B
into (9), we obtain the price informativeness (.

least one and at most three p081tlve solutions. Moreover, because -

Te
P

We simplify the expression of 52 using the property of B. Because B is a solution to
(25),

1—pde lf,uds

5. W 1—pde o W 1— pud
B — 1 ds £ — e £
VB =@ e o T T 1—(1—w)g0<'0n+ 1—d.
where the second equality follows from ¢ = (1 4+ . B2 ' & a.B? + w = =1=we,
Recall that 1+ (1 — ,u):—i = 1 ”ds . Using these expression,
g = . VB
¢ 1+ (1-w)(wn=1)p+ 1 —p)={l+ (wn—(1-w)) e}
1—pde —w
wll(da ) 80714' 1— ude

N (1_¢)wn@{1—w+(1—ﬂ)_} {1—(1—“})90}{1“1_”);}

1—pde —w
1—de + 1_Md5

11— WRYT 15y T 14,
1-(1-w ThE | 1d,
( )¢ WP (is ot ll—l:ici
-y
1-(1-w)p

Finally, with ;1 = w = 1, the cubic equation (25) becomes

F(Bip=w=1)= (a.B*>+1) (B-1) =0.

10



It is immediate that B = 1 is the unique solution, and ¢ = (1 + a.)~" follows from (9). |
(A1)

2.1.1 Information aggregation

Lemma A2 (information aggregation)
(@) If pw =1, then T =7, + 7. (L + nyp) and 2 converges to zero at the rate n™'.
(b) If uw < 1, then ¢ decreases in n at the rate n~3 and ny and B increase in n
at the rate n3. T increases in n and lim v > 0.

n—o0

Proof.
(a) From (8) with y =w =1,7 = 7, + 7. (1 + ny), where o = (1 + a.)"" from Lemma
Al(c).

(b) We proceed in four steps:
1) characterize B by solving the cubic equation (25).
2) characterize ¢,
3) characterize ne,
4) characterize 7.

[Step 1] Characterize B.
Because (25) is linear in n, it can be written as

oF 1—pd
F(B) = — B? B— 2 2
(B) = 5-n+(a +w)(\/ﬁ 1—d5)’ (26)
where ?9_]; =—w (% — w). First, we show that the solution B increases in n. From (25),
the solution B must satisfy |/puB > 111’2525. Let g—ﬂ  denote ‘3—5 evaluated at the solution B.

From (26), g—Z}B < 0 because F(B) = 0 and the second term is positive. Because F'(B) > 0,
by the implicit function theorem, B increases in n.

[Step 2] Characterize .
Because B increases in n, p = (1 4+ 04632)71 decreases in n. The unique B solves

B 9 l—pdey 1 —pde B
F(B) = (a.B —I—w)(ﬁB T d nw T d w|=0.

Therefore, \/uB > % and B increases in n without a bound at the rate ns. Hence,

¢ = (14 a.B2) " decreases in n at the rate n=3.

[Step 3] Characterize nep.
F(B) = 0 implies

1—pde

— W
i B2 — 1—d.
o (w+a.B%) JiiB — 11—_%?



Using this,

ll = l(1+a582)
ne n
n n
i W  1-w

w +
1—pd,
VHB — T-d. "
This decreases in n because B increases in n. Hence ny increases in n. The rate of nyp
follows from the rate of ¢.

[Step 4] Characterize 7.
From (6),
- 1-(1-w)y + wnp

-1
This increases in n and lim 7 = 7, + Teﬁ. From 7 = (17_& + %) , T increases in n and
v

n—oo

has a finite limit. H (A2)

2.1.2 Trade volume, hedging effectiveness, price impact

Lemma A3 (trade volume, hedging effectiveness, price impact)

(a) Trade volume is smaller in a strategic equilibrium than in a price-taking equilibrium.
Trade volume increases in n in both equilibria.

(b) Hedging effectiveness is identical in both equilibria
Hedging effectiveness decreases in n for sufficiently large n.
Suppose p = w = 1.
If ¢ > %, then hedging effectiveness decreases in n.
Otherwise, it is hump-shaped in n and mazimized at n =n = é — 2.

(c) In a strategic equilibrium, price impact decreases in n and converges to zero
as n — oo.

Proof.
(a) To compute trade volume $ E [|g;|] = 31/ 2V ar [¢}], recall ¢} = 3, (g, — €)=, (e; — €) =

n = = B3t nTilf(kafliTw)@
S 1BV w (6 —€) — B, (e; —€-;)}. From Lemma A1(b), i — < 1 for

x € {s,e,p}. This implies that Var[g/] is smaller in a strategic equilibrium than in a
price-taking equilibrium.

12



To do comparative statics of trade volume with respect to n, compute Var [¢}]:

. n w 1
Varlg] = ] (T—ﬁi + T—ﬁg)

n 1 , TeTe 1
= — — +1
n+17_666 {W p2 B2+ }

_n 162w—|—a5B2
° a.B?

Using ¢ = (1 + a.B%) ",

1
w—I—OzaBQZS—D—l—Fw:l—(l—w)(p 1
a.B? é—l 11— e

Therefore, for a price-taking equilibrium,

n 1 1—0p
—|—17'e T+l l-(l-w)y

Var[g] =

This increases in n, because from Lemma A2 ¢ is either independent of n (for pw = 1) or
decreases in n (for pw < 1).
For a strategic equilibrium,

N n 1 s 1
Varlg] = n+17—_e(5et)2ﬁ
_oon 1 (lhe- e - e B
S ontlre 1-(l-w)g 1—¢

2
o (tw-E)e) n 1 1oy
n+lr.l—(1-w)e

1—

Because ¢ is the same in both equilibria, we already know that the term —- +1 T a)e )eo i

. . . . . 14+w—
creases in n. The other term in the above expression also increases in n because - ( — ) =
1 1_,ntl
A= £ increases in n.
7
. . C Y )
(b) To compute the hedging effectiveness Corr[v — p,v] = ovloptl - pecall v =

Var[v—p]Var[v]

V1 — pwy + /pw and the market-clearing price

55 — %Ezé—(u%—ﬂqﬁ-fe)—é—p .

pm

13



Hence,

v—p:mvqu(\/ﬁ—%) g (\/ﬂeo—k\/_e) g—

Because only the ratios BS and ’B Ze are relevant, Corr [v — p, v] is the same in a price-taking

equilibrium and in a strategic equ1hbr1um
Computing Cov [v — p,v],

Cov[v—p,v]—{l—u+<\/ﬁ—g—:) \/ﬁ}%— (1—\/52—2) i

Computing Var [v — pl,

vt = o () () (o) () o
ool ()2 (8 t {umamrneen () 2]
{1—2\/ﬁg—;+ (%)2}%+ (%’))27111:6 (1-w)n+1+a.B*}
ARG ERCE S

2 2

3 2 N 1 ﬁs Bs —_ —_ &
where the last equality used 1+ a.B* = > Note that 1 — 2\/ﬁE + (E) = (1 5 > +
2 (1 - \/ﬁ) g— Combining Cov [v — p,v] and Var [v — p|,

Corlo_p.1 (- vig)2
Vv Var[v—p|Var [v] \/{{(1_%)2+2(1_\/ﬁ)&}%jL(g—;)z%}%

2 2
Bs _ Bs Bs T_UlJr(lfw)ncp
JO-2) +20- i) b+ (3) 2 tspcame

14



ﬂ?

By dividing by 1 — é and usmgx_ . = andx—{—l— —ﬁ’
s R p
1+ (1—/n)x
T2 (= Vi) () + a2 i
_ 1+ (1—/n)x
%“(1—@%%{:’;%%—m}
= L+ (1 i) x
O+ 0= va v {82 20— i) - (- i)'}
_ L+ (1— Vi) x
\/{1+(1_\/E)X}2+X2{Z—§%+1—M}
1

=
Ty I (1-w)ng _ X
\/1 - {TS nDe T 1 “} (1+(1—\/ﬁ>x>

From (20) in the proof of Lemma A1,

8, 1 (TU1+(1—w)(wn—1)<P+1)

B, ﬁ Te 1+{wn—(1—-w)}o
1 (Tvl—(l—w)go—i-(l—w)wngp )
VT =(1-w)e + wnyp
1 (7 = Sn:)w +1- + .
wnep
1—pde —w
From (25), =0-9)¢ — T4 This decreases in n because B increases in n (from
wne VAB— 1 Hd:
Lemma A2(b)). Therefore, 3> decreases in n with lim g—” = \/Lﬁ { (1—-w)+ 1}. There-
_ VI
fore, x = Bp oot E(A—w)+1—yE”
To Show that Corr [v — p,v] decreases in n for sufficiently large n, we show that

Ty 1+ (1 —w)np X ’
{Z (n+1)¢ H_M} <1+(1—\/ﬁ)x>

15



increases in n for sufficiently large n. First,

X B 1 1

L+(I-vE)x  2-1+1-yi 2@

Therefore,

2
2 Te
N ) ()
1+ (1— /h) x { N m}z

1—(1-w)p +wnp

Combining this with :—Z% +l-p=1 {% +2=(1- u)},

Ty 1+ (1 —w)np X ’
{Z (n+1)¢ H_“} (1+(1—\/ﬁ)x>

_ n+1)e To
1—(1—w)p+(1—w)wn 7—5 1-(1—w)p+(1—w)wn Tg '
k(kw)j +wn§ + (1 — 1) 17(174‘;)5 +wnia + (1 — 1)
Note that
1+(1—w)n 7—6 1+(1—w)n 1—(1—w)p+(l—w)wn
(n+1)e -+ (1 —# — 1+ (n+1>ww 11— W):; +wn§
1—(1—w)p+(l—w)wn 7—5 - 1—(1—w)p+(1—w)wn 'rs ’
1—(1— w):; —l—wnﬁ + (1 B 'u) 1—(1—0.1):; +wn(2 + (1 o /,L)
. 1+(1—w)ne 1-(1-w)p+(1—w)wne _ .
Computing e 1)y o yields

{é+(1—w)n} 1-1-wetwng]l—n+D{1-1-w)p+ (1 —w)wnp}

(n+1)[1—(1—w)p+wnygl

wi=e
_ ©

m+D[1+{nw—(1-w)}el

All in all,
2
{El—l—(l—w)mp+1_ﬂ} X
- (n+1)e 1+ (1—/n)x

lp 1 1 Te
¢ ntll—(1—-w)ptwne P

v

1+

—(1-w)p +wnp 1-(1-w)p +wne
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2

[w < 1] Because ¢ ~ n~3 and np ~ n% for sufficiently large n, the terms in the square

1—
bracket approaches one from above as w—* e 1 converges to zero at the rate
¢ ntl1—(1—w)ptwne
1—(1—w)p

—(1-w)p+wnep

T

v
e ) from below as

n~3. The term after the square bracket approaches

1
2
1 —w)n
converges zero at the rate n=3. Therefore, {:Z W +1-— ;z} (W) approaches

its limit from below.

M=w=ﬂ
First, % = i3 +mp +1land x = = (1 + ny), where ¢ is independent of n. The hedging
effectiveness is
1 1
Corr v —p,v] =
o Te 14 L2 (1
[ ], VAT

1+n<p)

This is inversely related to . Taking the derivative of (dne)” +W) with respect to n,

2(1+np)e(n+1) — (14 np)’ _ ©*n? + 2p%n — (1 — 2¢p)
(n+ 1)2 (n+ 1)2 '

If 1 —2p <0, % alvvays increases in n and hence Corr [v — p,v] decreases in n.
If 1 —2p >0, p*n? +2 ¢?n — (1 — 2¢) = 0 has two solutions

—w%t¢¢+¢ﬂl—%ﬁ__1il—¢_{_l1—2¢}
02 @ e )

t(,pn+2tpn (1-2¢) -
(n+1)?

with respect to n,

It remains to show tha is increasing in n at n = %. Taking the derivative

fapzn2+2<p n—(1-2¢p)
(n+1)°

202 (n+1) (n+1)° —2(n+ 1) {¢?n? + 20> — (1 — 2¢)}

(n+1)*
_ 2[P (1) — {¢*n 4+ 20%n — (1 - 20)}]
(n+1)°
2 2(1 — )
(n+1) (n+1)
Therefore, % is uniquely minimized at n = n = é — 2 and hence Corr v —p,v] is
uniquely maximized at n.
(c) The price impact is A =
n(l—y) T

S S ey e

17



[pw = 1] From Lemma A2(a), 7 = 7, + 7. (1 + ny) and ¢ is constant. Hence nf3; =

n Tot+Te(14+n
(1_90)14-1%0 - ,E)+¢)

goes to infinity as n — oco. Also,

Te

p (I—=p)n

=+1l+np

st __
b 14+ ny

. . . Tu41 .
Taking the derivative of n 7614;;”%" with respect to n,
®

(:—Z—l—1—|—2n<p> (1+ng0)—ngo<:—z+1+n<p)
(14 ngp)? '

The numerator is (ng)® + {3 + - <:—E + 1) } np++1= g02n2+2g0n+:—z +1 > 0. This

implies nﬁff is strictly increasing in n.

[pw < 1] From Lemma A2(b), lim 7 < oo, lim ¢ = 0, and lim ny = co. This implies

n—oo

lim nﬁff = oo. To show that A\ decreases in n, it suffices to show that piﬁ decreases in n,

n—oo

because 7 increases in n (Lemma A2(b)) and A = # > 0 in equilibrium. First we show
P

AT wpt 1=lmw)e . 1 AT 1 . t ¢ 2 (=122 )e
that prsvi - Using A = BT peAT = pATE Recalling 3, = 37 =
pt __ T 1-¢p
and BP —plH{wn—(1-w)}e’
T R I PN T (R AW L R
L 1—o 1+ {wn—(1-w)le '
Hence,
pﬁstﬁ—i-l _ n—1—-{1+wn—1-wle+l+{wn—(1-w)}le
Por I+{wn—(1-w)}yp
_ (1-yp)n
1+ {wn—(1-w)}e’
which implies
A (w—2)p+1 _ w90+—1_(1n_“)‘p (27)
p+ AT 1—¢ 1—¢ ’
w(izpde _,
Next, we show that @ decreases in n. From (25), 17(17:“)“’ = \5;713d 1_Hd)f. This
T 1—de

decreases in n because ¢ decreases in n and B increases in n (from Lemma A2(b)).

Therefore, 2~ decreases in n. H (A3)
pHAT

18



2.1.3 Equilibrium as n — oo

Lemma A4 (equilibrium as n — oo)
(@) If p <1 or w<1, then there is n € (1,00) such that (2) is satisfied for all n > n.
If w=w =1, then the same holds if a. > 1.
(b) Suppose 1 =w = 1. For a strategic equilibrium, additionally assume a. > 1.

£o,1-9, %‘P> in a price-taking equilibrium
£(1-2p),1—2p,2 (1~ 2@) n a strategic equilibrium

)

lim (3,.6,.,) =
where ¢ = (14 a.)~".
(c) Suppose p <1 or w < 1. In both equilibria:

By and 3, converge to zero at the rate n’%,
2

1 — 3, decreases in n and converges to zero at the rate n™3, and

the allocation approaches the average endowment.
(d) limp* = S/ — (V+ V1 —wey) for all p,w in both equilibria.

(1-w)(1—de)+de
(e) The price impact A converges to zero at the rate n™' if p=w =1,

and at the rate n~=3 if pw < 1.

1

Z:‘)O;fem Lemma A2, lim 0y = 0 for 4 < 1 or w < 1. There exists a unique n > 1
such that ﬂ—“ = % because ”—le increases in n with 7111\1% "+} = oo and T}Ln;o Z—ﬂ = 1 while
© decreases in n and nhjgo (P“" = o0o. Clearly, (2) is satisfied if and only if n > n.

If p =w =1, (2) becomes 22 < a.. As 21 > 1 but Tim 725 ol — 1, the result follows.

(b) This follows from Lemma A2 and the expression of coefficients in Lemma Al.

Note that a. > 1 implies 1 — 2¢p = z& > 0.

(1+w
1-¢

(c) First, recall 3% = )e 23 for x € {s,e,p} (from Lemma A1) and note

ol (-l
that —= (11+ Je — 1 because ¢ — 0 (from Lemma A2). Therefore, it suffices to show

the result for a price-taking equilibrium. We drop the superscript “pt”.
For 3, and 3., from their expressions given in Lemma A1, hm 1 p = 0 and lim ny = oo

n—oo
directly imply lim 5, =0 and lim 3, = 1.
For 3, = ——1=¢ __T note that 7 is bounded. Hence, 3, converges zero at the rate

I+{nw—(1-w)}p p’
of 1@ ie,n 3, Using the results from Lemma A2 for ¢, np, and 7 given in (8),

B, Jame N/
Jirgoﬂ_p_(l—w)m—i—rg_(1—w)(1—d5)+d56<0’oo)'

1

Hence, (3, converges zero also at the rate n~3. The rate at which 1 — 3, converges to zero is
obvious from

_ -0 -we-(0=-9)  wp
L=Fe= I1-(1-w)y T1l-(1-w)e
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The result on the allocation follows from ¢ = 5, (s; —3) — . (e; — €) and (3, 8.) — (0,1).

(d) We compute the limit of p* g 5 — g— First, from Lemma A1,
Bs _ I+{wn—(1—-w)lep \/EE
By 1+(A-w)(wn—1e+A-pE{l+wn—(1-w)e} " 7
1 —(1-
B, I1-(1-w)y T
Therefore, 7}1_{20 BPE (—w)\(/llj% (U + 1= weo) It remains to show T}erolo g— — 0.
First, consider the case ;= w = 1. In this case, 7 = 7, + 7 (1 + ny) and
Be  (+np)p
B, TutT-(1+np)
where ¢ is independent of n. Thus, lim % = £ and lim 256 — 0.
n—oop Te n—ool’p

Next, consider the case u < 1 or w < 1. In this case, (28) is unbounded in n and increases
in n at the same rate with np. From Lemma A2, this rate is ns = n-sn2. Because nze

converges in distribution to a normal random variable, lim e — 0.

n—oo BP

(e) This is immediate from the result for 3, in (c) and (d). B (A4)

2.2 Equilibrium with 7. =0

Lemma A5 (equilibrium with 7. = 0)
(a) A price-taking equilibrium exists for all n > 1 and
the optimal order is qft (p) = —e; — %p.
(b) A strategic equilibrium exists if and only if 1 < n.
The optimal order has coefficients 35 = ”T_lﬁzt for x € {e, p}.
(c) Trade volume and hedging effectiveness increase in n,

while price impact decreases in n.

Proof.
(a) Conjecture ¢; (p) = B.e;i — B, p Step 1 of Lemma A1l becomes E;[v] = 0 and
T = T,. Step 2 becomes ¢; (p) = 71; " . Hence, B = —£— and 5 = 5 = . Price-taking

Be

or strategic, 5= £ By setting A = 0, the optimal order in a price-taking equilibrium has

B =1 and ﬁgt = £ Note that the second order condition # > 0 is always satisfied.

(b) For a strategic equilibrium, solve a fixed point problem in A defined by N = n% =

M Solvmg)\—)\ obtain A = — 17 ,6“— T =112 apd g% = .7%5;'5:“_*1_

Tv+p n Ty n
Flnally, the second order condltlon is 2\ + E >0 < ﬁ +1 >0« n > 1. Note that
limg;* (p) = 0.

n— 1‘rv
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(c) The quantity traded is ¢/ (p*) = 3, (e; —€) = 8,-2 (e; — €;). Trade volume is

n+1
B || (e 7) va”<->
5 € — € = = r e € — €
2 ‘n+1 n—+1
1
n _5 n+ 1 Te
This increases in n in both equilibria because 7' =1 and 33 = "_1 both (weakly) increase
in n. The price impact A\ = — £ - clearly decreases in n. Finally, the market-clearing price
p= —g—e is uncorrelated Wlth v and v —p = v+ £e. Therefore, the hedging effectiveness is
P v

1

Tv

2 1
\/<% * <%> n+l Te) To \/ S o

This increases in n and lim Corr [v — p,v] = 1. B (A5)

n—oo

Corr v —p,v] =

2.3 Ex ante profits

2.3.1 Interim characterization

We first characterize the interim GFT. Recall that the interim payoff, the interim GFT, and
the ex ante GFT in a strategic equilibrium are denoted with superscript “st”, i.e. IIff, G¢t,
and G*'. We drop “pt” for the price-taking case for brevity.

Lemma A6 (interim characterization)

(a) I; = & (a7 + b7 — ¢}) and II}* = (b7 — c}), where
a; = E;[v] —p— Bei, b; = E;[v], ¢ = Eiv] — Bei.
T T

(b) I = 5, ((1 —X) a2 + b? —cf) and G5t = (1 —X) Gi,

where X € (0,1) defined below decreases in n.

=) - (52

2
If pu=w=1, then im A = <%@> >0 with p = (1+ o).

n—oo

Otherwise, lim X =0 at the rate n"5.

n—oo

Proof.
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(a) By plugging the optimal demand function (15) into the interim profit (12), obtain

I = (1 (5 iA)) (7 i e+ (535) (Bblec—£). @0

By setting ¢; = 0 in (12), the interim no-trade profit is

" = Eifvle; — ﬁe2
27

R ()
= {2
5, (=)

By setting, A = 0 in (30), the interim profit in the price-taking equilibrium is

T

I, = —
2p

(Ei[v] — p)* + pe;.

Because G; = II; — II" = = (E;[v] —p — %61)2 = ZaZ,

(b) From (30),

2o \? 2o\? ~ ~
= (1 - (/0 +T)\T) > e (P +T)\T) I = <1 B )\) IL; + ALLY. (31)

Using the result above,

I = (1—X> (Gi+H?t)+XHgt:<1_x> G, + 11
= o (1=Naemr = T ((1-N) a4t - cf).

1—w 1
This implies G5t = TI§* — TI" = < >\> G;. Recall that 27— = (o tt)ets decreases in n

pHAT 1—¢p

2
(see (27) in the proof of Lemma A3(c)). Accordingly, A = ( 7 ) decreases in n.

pHAT
w—l=w 1 —
( ot _ % with o = (1 + «.) ' Therefore,

If p =w=1, then lim = +/\ = lim s
2
lim \ = (1 @) .

If w <1orw <1, then from Lemma A2 ¢ decreases in n at the rate n7s. Therefore,

22



1—w 1

lim U505 ) and hence lim X = 0 at the rate n=%. W (A6)

N—00 1=y N—00

2.3.2 Ex ante characterization

Denote the covariance matrix of (a;, b;, ¢;) by

Va %b ‘/ac
Sabe = Var [la;, by, ¢i]] = Vi Vi
Ve
Lemma A7 (ex ante #1)
exp (2pIl) = (1+7V,)exp (2pII™) + A, (32)

exp (2pHSt) = (1 + (1 — X) T%) exp (2pH”t) + (1 — X) A,

where exp (2pII"™) = (1 +7V,) (1 — 7V,) + (7Vhe)?
and A =7 (V2 =V )+ 7 (V2IVe + ViVe — 2V VieVae) -

Remark. Lemma A7 immediately implies:

exp (2pG) = 1+ 7V, + Aexp (—2pI"), (33)
exp (2pG5t) = 1+ (1 — X) {TVa + Aexp (—QpH"t)} .

Proof. We apply the following fact to (G;, IT;, 1™, GS* TI).

Fact 1. Given the n-dimensional random vector z that is normally distributed with mean
zero and variance-covariance matriz X,

N

B[~ exp(~p(2C=T))] = — {det (I, + 205C)} 2,

where I, is the n-dimensional identity matriz and C' is an n-by-n matriz.

Since (aj, bi, ¢;) have zero means, we can apply Fact 1 to II; = (a? + 0?2 — c2):

E|—exp(—pIL;))] = E[—exp(—p([a;,bi, )] Cla;, b)) = — {det (I35 + QpEabCC’)}fé ,
1
where C' = T 1
2p 1
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Similarly,

E—exp (—pIl")] = —{det (I, + 2p8uC)} 2 |
1=

where C* = — 1

2p 1

Because off-diagonal elements of C' and C*' are zeros, we have

[ 1+ 7V, TV  —TVae
]3 + 2:02611)00 - T%b 1 + TVE) _T%c ;
TVae Ve 1 =7V,

1+ (1 _ X) Ve TtV —7Vi
Iy + 2p5 0O = 1= A) 7V 147V,  —7Vie

1—X) 7V, Ve 1 =7V,

Because IT}* = 7 (b7 — ¢}), the 2-by-2 matrix on the bottom-right of the above two matrices
corresponds to the ex ante no-trade profit. Using |-| as determinant operator,

L+7Ve  —7Vae

exp (2pII™) = ' Ve 17V | = (14 7V) (1 —7V.) + (V). (34)

Also, from G = —1log (E[exp (—pG;)]) and G5 = _/1_) log (Elexp (—pG$h)]),

—
exp <2pé> =1+ 17V, and exp (2pé8t> =1+ <1 — X) TV,.
Therefore,

1+7Vy, =7V
™V 1—7V,

= exp (2pé> exp (2pH”t)

—Vao {TVao (1 = 7V2) + 7VaeVie } + TVae {mVae (1 + 7V3) — 72V Vi }
= exp <2pé> exp (2pI1™)

+72 (V2 = V) + 70 (V2Vi + Vi Ve — 2V Vi Vi)
= exp (2;)5) exp (2pII"") + A.

™V  —TVie
™Vee 1—7V,

TVab —TVae

exp (2pll) = (14 7V,) IR

— 7Vap + 7Vac

Computing exp (2pII*") is similar and omitted. W (A7)

We need to characterize ¥,.. This is done in two lemmas below. Recall E;[v] = 7,s; +
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Ye€i + 7P, Where v, 7,,7, are given in (7). With these coefficients,

p
Qi = YeSi— (; - 73) €; — (1 - ﬁ}/p) D,
bi = 7sSi + Ve€i + ’Yppa

P
Ci = VsSi— (; - 76) €; + prp

Lemma A8 (v,,7.,7,)

o w o wp(n+1) 1 l—p1
(a) 7. = fmjwﬁy Tp = m; and ry, = 77;55%-
(b) 2—7, = 52y, and £ — 2y, = =010y
o 1— . _ 1-{l4w(n+l)}e = 1 19
1 Tp = 1+{nw7(9107w)}4p7 1 2717 T 1+ {nw—(1-w)}e’ and »ypp T on+l wLpLP'
Proof.
(a) First, from (7) and (21),
Te 1—0p
Te T \/ﬁ? 14(1—-w)(wn—1)¢’
_ gl wyp Pe
Te \//7’7:14—(1 w) (wn—1)¢ B,
Te we (n+1) B,

= I+(1—-w)(wn—1)¢

s

Use (23) for 7, to obtain

TP\ Te p we P w
Ve = (\//_*L_s_) == = - L4

pBs) TT-1l+(1—w)(wn—1)¢ 71—(1-w)e

Similarly, use (19) for v, to obtain

ME we (n+1) T 1—|—(1—w)(wnw—1)g0: we (n+1)
Fl+(l—-w)(wn—1Deare 1+{on—(1-w)}e 1+{won—(1-w)}e

Vp =

1-¢

Finally, using g—: = T—”EB, 1—: = T—; o %.

(b) Using the results from (a),

T T (1—-w)e wep
Py, _(lz¥_ _1-(0+we
27, ( o 1)% o e
oy =1 we (n+1) :1+{wn—(1—w)}go—wgo(n+1): 1—¢
P I+{wn—(1-w)}yp I+{wn—(1-w)}yp I1+{wn—(1-w)}e’



|9y — 1—o B we (n+1) :1—{1+w(n—|—1)}gp
Prol+{on—(1-wle 14+{wn—(1-w)le 1+{wn—(1-w)}e’
1-— 1 1-—
Tr 7. m(A8)
Yp n+1 we
Lemma A9 (X..)
(a)V},:V},C:i—% and V, =V, + 272,
_ _ aTy 1 1—
(b) Va - Vac — 77 1+n 1-(1—w)p”
(C) Vab =0.
Proof.
(a) First,
Vi = Var[E[v|si, e, pl]
1 1
= Varv] = Varv|s;e,pl = — — —.
Ty T
Because ¢; = b; — Le;,
%c — % - BCOU [b27 6i] 9
T
21
Ve = Vot <£) — —2LCou b, e
T) T, T
= U+ 2 9LCou by, e).
TT T

Thus, showing Cov [b;, e;] = 0 proves the results. We first characterize X,., = Var|([s;, e;,p]] =

Vi 0 Vg
Ve Ve |. First, V. = Var [ei]:%&and
Vi
1 1 v < 1
VS:Var[sl-]:——i——:T e _ .
T’U TE TUTE daTU
Using p* = %3 — Beg, (7) and (21), we have
Vs W n
Vip = ———q1+dn)Vi+(1-w)—>r,
Ve
Vop = ——Ve
p v,
Vs W¥ g
Vo= e (22w, - T )
p ) SIS

26



Then,
Cov [bza ei] = Cov [/Yeei + /yppa ez}

= ’76‘/; + /Yp (_E‘/e) = 0.
Tp
(b) Using Lemma A8 and the expression of V), obtained in the proof of part (a),
P
‘/;1 = Var |:’YsSi - <; - ’Ye) € — (]- - ’71)) pi|
2 p 2 2 Vs W e
= 2Vt (L) Ver (1=9,) (1 +n (—— s ——Ve>
T ( p) ( ) ,yp 1— © P ’Yp P
P
=2(1=9) {3V = (= 9) Vo

1 ? 1
_ fy§VS+(—W¢%) Ve+(1—7p)vs{ 71"(1+n)1w—@—2}‘/:~:p

Yp -
1—7 1—0p
—(1—7 %{ P1+n —2—}\/;.
( p) ’7p ( ) WSO /4
Using 77” —#11;—5,
R 2 —_
V, = viVLJr(—%) Vo—(1-17,) <73V5p veVép)
1— 1
= 73{1 b _F (1+dsn)}Vs—’y§ T 22
T l— T l—¢ Te
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Use v, = f% to obtain
V_(p)21 n 1—0 _aT, N 11—
N\ Ten+ll-(1l-w)e Trn+ll-(1-w)p

Next, we show V,. = V,. Because ¢; = b; — fei,
Ve = Cov [ai, b; — Bez} =V — Poow [a;, e;] .
T T

Because V,;, = 0 is proved in part (c) below, it suffices to show —2Couv [a;,¢;] = V.

Lo la;,e;] = Lo [fyssi — (l—) - ’ye> ei—(1—7,)p, ez}
T T T
p p
- )
_ P e{l_w_l_vp}ve
T we Yp
p l—o 1
- £ 1— g
T og W ( n—l—l)v
_ (8) -9 n i:Va.
T —(l-w)en+17,

Vi = Cov [753Z (— ) e; — 1 — 7p Dy VsSi T Veli + VPP]
V.

= ﬁ%—(——%)%e (=) 1Y%

B (o)
_ Ve WP e
s (1 271; {( 276) "Yp +P)/e} ‘/ep-
Using 2 — v, = %’y and 2 —2v, = 1%—”;‘” (by Lemma AS8),
11— we
Vo = 72Vi— W7 Ve (1=7,) (1+n) (%E‘/}p - %Vep>
I1-(14+w)e
s (1 - 2%) Vip = e {Tﬁ’p + 1} Vep
l—o we
= ﬁ%—jzyﬁ%—vig{ﬂ—%)U+m1_@+ﬂ—2nﬁ
1—-(1+
b { (1= ) = {22022 i
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. . 1— _ 1—p(14w)—wen
USlngl—’yp—mandl_ZYp_1+{ﬁm—(1—w)ﬁtp’
1—op VsV
V= 7iVi— 2V, — N 1 1-p(l+w) -
b Vs WY Twp e 1+{nw—(1—w)}90{( Tt pllw) =gk
’76‘/6]3 1_(1—'_"‘))%0
_ weon+1)+1+{nw—-(1-w —(1+4+mn)(1-
1+{nw—(1—w)}go{ we el ) { ( et e
2 2 2 1_SO
— ‘/S—— ‘/;— 5‘/5 6-‘/v€ *
s Ve 1+{nw_(1_w)}80<7 p+’y p)
Substituting V;, and V,,,
1—¢p I wy
V= 72Viql- . 1+d.
’V I—¢p L we (1_w)£
T+ {w—(1-w)lpy,1—¢ Te

721/{1_90 1—¢ 1}
T we L+ {nw—(1-w)}e,
1+dn n l—-w 1—¢p 1
2 e 2
— 2141 - . — 22V, 1 .
s { n—l—l} Ton+1 Te Te we { n—i—l}

and V., =

Using 7, = 52 5%, Ve = 25

deTy’?

no L[ (rel—p1\’ (1 1-w)] 1-9¢1
Voo = YAl 7% - - —
n+1 p wp B Te Te WY Te

n

The last equality follows from w“" = 2B by (9). H (A9)

Lemma A10 (ex ante #2)
Given o < 1, exp (2pII"") =1 — « and

exp (2pIl) = l—a—l—a%X (1 —a+aX) > exp (2pI") = 1—a+0z%X“ (1—a+aX),

r, 1= pde+ —1_’{171%)@ (1—pd: —w(1—4d.))

where — = = 1 — pd., (35)
T 1+ 1_(1_";)¢ (1-w(l—d.))
n 1—0p
X = 1
1+n1—(1—w)g0< ’ (36)
xe=znzl nel we (37)

n n l—oy

st
Also, XT =1 — \ increases in n.
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Remark. o < 1 is necessary for II"* to be well-defined. Given this condition, Lemma
A10 immediately implies

exp (2G) = 1+OZ%X (1 + ] ié -

X) and exp (QGSt) = 1+a X (1 + 1 a X) .
-«

Proof.
By Lemma A9(a), 1 + 7V, = . Applying Lemma A9 to A and (34),
A= (Vi = Vi) + 70 (VaVe + Vi Ve — 2VaVicVac)
= (V) (1 +7V})
= (TVa)

(14+7V,) (1 —=7V.)+ (T%c)2

— (14+7V) (1 - (Vb+ (g)QTi)) + (W)

2

exp (2pII™)

= 1—(1—|—7'Vb)'0
2

- 1-2 -1
TuTe

From (32) in Lemma A7,

exp(2ll) = (1—a)(1+7V))+ (V) = =1—a+7V, (1—a+rval>,
Ty

v

exp (2pHSt) = l—a+ (1 — X) TV, (1 —a—+ TVQL) )
T'U

From Lemma A9(b),

1—
n_doy nmy
n+ll—(1-w)e T

Vo=«

Therefore,
exp (2pll) =1 — oz—l—oz—TvX(l —a+aX).
T
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Using 14 (1 —p) 7= = lli‘tiif and 1+ 7= = —— in (8),

1-d.

r, - (- w)e) Fung (AR - w)

T L(l—(l—w)gp)%—wngp(——w)

V= pde 4 =55 (- pde — w (1 - de))
T2 (1-w(l—d)

1—w 1

2
To derive IT*!) recall from Lemma A6(b) that A\ = (%) decreases in n.

Hence, 1 — X decreases in n. Computing 1 — A,

_lw 1\?
13 = 1_<(W n)90+n>

(e e D (e 1))
B (1—1¢>2 (ngl‘(n;*n}tl“)@) (”Zl—u—w”;tlw)

- e - e a-a-we M

I-(1-wen+1n-1 n+1 wp | X
1—0¢ n X

< 1.

n n l—oy

Therefore,

exp (2pII*") = 1—a+<1—X>a%X(1—oz+ozX)
= 1—oz—|—ozEXSt(1—oz+ozX)
T
< exp (2plIl). B (A10)

2.4 Optimal market size
Recall from Lemma A10 that

exp (2pIl) = 1—04—1—04%)( (1-a+aX) and  exp (2pI"") = 1—04—1—@%)(“ (1-a+aX).

X*t(1—a+aX)

The optimal market size maximizes —

in a strategic equilibrium.

X(1l—ataX) -
=——_—— in a price-taking equilibrium, and
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2.4.1 The case with py=w =1

Lemma A1l (optimal market size with pw = 1)
(a) im IT =TI"" and there is unique market size n* > | /ﬁ that mazximizes II.

n—oo

(b) lim I =TI and the optimal market size n¥, is greater than n*.

(c) For sufficiently large T, n* > 7, where n = é— 2 is the market size which maximizes
hedging effectiveness.

Proof.
From Lemma A2, B =1 and

—(1+a) = = )
o= c) 1+ 2 Ta"’p_%

TeTe

Also, =, X, X* defined by (35)-(37) become

. 1—d
T_: = ) X = n (1_90)7 X = o :
T 1+donyp 1+n n no,

Note that we used ﬁ = aig for X*t.

(a) Using the expression of 7 and X above, we have

1 n 11—« n
20Il) =1 — 2(1—-d.)(1— 1— .
exp (201D = 1 - a2 (1= d) (1= ) g (ot s (- 9)) (39

Because the right hand side converges 1 — « as n — oo, limII = II". From above, the

n—oo

optimal market maximizes

O, L z {al_o‘ +— } (39)

l1+d.onl+n (1—¢) 14n

O, is increasing (decreasing) in n if and only if 0 < (>)

d.p n 1 -« n 1 2n 1 -« 1
_(l—i-dsgon)Zl—i—n{Oz(l—<p)+1+n}+1+d5@n{1+n+a(1—90)} (1+n)*
_ 1 {—d n{ 1 -« L }+{ 1 -« N 2n }1+d€<pn]
(14 d.pn)® (14 n) =7 a(l—¢) 14+n a(l—¢) 1+n 1+n

Note that

1—« L :(1—04 (1+n)+a(1—gp)n:1—a+(1—ag0)n
a(l—¢) 1+n a(l—¢)(1+n) a(l=¢)(1+mn)’
and
-« n 2n (I—a)(I+n)+2a(l-—p)n  1—a+1+a(l—2p))n
a(l—¢) 1+n a(l—¢)(1+n) B a(l—p)(1+n)

32



Therefore, the sign of terms in the square bracket is determined by the sign of

—dagn{l—a+ (1 —ap)n} (1+n)+ {1 —a+ (1+a(l-2¢)n} (1 +d.on)
= —[dp(l—ap)n’ +dp{l—a@—@)}n? = {1+a(l-20)}n—(1—a)].

Defining
[(n)=dp(l-ap)n’ +dp{l—a2-¢)}n’—{l+a(l-20)}n—(1-aq),

increasing

(39) is decreasing

in n if and only if I' (n) i 0.
First, I' (n) can be written as
['(n)=depn®*[(1—ap)n+1—a2—¢)]-{l+a(l—-2p)}n+1-aq]. (40)

Consider (1 —ap)n+1—a(2—¢) and {1 +a (1 —2¢)}n+ 1 — a. Both are positive and
linearly increasing in n > 1. Therefore,

I+a(l=2¢0)}n+1—«
I'(n)S0<d. S :
(n)s0& SOn>(1—ozgo)n+1—oz(2—go)

Since l —ap <1+a(l—2¢)and 1 —a (2 —¢) < 1— a, the former is strictly smaller than
the latter for any n > 1. Because Srel=2elntloc o g o0 411 5, T'(n) < 0 for all n < /ﬁ.

(1—ap)n+l-a(2-p)
Because the first term in (40) is strictly convex and cuts the second linear term from below,

there is a unique n* > , /ﬁ for which I" (n*) = 0 and
'n)s0&nsn'
Thus, II is uniquely maximized at n = n*.

(b) For a strategic equilibrium,

eXp(ZpHSt)zl—a—i-on(l—da)(l—gp)<n_1—n+1 4 )(1_0‘+ n (1—@).

n n 1l—¢ o 1+n
(41)
Thus, lim IT¥* = II"*. The optimal market size maximizes
n-l __ntl ¢
On n nn 17<p, (42)
T+n
where O,, is given in (39). Taking the derivative with respect to n,
n=1__ ntl_¢ n=1__ ntl ¢
d n n — d n n -
—0, fw 1+ 0, — % _ (43)
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Because ) .
n— n ©
T aie nt=1 ni4+2n+4+1 o

n

2 2 _
= n n?  1-g

increases in n, and %On = 0 at n*, (43) is strictly positive for all n < n*. Therefore, the
optimal market size n}, is greater than n*.

(c) We find the condition that implies ,/ ﬁ > %O — 2, which in turn implies n* > 7.

Using i =1+ 2,

1 ; 1 1 ) 1\*> 1
—(1+T—) > ——2@—<1+T—)>(—) —4—+4
© Te @ v Te @ ¢

1\ /(7. 1
s (=) = (Z2+5)=+4<0
© Te @

= 4¢2—<ﬁ+5)<p+1<0.
Te

\2 . i 2 . 2
T2 45— /941078 (I8 )" Tu4544/94+10724(I2) T8 4544 /94+1078 (12 )
Therefore, we need ¢ € 5 , S >

, where 3

1 and

2 2 2
;—v+5—\/9+10;—v+<;—v) (2 +5) —(9+10;—:+(;—5))
8 =
8 ;—:+5+\/9+10;—g+(;—5)
2 1
- 0,>).
(03)

2
;—g+5+\/9+1o;—g+(;—g)

2
o 54y /04107e (1)

For any fixed ¢ € (0, 1), sufficiently large 7, implies < ¢ and hence

1 1
A >1-2  m(AL)

2.4.2 The case with uw <1

Lemma A12 (optimal market size with pw < 1)

(a) lim exp (2pIl) = lim exp (2pII¥) =1 — a + a—i_wi(l #)15? :
n—oo n—o0 1—de

(b) II and II*" decrease in n for sufficiently large n, and n¥, > n*.

Proof.
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(a) From Lemma A2, lim ny = oo while lim ¢ = 0. Thus, lim X = lim X*" =1 and

limﬁ _ 1 —w+wd: — pud.
n—oo T 1 —w+ wd,
. (=w) (I —d.) +d. — pd.
(1-w)(1—d.)+d.
1_W+<1_U>1ieds
B 1-w+ 1%—35'
(b) First,
7o (1= pde) 2Bt 41— pd, —w (1 —d.)
T B4 1] (1 — d,)

(1 — pd.) (%H) —w(l-d)
0B 4 | (1 — d,)

wn

1_Mds aeBerw _
T d (1 + w

wn

1 - (1 + Ongz-i-w) —w

wn

1-pd 1-pde o, B 1-pd
o Wt T T i W
= € J 1 — pd: ] .

a:B2+w 1
ljdg —w+t lf_ldg fm+ 1—d.
Lopde ., 2 1
This decreases in n and lim = = 25%— because lim a:B"4w — () at the rate n~3.
n—o0 T—d. ¥ n—oo WN
Next,
1—
x = =" L
Il+nl—(1—-w)yp
_n © -9
o l+nl—-(1-w)p o
. on a.B?
 1+n é —(1-w)
_on a.B?
14 na.B?+4w
1 Ol

— S n i tuB? € (0,1).

This increases in n and lim X = 1, because lim B~2 = 0 at the rate n=5. Because both

n—oo n—oo

7 and X monotonically converge to positive limits, whether 7= X (1 — a + aX) decreases in
n for sufficiently large n depends on which force (increasing or decreasing) converges faster.
We use the following fact:

Fact 2. Consider n > 1 and {aj,dj}jzl .b,c,e, f>0. Let a = mina,.
J
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J
dj n~b+e —c : .
. X X (1—
o= W (1 —n=°) decreases in n for sufficiently large n

if b<min{a,c} and e < f.

Apply Fact 2 to X and =X 2 where b = %, a = 3. Thus, IT decreases in n for

sufficiently large n.
For II¢, note that

Xst — _

2

approaches its upper bound 1 at the rate at which 2 approaches zero, which is n=3. Apply
Fact 2 to 2 X*" and = X*'X, where b= 3, a =c = §

Finally, from Lemma A10, )ggt =1- )\ < 1 increases in n. Therefore, IT% still increases
in n at n* and n* < nf,. H (A12)

Proof of Fact 2. Take log to obtain
J
Z {lnd — ln 4 —l—dj)} +In (n*b —|—e) —1In (n*b—l—f) +In (1 —nfc) .

Taking the derivative with respect to n,
an~%"1  pptl ppbml o eperl
Z —a; T —b + -b + —c
‘=n i+d; nt+e nlt+f 1-n

1
= X

(070 +€) (=0 4 ) (1 = ) 11 (0725 + )

(00 ¢) (=4 1) (1 -] 3 {ajn—aj—lkn. (= + dk)}

g #J

S )~ 0} (1) e ) (1 )] L (0 )

(n+e)(nP+f)(1—n°) é% —{n(f-e)(1—-n")—cn(n+e) (n"+[)}
B n(nt+e)(nt+f)(1-n"c)
(n*b + e) (n*b + f) (1—-n"°) ;aj—ngnaj — {bnﬁfb (f—e)(1—n"c) —cnee (n’b + e) (n*b + f)}

n n(n=t+e)(n=b+ f)(1—n"c)
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If b < min{a,c} and e < f, the numerator is negative for sufficiently large n. H (F2)

37



