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By Gregory Phelan

I. More on Leverage Constraints

A. Exogenous Leverage Constraints

Figure 1 plots the drifts and volatilities and prices for the given leverage restric-
tions. Tighter leverage constraints lead to lower asset price volatility (σq) and
lower systemic volatility (ση). The drift in prices (µq) increases when leverage
constraints are very tight because banks no longer drive down returns through
competition. The effect on the drift in bank equity (µη), however, is not mono-
tonic, reflecting that the effect on retained earnings can be complicated. A key
reason that the system is more stable is that the price of good 1 is higher when
leverage is constrained. In other words, intermediated investments yield higher
returns when banks use less leverage.
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Figure 1. : Equilibrium Evolutions and Prices with Leverage Limits.

Figure 2 plots the Sharpe ratios and recovery rates given leverage constraints.
Though Sharpe ratios at a given η are higher with tighter leverage constraints,
the average Sharpe ratio is lower because the stationary distribution shifts toward
η∗ (the averages are 12.6% and 12.35% respectively for L = 12 and L = 8.4). I
plot g(η) against the distance from η∗ rather than against η because η∗ changes
with borrowing constraints. The recovery function g(η), defined in equation 9,
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is the value of a bond that pays 1 when the economy returns to η∗. It is the
present value of the next dividend payment to shareholders, and is a measure of
the expected time to recovery. Recovery is faster with tighter leverage constraints.
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Figure 2. : Sharpe Ratios and Recovery Rates with Leverage Limits.

Figure 3 plots banks’ value given leverage limits. Banks’ values are hardly
affected by leverage constraints, which is consistent with the results in Brunner-
meier and Sannikov (2014). Notice that the change in bank value for L = 8.4 is
primarily driven by the increase in η∗, i.e., the value function is shifted right.

Figure 4 plots how welfare varies with the maximum allowable leverage. The
figure plots the maximum welfare the economy attains (J(η∗)) against the lever-
age constraint L. There are two things to notice. First, there is a hump-shaped
relationship between welfare and tighter leverage constraints. Second, the re-
lationship is asymmetric. The welfare gains to tighter leverage constraints are
generally not as large as the welfare losses from overly tight leverage regulation.
Relative to the optimum, the costs of choosing too tight of leverage regulation is
higher than the costs from choosing too loose of leverage regulation.

B. Illustrating the Results with a Simulation

I illustrate the main results by simulating economies with and without equity
and leverage constraints. Figure 5 plots the simulations for flow utility and the
asset price. These simulations show how banks affect flow utility (output, to a
first-approximation) and asset prices and how limiting leverage can reduce volatil-
ity and improve the average level of flow utility.1 The red line presents an economy
in which banks are subject to no constraints: resources are efficiently allocated

1I’ve used σ = 1%, g = 3%, and L = 15 for these simulations in order to more clearly demonstrate
the results, which are amplified for these parameters. The simulation is qualitatively the same, though
muted, for the baseline parameters.
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Figure 3. : Banks’ Value with Leverage Limits.

and the economy is stable with no endogenous amplification or propagation. In
such an economy, flow utility is stable and asset prices (the straight line on top)
are constant even with fundamental shocks (because allocations do not change,
prices are stable).

The black line shows an economy in which banks are limited in their ability to
issue equity: there is significant endogenous amplification and persistence. Fun-
damental shocks affect banks’ equity levels, and banks respond by decreasing their
asset holdings, worsening allocations and decreasing asset prices. The decrease
in asset prices feeds back into the value of banks’ equity, further depressing its
value, leading to more asset sales and misallocation. Importantly, the economy
is much more volatile and volatility is almost entirely “downside” risk, because
misallocation occurs when banks have low equity levels.

The blue line shows an economy in which banks’ leverage and ability to issue
equity are both limited. There are times when, because of leverage limits, banks
hold fewer assets compared to the black economy and so flow allocations and
flow utility suffers (this point is illustrated in the early part of the diagram).
However, the economy is much more stable: fundamental shocks have a muted
effect on banks’ equity because banks use less leverage, and thus resources are
on average allocated better and asset prices are less volatile. Limiting leverage
decreases volatility, which has the dynamic effect of increasing the overall level of
flow utility.
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Figure 4. : Welfare at η∗ Given Leverage Constraint.

C. Endogenous Borrowing Constraints: Value-at-Risk

Endogenous borrowing constraints may already limit leverage, and maybe too
much. Empirical evidence suggests that bank leverage away from the steady state
does not behave as in the model thus far.

Adrian and Shin (2010, 2011) show that leverage ratios for commercial and in-
vestment banks are typically acyclical and pro-cylical respectively; when volatil-
ity spikes, their leverage falls. Adrian and Shin present very strong evidence that
these institutions maintain a constant value-at-risk (“VaR”). The value-at-risk
constraint can be interpreted in at least 3 ways: The VaR constraint could cap-
ture (i) explicit capital constraints set by regulators, as in Basel II; (ii) collateral
constraints with countercyclical margins; (iii) implicit agency problems resulting
because borrowers can divert fund.2

Endogenous Borrowing Constraints, Value-at-Risk:

The endogenous borrowing constraint is a Value-at-Risk (“VaR”) constraint
that depends on equity and market volatility. Following Danielsson, Shin and

2The interpretation affects a regulator’s ability to increase leverage, though only slightly. This is
trivial in the first case. In the second case, because central banks can offer collateralized borrowing
without the need to immediately liquidate seized collateral, they can offer collateralized borrowing at
lower margins, and in fact they often do. In the third case, if regulators can, for a time, monitor the firm
more closely than usual, then perhaps they can allow firm managers to take on more risk. Recent events
suggest that it is possible for governments to increase the leverage that banks can take.
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Figure 5. : Endogenous Instability and the Effect of Leverage Constraints.

Zigrand (2011), the value at risk for a bank with assets At with volatility σ + σqt
with confidence level z∗ is At(σ + σqt )z

∗. Thus a bank with equity nbt can hold
assets of value At given by

(1) At ≤
nbt

(σ + σqt )z
∗ ,

where z∗ can be interpreted as the z-score for the probability that the value of

assets drop below the value of equity. This restricts leverage to
(

1
(σ+σqt )z∗

− 1
)

.

With Gaussian returns, the expression (σ+σqt )z
∗ is the unit VaR with confidence

level z∗. The 1-day 95% unit VaR is 1.645(σ + σqt ) and the 1-day 99% unit VaR
is 2.326(σ + σqt ).

I solve the model for z∗ = 2.326
√

3, 2.326
√

5, and 2.326
√

6, corresponding to
99% VaR at 3, 5, and 6 day horizons. Figure 6 plots equilibrium leverage and
welfare. Since volatility is hump-shaped, VaR constraints cause leverage to be
U-shaped when constraints bind. Notice that leverage rises local to η = 0; He and
Krishnamurthy (2012, 2013) argue this is empirically correct.

The effects on equilibrium drifts and volatilities, the stationary distribution,
recovery rate, and bank value are similar to those in the previous section. It
is worth noting what happens to the distribution when borrowing constraints
are very tight. Figure 7 plots the stationary distribution with VaR constraints.
The shape of the distribution hardly changes as z∗ increases, but the distribution
overall shifts right. As z∗ increases, the economy is more stable in the sense
that higher η are more likely, but outcomes at each η are much lower because
borrowing constraints lead to misallocation. Aggregate outcomes are not actually
more stable: the distribution of outcomes is actually worse. Because banks face
very tight borrowing constraints, they build up much more equity in order to
hold more assets, but this response does not improve welfare, in part because
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Figure 6. : Equilibrium Leverage and Welfare with VaR constraints.

liquidity services suffer and in part because misallocation is exacerbated by tight
constraints.
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Figure 7. : Stationary Distribution with VaR Leverage Constraints.

Note that pro-cyclical leverage does not exacerbate crises by increasing volatility
after bad shocks. One might worry that endogenous constraints might exacerbate
crises since constraints bind precisely as volatility rises, forcing banks to dump
assets and depress prices, which could further increase volatility. This does not
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happen in this model because adjustments occur smoothly and instantaneously.3

In this example, tighter VaR constraints decrease welfare. (Proposition II.C still
holds, so leverage at η∗ is too high.) For low η, increasing leverage could improve
welfare—this is the time when resource misallocation is the worst. Increasing
leverage during bad times would risk more instability, but it could allow banks
to rebuild equity quickly, and it would also improve land allocation.

To demonstrate this, I consider a policy of removing borrowing constraints
during “bad times”: for η < .03 there are no borrowing constraints, but for
η > .03 banks are subject to a 5-day 99% VaR constraint. Figure 8 shows how
equilibrium leverage changes and it shows the effect on welfare. Welfare is higher
almost everywhere as a result of this intervention, and the effect is greatest for
low values of η. For very low η, misallocation is the worst and the economy takes
a long time to recover—misallocation costs persist. Thus, improving allocation
during these times has the greatest effect on welfare.
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Figure 8. : Welfare Gains from Propping-up Leverage in Bad Times.

This policy does not significantly affect the economy’s recovery time or the
stationary distribution. Recovery is slightly worse for intermediate values of η,
but recovery is faster for low η. Thus higher leverage has actually made the
economy (slightly) more stable at times when stability is most valued. Increasing
leverage in this way improves welfare only when borrowing constraints are tight.
For example, this same policy hurts welfare significantly if z∗ = 2.

II. Equilibrium With Costly Equity Issuance

Throughout the paper I assumed that banks cannot issue any new shares. In
this section I relax that assumption slightly: banks can issue new shares but at a

3It would be worth investigating the effects of VaR constraints when markets are “illiquid” or when
adjustments are lumpy rather than smooth.
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marginal cost κ < 1 per share. Thus, if dζbt < 0 banks pay a cost −κdζbt . So long
as banks do not issue shares too frequently, the results with no equity issuance
are almost entirely unchanged.4

Modifying the budget constraint accordingly, the Bellman equation (with yb2t =
0) becomes:

rθtn
b
t =

max
yb1t≥0

{
θtr

Lnbt + θt

(
(yb1tqt)(E[dr1b

t ]− rL)
)

+ θtµ
θ
tn

b
t + σθt θt(y

b
1tqt)(σ + σqt )

}

+ max
dζbt

{
dζbt (1− θt)1dζbt≥0 + dζbt (1− θt + θtκ)1dζbt<0

}
.

Thus, banks will pay dividends when θt ≤ 1 and banks will issue new shares (i.e.,
set dζbt < 0) when θt ≥ 1

1−κ = θ.

The equilibrium changes as follows. The economy will fluctuate between [η, η∗]
and banks will issue new shares (or new banks will enter) at η. The ODEs are
the same, but the boundary conditions are changed to reflect that η is a reflecting
barrier with optimally chosen issuance. The conditions are now (i) θ(η∗) = 1;
(ii) q′(η∗) = 0; (iii) θ′(η∗) = 0; (iv) θ(η) = θ; (v) q′(η) = 0; and (vi) θ′(η)η+θ(η) =
0. The modifications are: θ(η) = θ because banks issue shares at η, and q′(η) = 0
and θ′(η)η + θ(η) = 0 for smooth pasting at η.
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Figure 9. : Equilibrium Leverage and Prices with Costly Equity Issuance.

4If banks issue shares frequently, the overall picture is similar, but some differences emerge because
banks may not use the same level of precaution as their equity decreases.
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Numerically solving with θ = 6, banks still issue new shares infrequently—but
frequently enough that the economy is much more stable. Figures 9-11 show that
compared to when banks cannot ever issue new shares, the economy is similar,
except that at η endogenous volatility drops to zero and bank leverage spikes.
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Figure 10. : Welfare and Bank Value with Costly Equity Issuance.

Crucially, when banks can issue equity: welfare is much higher, the economy is
more stable (there is not a mass in the distribution near η = 0), the asset price is
high, and endogenous volatility is lower even though banks use higher leverage.

III. Efficient Leverage at Steady State

PROPOSITION III.1: Let households have a value function that is separable in
wealth and let banks maximize general preferences. Consider any economy with a
stochastic steady state where the state-variable is an increasing function of bank
equity, borrowing constraints do not bind at the stochastic steady state, volatility
is positive, and at the stochastic steady state banks are not instantaneously more
risk-averse than households. Then the marginal social value of bank leverage is
negative at η∗.

PROOF:
Denote the preferences of households by v(c, b) and denote the preferences of

banks by u(ζ, η), where ζ are dividends, and η is the state-variable. Let the
final-stage production function be F (Y1, Y2).

Denote the marginal utilities of households and banks as θl for l = H, I respec-
tively. The marginal utilities will follow an equilibrium path given by

dθlt
θlt

= µθlt dt+ σθlt dWt,



10 AMERICAN ECONOMIC JOURNAL January 2016

0.02 0.04 0.06
0

0.1

0.2

0.3

η

µ
η
  

Drift of bank equity

0.02 0.04 0.06
0

0.2

0.4

0.6

σ
η
 

η

Volatility of bank equity

0.02 0.04 0.06
−2

0

2

4
x 10

−3

µ
q
 

η

Drift of land price

0.02 0.04 0.06
0

0.005

0.01

0.015

σ
q
 

η

Volatility of land price

Drifts and Volatilities

0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

η, level of bank equity

f(η)

Stationary Density of Bank Equity Levels

 

 

No Issuance

Costly Issuance

Issue

Stationary Distribution

Figure 11. : Evolutions and Stationary Distribution with Costly Equity Issuance.

where σθlt ≤ 0 reflects risk-aversion. If asset holdings are not constrained, then
the following equations, reflecting martingale pricing, hold:

E[dr1b
t ]− rt ≤ −σθIt (σ + σq),

E[dr2b
t ]− rt ≤ −σθIt (σ + σq),

E[dr1h
t ]− rt ≤ −σθHt (σ + σq),

E[dr2h
t ]− rt ≤ −σθHt (σ + σq),

where rt is the return on deposits. Because banks have an advantage at cultivating
good 1 but not good 2, the first and last equations will hold with equality always
(that is, banks will always use land to cultivate good 1, and households for good
2). Define φI = g − gB.

Let f(ηt) = F (y1t, y2t)/Yt be aggregate productivity and gY = g− (λ− ψ)m−
ψφI be the aggregate growth rate of land. Since the household value function
is separable in wealth, we can write the first-order conditions for the optimal
allocations as:

L(ψt) = vc(ct, dt)
∂f(ψ)

∂ψ
+ vd(ct, dt)q

+ J ′(η)η
∂µη

∂ψ
+
(
J ′′(η)ση(ψ, λ, η) + J ′σ

)
η
∂ση

∂ψ
+ J

∂gY
∂ψ

.

Consider the first order condition for ψ at η = η∗. Smooth-pasting implies that
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J ′(η∗) = 0 so that we have

L(ψt) = vc(ct, dt)
∂f(ψ, x)

∂ψ
+ vd(ct, dt)q + J

∂gY
∂ψ

+ J ′′(η)ση(ψ, λ, η)η
∂ση

∂ψ

= vc(ct, dt) (p1 − p2) + vd(ct, dt)q + J
∂gY
∂ψ

+ J ′′(η)ση(ψ, λ, η)η
∂ση

∂ψ

The interest rate on deposits is rbt = rt − vd(ct, dt). Combining the equations for
asset demands we can write

p1

q
− p2

q
+ vd(ct, dt)−

∂gY
∂ψ

+ σθIt (σ + σq)− σθHt (σ + σq) = 0.

Note that J ′′ < 0 because J(η∗) = z(ψ,λ)
r−gY −σw/2 + 1

2(r−gY )J
′′(η)(ση(ψ, η))2. Since

the first term is the present discounted value if the system did not move from η∗,
the total value is strictly less. Additionally, ση > 0 and ∂ση

∂ψ > 0 and J(η) ≥ q(η)
because of the no-equity-issuance constraint. From these inequalities, together
with the hypothesis on risk-aversion, the first-order-condition is negative, L(ψt) <
0, implying that the equilibrium ψ is too high.

IV. Solving for Equilibrium

DEFINITION IV.1 (Competitive Equilibrium): Given an initial stock of land
Y0 and initial wealth and equity levels {nh0 , nb0}, a competitive equilibrium is de-
scribed by a group of stochastic processes on the filtered probability space defined
by the Brownian motion {Wt, t ≥ 0}: the price processes for land, goods, banks
shares, and debt {qt, p1t, p2t, pst, rt}, bank equity {nbt ≥ 0}, portfolio holdings for
banks and households {yb1t, yb2t, sbt , δbt , yh1t, yh2t, δht }, goods demands and production
{Y1t, Y2t, Ct}, and consumption and dividend choices {cht , dζbt }; such that

1) Banks and Households optimize given prices.
2) Markets for goods clear

Y1t =

∫
yb1tdb+

∫
yh1tdh,

Y2t =

∫
yb2tdb+

∫
yh2tdh.

3) Market for consumption goods clears

Ct =

∫
cht dh.
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4) Market for debt clears ∫
δbtdb =

∫
δht dh.

5) Market for land clears

Yt =

∫
(yh1t + yh2t)dh+

∫
(yb1t + yb2t)db.

A. Deriving Equilibrium Conditions

Deriving dηt. — To derive the law of motion for η, use Ito’s Lemma as follows:

dYt
Yt

=gY dt+ σdWt,

d(qtYt)

qtYt
= (gY + µq + σσq) dt+ (σ + σq)dWt,

d

(
1

qtYt

)
qtYt =

(
(σ + σq)2 − gY − µq − σσq

)
dt− (σ + σq)dWt,

dηt =d

(
Nt

1

qtYt

)
= dNt

1

qtYt
+ d

(
1

qtYt

)
Nt + Cov

(
Nt,

1

qtYt

)
dt.

Together with equations for returns and laws of motions, we have

dηt =
[
rLNtdt+ (ψtYtqt)

[(
E[dr1b

t ]− rL
)
dt+ (σ + σq)dWt

]
− dζbt

] 1

qtYt

+
[(

(σ + σq)2 − g(1− ψt) +m(λt − ψt)− ψtgB − µq − σσq
)
dt− (σ + σq)dWt

] Nt

qtYt

+ ψtYtqt(σ + σq)

(
−σ + σq

qtYt

)
dt.
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When borrowing constraints do not bind, E[dr1b
t ] − rL = −σθ(σ + σq), and so

−g − µq − σσq = σθ(σ + σq)− r + p1t
qt

. Plugging in we have

dηt =rLηtdt− ψtσθ(σ + σq)dt

+ ηt

(
(σ + σq)2 +m(λt − ψt) + ψtφL + σθ(σ + σq) +

p1t

qt
− r
)
dt

+ (ψt − ηt)(σ + σq)dWt − ψt(σ + σq)2dt− dζt
qtYt

=(ψt − ηt)(σ + σq)
(
dWt − (σθ + σ + σq)dt

)
+ ηt

(
p1t

qt
+ (λt − ψt)m− (1− ψt)φL

)
dt− dζt

qtYt
.

Hence we have

µηt = −(ψt − ηt)
ηt

(σ + σq)(σθ + σ + σq) +

(
p1t

qt
+ (λt − ψt)m− (1− ψt)φL

)
,

σηt =
(ψt − ηt)

ηt
(σ + σq),

dΞ =
dζt
Nt

.

When borrowing constraints bind, σηt and dΞt are as before. Borrowing con-
straints affect only µηt . Define µAt = p1t

qt
+ g+ µq + σσq to be the expected return

banks get when owning land to cultivate good 1. Then we can write µη as

µηt =
(ψt − ηt)

ηt

(
µAt − r − (σ + σq)2

)
+

(
p1t

qt
+m(λt − ψt)− (1− ψt)φL

)
,

since µη is given by

µηt =(rL − g +m(λt − ψt) +
ψt
ηt
φL − µq − σσq)

+ ψt

(
E[dr1b

t ]− rL
)
− (ψt − ηt)

ηt
(σ + σq)2.

When borrowing constraints bind so that banks can only get leverage L, the
Bellman equation (10) is

rθtn
b
t = θt

(
rLnbt + (L+ 1)nbt(E[dr1b

t ]− rL)
)

+ θtµ
θnbt + σθθt(L+ 1)nbt(σ + σq).
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Hence,

µθ =φL − (L+ 1)
(
E[dr1b

t ]− r + σθt (σ + σq)
)

(2)

=φL − (L+ 1)
(
µAt − r + σθt (σ + σq)

)
.

Notice that when leverage constraints do not bind, µAt − r = −σθt (σ + σq).

Deriving the System of Differential Equations. — To derive the ODE, pro-
ceed as follows. From equation (16)

µqq(η) =q′(η)µη +
1

2
q′′(η)(ση)2 and σqq(η) = q′(η)ση,

µθθ(η) =θ′(η)µη +
1

2
θ′′(η)(ση)2 and σθθ(η) = θ′(η)ση,

and hence,

(3) q′′(η) = 2
µqq(η)− µηq′(η)

(ση)2
θ′′(η) = 2

µθθ(η)− µηθ′(η)

(ση)2
.

Thus, we need to solve for µq, µθ, µη, ση to solve the differential equation. Note
that using dηt

σqq(η) =q′(η)(ψ − η)(σ + σq)→ σq =
q′(η)

q(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)

.(4)

σθθ(η) =θ′(η)(ψ − η)(σ + σq)→ σθ =
θ′(η)

θ(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)

.(5)

Note that higher leverage increases asset price volatility.
Additionally, since households earn return r from cultivating good 2

(6) µq = r − g − σσq − p2t

qt
.

We solved for µθ in terms of returns and ψ in (2). Hence, we need to solve for
λ, ψ to get our second derivatives using (3).

Solving for Allocations. — We solve for ψ, λ using household and bank de-
mands for good 1 and good 2 investments. There are two possibilities: either
λ > ψ or λ = ψ.
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When λ > ψ, households cultivate good 1 and therefore,

p1t − p2t = mqt =⇒ α

(
1− λt
λt

)1−α
− (1− α)

(
λt

1− λt

)α
= mqt.

This pins down λ. To get ψ when VaR constraints bind we use σ + σq =
σ

1− q
′(η)
q(η)

(ψ−η)
in (1) to get

ψ ≤ η

z∗

 1 + η q
′(η)
q(η)

σ + η
z∗
q′(η)
q(η)

 .(7)

To get ψ when borrowing constraints do not bind, notice that that −σθ(σ+σq) =
m. Thus

m = −σθ(σ + σq)

m = −θ
′(η)

θ(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)

 σ

1− q′(η)
q(η) (ψ − η)

 .

Let x = ψ − η. Then

m

(
1− q′(η)

q(η)
x

)2

= −θ
′(η)

θ(η)
σ2x

x2

(
q′(η)

q(η)

)2

− x
(

2
q′(η)

q(η)

)
+ 1 =− θ′(η)

θ(η)

σ2

m
x

x2

(
q′(η)

q(η)

)2

+ x

(
θ′(η)

θ(η)

σ2

m
− 2

q′(η)

q(η)

)
+ 1 = 0.

Define A,B,C so that Ax2 + Bx + C = 0. Noting that ψ ≥ η and therefore
x ≥ 0 we can solve for x using the quadratic formula, and the relevant solution

is x = −B−
√
B2−4AC
2A .

Then ψ1 = x+ η. We can compare this to the borrowing constrained level and
confirm that λ > ψ.

When, ψ = λ,
p1t − p2t = −σθ(σ + σq)qt,

hence, plugging in (3), (4), and (5)

α

(
1− ψ
ψ

)1−α
−(1−α)

(
ψ

1− ψ

)α
= −θ

′(η)

θ(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)

 σ

1− q′(η)
q(η) (ψ − η)

 ,
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which pins down ψ. This is the solution if −σθ(σ + σq) ≥ m.

Sectoral allocation is not a state-variable. — To argue that λ is not a state-
variable, let qt have a general law of motion as above. It depends on something,
but we do not have to decide what yet. In equilibrium, households earn expected
return of r in good 2 investments. Thus

p2t

qt
+ g + µqt + σσqt = r.

For a given qt and its evolution, there is a unique p2t constituting equilibrium,
and thus there is a unique λt. Hence, the allocation of land across sectors depends
on whatever qt depends on; the allocation of land is not a state-variable.

If borrowing constraints bind, then ψ is determined by Nt and σqt . Thus, ψt
depends on whatever qt depends on and on Nt, but it is not a state-variable itself.
Similarly, if borrowing constraints do not bind, then banks earn expected return

p1t

qt
+ g + µqt + σσqt = r − σθt (σ + σq).

Thus, σθ depends on the same things as q. When borrowing constraints bind, µθ

depends on ψt and market returns, and thus depends on the same things as q.
When constraints do not bind, µθ = φL. Hence, we can argue that θ depends on
the same things as q, and we know that Nt matters for equilibrium.

Stationary Distribution and Recovery Rate. — The stationary distribution
f(η) given the equilibrium law of motion solves

(8)
∂
[
(ση(η))2f(η)

]
∂η

= 2µηf(η),

which is derived from the Fokker-Planck equation when η∗ is a regulated bar-
rier. The stationary distribution exists so long as η does not get absorbed at 0.
The conditions for this are similar to those found in Brunnermeier and San-
nikov (2014) and require that µη be large enough compared to ση. Letting

D(η) = (ση(η))2f(η), then D solves D′(η) = 2 µη

ση(η))2
D(η) (which is easier to

solve) and then we back out f from D.
I use the following measure for the expected time for the economy to return

to η∗. Let T be the time until ηt = η∗ (i.e., T is a “stopping-time”). Define
g(η) = E

[
e−rT

]
, which varies from 0 to 1 and is higher when the expected recovery

time is low, i.e., when the economy recovers quickly. The recovery function g(η) is
the value of a bond that pays 1 when the economy returns to η∗. It is the present
value of the next dividend payment to shareholders, and is a measure of the
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expected time to recovery. The recovery rate g(η) = E
[
e−rT

]
is the discounted

value of the time for the economy to go from η to η∗. It satisfies

(9) rg(η) = µηg′(η) +
(ση)2

2
g′′(η),

with boundary conditions g(η∗) = 1 and g(0) = 0. This is because at η∗ the
expected time to reach η∗ is zero, and at η = 0 the economy never returns to η∗

and so the recovery time is infinite.

The Welfare Function J(η). — Welfare is given by

V (ητ , Yτ ) = Eτ
[∫ ∞

τ
e−r(t−τ)

(
cht + φLδ

h
t

)
dt

]
,

with cht + φLδ
h
t = z(ηt)Yt,

dηt
ηt

= µηdt+ σηdWt + dΞt,

dYt
Yt

= gY (ηt)dt+ σdWt.

The welfare function V (η, Y ) solves the differential equation:

rV (η, Y ) = z(η)Y +Vηηµ
η +VY gY (η)Y +

1

2
Vηη(ησ

η)2 +
1

2
VY Y (σY )2 +VηY ησ

ησY.

Substituting V (η, Y ) = J(η)Y and collecting terms

rJ(η)Y = z(η)Y + J ′(η)Y ηµη + J(η)gY (η)Y +
1

2
J ′′(η)Y (ηση)2 +

1

2
0(σY )2 + J ′(η)ησησY

rJ(η) = z(η) + J ′(η)ηµη + J(η)gY (η) +
1

2
J ′′(η)(ηση)2 + J ′(η)ησησ.

Rearranging terms we get

(r − gY (η))J(η) = z(η) + J ′(η)η(µη + σησ) +
1

2
J ′′(η)(ηση)2.

We solve this second-order differential equation with the following two boundary

conditions: (i) J(0) = z(0)
r−gY (0) = q, because η = 0 is an absorbing state; (ii)

J ′(η∗) = 0, because η∗ is a regulated barrier.
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V. The Effect of Volatility on the Stationary Distribution

To demonstrate the effect of volatility on the stationary distribution of the
state-variable, consider the following simple process. An investor has equity n,
can borrow risk-free at rate r, and buys an asset with value Y , which evolves
according to a geometric Brownian motion:

dYt
Yt

= µdt+ σdWt.

Define η = n/Y . Using Ito’s Lemma, the evolution of ηt is given by:

dηt = (1− ηt)(µ− r − σ2)︸ ︷︷ ︸
µηt

dt+ (1− η)σ︸ ︷︷ ︸
σηt

dWt.

It is clear that higher volatility implies a lower drift term and a higher volatility
term for this process. Now consider the following policy for the investor: if η
reaches a level η∗, then consume. In this way η∗ is a regulated upper barrier. The
stationary distribution f(η) given this process and this policy solves

∂f(η)

∂η
= 2

µη

(ση)2
f(η),

which is derived from the Fokker-Planck equation.

Figure 12 plots numerical solutions for a range of σ with µ − r = .01 and
η∗ = .03. Notice that as exogenous volatility rises, the mass of the distribution
moves left. More generally, we can think of the economy as having a reflecting
barrier at really good states and, potentially, another at really bad states. Higher
volatility shifts the probability of states away from the barriers. The model has a
reflecting barrier only for good states, and so higher volatility shifts the stationary
distribution toward bad states. With reflecting barriers on both sides, if the good
states are ex ante more likely than bad states, then the stationary distribution
will move “toward the center” which is overall toward bad states.

We can apply this same exercise to the baseline model to see (i) how mass shifts
to/away from the stochastic steady state, and (ii) to illustrate that finding a bi-
modal distribution depends on parameters. I calculate the stationary distribution
in the baseline model for σ = 4%, 2%, 1%, and .5%. Figure 13 plots the stationary
distribution, with the x-axis normalized to η/η∗, since η∗ varies with volatility.
Notice that for low volatility mass shifts toward η∗ and the mode at zero virtually
disappears. For high volatility mass shifts toward zero and the mode at η∗ virtu-
ally disappears (and it would do so for high enough volatility). However, because
of the “volatility paradox,” decreasing exogenous volatility actually increases en-
dogenous volatility, which is why the mode continues to persist in small degree.
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Figure 12. : The Effect of Volatility on the Capitalization Distribution.

In contrast, limiting leverage directly decreases endogenous volatility, which has
the effect of killing the mode completely.
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Figure 13. : The effect of volatility on the stationary distribution of the baseline
model.
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