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of geospatial weather observations
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B.1. Source Data

We use weather from the ERA5 dataset from 1979 to 2021.26 The original ERA5 dataset has hourly

data but we use data aggregated at daily level by Google Earth Engine (GEE).27 This includes daily

mean temperature in each day d and grid cell j, calculated using ERA5’s 24 measures per day (Tj,d), the

minimum of those 24 measures within a day (TNj,d), and the maximum of those 24 measures within a day

(TXj,d). Total daily precipitation (Pj,d) is calculated by summing all the hourly precipitation measures

within a day. From these daily grid-cell data points we construct all our variables.

Number of observations in the original databases. The resolution of ERA5 data is 0.25 degrees.

A global map has 180 degrees along the North-South dimension and 360 degrees along the West-East

dimension: the total number of cells is therefore equal to p180{0.25q ˆ p360{0.25q “ 1, 036, 800. The

percentage of Earth’s surface covered land, after excluding Antarctica and Greenland, is approximately

equal to 27%. This means that we use approximately 1,036,800 ˆ 0.27 = 279,936 cells on land. For each

grid and each day of the 41 years from 1979 to 2019 we have four weather data points (T , TN , TX,

and P ). This means that we start with approximately 279,936 ˆ 365 ˆ 41 ˆ 4 = 16,756,968,960 (« 17

billion) temperature and precipitation data points.

The Palmer Drought Severity Index (PDSI) is from Abatzoglou et al. (2018) and is accessed using GEE.28

PDSI data comes at monthly intervals with spatial resolution equal to 0.0416 degrees. This corresponds

to (180 / .0416) ˆ (360 / 0.0416) ˆ 0.27 = 10,110,022 cells on land excluding Antarctica and Greenland.

Summing over all months from January 1979 to December 2019 we have a total of 10,110,022 ˆ 12 ˆ 41

= 4,974,130,917 (« 5 billion) observations on PDSI from the Terra Climate data.

To sum up, we start with 21,715,195,392 (« 22 billion) data points on temperature, precipitation, and

the PDSI.

Merging datasets and zonal statistics. We merge the ERA5 and PDSI datasets into one single

geospatial dataset that uses the higher resolution of PDSI data of approximately 5 km ˆ 5 km at the

25Akyapı: berkayakyapi@ufl.edu; Bellon: m.bellon@esm.europa.eu; Massetti: emassetti@imf.org
26https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=over

view
27https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
28https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE#ban

ds
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equator. This dataset is projected on a global map of countries to calculate zonal statistics at country

level.29 The whole process is managed using Google Earth Engine and delivers a total of 9,621,976 («

10 million) country-matched grid cells for each one of our five core climate variables (Tj,d, TNj,d, TXj,d,

Pj,d, and PDSIj,d). Each grid cell has daily data for 41 years. This means we develop our full set of

climate variables using 580,705,495,552 (« 600 billion) data points.

Weighted variables. The resolution for the population data is « 1 km ˆ 1 km at the equator,30,31 and

hence for the weighted data we use 1 km ˆ 1 km grid cells during zonal statistics. By mixing population

and weather data we obtain 25 additional points for each grid cell of the raw weather data. This adds

25 ˆ 580,705,495,552 = 14,517,637,388,800 (« 15 trillion) data points to our dataset for zonal statistics.

B.2. Definition of weather variables

This Section describes all the weather variables we construct from raw precipitation and temperature

data. We start by an overview of weather variables, then give a brief presentation of mathematical nota-

tions and concepts, and finally provide the full list of the variables we construct and their mathematical

definitions in table A.1.

Temperature variables. For each day in a year and country, we calculate country-wide averages of

daily average, minimum, and maximum temperature (respectively Td, TNd, and TXd) from daily grid

level data. We aggregate average daily temperatures to get annual average temperature (T ), the variance

of daily temperature (TV ar). We calculate the average diurnal temperature range (DTR) from minimum

and maximum daily temperatures. Using the 10th and 90th percentiles of the 1979-2019 distribution of

TNd and TXd in a 5-day window centered on each day of the year, we calculate the number of cold

nights (CN10), cold days (CD10), warm nights (WN90) and warm days (WD90), to characterize cold

and heat extremes using relative thresholds.

To account for impacts from extended exposure to temperature extremes, we build variables to capture

heatwaves and coldwaves based on the climate literature. We follow Kim et al. (2020) and we define cold

(warm) spell duration (CSD, WSD) as the number of days in which TNd (TXd) is below (above) the

10th (90th) percentile of the 1979-2019 distribution in a 5-day window centered on each day, for at least

six consecutive days. We follow Perkins and Alexander (2013) to define eight additional indicators of day

(night) heat waves based on exceeding the 90th percentile of the 1979-2019 distribution of TXd (TNd)

in a 15-day window centered on each day, for at least three consecutive days. We count the number

of days with day (night) heat wave, the length of the longest day (night) heatwave, the number of day

(night) heatwaves during a year, and the average maximum (minimum) temperature during day (night)

29Zonal statistics are operations that calculate statistics of cell values of a dataset (raster) within boundaries
defined by another dataset.

30https://doi.org/10.7927/H4F47M65
31https://developers.google.com/earth-engine/datasets/catalog/CIESIN_GPWv411_GPW_UNWPP-Adjus

ted_Population_Count
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heatwaves. Similarly, we use the 10th percentile of the distribution of TXd and TNd to measure the

characteristics of day and night cold waves.

We construct country averages of grid-level annual minimum of minimum daily temperature (TNn) and

of grid-level maximum of maximum daily temperature (TXx), both used in the climate literature.

We also define another set of extreme temperature variables using absolute temperature thresholds based

on the climate literature (e.g., IPCC, 2021a). With absolute temperature thresholds, using the highest

possible level of spatial resolution is essential to avoid missing the potentially harmful events that can

get averaged out over large areas. For example, if two grid cells have maximum daily temperature equal

to, respectively, 33 ˝C and 36 ˝C, their average is equal to 34.5 ˝C, lower than the frequently used 35 ˝C

threshold. By first averaging and then checking if the threshold is crossed, we would record zero extreme

events, while temperature in 50% of the grid cells exceeds the threshold. The same does not apply to

extremes measured using relative thresholds.

Therefore, when we use absolute thresholds, we sum the number of times a threshold is crossed in each

grid cell and in each day, across all days and grid cells in a country, and then divide that number by

the total number of grid-day observations (J ˆ 365). We do so to find the share of grid-days with frost

(minimum daily temperature below 0˝C – TN0), with maximum temperature above 35 ˝C (TX35) and

above 40˝C (TX40).

Finally, to capture potential non-linear effects of temperature on macroeconomic variables, we divide the

distribution of temperature into 3 ˝C-wide intervals and we measure the share of grid-day observations in

each interval (e.g., Schlenker and Roberts, 2009). For example, Figure B.1 illustrates the calculation of

the share of grid-days that experiences temperature levels between x1 and x2 degrees Celsius. By using 3
˝C wide intervals we aim to balance flexibility in modeling the temperature response function and avoid-

ing multicollinearity problems that would arise from using narrower temperature intervals (Mérel and

Gammans, 2021). One of the intervals is omitted in our estimation process to avoid perfect collinearity

among all interval indicators. As very low and very high average daily temperatures are rare, all the days

with average temperature below -9 ˝C and at or above 30 ˝C are grouped in two terminal intervals.

Precipitation (rain or snow) variables. We start by calculating the average of total daily pre-

cipitation in each country across all grid cells (Pd). We use this variable to construct annual average

precipitation (P ) and the annual variance of daily precipitation (PV ar) for every country. Following the

climate literature, we focus on days that have more than 1 mm of precipitation, which are called “wet

days”. We calculate the number of wet days (W ), average daily precipitation in wet days (PWA), and

wet days precipitation variance (PWV ar). We calculate total precipitation in very wet (PW95T ) and

extremely wet days (PW99T ) using the 95th and 99th percentiles of the distribution of wet days over all

days and years from 1979 to 2019.
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Figure B.1: Computing the share of grid-days with weather conditions in a specific interval

Notes: This figure illustrates the calculation methodology for “Share of Grid-Days with Mean Temperature in the
interval rx1, x2q” (Mean T ˝C in rx1, x2q — TSrx1,x2q) for a given day d in any country j. We also zoom on
Algeria. The grid cells colored in red represent the locations where x1 ď Tj,d ă x2 and grid cells colored in gray
represent the locations where Tj,d (average daily temperature in country j on day d) is outside of this range. For
our study, we later obtain country-year measures by averaging daily percentages over the 365 days of a year. Note
that the grid cells are pictured as much bigger than they are in the original dataset for visualization purposes. For
example, there are 50 grid cells belonging to Algeria in this figure. However, there are more than 105 thousand grid
cells in Algeria in the dataset.

We build several variables to capture extended wet and dry periods. We count the largest number of

consecutive dry days (days with precipitation less than 1 mm — CDD), the largest number of consecu-

tive wet days (CWD) and total precipitation during the longest wet days period (PCWD). To focus on

extreme conditions, we count the number of consecutive very (PC95WD) and extremely (C99WD) wet

days in the longest periods with daily precipitation above the 95th and 99th percentiles of the distribution,

respectively. Similarly, we calculate total precipitation in consecutive very (PC95W ) and extremely wet

days (PC99WD).

To capture intense precipitation that may cause floods, which are among the most destructive climate

disasters, we use the maximum amount in a year of rainfall in 1-day (PX1) or 5-day (PX5) intervals. To

capture extreme precipitation at the local level, we use total monthly precipitation in each grid cell and

we calculate the country average of maximum (PXp1Monthq) and minimum (PNp1Monthq) monthly

precipitation.

As for temperature, precipitation extremes can also be characterized using absolute thresholds but this

requires calculations at the grid level. We calculate the length of the longest dry spell (LLDS) in a

country as the uninterrupted series of days in which a minimum percent of the country area has daily
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total precipitation less than 1 mm (dry day). We use four thresholds to identify dry spells and consider

spells affecting 50%, 65%, 80% and 95% of a country area. Similarly to what we do with temperature

intervals, we calculate the share of total grid-days with total precipitation in four intervals: less than 1

mm, from 1 mm to 10 mm, from 10 mm to 20 mm, and above 20 mm. The maximum extent of heavy

(MaxPą10) and very heavy (MaxPą20) precipitation is equal to the maximum daily share of the country

with precipitation respectively greater than 10 mm and 20 mm. To capture deviations from conditions

with balanced level of precipitation across time and space, we develop an indicator that measures the

absolute deviation from having 50% of the grid-days observations of precipitation between 1 and 10 mm

(BP1 10p0.5q).

Wetness and drought variables. Finally, we use the Palmer Drought Severity Index (PDSI)

(Palmer, 1965) to introduce a measure of dry and wet periods that combines temperature and pre-

cipitation data to estimate cumulative deviations in soil moisture from normal conditions (Dai et al.,

2004; Abatzoglou et al., 2018; Lai et al., 2020).32 The PDSI ranges from -10 to +10, but values below -4

and above +4 are rare. We build variables measuring the share of total grid-months subject to extreme

droughts (PDSI ă ´4), extreme and severe droughts (PDSI ă ´3), periods with extreme moisture (PDSI

ą 4), and periods with very high and extreme moisture (PDSI ą 3). For each of these four categories

and in every country, we also build variables reflecting the maximum extent of these events, that is the

share of affected grid-cells in the month where the share is at its maximum.

Mathematical notations and concepts. We use d to denote calendar days, months with m, and

j “ 1, . . . , J to denote grid cells in every country. For ease of notation, we do not index variables by

country and year. In each year there are 12 months and for ease of notation we assume each year has the

same number of days.

We use Iverson brackets in the definition of many variables. Iverson brackets map any statement inside

brackets into a function that takes the value of the variables for which the statement is true, and take

the value zero otherwise.33 It is denoted by putting the statement inside square brackets:

rXs “

$

&

%

1 if X is true;

0 otherwise.

Thus, to count days in which a certain condition X is met we write:
ř

d rXs.

Some variables capture different percentiles of the long-term distribution of daily mean temperature and

daily precipitation. We use the whole time horizon of our dataset for these distributions, from 1979 to

32Data downloaded from Google Earth Engine. See http://www.climatologylab.org/terraclimate.html

and https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE for a
detailed description of the datasets.

33Donald Knuth, “Two Notes on Notation” American Mathematical Monthly, Volume 99, Number 5, May 1992,
pp. 403–422.
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2019. This is represents a 41-year time window that is well-suited to capture extreme realizations of

temperature and precipitation.

For daily precipitation, we use all days of the calendar year as there are no obvious seasonal patterns

that apply to all countries. For temperature, there is a more marked seasonal cycle in most countries

and deviations from normal conditions are more clearly dependent on the time of the year temperature

is observed. For this reason, the distribution of temperature is restricted to moving windows centered

on the day of interest. We use 5-day and 15-day windows following the literature Kim et al. (2020);

Perkins and Alexander (2013). For example, consider August 16, 2000. To check whether precipitation

is extreme, we compare daily precipitation with the distribution of precipitation over all days from 1979

to 2019. To check if temperature is extreme, we restrict the distribution of daily mean temperature to

August 14, 15, 16, 17, and 18 (with a 5-day window) from 1979 to 2019.

B.3. Summary Statistics

Between and within variance. Our empirical and identification approach relies on inter-annual

variation within country. Therefore, we use a standard approach to decompose the variance of variables

into between and within components.

For any variable x, the variance across N countries and over T years can be decomposed by introduc-

ing country averages sxi. The variance is equal to
ř

i,t
pxi,t´sxq

2

NT “
ř

i,t
pxi,t´sxiq

2

NT ` 2
ř

i,t
pxi,t´sxiq

T
psxi´sxq

N `
ř

i,t
psxi´sxq

2

NT . It simplifies to
ř

i,t
pxi,t´sxq

2

NT “
ř

i,t
pxi,t´sxiq

2

NT `
ř

i
psxi´sxq

2

N where the terms are respectively

the within and between variance. We take the square roots of each component to obtain between- and

within-country standard deviations.

The between standard deviation measures variation of average country weather around the global mean.

The within standard deviation measures the average deviation from country averages.

Trends in weather variables. Table B.1 reports tests of trends in the levels of the weather variables.

For each variable and each country we estimate a linear regression of the form wt “ α`βt`ut, where wt is

the value taken by the weather variable in year t, ut is a random component and β is the country-specific

trend coefficient.

Column A reports the average β across all countries. Our results are not truly indicative of global trends,

because we use country-level observations instead of area-weighted averages. For an accurate assessment

of climate trends, it is important to rely on conclusions from climate science (IPCC, 2021b). However,

the positive trend for average annual temperature is equal to 0.03 ˝C per year, a value remarkably in line

with the average decadal increase of temperature equal to 0.3 ˝C found by the IPCC WG I.

Column B shows the percentage of countries for which the trend is significantly different from zero at
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the 5 percent confidence level. We use this percentage value to rank variables in decreasing order. Most

of the variables built using temperature show a significant trend consistent with global warming in the

majority of countries, and in some cases in virtually all countries. Variables built using precipitation do

not generally show a trend that is significant for the majority of countries and in most cases trends are

not significant for more than 2/3 of the countries.

Our model specification (see equation (2)) effectively removes trends in climate variables only if the trend

is time invariant. To assess weather trends change over time, we conduct a test for a structural trend

break with unknown break date in the time series of each climate variable, separately in each country.

In column C we report the percentage of countries with both a significant trend and a significant break

in the trend.34 There is evidence of a trend with a structural break for more than 50 percent of the

countries only for few variables. This suggests that our method, albeit imperfectly, helps to remove

trends in weather variables.

Table B.1: Trends in weather variables

(A) (B) (C)

Average trend Significant trend Significant trend and break

(% of countries) (% of countries)

Mean Temperature 0.0292 99% 50%

# of Warm Nights 1.4904 97% 71%

# of Warm Days 1.3516 96% 62%

# of Cold Days -1.0564 95% 51%

# of Cold Nights -1.2086 94% 64%

# of Day Cold Waves -0.0858 90% 46%

# of Night Heat Waves 0.1175 89% 65%

Cold Wave Days -0.5272 89% 53%

Heat Wave Nights 0.7510 89% 62%

# of Day Heat Waves 0.1094 88% 57%

Heat Wave Days 0.6824 88% 60%

Cold Wave Nights -0.5965 87% 57%

# of Night Cold Waves -0.0979 87% 56%

Longest Day Heat Wave 0.1574 81% 47%

Mean T ˝C in [27; 30) 0.0018 80% 52%

Longest Night Heat Wave 0.1737 78% 49%

Max T ˝C above 35 0.0008 76% 42%

Day T ˝C Maximum 0.0322 75% 42%

Warm Spell Duration 0.4343 74% 53%

Longest Night Cold Wave -0.1439 73% 54%

Longest Day Cold Wave -0.1313 72% 42%

Cold Spell Duration -0.3679 72% 56%

Mean T ˝C in [24; 27) -0.0008 70% 54%

Frost prevalence -0.0009 69% 33%

Night Heat Wave T ˝C 0.0785 67% 54%

Mean T ˝C in [21; 24) -0.0006 66% 43%

Mean T ˝C above 30 0.0006 66% 35%

Continued on next page

34More precisely, we test if the null hypothesis of no structural break can be rejected at the 95 percent confidence
level using a supremum Wald test which is the least restrictive among those commonly used.
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Table B.1 (Continued): trends in weather variables

Day Heat Wave T ˝C 0.0748 58% 54%

Max T ˝C above 40 0.0003 58% 36%

Mean T ˝C in [-6; -3) -0.0002 58% 39%

Diurnal T ˝C Range 0.0051 53% 68%

Mean T ˝C in [15; 18) -0.0001 53% 36%

Mean T ˝C in [18; 21) -0.0001 52% 36%

Mean T ˝C in [-3; 0) -0.0002 48% 34%

Night T ˝C Minimum 0.0266 48% 39%

Mean T ˝C in [-9; -6) -0.0002 45% 35%

Mean T ˝C in [0; 3) -0.0002 44% 30%

Mean T ˝C in [12; 15) -0.0001 41% 41%

Balanced PPT Indicator 0.0003 38% 63%

Mean T ˝C in [9; 12) -0.0001 37% 37%

Night Cold Wave T ˝C 0.0039 36% 42%

Drought Intensity 0.0039 35% 75%

Less than 1 mm PPT 0.0006 35% 65%

Mean T ˝C in [3; 6) -0.0001 35% 32%

# of Wet Days -0.2077 34% 59%

Mean T ˝C in [6; 9) 0.0000 34% 33%

Day Cold Wave T ˝C 0.0155 32% 46%

Harsh Drought Intensity 0.0037 31% 63%

Drought Prevalence 0.0026 29% 61%

Above 20 mm PPT 0.0001 28% 50%

Very Wet Day PPT 1.6213 28% 46%

Wetness Intensity 0.0008 27% 73%

Precipitation Variance 0.1271 27% 42%

10 to 20 mm PPT -0.0001 26% 57%

Harsh Drought Prevalence 0.0019 26% 48%

High Wetness Intensity 0.0016 26% 59%

Wet Day PPT Variance 0.1818 26% 38%

Wet Conditions 0.0011 25% 59%

Mean Wet Day PPT 0.0049 24% 48%

PPT Maximum 0.0003 24% 44%

Mean Precipitation 0.0008 23% 58%

Cont’d Wet Days -0.1937 21% 41%

Very Wet Conditions 0.0012 21% 43%

Longest Dry Spell (.80) 0.0541 20% 40%

Cont’d Dry Days 0.0774 19% 35%

Longest Dry Spell (.65) 0.1109 19% 41%

Extremely Wet Day PPT 0.7905 19% 37%

1-Day PPT Maximum 0.1054 18% 37%

Cont’d Wet Day PPT -0.6595 18% 37%

5-Day PPT Maximum 0.1418 17% 34%

PPT Minimum 0.0000 17% 31%

Longest Dry Spell (.95) 0.0241 15% 39%

Extreme PPT Maximum 0.0008 15% 36%

Longest Dry Spell (.5) 0.1123 15% 40%

Cont’d Heavy PPT 0.1693 14% 32%

Cont’d Very Wet Day PPT 0.0034 12% 32%

Temperature Variance 0.0046 12% 38%

Heavy PPT Maximum 0.0000 8% 33%

Cont’d Extreme PPT 0.1885 7% 18%

Cont’d Extra Wet Day PPT 0.0046 7% 20%
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Macroeconomic variables. Summary statistics for the macro-fiscal variables used in our analysis

are shown in Table B.2. The Table displays separately the growth rate of GDP per capita in the larger

sample used for the analysis of weather impacts on GDP growth, and the growth rate of GDP per capita

in the smaller sample used for the analysis of fiscal impacts.

Table B.2: Summary statistics of macro-fiscal variables

Summary Statistics of First Differences N Mean St. Dev. St. Dev. Between St. Dev. Within

∆ lnpGDP {POP q in GDP Growth Sample (p.c.) 6,653 1.726% 4.63% 1.77% 4.33%
∆ lnpGDP {POP q in Fiscal Sample (p.c.) 3,890 2.005% 3.85% 1.55% 3.56%
∆ Revenue-to-GDP (p.p.) 3,890 0.064% 2.90% 0.71% 2.86%
∆ Expenditure-to-GDP (p.p.) 3,890 0.045% 3.61% 0.92% 3.56%
∆ Balance-to-GDP (p.p.) 3,890 0.019% 4.12% 0.71% 4.09%
∆ Debt-to-GDP (p.p.) 3,890 0.177% 8.1% 1.96% 7.9%
∆ Revenue (p.c.) 3,890 3.873% 11.6% 2.50% 11.4%
∆ Expenditure (p.c.) 3,890 3.867% 10.8% 2.51% 10.6%
∆ Debt (p.c.) 3,890 4.221% 16.3% 4.91% 15.8%

Notes: GDP per capita is measured by the difference of log GDP capita. Government revenue, Government expen-
diture and Government Debt growth are measured by the difference of log variables. All fiscal variables are measured
as percentage of GDP and first differences are measured in percentage points.

Table B.3: Summary statistics of climate variables

Summary Statistics of First Differences Mean St. Dev. Between St. Dev. Within
Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0050 0.0097 0.1741
Max T above 35 ˝C (W) (TX35) 0.0006 0.0011 0.0205
Mean T in [9; 12) ˝C (TS9 12) 0.0000 0.0007 0.0159
Longest Day Cold Wave (LDCW ) -0.1130 0.2584 5.903
Mean Wet Day PPT (PWA) 0.0025 0.0531 0.9897
PPT Minimum (PNM) 0.0000 0.0007 0.0161

Notes: Summary statistics of first differences of all weather variables used for either GDP analysis, including
robustness tests, or for analysis of macro-fiscal outcomes. (W) indicates population-weighted variables. The sample
of the baseline specification is used for all climate variables.

Correlation analysis. The analysis of raw correlations between GDP growth and the explanatory

variables selected by the LASSO for our main specification is displayed in Table B.4. Correlations be-

tween GDP growth and first differences of weather variables are generally small. Correlation is negative

for Max T ˝C above 35 and Harsh Drought Prevalence, and positive for Mean T ˝C in [9; 12). The same

relationships are confirmed in our baseline regression analysis (see Table 1).

We also display the correlation of GDP growth with both average annual temperature and annual precip-

itation even if these two variables are not selected by the LASSO because they are the only two weather

variables typically used in the literature. The correlation between GDP growth and both temperature

and precipitation is very low and much lower than for our selected weather variables. This is preliminary

evidence that the literature may miss a large fraction of climate induced variation in GDP growth. Inter-

estingly, the largest correlations among climate variables are between Average Temperature and Harsh

Drought Prevalence and between Mean Temperature and Max T ˝C above 35, but the LASSO always
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selects Harsh Drought Prevalence and Max T ˝C above 35 instead of Mean Temperature to explain GDP

growth.

Table B.4: Correlation Matrix Between Baseline Variables
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Lag(1) of GDP Growth 0.366
Lag(2) of GDP Growth 0.248 0.281
Harsh Drought Prevalence (W) (PDSI ă ´4) -0.058 0.025 0.012
Max T above 35 ˝C (W) (TX35) -0.040 0.016 0.021 0.180
Mean T in [9; 12) ˝C (TS9 12) 0.040 -0.016 0.014 -0.032 -0.033
Average T (T ) -0.015 0.020 -0.001 0.156 0.362 -0.053
Mean Precipitation (P ) 0.014 -0.006 -0.002 -0.196 -0.145 0.081 -0.087

Notes: These correlations are computed using first differences using the baseline regression sample. (W) indicates
population-weighted variables.
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Table B.5: Summary Statistics for Sub-Groups

Mean St. Dev. St. Dev. Mean St. Dev. St. Dev.

Between Within Between Within

Hot (N=3,315) Cold (N=3,338)

∆ GDP p.c. 1.38 1.85 4.44 2.07 1.59 4.22

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0032 0.0079 0.1668 0.0068 0.0108 0.1811

Max T above 35 ˝C (W) (TX35) 0.0008 0.0014 0.0257 0.0004 0.0007 0.0137

Mean T in [9; 12) ˝C (TS9 12) -0.00006 0.0003 0.0041 0.0002 0.0009 0.0220

Agricultural (N=3,119) Non Agricultural (N=3,107)

∆ GDP p.c. 1.71 1.77 4.55 1.75 1.46 3.89

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0043 0.0085 0.1833 0.0055 0.0091 0.1632

Max T above 35 ˝C (W) (TX35) 0.0009 0.0011 0.0257 0.0004 0.0008 0.0140

Mean T in [9; 12) ˝C (TS9 12) 0.00003 0.0005 0.0103 0.0001 0.0008 0.0193

Agricultural Hot (N=1,785) Agricultural Cold (N=1,334)

∆ GDP p.c. 1.37 1.64 4.10 2.16 1.84 5.08

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0025 0.0062 0.1803 0.0067 0.0101 0.1872

Max T above 35 ˝C (W) (TX35) 0.0011 0.0012 0.0310 0.0006 0.0009 0.0160

Mean T in [9; 12) ˝C (TS9 12) -0.0003 0.0001 0.0033 0.0001 0.0007 0.0153

Rich (N=3,936) Poor (N=2,717)

∆ GDP p.c. 1.95 1.77 4.27 1.41 1.75 4.41

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0055 0.0102 0.1697 0.0042 0.0088 0.1803

Max T above 35 ˝C (W) (TX35) 0.0004 0.0008 0.0141 0.0010 0.0014 0.0273

Mean T in [9; 12) ˝C (TS9 12) 0.0001 0.0009 0.0194 0.0000 0.0002 0.0083

EAP (N=1,013) ECA (N=1,632)

∆ GDP p.c. 2.42 2.23 3.89 2.31 1.48 4.49

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0017 0.0060 0.1683 0.0100 0.0112 0.1892

Max T above 35 ˝C (W) (TX35) 0.0006 0.0014 0.0240 0.0002 0.0004 0.0089

Mean T in [9; 12) ˝C (TS9 12) -0.00004 0.0001 0.0054 0.0004 0.0011 0.0283

MENA (N=620) SSA (N=1,656)

∆ GDP p.c. 0.97 1.86 5.16 1.07 1.52 4.66

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0003 0.0064 0.1961 0.0048 0.0096 0.1924

Max T above 35 ˝C (W) (TX35) 0.0011 0.0018 0.0246 0.0010 0.0012 0.0285

Mean T in [9; 12) ˝C (TS9 12) -0.0003 0.0009 0.0196 -0.0001 0.0003 0.0052

LAC (N=1,372) Base (N=6,550)

∆ GDP p.c. 1.36 1.47 3.87 1.73 1.77 4.33

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0056 0.0086 0.1388 0.0050 0.0097 0.1741

Max T above 35 ˝C (W) (TX35) 0.0005 0.0009 0.0122 0.0006 0.0011 0.0205

Mean T in [9; 12) ˝C (TS9 12) -0.00002 0.0001 0.0056 0.0000 0.0007 0.0159

High Democracy (N=3,895) Low Democracy (N=2,753)

∆ GDP p.c. 1.92 2.13 3.47 1.45 2.61 5.12

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0049 0.0180 0.1723 0.0049 0.0193 0.1758

Max T above 35 ˝C (W) (TX35) 0.0005 0.0031 0.0148 0.0008 0.0019 0.0265

Mean T in [9; 12) ˝C (TS9 12) 0.00006 0.0011 0.0186 0.0001 0.0013 0.0109

Continued on next page
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Table B.5 (Continued): Summary Statistics for Sub-Groups

High Democracy and Poor (N=950) Low Democracy and Poor (N=1,766)

∆ GDP p.c. 1.87 1.57 3.46 1.15 2.41 4.73

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0026 0.0208 0.1785 0.0051 0.0148 0.1809

Max T above 35 ˝C (W) (TX35) 0.0013 0.0049 0.0232 0.0008 0.0021 0.0292

Mean T in [9; 12) ˝C (TS9 12) -0.00002 0.0009 0.0054 -0.00003 0.0004 0.0096

1979-1999 (N=2,762) 2000-2019 (N=3,891)

∆ GDP p.c. 1.16 2.71 4.63 2.13 1.94 3.68

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0034 0.0388 0.1596 0.0061 0.0162 0.1827

Max T above 35 ˝C (W) (TX35) 0.0002 0.0027 0.0224 0.0009 0.0020 0.0190

Mean T in [9; 12) ˝C (TS9 12) -0.00004 0.0029 0.0138 0.0001 0.0007 0.0171

Note: Summary statistics of first difference of weather variables and GDP growth in percentage. Coefficients of
weather variables are reported in Figure 5 and groups are described in the Notes to the Figure.
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B.4. Additional Result Tables

Table B.6: Optimal LASSO selection of variables affecting GDP per capita growth under
different fit criteria (baseline FE specification)

BIC AIC OOS-Countries-R2 OOS-Observations-R2

Selected variables
Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean T ˝C
in [9,12)

Lag-1 GDP p.c. growth, Lag-
2 GDP p.c. growth, Harsh
Drought PrevalencerW s, Max
T ˝C above 35rW s, Mean T
˝C in [9,12), Longest Night
Heat WaverW s, Lag-1 Mean
T ˝C in [0,3)rW s, Lag-1 Cold
Spell Duration, Lag-2 Mean
T ˝C in [3,6)rW s, Lag-2 Cold
Wave Days, Longest Night
Cold WaverW s, 1-Day PPT
Maximum, Drought Intensity,
Lag-1 PPT MinimumrW s,
Lag-1 10 to 20 mm PPT,
Lag-1 Day T ˝C Maxi-
mum, Lag-2 Balanced PPT
Indicator, Lag-2 Mean
T ˝C in [3,6), Cont’d
Heavy PPTrW s, Heavy
PPT MaximumrW s, Longest
Dry Spell (.80)rW s, Lag-1
Mean T ˝C in [24,27)rW s,
PPT MinimumrW s, PPT
MaximumrW s, Cont’d Ex-
treme PPT, Lag-1 Cont’d
Wet DaysrW s, Lag-1 Harsh
Drought PrevalencerW s,
Lag-1 Longest Dry Spell
(.65)rW s, Lag-2 Day Heat-
wave T ˝CrW s, Lag-2 Longest
Dry Spell (.80)rW s, Lag-
2 Very Wet Conditions
PrevalencerW s, Lag-2 Mean
T ˝C in [0,3)rW s, Lag-2
Mean T ˝C in [3,6)rW s, Lag-2
Longest Dry Spell (.95),
Lag-2 Longest Dry Spell (.5),
Lag-2 Mean T ˝C in [21,24)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days,
Longest Night
Cold WaverW s,
1-Day PPT Maxi-
mum, Drought In-
tensity, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T ˝C
in [3,6)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days,
Longest Night
Cold WaverW s,
1-Day PPT Maxi-
mum, Drought In-
tensity, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T ˝C
in [3,6)

Number of Selected Variables 5 36 18 18
Optimal Penalty Weight (λ) .0328 .0139 .019 .019

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
GDP per capita variations after accounting for country and year fixed effects. Each column corresponds to a different fit criteria and
refers to the outcomes of implementing the LASSO after setting λ to optimize that specific fit criteria. For each column, the second
row shows the list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.
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Table B.7: Optimal EN selection of variables affecting GDP per capita growth under different fit
criteria (baseline FE specification)

BIC AIC OOS-Countries-R2 OOS-Observations-R2

Selected variables
Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean T ˝C
in [9,12)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Drought Intensity,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Longest Night
Cold WaverW s,
Drought Intensity,
Cont’d Heavy
PPTrW s, 1-day
PPT Maximum,
Lag-1 Mean T ˝C
in [0,3)rW s, Lag-1
Cold Spell Dura-
tion, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Mean T ˝C
in [3,6)rW s, Lag-2
Cold Wave Days,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T
˝C in [3,6), Lag-2
Mean T ˝C in
[21,24)

Lag-1 GDP p.c. growth, Lag-
2 GDP p.c. growth, Harsh
Drought PrevalencerW s, Max
T ˝C above 35rW s, Mean T
˝C in [9,12), Drought Intensity,
Cont’d Heavy PPTrW s, Longest
Night Heat WaverW s, Longest
Night Cold WaverW s, Heavy
PPT MaximumrW s, Longest
Dry SpellrW s, Mean T ˝C in
[24,27)rW s, Mean T ˝C above
30rW s, PPT MaximumrW s,
PPT MinimumrW s, 1-day PPT
Maximum, Very Wet Day
PPT, Cont’d Extreme PPT,
Mean T ˝C in [6,9), Mean T
˝C in [18,21), Lag-1 Mean T
˝C in [0,3)rW s, Lag-1 Cold
Spell Duration, Lag-1 Wet Day
PPT Variance, Lag-1 Cont’d
Wet DaysrW s, Lag-1 Harsh
Drought PrevalencerW s, Lag-1
PPT MinimumrW s, Lag-1 10
to 20 mm PPT, Lag-1 Longest
Dry Spell (.65), Lag-1 Mean
T ˝C in [0,3), Lag-1 Mean T
˝C in [9,12), Lag-1 Day T ˝C
Maximum, Lag-2 Mean T ˝C
in [3,6)rW s, Lag-2 Cold Wave
Days, Lag-2 Day Heat Wave T
˝CrW s, Lag-2 # of Night Cold
WavesrW s, Lag-2 Longest Dry
Spell (.80)rW s, Lag-2 High Wet-
ness IntensityrW s, Lag-2 Very
Wet Conditions PrevalencerW s,
Lag-2 Mean T ˝C in [0,3)rW s,
Lag-2 Mean T ˝C in [21,24)rW s,
Lag-2 Balanced PPT Indicator,
Lag-2 Longest Dry Spell (.95),
Lag-2 Longest Dry Spell (.80),
Lag-2 Longest Dry Spell (.50),
Lag-2 Mean T ˝C in [3,6), Lag-2
Mean T ˝C in [21,24)

Number of Selected Variables 5 11 21 46
Optimal Penalty Weight (λ) .04 .03 .027 .062
Optimal LASSO Ratio (ϕ) .8 .7 .648 .215

Notes: This table shows some results of the implementation of the Elastic-Net (EN) to select the climate variables that are best to
explain GDP per capita variations after accounting for country and year fixed effects. Each column corresponds to a different fit
criteria and refers to the outcomes of implementing the EN after setting λ and ϕ in equation (5) to optimize that specific fit criteria.
For each column, the second row shows the list of the climate variables selected by the EN. The optimal values of λ and ϕ are
presented in the last two rows, consecutively.
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Table B.8: Optimal LASSO selection of variables under different model specifications and BIC

Without Year Effects With Quadratic Trends Balanced Sample with FE

BIC
World GDP Growth, Lag-1
GDP p.c. growth, Lag-2 GDP
p.c. growth, Harsh Drought
PrevalencerW s, Max T ˝C above
35rW s

Lag-1 GDP p.c.
growth, Harsh Drought
PrevalencerW s, Max T ˝C
above 35rW s

Lag-1 GDP p.c. growth, Lag-2
GDP p.c. growth, Harsh Drought
PrevalencerW s, Max T ˝C above
35rW s, PPT MinimumrW s

Number of Selected Variables 5 3 5
Optimal Penalty Weight (λ) .039 .0285 .0372

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
GDP per capita variations after accounting for different fixed effects different specification. Each column corresponds to a different
fixed-effect specification and refers to the outcomes of implementing the LASSO after setting λ to optimize the BIC. For each column,
the second row shows the list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.

Table B.9: Optimal LASSO selection affecting fiscal variables under BIC fit criteria

Revenue Expenditure Debt

BIC
Lag-1 Revenue, Lag-2 Revenue,
Harsh Drought PrevalencerW s, Mean
T ˝C in [24,27)rW s, Cont’d Dry
Days, Heavy PPT Maximum, PPT
Minimum, Lag-1 Extremely Wet
Day PPTrW s, Lag-1 Longest Day
Cold WaverW s, Lag-1 Harsh Drought
PrevelancerW s, Lag-1 Extremely Wet
Day PPT, Lag-1 Cold Wave Days,
Lag 1 Longest Dry Spell (.80), Lag-1
Mean T ˝C in [24,27)

Lag-1 GDP p.c. growth, Lag-
1 Expenditure, Lag-2 Expendi-
ture, Mean T ˝C in [-3,0)rW s,
Mean Wet Day PPT, Lag-1 Harsh
Drought PrevelancerW s

Lag-1 GDP p.c. growth,
Lag-1 Debt, Lag-1 PPT
Minimum

Number of Selected Variables 14 6 3
Optimal Penalty Weight (λ) .0318 .0419 .0339

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
different fiscal variables after accounting for country and year fixed effects. Each column corresponds to a different fiscal variable and
refers to the outcomes of implementing the LASSO after setting λ to optimize the BIC. For each column, the second row shows the
list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.
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B.5. Additional Figures

Figure B.2: Selection of climate variables impacting GDP (specification without year effects)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: GDP per capita growth is the dependent variable and the specification has country effects and world growth.
See the notes of the following graph for more details.

Figure B.3: Selection of climate variables impacting GDP (specification with quadratic trends)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in
each panel show the variation of different criteria with λ. The out-of-sample (OOS) within R-squared is calculated
on a sub-sample of countries (evaluation set) based on coefficients estimated on the rest of countries (training set)
as explained in the main text. The dots indicate the different selection outcomes given by the local optimum for
each criteria respectively. The estimated model has GDP per capita growth as the dependent variable and includes
country quadratic trends and year effects.
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Figure B.4: Selection of climate variables impacting GDP (balanced sample with FE)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: GDP per capita growth is the dependent variable and the specification with country and year effects was
estimated on the balanced sample for 1984-2019. See the notes of the following graph for more details.

Figure B.5: Selection of climate variables impacting government revenue
(a) Selection using the AIC (b) Selection using the BIC

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in each
panel show the variation of different criteria with λ. The within R-squared is calculated on a sub-sample of countries
(evaluation set) based on coefficients estimated on the rest of countries (training set) as explained in the main text.
The dots indicate the different selection outcomes given by the local optimum for each criteria respectively. The
estimated model has the ratio of government revenue to GDP as the dependent variable and includes country and
year effects.
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Figure B.6: Selection of climate variables impacting government expenditure
(a) Selection using the AIC (b) Selection using the BIC

Note: The estimated model has the ratio of government expenditure to GDP as the dependent variable and includes
country and year effects. See the notes of the following graph for more details.

Figure B.7: Selection of climate variables impacting government debt
(a) Selection using the AIC (b) Selection using the BIC

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in
each panel show the variation of different criteria with λ. The within R-squared is calculated on a sub-sample
of countries (evaluation set) based on coefficients estimated on the rest of countries (training set) as explained
in the main text. The dots indicate the different selection outcomes given by the local optimum for each criteria
respectively. Government debt to GDP is the dependent variable and the specification has country and year effects.
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B.6. LASSO and Elastic-Net Implementation

In this appendix, we detail our implementation of the various algorithms covered in the paper, with an

emphasis on the technical steps and the specific software and functions that we use.

We define X as the matrix containing (first differenced) right hand side variables, excluding fixed effects,

but including relevant lags of the dependent variable ∆y. For details on the lags used in each regression

model, please refer to the main article. We designate F as the matrix of fixed effects, which varies

according to the model specification. Specifically, F can encompass:

a) Country and year fixed effects, or

b) Only country fixed effects, or

c) Country fixed effects, year fixed effects, and country quadratic dummies.

The organization of these matrices is such that rows represent individual observations and columns corre-

spond to variables. To ensure compatibility with our Python-based feature selection algorithm (Python

version 3.9 or higher), we remove any missing observations.

Using this notation, the regression model incorporating all variables can be summarized as shown in

equation (B.1), which is the same as equation (2) in the main text but using different notations to

single-out and combine fixed effects under one matrix F . Note that we have omitted subscripts from

the fixed effects matrix F to indicate its flexibility; depending on the specification, F may contain only

country-related information (i) and/or year-related information (t).

∆yit “ Xitβ ` Fθ ` εit (B.1)

Before constructing the fixed effects matrix F , we first eliminate outlier observations for the dependent

variable. Specifically, any observation ∆yit that deviates by more than 5 standard deviations from the

mean ∆yit is removed as described in section 3.3 in the main text. Because the LASSO penalizes the

value of the coefficients, the scales of the parameters can affect the selection. Therefore, we standardize

each column of Xit to have 0 mean and a standard deviation of 1. After this preprocessing step, we

proceed to generate the F matrix.

The variable selection algorithm focuses on the variables within Xit. However, theoretical considerations

mandate the inclusion of fixed effects in the regression model. To reconcile these aspects, we force the

presence of fixed effects in the regression. We do so by first subtracting F pF 1F q´1F 1∆y from both sides

of the equation.
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∆yit ´ F pF 1F q´1F 1∆y “ Xitβ ` Fθ ´ F pF 1F q´1F 1 pXitβ ` Fθ ` εitq

∆y

`εit

pI ´ F pF 1F q´1F 1q∆yit
∆ỹit

“ pI ´ F pF 1F q´1F 1qXit

X̃it

β ` Fθ ´ F pF 1F q´1F 1F

I

θ

0

` pI ´ F pF 1F q´1F 1qεit
uit

ùñ ∆ỹit “ X̃itβ ` uit (B.2)

The Frisch-Waugh-Lowell theorem implies that the estimations based on equations (B.1) and (B.2) result

in the same estimate for β. Consequently, performing the selection algorithm after the above transfor-

mation effectively incorporates the fixed effects into the regression model.

As elaborated in the main text, our objective is to select a subset of columns from the matrix X̃it.

To achieve this, we employ LASSO and Elastic-Net methods, which are detailed in the subsequent

sections. The analyses are conducted using version 1.2.2 of the Scikit-Learn package in Python. To

ensure replicability due to the random sampling described later, we set the random seed using the numpy

package, version 1.25.0. All computations are performed on a Windows 11 machine with a 13th Gen

Intel(R) Core(TM) i7-13700 processor, operating at 2.10 GHz.

B.6.1 LASSO

As explained in Section 2.3 in the main text, the LASSO aims to solve equation (4), that is to minimize

the following equation:

min
β

∆ỹit ´ X̃itβ ` λ
K
ÿ

j“1

|βj | (B.3)

where the hyperparameter λ weighs the penalty term, which is the sum of the absolute values of the

coefficients βj . K denotes the number of columns in the matrix X̃it.

The penalty term encourages some coefficients to shrink towards zero. As λ increases, the penalty term

gains more weight, leading to more coefficients becoming zero. Conversely, a smaller λ results in fewer

coefficients shrinking to zero. Coefficients that remain non-zero are those for which the reduction in

standard error outweighs the penalty incurred by their inclusion in the regression.

To determine the optimal value of the hyperparameter λ, we explore four approaches:

1. Minimizing the Bayesian Information Criterion (BIC),

2. Minimizing the Akaike Information Criterion (AIC),
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3. Maximizing the average out-of-sample R2 using 5-fold cross-validation (and since we remove fixed-

effects, this R2-metric corresponds to what is commonly defined as the within R2). In this method,

observations are randomly divided into five bins without considering the panel structure of the

data,

4. Maximizing the average out-of-sample R2 with a modified 5-fold cross-validation approach that

respects the panel structure (and again, since we remove fixed-effects, this R2-metric corresponds

to what is commonly defined as the within R2). Specifically, countries are divided into five bins,

and observations for these countries are used in each fold separately.

For the first two approaches, we employ the built-in LassoLarsIC() function available in Scikit-Learn.

This function utilizes the Least Angle Regression (LARS) algorithm for LASSO variable selection, as

opposed to Scikit-Learn’s main LASSO implementation, which relies on a gradient-descent algorithm.

Both methods aim to solve the same optimization problem but take different computational routes.

For the third approach, we employ 5-fold cross-validation. In k-fold cross-validation, the dataset is ran-

domly divided into k subsets of equal (or nearly equal) size called folds. One fold is reserved as the test

set, and the model is trained on the remaining k ´ 1 folds. This process is repeated k times, each time

with a different fold serving as the test set. The performance metric, in our case the out-of-sample R2,

is then averaged across all k iterations.

We employ Scikit-Learn’s RandomizedSearchCV() function to conduct the 5-fold cross-validation. We

perform the cross-validation for 200 distinct penalty weights, leading to a total of 1,000 model fits. These

penalty weights are drawn from a half-normal distribution with a location parameter (loc) of 0.001 and

a scale parameter of 0.05.

For the fourth approach, we use NumPy’s random.choice() function to divide the countries into 5 folds:

four folds contain 41 countries each, while the fifth contains 39 countries. We then proceed in a manner

similar to the k-fold cross-validation described above. Specifically, for each of 200 distinct penalty weights,

we fit the model using observations from four folds, reserving one fold as the test set to calculate the out-

of-sample R2. Each penalty weight is evaluated five times—once for each fold serving as the test set—and

the average R2 is computed. The penalty weight yielding the highest average R2 is then selected.

B.6.2 Elastic-Net

Using the notations of this section, the Elastic-Net optimization problem covered in equation (5) in the

main text can be expressed as follows (note that ϕ would correspond to α in the Scikit-Learn package’s

notations):

min
β

1

2N
p∆ỹit ´ X̃itβq ` λϕ

K
ÿ

j“1

|βj | ` λ
1 ´ ϕ

2

K
ÿ

j“1

β2
j (B.4)
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In equation (B.4), we have two hyperparameters, λ and ϕ. The range of ϕ is between 0 and 1, and it

determines the balance between the penalty terms associated with the LASSO and the Ridge. Increasing

ϕ promotes sparsity in the solution. Likewise, increasing λ enhances sparsity, given that ϕ ‰ 0. However,

the selection of variables may differ depending on the approach taken. To determine the optimal ϕ and λ

combination, we employ the same approach as we did for the LASSO and separately consider 4 different

fit criteria.

Unlike in the LASSO case, there is no built-in function available to minimize the BIC and AIC in the case

of the Elastic-Net. As a result, we modify the source codes of the LassoLarsIC() to make it compatible

with the Elastic-Net.35 Since the faster LARS algorithm is not available for the Elastic-Net, we resort to

the gradient descent algorithm. Consequently, we do not explore every possible combination of ϕ and λ.

We consider 9 distinct values for ϕ (ranging from 0.1 to 0.9 with increments of 0.1) and 16 values for λ

(0.0025, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3). This results in

a total of 9 ˆ 16 “ 144 unique combinations. For each of these 144 combinations, we calculate the AIC

and BIC values using the formulas:

AIC “ N ˆ logp2πσ̂2
uq `

RSS

σ̂2
u

` 2 ˆ DoF (B.5)

BIC “ N ˆ logp2πσ̂2
uq `

RSS

σ̂2
u

` logpNq ˆ DoF (B.6)

We use the residual sum of squares (RSS) obtained after making predictions with the Elastic-Net, and

the degrees of freedom (DoF) are equal to the number of non-zero coefficients after the Elastic-Net. N

is the number of observations, and σ̂2
u is the estimated variance of the error term in equation (B.2). The

error term is estimated before the selection using all variables in the Xit matrix as in the source codes of

LassoLarsIC() function.

For maximizing the out-of-sample within R2 using k-fold cross-validation in the case when the obser-

vations are randomly allocated without considering the panel structure, we again utilize Scikit-Learn’s

RandomizedSearchCV() function. We sample the ϕ parameter from a uniform distribution ranging from

0.1 to 0.9, and the λ parameter from a half-normal distribution with a location parameter (loc) of 0.001

and a scale parameter of 0.5. We consider 200 distinct combinations, resulting in a total of 1,000 model

fits across 5 folds.

Lastly, maximizing the out-of-sample within R2 using k-fold cross-validation in the case when observations

are randomly allocated factoring in the country panel structure, we employ NumPy’s random.choice()

function to partition the countries into 5 folds. Four of these folds contain 41 countries each, and the fifth

contains 39 countries. To prevent corner solutions, we use a smaller scale parameter for the half-normal

distribution this time. Specifically, ϕ is sampled from a uniform distribution ranging between 0.1 and

35The source codes can be found in https://github.com/scikit-learn/scikit-learn/blob/main/sklearn

/linear_model/_least_angle.py#L2280, after lines 2089 as of November 2023.
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0.9, while λ is drawn from a half-normal distribution with a location parameter (loc) of 0.001 and a scale

parameter of 0.1 (as opposed to 0.5 used in previous exercises).

For the two implementation based on the out-of-sample within R2, we implement the EN five times for

each combination of penalty weights, once with each fold serving as the test set. For each combination,

we compute the average R2. The combination of penalty weights that maximizes this average R2 is then

determined to be the optimal combination.
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