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Separate Appendix for Online Publication

DELTA-MATCHED SPREADS

An alternative to strike-matching is to construct the option basket such that the BS delta of the basket
and the index are equal. In this appendix we discuss this approach, and refer to it as “delta-matching.”
Delta represents the derivative of an option price with respect to the underlying asset price. This
derivative provides an approximate percentage probability that the option expires with a positive payoff.
Low values such as 20 indicate an option has a low payoff probability (or is “out-of-the-money”), and
high values such as 80 indicate “in-the-money” (ITM) options. While put options have negative delta,
we use the convention of taking the absolute value, so that all reported deltas are positive. Short-dated
at-the-money (ATM) forward options have a delta of approximately 50.

We find qualitatively identical behavior of delta-matched and strike-matched basket-index spreads.
The time series correlation between spreads for the two approaches is over 95%. Table A1l compare
average option prices under delta-matching (Panel A) and strike-matching (Panel B, and shown in the
main text as Panel B of Table 3).

The rise in crisis put spreads is 3.1 cents under delta-matching, versus 3.2 cents under strike matching.
The rises in put spreads relative to call spreads is 3.5 cents and 2.7 cents, respectively. The difference-in-
differences (put minus call spreads, financials minus non-financials) is 2.4 cents for delta-matching and
2.3 for strike-matching.

TABLE A1—COST OF INSURANCE WITH DELTA MATCHING

Financials Non-financials

Puts Calls Puts Calls

Basket Index Spread Basket Index Spread Basket Index Spread Basket Index Spread

Panel A: Delta-matching

Pre-crisis 4.8 3.8 1.0 2.2 1.8 0.4 5.4 3.8 1.6 2.5 1.9 0.6
Crisis 15.3 11.3 4.0 3.4 3.4 0.0 9.3 6.8 2.5 3.0 2.5 0.5
Crisis diff.  10.5 7.5 3.1 1.2 1.6 -0.4 3.9 3.0 0.9 0.5 0.7 -0.2

Panel B: Strike-matching

Pre-crisis 5.2 3.8 1.4 3.4 1.8 1.6 6.2 3.7 2.4 4.2 1.8 2.4
Crisis 15.9 11.3 4.6 5.5 3.4 2.1 10.0 6.7 3.3 5.4 2.5 2.9
Crisis diff.  10.6 7.5 3.2 2.2 1.6 0.5 3.9 2.9 0.9 1.2 0.7 0.5

Note: Basket and index insurance cost comparison in delta-matching approach (Panel A) and
strike-matching approach (Panel B).

SAMPLE DETAIL

Our sample uses exchange traded funds (ETFs) belonging to the Select Sector SPDR. SPDRs are
a large ETF family traded in the U.S., Europe, and Asia-Pacific and managed by State Street Global
Advisors. These sector funds represent nine separate portfolios based on the industry sectors comprising
all stocks in the S&P 500 index. The S&P 500 is classified into ten sectors but, due to the small number of
telecommunications firms in the index, technology and telecommunications are combined in a single ETF.
The investment objective of each fund is to provide investment results that, before expenses, correspond
generally to the return performance of the stocks represented in each specified sector index. The financial
sector index ticker is XLF, and Table B1 reports the XLF holdings before and after the crisis. Options
on SPDR sector ETFs are physically settled and have an American-style exercise feature. Further detail
regarding SPDR S&P 500 sector ETF's is available at https://www.spdrs.com/.
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BIiD-ASK SPREAD ADJUSTMENT

To ensure that the increase in the basket-index put spread is not solely due to wider bid-ask spreads
during the financial crisis, we reconstruct an alternative basket-index spread series using raw option price
quotes rather than the interpolated volatility surface provided by OptionMetrics. This also serves as a
check that OptionMetrics interpolated prices do not suffer from inaccurate extrapolation or reliance on
illiquid contracts. To summarize, results from raw options data combined with accounting for bid-ask
spreads and contract liquidity generates put spreads that are qualitatively identical, and quantitatively
very similar, to the results we report in the main text.

For this analysis, we construct synthetic options with constant maturity (365 days) and constant delta
of 30 by interpolating raw option prices in a similar vein as OptionMetrics. We impose two constraints
on our interpolation to ensure its robustness to liquidity concerns. First, we restrict the universe of raw
options to those with positive open interest to ensure a minimum degree of liquidity. Results are similar
if we instead require that contracts have positive volume. Second, when constructing synthetic options
with constant maturity and constant delta, we strictly interpolate and never extrapolate. In particular,
we require at least one option with delta above 30 and one with delta below 30, and similarly require one
option with maturity greater than 365 and one with maturity less than 365. Often a stock has only one
option near delta 25, which is why we construct synthetic options with delta 30. Finally, to account for
bid-ask spreads, all individual option prices are set equal to the bid price, and all index option prices are
set equal to their ask price. This results in the most conservative spread in prices of index puts versus
the basket of individual puts, so that the bid-ask-adjusted put spread is always narrower than the spread
calculated from midquotes.

The resulting “net of transaction costs” basket-index put spread has very similar behavior to the
analogous spread series calculated from the volatility surface. Their correlation is 96% over the entire
sample and 93% over the crisis subsample. The “net of transaction costs” rise in financial sector put
spreads (after differencing with the rise in non-financials) is 90% of that calculated from the volatility
surface, indicating that the spread dynamics we document are not driven by bid-ask spreads.

STOCK HETEROGENEITY AND BS MODEL FI1TS

Our main model-based analysis is conducted under the simplifying assumption that the sector basket
consists of ex ante identical stocks. We do so by examining BS model-based prices for the basket and
index, PB%(c) and PBS(,/po), described in Section II. By assuming ex ante identical stocks, our
approach asks the model to fit the average option price in the basket, rather than fitting the prices of
each option in the basket. Because the true basket is composed of non-identical firms, our model fits will
be biased due to Jensen’s inequality. This section shows that our results and conclusions are unchanged
when we individually fit the price of each individual option in the basket and that the Jensen’s effect is
quantitatively tiny.

In particular, we explicitly account for heterogeneity in the basket by using the exact daily index
weights, stock-specific call implied volatility, and stock-specific strike prices to construct the BS model
predicted basket cost of insurance. We focus on a sector index comprised of different stocks j.

To insure the sector using puts on individual stocks, we consider a basket of options that matches
the sector index composition on each day. Let w;; be the number of shares outstanding, respectively,
for stock j in the index on day ¢t. Denoting the price of a put option as P, the dollar cost of the
basket is the sum of individual stock puts necessary to insure each share in the index, and is given
by Ptb‘“k” = Z;V:1 wj¢Pj¢ on day t. The model-predicted option prices are calculated each day by
feeding in estimates for oj; and p;. We estimate o4 as the BS implied volatility for the individual OTM
(delta 25) call option on stock j. The necessary inputs for calculating BS implied volatility include the
time-to-maturity which is fixed at one year, the risk-free rate, the stock’s dividend yield calculated from
OptionMetrics data, and the strike price of each option. Re-estimating o each day allows the model
to account for the often drastic differences in risk levels across regimes. We estimate p each day from
realized returns following equation (14).

The fits are shown in Table D1, and are directly comparable to the main BS model fits in Table 3 that
abstract from heterogeneity. The BS model’s quantitative failure to match financial sector put spreads
is nearly identical in the two tables.



VOL. XX NO.YY TOO-SYSTEMIC-TO-FAIL 3

MERTON JUMP MODEL DERIVATIONS

F1. FEnvironment without Bailout

For the reader’s convenience, we restate the model here. The annual returns on the financial sector
index, rz, and an individual bank, rg, are:

Ty = pot+ \/,Beac + Jz
Tr = Ns+\/1_p55+Js
Ts = TgtTr,

where we introduced the idiosyncratic component of a bank’s return r;. In the model with a bailout, a
government guarantee caps the log index return from below at z. The no-bailout case is the special case
with £ = —oo.

In Section I1.B, we assume a representative agent with reduced-form preferences over aggregate stock
returns. The derivation is based on Backus et al. (2011) who consider a setting with CRRA preferences
over consumption, in which case risk premia are increasing not only in « but also in the covariance
between consumption growth and returns. We opt for less model complexity and directly define utility
over market wealth. The log of the stochastic discount factor (SDF) is given by:

m = pm — QTg,
where « is the agent’s risk aversion.

We use the following notation for parameters of the index and idiosyncratic shocks in the pricing
derivations below. The total volatility of the Gaussian index return is denoted oz, and corresponds to
the quantity ,/po in the main paper. Likewise o is the total volatility of the Gaussian idiosyncratic
returns and maps to /1 — po in the main paper. The index and idiosyncratic jump intensities are w, and
wr, and map to po?w and (1 — p)o2w in the main paper. This derivation allows for separate jump size
means and standard deviations for the index jump (6z,dz) and the idiosyncratic jump (61, dr), though
in the main paper these are equal to the same values (6, 6).

In this notation, the mean log SDF follows from solving for the Euler equation of the one period bond:
exp{—r!} = E [exp{m}].
Appendix F.2 shows (for the more general case with a bailout) that the resulting expression for pn, is:

pm = —rf 4+ apy — 0.50202 — wy[exp{—ab; + 0.5a262} —1].

E2.  Transformation to Risk Neutral Measure

We verify the transformation between physical and risk-neutral measures, stated in the main text:

1
Elexp{rz}] = exp {um + Eai + wz [exp (82 + 0.552) — 1] }
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E*[exp{ra}] = Elexp{m +ra}] /E exp{m}]
Elexp{pm + (1 — a)rs}]
E[exp{pm — arz}]
E [exp{(1 — a)(ta + 00e™ + JX)}]
B loxp{—alpa + 72X 1+ 75)]]
E [exp{(1 — &)o2eX}] E [exp{(1 — ) J*}]
E [exp{—aocyeX}] E [exp{—aJX}]
exp{0.5(1 — @)202}E [exp{(1 — a)JX}]
oxp{0.5(a)202} B [oxp{—aT X ]
exp{0.5(1 — 2a)02} exp{ws [exp{(1 — a)f; + 0.5(1 — )262} — 1]}
exp{wz[exp{—ab; + 0.5a262} — 1]}

= exp{us}

= exp{ua}

= exp{pa}
1
= exp {Nz + 503 — 02 4 wy exp{—aby + 0.50262}[exp{0, — a2 + 0.562} — 1]}

1
= exp {p; + 5‘7325 + w} [exp (65 + 0.562) — 1]}

The mapping between the physical and risk-neutral parameters is:
* 2 * 2 * 262 *
Hr = po — oy, 0F =0, —adi, wi=wsexp{—ab;+0.5a%03}, =10z

Note that this is the same expression as in the main text once we impose that o, = \/po, 0, = 0, and
» = 0. Because

1= Efexp{m + rz}] = E* [exp{ra}] E [exp{m}] = E* [exp{rz}] exp{—r'}

we have that
o =+ S+l foxp (63 +0.563) 1]
or
po =17 +ac? — %oi — w} [exp (05 +0.562) — 1] .

Note that this is the same expression as in the main text once we impose that o, = |/po.

E3.  Auxiliary Lemmas

Before turning to option pricing, we introduce two auxiliary lemmas which are necessary for the models
with and without bailouts. Proofs for the lemmas are available from the authors upon request.

LEMMA 1: Lety ~ N(uy,02). Then

¢ — py — bo?
Elexp{by}le>y] = exp{buy + 0.5b2cr§}<1> ('uyy> .
y

LEMMA 2: Let ¢ ~ N(pz,02), then

bg —t c—t
E[® (bo + biz)exp (az) loce] = @ #, 2 ;p | exp(z1)
\/1+b202 Oz
2 _2

a oy —biog

where t1 = —bite, to = ac? + 21 = +a = =2z agnd (-, ; is the cumulative
1 112, 12 T Mz, Z1 3 Mz, P \/@7 ( s 7P)

density function (CDF) of a bivariate standard normal with correlation parameter p.
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E4.  Option Pricing in MJ Model Without Bailout

We derive the expressions for put prices in the no-bailout case below. Option prices in the MJ model
without a government bailout are a special case of the option pricing formulae developed in Appendix
F. Specifically, the no-bailout case arises by setting z = —oco. We study the price of a put option on
an individual bank stock. The price of the index option follows the same formulation after setting all
idiosyncratic risk to zero. The option matures in one-period and has European exercise. We normalize
the initial stock price to unity, which is equivalent to solving for the put price in terms of cost per dollar

insured. Likewise, the strike price K = exp(k) is expressed as a fraction of a dollar (that is, K =1 is the
ATM option).

The price of the put is derived from:

—wgp, i p— J

e Wrt emYIw
> ———=———LPut;
7! ’

7=0 7!

]38

Put = E [exp(m) [K — exp(r)] ] = |

7

I
<)

where the Put; ; is the option price conditional on i aggregate jumps and j idiosyncratic jumps. We
next evaluate the price of the put specifically conditioning on the number of realized aggregate and
idiosyncratic jumps. The price of a put conditional on (¢, 7) jumps is:

Put;; = —V{NP 4 vaoNB
The first term is:
VIV = Elexp(m+7) lis,]
[E {eXp (um —arg +rl + rz) Liery >y \Tx}]
& {ex

[ {exp (1) Lo Ir f exp {am + (1 = @)ra}]
= exp{um}Y(L;7r1)E [P (¢po + ¢1(—7z))exp{(a —1)(—7z)} 11, <4+00] by Lemma 1

= FE
E

b0 — t1 +oo—ta

= exp (um) U(L;77) exp(z1)® , — ;p by Lemma 2
1+ 6302 +i62) Vi +ig

where
U(L;rr) = exp{usr +j0r +0.5(c7 +jo7)},
1
¢ =
1/0’?+j(5?
po = o1 (k—pr—3j0r— (o7 +3567)),
ta = (a—1)(02+i62) — pg — 0y,
t1 = —¢ity,
Z1)2(02 4 562
- w+(1_a)(w+wx)’

2
s = —¢1\/0'%+i5925

1+ ¢3(02 +i62)
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The second term can be solved as follows:

VB = KE[exp (m) i)

KE [E{exp{pm — are} 1x—r, >r, |72 }]

K exp {jim} B [E {1k—roory |72} | exp {~ara}]

= Kexp{m} B[® (60 + 1(~7a)) exp {a(—r2)} 1_ry<toc] by Lomma 1

-t —t
= Kexp{pm}exp{z1}® do — b1 , +020 ‘22 P by Lemma 2
\/1+¢%(U%+Msg) \/Uac+25ac
where

do = ¢1(k—pr—jor),

t2 = a(a’i+i6§)f(uz+i91),
2(52 1 362

P (e L

2

The other terms are as in the VIN B term. Each Put; ; term delivers the standard Black-Scholes expression
so that the MJ put price is a Poisson mixture of Black-Scholes put price components.

MERTON JUMP MODEL WITH GOVERNMENT BAILOUT

F1. Environment with Bailout

For the reader’s convenience, we restate the model here for convenience. The annual returns on the
financial sector index, 7, and an individual bank, 7, are:

e = max[rg,z)

rz = Wzt pex + Jz

i o= ps+ /11— pes+Js
rs = TgH4ry.

A government guarantee caps the log index return from below at z. As discussed in Appendix E, the log
of the stochastic discount factor (SDF) is given by:

m = m — QTg,

where « is the agent’s risk aversion. The notation follows that of Appendix E.

F2.  Deriving pim

We start by deriving the mean of the log SDF in the bailout model. We take r; as an exogenous
parameter, since this will be an empirical input determined by data.

exp{—rf} = Elexp{m}],
= exp{um}E [exp{—arz}],

2
o
= exp{pum — a(pe +1i0z) + ?(Ui + 'L‘;g)}
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This expression is summed over the various possibilities for the number of jumps 7.
X, e~ Wt . 20552
exp{—rf} = exp{pm — aps +0.50202} Z ,7'“3670‘(“91”0‘5"‘ (152)
3!
=0

This allows us to solve for u,, as a function of all other parameters:
wm = —rf 4+ aps —0.50%02 — wy[exp{—aby + 0.5a262} —1].

This is the same risk-free rate expression as in the case without a bailout, except that pg is different in
the presence of a bailout.

F3.  Deriving iy

Now, we price the stock return for a bank in order to obtain the expected return p,. Starting from
the standard Euler equation:

,_.
Il

Elexp{m +r}],

E [eXP{Nm — arg + max{rsz, z} + 7’1}] )
= exp{um}FE [exp{rf}] {E [exp{(1 — @)ra}lr, 2] + exp{z} E [exp{—ars}1r,<a] } .
For a given number of idiosyncratic jumps j, the first expectation is:
E [exp{rs}] = exp{us + jOr + 0.5(c7 + j67)}
and given a number of aggregate jumps %, the second expectation equals:

E[exp{(1 — a)ry}lyyse] = e(1m)atifn) +0.5(1—a)? (03 +i03)

& (Hvx +iby —x + (1 - O‘)(U:% +’L(5§)>

and the third expectation is:

; 2 :$2
E [exp{—a'r‘x}lrw<m] _ e—a(uz-!—i@z)+O45a2(ag+i6§)q> <1' — pg — 0y + a(gw + Zém)) )

Vo2 + 162

All three expectations are summed over the various possibilities for the number of jumps 7 and 5. After
taking logs on both sides, we get:

0 = fim+pr+0.507 +wrlexp{f; +0.562} — 1]

+log <i e wruwl {e(l—a)(uz+iem)+OA5(1—0¢)2(U§+1'6320)(1> <#z +ibe —z+ (1 —a)(o? + i592c)>

il Vo2 + 1632

=0

+eg70¢(um+i0m)+0.5a2(034»1'63)(1) (33 — po — 0z + a(o2 + i5§)> }) _

Vo2 4162
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Because idiosyncratic risk is not priced, uy = 70.50% —wrlexp{6r +0.56?}7 1], so that the final expression

is:

0 = pm+log i e Ws | (1ma) (hoi6,)+0.5(1-0)? (o2 +i62) g [ Ha +0s — 2+ (1 — @) (0F +1i07)
= ¢ Vo2 +id2

_i_egfoc(,u,gf%ier)+0.5a2(az+i62)¢) <I — plz — 105 + 04(0'2 + Z&%)) }) .

Vo2 4162

We can plug in for the expression for p,,, from above, and solve the resulting non-linear equation for p;.

F4. Valuing Put Options with Bailout

The price of the put is derived from:

_ i d
e Wrt e Ylw
E —Q 17,' IFuti’j
il 7!

Jj=0

NE

Put=FE [exp(m) K — exp(r)fr] =,

7

Il
o

where the Put; ; is the option price conditional on ¢ aggregate jumps and j idiosyncratic jumps. We
next evaluate the price of the put specifically conditioning on the number of realized aggregate and
idiosyncratic jumps. To avoid repetitive notation, we suppress notation for this conditioning, though it
is assumed whenever the put price takes (, 7) subscripts.

Put;; = —E[exp(m+7)lgs,]+ KE[exp(m)lgs,]=—-V1+Va.

‘We solve for V7 and V5 in turn.

DERIVING V]

We can rewrite V7 as
Vi = Elexp(m+r! +r) loplrse] + B [exp (m+r +2) Lisrle, <o] = Vit + Vas

The first term Vi1 reflects the situation where the option expires in the money but the bailout is not
activated. It can be solved as follows:

Vih = E [exp (m w4 rz) Lisrlr, >g]
- E [E {exp (um + (1 —a)rz + TI) lk—rx>r1|r$} \ 1m>§]
BB {exp (1) Thmrs oy I 050 (i + (1= @)} L, ]
= exp (um) U(L;r)E [® (g0 + ¢1(—rz)) exp {(a — 1)(=r2)} 1_r,<—s] by Lemma 1

—t —x —t
$o—ta , % ‘22 9 by Lemma 2
\/1+¢%(Ug+i53) \/ox+7’59@

= exp (um) ¥(1; ’r‘I) exp(z1)®
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where

U(1;77)
o1
o

to
t1

21

TOO-SYSTEMIC-TO-FAIL

exp{us +j0r +0.5(c7 + jo67)},
1

\/O’% +j5%

¢1 (k—pr — 301 — (07 +4§0%)),

(o — 1)(0'3: + 26;20) — po — 0,

—p1ta,

(a —1)*(o3 +163)
2

—p1/02 + 2
1+ ¢3 (02 +1i62)

+ (1 = a)(pa +102),

The second term Via reflects the situation where the option expires in the money and the bailout is

activated. It can be solved as follows:

Via

E [exp (m +7) Lgsrlr, <)

= FE [E {exp (um —arg +x+ ’I“I> lg—g>r; } 1m<£]

= exp(pm+2z)FE [exp (7’1) 1k—g>r1] E [exp (—arg) 1n, <£]

= exp {m + 2} U(1;r1)® (o + 1 (—x)) e~ Catife) 0502 (03 +io) g (

T — pp — 0z + (o2 +i62)

Vo2 +1i62

where W(1;71), ¢o, and ¢1 are identical to those defined above in the Vi1 term.

We can rewrite Vo as

\ %}

DERIVING V5

= KE [exp{m} lpsrlry>z] + KE [exp (m) lpsrlry<z] = Vo1 + Vaa.

The first term Va1 reflects states where the option expires in the money and the bailout is inactive. It
can be solved as follows:

where

KE [exp (m) 1k>7‘1r1~>£]

KE [E{exp{pm — ara} lk—r, e, |7} | Lrg>a]
Kexp{um} E [E {1k—rT,>r1 |Tac} | exp{—ary} 1, >£]
Kexp{um} E [q> (d0 + ¢1(—7z)) exp {a(—7z)} 17r1<7£]

—t —z—t
K exp {im} exp{z1 ) Rl Sl
\/1—‘,-(15%(0':%—&-&5%) \/Ua:+16x
¢0 = ¢1(k—pr—jos),
t2 = aloy +i63) — (4o + i6a),
t1 = —¢ita,
2 2 v
+ 40, .
s o= 2 H) e,

2

P

by Lemma 1

by Lemma 2

)
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The other elements are the same as in the V7 term.

Finally, Vag captures states when the bailout is activated:

Voo = KE [exp(m) lgsrlr, <z
KE [exp{pm — arz} 1p_gsr; Ly <z
= Kexp{um) B[y cxos] B [oxp (~ara) 1, <]

k—z—pr =501 | —a(us+ios)+0.502 (02 +i62) g <9€— pa — 0z + a(0F + i5§)> .

= Kexp{um}® :
\/o% + j62 Vo3 +i63

Call options can then be priced via put-call parity, which holds in this model.

MJ MoDEL WITH UNCERTAIN BAILOUT

We now extend the model to a case in which the investor is uncertain about the nature of the bailout.
The investor believes that with probability p there will be a bailout and with probability 1 — p there will
not be a bailout.

G1. Deriwing pmy, and piy

The mean SDF p,, follows the same expression as in the bailout and no-bailout cases.

Next, we price the stock return for a bank.

,_.
Il

Elfexp{m + 1},
exp{pum }E [exp{ri}] { B [0 70 1,50 ] +pet B [0 1, o] + (1 = p) E [0 1, o] }

‘We recall that:

E [ex {—Oé’l” }1 J _ efa(uz+i01)+0.5a2(a'i«l»iéz)q) L= Hx — 0 + ()1(0'3 + 7’53)
p x Te<T| — 5] =
Vo2 +1i62
and that:

(1= (1 +i04)+0.5(1—a)? (02 +i62)

® <ux+z‘6x —x+(1—a)(0§+z‘6£)>

E [exp{(1 — &)rz}lr,>0] =

The last term is:
E [e(l—a)'rz le<£] _ e(l—a)(,u,,+i9m)+0.5(1—a)2(0720+i6720)

o (m—um — i, — (1 —a)(o2 +z‘63>>
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Define the term B; as:

B = e(1m0)(uatifs)+0.5(1-c)? (02 +i62) g (Mz +ibs —z+ (1 —a)(o? + iéi))

Vo2 + 162

+peg—a(um+i9z)+05a2(ai+i6§)‘I) <{E — pz — 0y + a(og + zéi))

Vo2 +i62

+(1 = p)ell=e) (s +i02)+0.5(1-a)* (o2 +i82) g (af — e — 0z — (1 — ) (02 + i5§)>

Vo2 4162

Putting all the terms together, we get:

X —w;
1 = eMmeMIJrO.SU%wLwI[exp{01+0.56%} 1] 2 :e J'w

=0

After taking logs on both sides, and noting that p; + 0.50? + wrlexp{0r + 0.56?} — 1] = 0, the final
expression is:

A
0 = pum+log ZTBl

=0

This is a non-linear expression in fiz.

G2. Option Prices With Uncertain Bailout

We still start from:

> e~ Wa —wr
UJ € w
E _— 71Putw

Putt = Et |:Mt+1 (K — Rt+1)+j| = ]

gM%

=0
Putij = —Elexp(m+7)li>,] + KB o m) o) = VI VY
The superscript U stands for Uncertain bailout. We now develop the two terms.
VIV = Elexp(m+7)lpsplryse] + B [exp(m+7) Lisrle, <o) = VH + VG

The first term VH reflects the situation where the option expires in the money and the return is above
the cutoff. Whether or not there is a bailout, it would not be activated anyway. So, this term is identical
to the one derived above: VH =Vi1.

Next, we turn to Vlg. It reflects the situation where the option expires in the money and the return
is below the cutoff. With probability p, the bailout is activated and we obtain the Vig term from before.
With probability 1 — p, there is no bailout and the option is worth Via.

vV = E [exp (m + 1) Lysylr,<z] =pViz + (1 — P)Vi%
VG = B[B{ex (um+ 10— +r) Tpnr, P <]

— o () B[ o0 (1) By ] €001, ]

= exp(um)¥(L;r)E {‘I’ (¢0 + (—¢1)r2) e(l=e)re 1, <£] by Lemma 1

¢ — t1 T —t2
\/1 +¢2(02 +162) VOoE +i0Z

= exp (,um)\Il(l;rI)exp(zl)CID 9 by Lemma 2
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U(1;ry) = exp{us + 3507 +0.5(07 +j67)}
1
1 =
\/O’% +j5%
b0 = ¢ (k—pr—3jor—(of +3d7)),
ty = (1—a)(02+1462) + pa + i0a,
t1 = ¢ito,
1— a)2(s2 i52
21 = M“"(l—a)(uz‘i‘i@z),

2
5 P1\/ 02 + 162
1+ ¢3 (02 +1i62)

Next, we work on the second term.

The first component

vy

KE [exp{m} 1p>,]
= KE[exp{m}lpsrlr,>z] + KE [exp (m) lpsrlr, <2] = Vo] + V3.

component, VQg, we have:

U
Vaa

U
V22

where

In sum, we find:

KE [exp (m) lgsrlr,<a) = pVaz + (1 — p)ViS

KE [exp{ptm — arz} 1p—r,>r; Ly <z

Kexp{pm} E[E [1x—r,>r,|re] e 1, <4

Kexp{um} F [<I> (o + (—p1)rz) e =1, <£] by Lemma 1

—t —t
K exp {pm} exp{z1}® do — b1 , £2 2'2 P by Lemma 2
\/1+¢>§(ag+i5§) Vo2 +i62
1
o =
\Jo% + 562
¢0 = 1 (k—pr—jor),
to = —a(o?+i62)+ px + iz,
i1 = ¢ute,
_a)2(o2 4 i52
Nt R NN

2
R P11/ 02 + 162

p —————————
1+ ¢2(02 +i62)

Put;; = —(VH + V) + Vi + Vi3

= —(Vi1 +pV% + (1 —p)V3) + Va1 + pVaz + (1 — p) Vi3

V2U1 reflects states where the option expires in the money and the return is above
the cutoff. Whether or not there exists a bailout, it does not matter. So, VZI{ = V21. For the second
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G3.  Numerical Illustration

In order to illustrate the effects of uncertainty over the bailout, we consider the MJ model with
parameters estimated form the physical stock return distribution, as presented in Table 4. We focus on
the financial sector and the crisis period. Specifically, (w, 8,d) = (7,—0.05,0.25), o = 0.79, and p = 0.67
during the crisis. We consider a bailout of x = —0.45, the point estimate from Section IV.B. Risk
aversion is a = 1. The option has one year maturity, the initial price is Sp = 1 and the strike price is
K = 0.78. For these parameters, the price of the basket (individual put option) is 0.225 without bailout,
0.159 with a certain bailout (which corresponds to the value in the data), and 0.195 when a bailout
occurs with probability 0.5. We note that the put price under an uncertain bailout is higher than the
probability-weighted average of the put prices under the bailout and no-bailout cases. In our example,
0.195 > 0.192 = 0.5 x 0.225 4+ 0.5 x 0.159. This is a Jensen effect which arises from the drift adjustment
pa- The equity risk premium is higher under uncertain bailout than the weighted average risk premium
under no and certain bailouts.

INTERPRETING JUMP PARAMETER ESTIMATES

In this appendix, we further discuss the estimated jump parameter values from Sections III and
IV. As shown in Section 3.3.2, jump parameters implied by the physical return calibration, (w,8,d) =
(7,-0.05,0.25), do not generate enough risk to account for the high put option prices.

The estimation in Section 3.3.3 gives the no-bailout model a better chance of fitting the data by choos-
ing parameters without regard to the physical return moments. Yet, as we show in the main text, it still
cannot produce the required run-up in the basket-index put spread in the financial sector. The estimated
parameters are (w, 6,d) = (3.2, —0.34,0.54) for the financial sector and (w, 8,0) = (739.2, —0.07, 0.40) for
the non-financial sector. The intensity of aggregate jumps is given by w,; = wpa? in the model of Section
II.B. Therefore, an estimate of w = 3.2 translates into a low frequency of jumps for the index, 0.11, on
average during the full sample (i.e. based on the daily time series of estimates of p and o). This, together
with an average jump size of —34%, indicate that the data prefer what amounts to a rare disaster model
for the financial sector.

Figure H1 illustrates how the model prices the put basket, the put index, and the put spread in the
financial sector for various combinations of the parameters 6 (on the horizontal axis) and § (various lines
without markers). It does so for a value of w = 5, an intermediate value between the point estimate from
the physical calibration and that from the no-bailout MJ model. The fits from the physical calibration of
Section III.C correspond to the left side of the figures (as # = —.05 and in that calibration). The figure
shows how the option prices are far off the mark in the physical calibration. It shows clearly that one
needs to increase the risk in the model until 6 is about -0.35 and § is about 0.55 if one wants to be near
the range of put prices we see in the data. Unfortunately, at these values, the third panel shows that
this calibration is far off on the basket-index spread.

Next we explore what happens when we introduce a bailout in the MJ model. We assume a bailout
size of exp(z) = 0.65, motivated by our estimate from the data. The corresponding bailout model prices
are indicated by the lines marked with circles, again for various values of §. With a bailout, even at the
high risk levels included in the figure, puts are not expensive enough. However, one important change is
that the basket-index spread is now substantially higher and closer to the data. It becomes clear that
matching the data requires a big enough bailout so that the spread is large while at the same time making
sure risks are high enough to match the level of put basket and index prices. This is exactly what the
best-fitting bailout model accomplishes by further increasing the magnitudes of 6 and §.

Figure H2 shows the same option price panels for a larger range of 6 values (top row) and ¢ values
(bottom row), each time holding fixed the other parameters at their point estimate in the bailout model
estimation of Table 8. For any level of bailout (different lines in each panel), we can see that stronger
bailouts shift put prices down. The graph also illustrates that we must gradually increase the risk
parameters in order to reach the observed put levels. The best fit is from 6§ = —0.75 and § = 2.5. The
slopes are steepest for 6, suggesting that this is the parameter to which moments are most sensitive. The
put prices are less steep for §, so the loss in fit from having a lower value of § is not as severe.

To further emphasize that the parameters are well identified by our estimation approach, Figure H3
shows the GMM objective function. Recall that the GMM objective function is the average squared
distance between 18 option pricing moments in the model and data (basket put prices, index put prices,
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FiGure H1. Crisis PuTs — MODEL AND DATA
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Note: Fitted crisis put prices for the financial sector at various 6 and ¢ values, with w held fixed
at 5 (which is about halfway between the w of 7 in the physical calibration, and the value of 3.2
in the option estimation with no bailout). These fits follow our usual approach. That is, given
a set of jump parameters, we fix p at the estimated return correlation, and invert o from the
call basket. This is done day by day, just like in our estimation, then averaged over the crisis
sample. Heavier lines correspond to higher § values. Lines with (without) circles correspond to
fits based on a 65% (0%) bailout. Data values are shown as dashed lines.

their spread, in pre-crisis, crisis, and their difference). For convenience, we plot the inverse of the objective
function, so that higher values indicate a better fit. The bottom panel shows that the objective function
is sharply identified in the dimension of the bailout, exp(z), and in the dimension of the average jump
size, 6. The other panels show that the objective function is flatter in the § dimension, but there is still
clearly good identification. The objective function is also flatter in the w dimension (not shown), though
again there is a clear optimum in this dimension.

In order to understand the parameter estimates in the bailout model, we have also analyzed the moment
generating function of returns under the risk neutral measure. It reveals that the risk neutral probability
density function is bimodal with one peak in positive return territory (corresponding to the case with
zero jumps) and one peak at the bailout threshold deep into negative return territory (corresponding to
the cases of one or more jumps, the “disaster state”). At high enough levels of 8 and 4, the bailout level
x pins down the size of the financial disaster because the bailout will be activated whenever there is at
least one jump. In other words, in the presence of a bailout, the parameters 6 and § lose their usual
interpretation of controlling the size the jump, and instead primarily influence the likelihood of triggering
the bailout.

Given our estimates, the bailout model essentially behaves as a rare disaster model, where the size of
the aggregate disaster is determined by the bailout threshold. That is, if a jump occurs, it is very large
and is essentially guaranteed to trigger the bailout. This concentrates probability mass at the bailout
threshold (at —36%, according to our estimates). But the occurrence of a jump is also very infrequent,
occurring with a probability of only 0.8% each year. This feature is unique to financials. For non-financial
sectors, our estimates imply more frequent and smaller downward jumps.

Our estimates throughout the paper also indicate that financial sector option prices require especially
high levels of risk relative to standard estimates for S&P 500 index options in the options literature.
However, it is important to note that our estimates for the financial sector and estimates for S&P 500
index options in the literature are not directly comparable. First, the underlying assets have different
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FiGureE H2. Crisis PuTs — MODEL AND DATA
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Note: Fitted crisis put prices for the financial sector at various 6, §, and exp (z) values, with w
held fixed at 37.9 (its value in the bailout estimation). In the top panel we vary 6, holding §
fixed at its value in bailout estimation (2.47), and vice versa in the bottom panel (there 8 is fixed
at -0.75). These fits follow our usual approach. That is, given a set of jump parameters, we fix
p at the estimated return correlation, and invert o from the call basket. This is done day by
day, just like in our estimation, then averaged over the crisis sample. Heavier lines correspond
to larger bailouts. Data values are shown as dashed lines.

riskiness, and second, the estimates are based on different samples. Most studies of the S&P 500 index
use data from the 1990s and early 2000s, prior to the financial crisis, while our data are from 2003 to
2009. Finally, all of our risk estimates take risk prices as given, since we fix the CRRA risk aversion at
a = 1 throughout our model estimation. We can lower the jump risk parameters and still match high
put price levels in the financial sector if we allow for o > 1. However, as Section II.B illustrates, this will
produce to an even poorer match of the financial sector put spread in the baseline MJ model.

ALTERNATIVE FORM OF BAILOUT

Figure I1 studies an alternative bailout model, where rather than capping the maximum financial index
return loss the bailout provides a dollar floor on the price level of the financial sector index level. We
plot the basket-index spreads for financials for an alternative bailout specification (dashed line marked by
asterisks) in which the index value is never allowed to fall below a per share value of $6 and assuming the
same risk parameters estimated for the bailout model of Section IV. The graph also plots the put spread



16

THE AMERICAN ECONOMIC REVIEW NOVEMBER 2015

FiGURE H3. OBJECTIVE FUNCTION SURFACE
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in the estimated MJ bailout model which assumes a fixed percentage bailout (marked by diamonds).
The alternative specification generates an even larger increase in the basket-index put spread than the

baseline bailout specification.
THE EFFECTS OF MONEYNESS AND MATURITY

Table J1 report basket-index put and call spreads for both sectors at different moneyness and maturity
than the one year, delta 25 data reported in Table 1. Panel A and B report spreads for options that are
closer-to-the-money (that is, have a higher probability of positive payoff). The proportional increase in
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FIGURE I1. BASKET-INDEX SPREADS IN BAILOUT MODEL
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Note: Basket-index put spreads for the financial sector in the data (marked by circles). Also
shown are spreads in the estimated MJ bailout model reported in Section IV which assumes a
fixed percentage bailout (marked by diamonds). Next we plot spreads for an alternative bailout
specification in which the index value is never allowed to fall below a per share value of $6 and
assuming the same risk parameters estimated for the bailout model of Section IV (marked by
asterisks). Finally, we plot the spread from the estimated MJ model without bailouts (marked
by squares). Units are cents per dollar insured.

the basket-index spread from pre-crisis to crisis is larger for OTM put options than for ATM put options,
as OTM options isolate payouts to the crash state in which a bailout is more likely to be active.

Panel C shows one month delta 25 spreads. Because the maturity is 1/12 that of our main analysis, the
levels of option prices and spreads are much smaller. However, the percentage effects are magnified. One
month put spreads increased by a factor of 3.5 during the crisis (versus 3.3 times for one year options)
and the put spread rise is 2.5 times that of calls (versus 2.2 times for one year options). The change in
financial sector one month put spreads is ten times larger than non-financials, versus 3.6 times larger in
the case of one year options.

Lastly, we assess the robustness of our parameter estimates using options with different moneyness.
Our main analysis uses delta 25 options. Table J2 below reports results when we instead estimate the MJ
bailout model using options with delta 35. We repeat our entire GMM estimation using these distinct
options data, yet the results are very similar to those in our main analysis (see Table 8). Because delta 35
options are closer-to-the-money, all option price levels are higher. Overall, the MJ bailout model achieves
a very close fit for all options — puts and calls, basket and index, pre-crisis and crisis. For example, the
price of the basket put during the crisis is 18.4 cents in the model and 18.7 cents in the data. More
importantly, it closely matches the rise in the put spread during the crisis (2.1 cents in the model versus
2.3 cents in the data). The jump parameter estimates are also very similar to those in the main text.
We estimate (w, 6, d) to be (7.6,-0.80,2.16) based on delta 35 options, while Table 8 reports estimates of
(37.9,-0.75,2.47) based on delta 25 options. Similarly, the estimated size of the bailout, exp(z), is 0.69
for delta 35 and 0.64 for delta 25.

OPTION LIQUIDITY

Table K1 reports summary statistics for the liquidity of put options on the S&P 500 index, sector
indices (a value-weighted average across all 9 sectors), the financial sector index, all individual stock op-
tions (a value-weighted average), and individual financial stock options. The table reports daily averages
of the bid-ask spread in dollars, the bid-ask spread in percentage of the midpoint price, trading volume,
and open interest. The columns cover the full range of moneyness, from deep OTM (A < 20) to deep
ITM (A > 80), while the rows report a range of option maturities. We separately report averages for
the pre-crisis and crisis periods. A substantial fraction of trade in index options takes place in over-the-
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counter markets, which are outside our database. Hence, the bid-ask and volume numbers understate the
degree of liquidity. However, absent arbitrage opportunities across trading locations, the option prices
in our database do reflect this additional liquidity.

OTM put options with A < 20 have large spreads, and volume is limited. OTM puts with delta
between 20 and 50 still have substantial option spreads. For long-dated OTM puts (maturity in excess
of 180 days), the average pre-crisis spread is 5.5% for the S&P 500, 12.8% for the sector options, 10.8%
for the financial sector options, 6.8% for all individual stock options, and 7.0% for individual stock
options in the financial sector. Financial sector index options appear, if anything, more liquid than other
sector index options. The liquidity difference between index and individual put options is smaller for the
financial sector than for the average sector.

Furthermore, during the financial crisis, the liquidity of the options appears to increase. For long-
dated OTM puts, the spreads decrease from 5.5% to 4.7% for S&P 500 options, from 12.8% to 7.8% for
sector options, from 10.8% to 4.5% for financial sector options, from 6.8 to 5.5% for all individual options,
and from 7.0% to 5.8% for financial firms’ options. (We note that the absolute bid-ask spreads increase
during the crisis but this is explained by the rise in put prices during the crisis. The absolute bid-ask
spreads increase by less than the price.) At the same time, volume and open interest for long-dated
OTM puts increased. Volume increased from 400 to 507 contracts for the S&P 500 index options, from
45 to 169 for the sector options, from 287 to 1049 for financial index options, and from 130 to 162 for
individual stock options in the financial sector. During the crisis, trade in OTM financial sector put
options exceeds not only trade in the other sector OTM put options but also trade in the OTM S&P 500
options. The absolute increase in liquidity of financial sector index puts during the financial crisis and
the relative increase versus individual put options suggest that index options should have become more
expensive, not cheaper during the crisis.

Table K2 reports the same liquidity statistics for calls. Calls and puts are similarly liquid yet display
very different basket-index spread behavior. The increase in the put spreads during the crisis is also
present in shorter-dated options, which are more liquid. These facts suggest that illiquidity is an unlikely
explanation for our findings.
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TABLE B1-—TopP 40 HOLDINGS OF THE FINANCIAL SECTOR INDEX XLF

12/30/2010 07/30/2007

Name Weighting Name Weighting
1 JPMorgan Chase 9.01 Citigroup 11.10
2 Wells Fargo 8.86 Bank of America 10.14
3 Citigroup 7.54 AIG 8.02
4 Berkshire Hathaway 7.52 JPMorgan Chase 7.25
5 Bank of America 7.30 Wells Fargo 5.44
6 Goldman Sachs 4.66 Wachovia 4.35
7 U.S. Bancorp 2.82 Goldman Sachs 3.71
8 American Express 2.44 American Express 3.35
9 Morgan Stanley 2.25 Morgan Stanley & C 3.25
10 | MetLife 2.21 Merrill Lynch 3.11
11 | Bank of New York Mellon 2.04 Federal National Mortgage 2.81
12 | PNC Financial Services 1.75 US Bancopr 2.51
13 | Simon Property 1.60 Bank of New York Mellon 2.32
14 | Prudential 1.56 Metlife 2.15
15 | AFLAC 1.45 Prudential 2.00
16 | Travelers 1.39 Federal Home Loan Mortgage 1.83
17 | State Street 1.27 Travelers 1.63
18 | CME Group 1.18 Washington Mutual 1.61
19 | ACE Ltd. 1.15 Lehman Brothers 1.59
20 | Capital One Financial 1.06 Allstate 1.56
21 | BB&T 1.00 CME Group 1.46
22 | Chubb 0.99 Capital One Financial 1.41
23 | Allstate 0.93 Hartford Financial 1.40
24 | Charles Schwab 0.93 Suntrust Banks 1.35
25 | T. Rowe Price 0.89 State Street 1.28
26 | Franklin Resources 0.87 AFLAC 1.23
27 | AON 0.82 PNC 1.11
28 | Equity Residential 0.81 Regions Financial 1.02
29 | Marsh & McLennan 0.81 Loews 1.02
30 | SunTrust Banks 0.80 Franklin Resources 1.01
31 | Ameriprise Financial 0.78 Charles Schwab 0.98
32 | Public Storage 0.77 BB&T 0.98
33 | Vornado Realty Trust 0.74 Fifth Third Bancorp 0.98
34 | Northern Trust 0.73 Chubb 0.97
35 | HCP 0.73 SLM 0.97
36 | Progressive 0.71 Simon Property 0.93
37 | Loews 0.67 ACE Ltd. 0.91
38 | Boston Properties 0.66 National City 0.82
39 | Host Hotels & Resorts 0.64 Countrywide Financial 0.81
40 | Fifth Third Bancorp 0.64 Lincoln National 0.79

Note: This table reports the 40 firms with the largest weights in the financial sector index ETF,
XLF, on 12/30/2010 and 07/30/2007. On 12/30/2010, there were 81 companies in XLF; on
07/30/2007, there were 96 companies. The weights are the relative market capitalizations of the
top 40 holdings of the index.
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TABLE D1—Co0ST OF INSURANCE IN BS MODEL WITH STOCK HETEROGENEITY

Financials Non-financials

Puts Calls Puts Calls

Basket Index Spread Basket Index Spread Basket Index Spread Basket Index Spread

Panel A: Model

Pre-crisis 3.8 1.8 1.9 3.4 1.6 1.8 4.9 1.8 3.1 4.2 1.5 2.7
Crisis 11.4 8.2 3.1 5.5 3.5 2.1 7.7 4.6 3.1 5.4 2.9 2.5
Crisis diff. 7.6 6.4 1.2 2.2 1.9 0.3 2.8 2.7 0.0 1.2 1.4 -0.2

Panel B: Data

Pre-crisis 5.2 3.8 1.4 3.4 1.8 1.6 6.2 3.7 2.4 4.2 1.8 2.4
Crisis 15.9 11.3 4.6 5.5 3.4 2.1 10.0 6.7 3.3 5.4 2.5 2.9
Crisis diff.  10.6 7.5 3.2 2.2 1.6 0.5 3.9 2.9 0.9 1.2 0.7 0.5

Panel C: Data Spread—Model Spread

Financials Non-financials F-NF
Put Call P-C Put Call P-C P-C
Crisis diff. 2.0 0.3 1.7 0.9 0.7 0.2 1.5

Note: Summary statistics for the cost of basket and index insurance in the BS model and in the
data. Delta is 25 and time to maturity is 365 days. Units are cents per dollar insured. Unlike
the analysis in Table 3, these results explicitly allow for heterogeneity in sector index weights,
stock-specific call implied volatility, and stock-specific strike prices.

TABLE J1—BASKET-INDEX SPREADS BY MONEYNESS AND MATURITY

Financials Non-financials Financials—Non-financials
Puts Calls Puts Calls Puts Calls Puts—Calls
Panel A: Maturity 1 year, A = 35
Pre-crisis 1.6 1.8 2.5 2.5 -0.9 -0.8 -0.1
Crisis 3.9 2.2 3.3 3.0 0.6 -0.8 14
Crisis diff. 2.2 0.5 0.7 0.5 1.5 0.0 1.5
Panel B: Maturity 1 year, A =45
Pre-crisis 1.7 1.8 2.6 2.6 -0.9 -0.8 -0.1
Crisis 3.5 2.5 3.3 3.1 0.2 -0.7 0.8
Crisis diff. 1.8 0.7 0.7 0.5 1.1 0.2 0.9
Panel C: Maturity 1 month, A =25
Pre-crisis 0.4 0.5 0.7 0.7 -0.3 -0.2 -0.1
Crisis 14 1.0 0.8 1.0 0.6 -0.1 0.6
Crisis diff. 1.0 0.4 0.1 0.3 0.9 0.2 0.7

Note: Summary statistics of basket-index put and call spreads for the financial sector, non-
financial sectors, and their difference. Panel A and B report option price spreads using delta 35
and delta 45 options, respectively, with time to maturity of 365 days. Panel C reports spreads
for one month options with 30 days to maturity.
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TABLE J2—Co0OST OF INSURANCE: MJ BAILOUT MODEL FOR DELTA 35 OPTIONS

Financials
Puts Calls
Basket Index Spread Basket Index  Spread
Panel A: Model
Pre-crisis 7.0 5.9 1.1 4.8 1.9 2.9
Crisis 18.4 15.2 3.1 8.4 5.5 2.9
Crisis diff. 11.4 9.3 2.1 3.6 3.6 0.1
Panel B: Data
Pre-crisis 6.8 5.2 1.6 4.8 3.0 1.8
Crisis 18.7 14.8 3.9 8.4 6.1 2.3
Crisis diff. 11.9 9.6 2.3 3.6 3.1 0.5
Panel C: Data Spread—Model Spread
Financials F-NF
Put Call P-C P-C
Crisis diff. 0.3 0.4 -0.2 -0.6
Panel D: Financial Sector Parameter Estimates
w 0 1) exp(z)
7.6 -0.80 2.16 0.69

Note: Summary statistics for the financial sector cost of basket and index put and call prices in
the MJ bailout model (Panel A), in the data (Panel B), and their difference (Panel C). The last
column in Panel C compares the unexplained difference in put and call spreads for the financial
sector (including a bailout) with that of the non-financial sector (excluding a bailout). Fits are
based on MJ bailout model parameters estimated from options data, and Panel D reports jump

parameter estimates (w,6,d) and estimated bailout threshold exp(z).

Risk aversion is a = 1.

Delta is 35 and time to maturity is 365 days. Units are cents per dollar insured.
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TABLE K1—LiQuipiTY IN PUTS

0< A <20 20 < A <50 50 < A < 80 80 < A < 100
Spr. (8$) Spr. (%) Vol. O.1. Spr. (3$) Spr. (%) Vol. O.1. Spr. (%) Spr. (%) Vol O.1. Spr. ($) Spr. (%) Vol. O.1
Pre-Crisis Sample 10 Days < TTM < 90 Days
S&P 500 0.450 80.5 1072 15783 1.295 9.4 2219 16594 1.821 5.8 693 6807 1.959 3.7 93 3138
All Sector SPDRs 0.133 150.5 80 3205 0.141 35.0 867 7606 0.167 13.7 269 3221 0.239 7.9 26 339
Financial SPDR 0.096 142.3 187 10494 0.109 30.9 1791 19708 0.125 12.4 502 7907 0.182 7.0 44 689
Indiv. Stocks 0.088 106.3 169 5447 0.106 13.2 836 9225 0.152 6.2 473 5990 0.230 3.1 76 1550
Fin. Indiv. Stocks 0.095 103.5 142 4534 0.116 13.4 691 7667 0.169 6.4 380 4888 0.254 3.3 65 1288
90 Days < TTM < 180 Days
S&P 500 0.701 56.3 373 18107 1.719 6.9 1242 22052 1.982 3.4 198 5962 2.076 1.5 14 1949
All Sector SPDRs 0.141 96.0 21 1132 0.156 19.0 163 3057 0.198 8.7 40 1258 0.273 6.3 3 118
Financial SPDR 0.103 71.0 103 4307 0.119 16.8 452 13713 0.142 7.6 96 3891 0.182 4.9 16 347
Indiv. Stocks 0.094 72.4 66 4326 0.133 8.1 278 7760 0.196 4.3 123 4622 0.242 2.3 21 1138
Fin. Indiv. Stocks 0.103 68.4 56 3445 0.147 8.3 229 6509 0.216 4.4 103 3565 0.271 2.5 18 807
180 Days < TTM < 365 Days
S&P 500 1.067 33.7 237 12015 2.093 5.5 400 10895 2.185 2.6 52 2837 2.174 1.1 4 1359
All Sector SPDRs 0.130 60.6 9 857 0.156 12.8 45 1290 0.203 6.8 10 593 0.273 4.7 2 129
Financial SPDR 0.095 47.5 24 2448 0.105 10.8 287 7823 0.139 5.6 53 3313 0.188 4.0 4 128
Indiv. Stocks 0.103 55.3 52 4432 0.156 6.8 170 6880 0.224 3.8 65 4040 0.255 2.1 15 1208
Fin. Indiv. Stocks 0.112 49.8 48 3782 0.174 7.0 130 5582 0.247 3.9 50 2972 0.278 2.2 11 756
Crisis Sample 10 Days < TTM < 90 Days
S&P 500 1.120 61.7 1369 14797 2.663 9.4 2652 18992 2.974 4.5 871 14305 3.033 2.4 120 9284
All Sector SPDRs 0.087 59.4 667 8801 0.130 11.8 2849 20540 0.226 6.9 963 12846 0.388 4.8 72 3724
Financial SPDR 0.042 24.7 4422 52042 0.054 6.5 12983 88367 0.107 4.4 4336 56684 0.206 3.7 376 19916
Indiv. Stocks 0.108 55.5 344 5590 0.153 7.9 1170 9400 0.244 4.5 529 6857 0.481 2.9 87 2404
Fin. Indiv. Stocks 0.126 56.2 296 4390 0.181 8.1 1041 8047 0.288 4.6 452 5741 0.516 3.0 83 2435
90 Days < TTM < 180 Days
S&P 500 1.723 35.2 568 16641 3.003 6.2 1147 18511 3.179 2.8 212 12697 3.255 1.3 25 7625
All Sector SPDRs 0.112 31.1 209 4218 0.184 8.1 527 8681 0.286 4.9 162 5310 0.407 3.6 17 1598
Financial SPDR 0.055 18.7 1421 24285 0.079 5.3 3012 49466 0.159 4.0 1008 28769 0.227 3.0 129 8338
Indiv. Stocks 0.133 38.2 119 4640 0.214 5.5 339 7705 0.318 3.2 115 4908 0.492 2.2 15 1593
Fin. Indiv. Stocks 0.154 37.9 106 3405 0.253 5.6 301 6235 0.376 3.3 94 4085 0.536 2.2 16 1637
180 Days < TTM< 365 Days
S&P 500 2.402 22.3 272 12355 3.409 4.7 507 13293 3.538 2.1 60 7814 3.593 1.1 8 5226
All Sector SPDRs 0.177 22.1 57 1693 0.300 7.8 169 3428 0.410 4.8 50 3257 0.474 3.3 44 1818
Financial SPDR 0.057 12.9 238 7318 0.089 4.5 1049 19391 0.170 3.5 300 13661 0.219 2.4 121 6042
Indiv. Stocks 0.186 30.4 69 2713 0.294 5.5 173 5372 0.423 3.1 55 3653 0.623 2.2 9 1269
Fin. Indiv. Stocks 0.208 30.6 54 1984 0.338 5.8 162 4654 0.474 3.3 47 3529 0.630 2.3 9 1459

Note: Value-weighted liquidity statistics for

individual equity and sector ETF options.
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