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A Additional Tables and Figures

Figure A1: Additional Screenshots

(a) Subpage with Rebate Code in Group B.1, B.2a and B.2b

(b) Checkout Page in Group A: Automatic Redemption
Notes: Panel a) is the subpage showing the rebate code in experimental groups B.1, B2.a, and B2.b. Panel b) is
the checkout page in group A, in which the rebate code is automatically applied to the purchase value.



Table A1: Summary Table

Variable A
10%, automatic

B.1
10%, w/o reminder

B.2a
10%, w/ reminder

B.2b
10%, w/ reminder
+ announcement

C.1
15%, w/o reminder

C.2a
15%, w/ reminder

C.2b
15%, w/ reminder
+ announcement

D
Control

Desktop user (Yes=1) 0.351 0.351 0.351 0.352 0.350 0.352 0.349 0.353
(0.477) (0.477) (0.477) (0.478) (0.477) (0.477) (0.477) (0.478)

Mobile phone user (Yes=1) 0.563 0.564 0.562 0.563 0.564 0.562 0.566 0.563
(0.496) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496) (0.496)

Tablet user (Yes=1) 0.086 0.086 0.087 0.085 0.085 0.086 0.085 0.085
(0.281) (0.280) (0.282) (0.279) (0.279) (0.280) (0.278) (0.278)

Number of sessions 1.336 1.338 1.337 1.337 1.354 1.344 1.342 1.332
(1.123) (1.128) (1.109) (1.084) (1.175) (1.106) (1.101) (1.077)

Made purchase (Yes=1) 0.022 0.021 0.022 0.021 0.023 0.024 0.024 0.018
(0.146) (0.143) (0.147) (0.144) (0.149) (0.153) (0.152) (0.132)

More than one purchase (Yes=1) 1.041 1.024 1.059 1.032 1.027 1.027 1.024 1.025
(0.288) (0.157) (0.460) (0.213) (0.182) (0.176) (0.175) (0.179)

Redeemed rebate (Yes=1) 0.880 0.526 0.630 0.681 0.570 0.692 0.725 0.000
(0.325) (0.499) (0.483) (0.466) (0.495) (0.462) (0.447) (0.000)

N 76,243 76,401 75,676 76,347 75,884 76,774 76,337 75,806

Note: This table presents the mean of observable variables in different treatment conditions. Standard deviations are reported in parentheses.



B Mathematical Appendix

B.1 Proof of Proposition 1

The probability of buying at the store can be written as

B(s, θ̂, ĉ) =

∫ s−ĉ ∫ θ̂(s−ĉ)+(1−θ̂)κ
f(ε|κ)dεh(κ)dκ+

∫
s−ĉ

∫ κ

f(ε|κ)dεh(κ)dκ. (1)

For convenience, letQ(s, θ̂, ĉ, κ) =
∫ θ̂(s−ĉ)+(1−θ̂)κ

f(ε|κ)dεh(κ) andM(κ) =
∫ κ

f(ε|κ)dεh(κ).
Then,

∂

∂s
B(s, θ̂, ĉ) = Q(s, θ̂, ĉ, s− ĉ) +

∫ s−ĉ ∂Q(s, θ̂, ĉ, κ)

∂s
dκ−M(s− ĉ)

= Q(s, θ̂, ĉ, s− ĉ)−M(s− ĉ)︸ ︷︷ ︸
=0

+

∫ s−ĉ ∂Q(s, θ̂, ĉ, κ)

∂s
dκ

=

∫ s−ĉ ∂Q(s, θ̂, ĉ, κ)

∂s
dκ

= θ̂

∫ s−ĉ
f(θ̂(s− ĉ) + (1− θ̂)κ|κ)h(κ)dκ

≈ θ̂

∫ s−ĉ
f(s− ĉ|κ)h(κ)dκ,

which implies

θ̂ ≈
∂
∂s
B(s, θ̂, ĉ)

∂
∂s
B(s, 1, ĉ)

. (2)

The approximation requires that f(ε|κ) is roughly constant on [θ̂(s− ĉ) + (1− θ̂)κ, s− ĉ] for
all κ.

Next, I derive sufficient statistics for perceived hassle costs. To a first-order approximation,

∆ĉB(s, θ̂, ĉ) ≈ ∆ĉ
∂

∂ĉ
B(s, θ̂, ĉ).



If the treatment fully eliminates hassle costs, then ∆ĉ = 0− ĉ, and to first order:

ĉ ≈ −∆ĉB(s, θ̂, ĉ)
∂
∂ĉ
B(s, θ̂, ĉ)

(3)

=
∆ĉB(s, θ̂, ĉ)
∂
∂s
B(s, θ̂, ĉ)

. (4)

To go from the first to the second line, I have used the fact that

∂

∂ĉ
B(s, θ̂, ĉ) = Q(s, θ̂, ĉ, s− ĉ) +

∫ s−ĉ ∂Q(s, θ̂, ĉ, κ)

∂ĉ
dκ−M(s− ĉ)

= − ∂

∂s
B(s, θ̂, ĉ).

This proves the first part of the proposition. To derive the sufficient statistics for the true
redemption frictions, recall that the unconditional redemption probability is given by

R(s, θ, c) = θ

∫ s−c
dH(κ). (5)

It immediately follows that

θ =
R(s, θ, c)

R(s, 1, c)
. (6)

An alternative way to identify θ relies on a comparison of redemption elasticities with and
without inattention. Note that a very small change in the rebate size changes the redemption
probability by

∂R(s, θ, c)

∂s
= θh(s− c),

which implies that

θ =
∂R(s,θ,c)

∂s
∂R(s,1,c)

∂s

. (7)



Hassle costs can be approximated to first order by

c ≈ −∆cR(s, θ, c)
∂R(s,θ,c)

∂c

(8)

=
∆cR(s, θ, c)

∂R(s,θ,c)
∂s

, (9)

where I have used the fact that

∂R(s, θ, c)

∂c
= −θh(s− c)

= −∂R(s, θ, c)

∂s
.

Recall that consumers are sophisticated if and only if θ̂ = θ and ĉ = c. Comparing equation
2 with equation 6, and equation 4 with equation 9, implies consumers are sophisticated if and
only if

∂
∂s
B(s, θ̂, ĉ)

∂
∂s
B(s, 1, ĉ)

≈ R(s, θ, c)

R(s, 1, c)
(10)

and

∆ĉB(s, 1, ĉ)
∂
∂r
B(s, 1, ĉ)

≈ ∆cR(s, 1, c)
∂
∂s
R(s, 1, c)

. (11)

This completes the proof.

B.2 Identifying the Subjective Redemption Probability from Demand
Responses to Rebates and Price Reductions

An intuitive approach to identifying the subjective redemption probability might be comparing
the demand response to a rebate with the demand response to a price reduction. As explained
in the main text, the intuition would be that a 2 USD rebate with R(s, θ̂, ĉ) = 0.5 should
increase demand by the same amount as a 1 USD reduction in price. In my empirical setting,
we could then simply compare the demand response to the typical rebate with the demand



response to the automatically applied discount. In the notation of the model, we simply invert
the relationship above and approximate R(s, θ̂, ĉ) by the ratio of demand responses:

R(s, θ̂, ĉ) =
∂B(s,θ̂,ĉ)

∂s
∂B(s,1,0)

∂s

. (12)

However, as can be verified below, this identification strategy relies on an implicit and
potentially strong assumption about the distribution of marginal consumers.

Formally, the claim is that the following relationship can be used to identify R(s, θ̂, ĉ):

∂B(s, 1, 0)

∂s
×R(s, θ̂, ĉ) =

∂B(s, θ̂, ĉ)

∂s
(13)

⇐⇒
∫ s

f(s|κ)h(κ)dκ× θ̂
∫ s−ĉ

h(κ)dκ = θ̂

∫ s−ĉ
f(s− ĉ|κ)h(κ)dκ (14)

⇐⇒ f(s|κ ≤ s)Pr(κ ≤ s)︸ ︷︷ ︸
marginal consumers intending

to redeem in absence of frictions

R(s, θ̂, ĉ) = θ̂f(s− ĉ|κ ≤ s− ĉ)Pr(κ ≤ s− ĉ)︸ ︷︷ ︸
marginal consumers intending

to redeem in presence of frictions

(15)

Thus, this equality only holds under a special distributional property, which depends both
on ε and κ. The left-hand side consists of two parts. The first part is the density of consumers
who think they will redeem the rebate in the absence of redemption frictions (θ̂ = 1, ĉ = 0)
and who, at the same time, are at the margin to the automatically applied rebate, i.e., have
ε = s. The second part is simply the subjective redemption probability. The right-hand side is
the density of consumers who both think they redeem the rebate in the presence of redemption
frictions and are marginal to this rebate. Thus, the equation says that the density of marginal
consumers thinking they redeem in the absence of redemption frictions, weighted by the
subjective redemption probability, must equal the density of marginal consumers thinking
they redeem in the presence of redemption frictions. The subjective redemption probability
can only be identified if the condition in equation 15 holds. The identification strategy in
Proposition 1 does not require this additional assumption and is, therefore, more general.



B.3 Model with Heterogeneity in Redemption Frictions

In the main part of the paper, behavioral frictions are homogeneous. In this section, I introduce
heterogeneity in perceived and true inattention and hassle costs, respectively. I show that,
when they are independent of the taste parameters, perceived and true inattention are still
identified by the same aggregate demand elasticities in Proposition 1. By contrast, hassle costs
are only identified if they are roughly homogeneous.

It is important to highlight that heterogeneity only affects the identification of the structural
parameters, not the reduced-form test of sophistication explained in the main part of the paper.

To introduce heterogeneity in inattention, let Lθ̂(θ̂) and Pθ(θ) denote the marginal distribu-
tions of perceived and true inattention, respectively. Assume that both distributions are smooth
and that perceived and true inattention are independent of the idiosyncratic taste parameters,
κ and ε. B(θ̂) and R(θ) are now the buying and redemption probability for a given realization
of θ̂ and θ, respectively.

The effect of a small change in the rebate value on aggregate demand is therefore

E

[
∂B(s, θ̂, ĉ)

∂s

]
=

∫
∂

∂s
B(s, θ̂, ĉ)dLθ̂(θ̂). (16)

Using the same derivation to arrive at equation 2, it follows that the expectation of perceived
inattention can be identified by aggregate demand elasticities:

E[θ̂] ≈
E
[
∂
∂s
B(s, θ̂, ĉ)

]
∂
∂s
B(s, 1, ĉ)

. (17)

Similarly, using equation 6, it immediately follows that the expectation of true inattention
is identified by aggregate redemption probabilities:

E [θ] =
E[R(s, θ, c)]

R(s, 1, c)
. (18)

These results show that perceived and true inattention are identified by the same aggregate
buying and redemption behavior as in Proposition 1.

Next, consider the case in which hassle costs are heterogeneous. Let Lĉ(ĉ) and Pc(c)



denote the marginal distribution of ĉ and c, respectively, and assume that both distributions
are smooth and independent to the idiosyncratic taste parameters. The aggregate demand
response to a change in perceived hassle costs is approximated to first order by

E
[
∆ĉB(s, θ̂, ĉ)

]
≈
∫

∆ĉ
∂

∂ĉ
B(s, θ̂, ĉ)dPĉ(ĉ), (19)

which is generally not equal to E[∆ĉ]E[ ∂
∂ĉ
B(s, θ̂, ĉ)]. The demand response for consumer

types with a given ĉ depends on both the type-specific change in their perceived hassle costs and
the type-specific buying elasticity. Since both ∆ĉ and ∂

∂ĉ
B(s, θ̂, ĉ) vary with ĉ, the expectation

of the product is not equal to the product of the individual expectations. Thus, we cannot
re-arrange terms and use the same identification strategy as in equation 4. An analogous
argument can be made when true hassle costs are heterogeneous by taking the expectation of
both sides of equation 9: changes in aggregate redemption probabilities are not sufficient to
identify expected hassle costs.

In sum, the structural identification strategy of perceived and true inattention is robust
to the introduction of heterogeneity, but hassle costs are only identified structurally if they
are approximately homogeneous. These results hold as long as redemption frictions are
independent of the idiosyncratic taste parameters, i.e., of preferences.

B.4 Model with Ad Valorem Rebate

Proposition 1 was derived using a lump sum rebate of value s, whereas the experimental design
uses an ad valorem rebate. In this section, I show that the same predictions from Proposition 1
can be derived with an ad valorem rebate. The difference between the two types of rebates is
that it is more involved to model an ad valorem rebate because the rebate value depends on
the endogenous purchase value of the consumer.

Let t denote an ad valorem rebate. The value of the rebate is given by tp′x where
p = (p1, p2, ..., pJ) is the vector of prices and x = (x1, x2, ..., xJ) the consumption vector.
Unlike a lump-sum rebate, an ad valorem rebate changes the optimal consumption vector
because it effectively changes the price of each good. Therefore, we need to model a third
margin where the consumption vector is a function of the rebate.

Let xr be the chosen consumption vector given redemption choices r. Given the consumer



buys at the store and is attentive, she chooses

xr = arg max
x

{v(x)− p′x + r (tp′x− ĉ)}

If she is not attentive, she chooses the same consumption vector as if she was attentive but
decided not to redeem the rebate, i.e. x0. The first-order conditions are

∂v

∂xj
− pj + rtpj = 0

for every good j.
Given the consumer buys at the store and is attentive, she chooses r = 1 if and only if

v(x1)− p′x1 + tp′x1 − ĉ ≥ v(x0)− p′x0 + κ

⇔ u(t, ĉ) ≥ κ

with u(t, ĉ) = v(x1)− p′x1 + tp′x1 − ĉ− (v(x0)− p′x0).
She chooses to buy at the store if and only if

θ̂ {r (v(x1)− p′x1 + tp′x1 − ĉ) + (1− r) (v(x0)− p′x0 + κ)}+
(

1− θ̂
)
{v(x0)− p′x0 + κ} ≥ ε.

For convenience, letw1(t, θ̂, ĉ, κ) = θ̂ {(v(x1)− p′x1 + tp′x1 − ĉ)}+
(

1− θ̂
)
{v(x0)− p′x0 + κ}

and w0(κ) = v(x0)− p′x0 + κ. The probability to buy at the store can be expressed by

B(t, θ̂, ĉ) =

∫ u(t,ĉ) ∫ w1(t,θ̂,ĉ,κ)

f(ε|κ)dεh(κ)dκ+

∫
u(t,ĉ)

∫ w0(κ)

f(ε|κ)dεh(κ)dκ.

Let Q(t, θ̂, ĉ, κ) =
∫ w1(t,θ̂,ĉ,κ) f(ε|κ)dεh(κ) and M(κ) =

∫ w0(κ) f(ε|κ)dεh(κ). The effect of
a very small change in the rebate value on the buying probability is given by

∂

∂t
B(t, θ̂, ĉ) =

∂u

∂t
Q(t, θ̂, ĉ, u) +

∫ u ∂Q(t, θ̂, ĉ, κ)

∂t
dκ− ∂u

∂t
M(u)

=
∂u

∂t

(
Q(t, θ̂, ĉ, u)−M(u)

)
+

∫ u ∂Q(t, θ̂, ĉ, κ)

∂t
dκ.



Note that

w1(t, θ̂, ĉ, u) = θ̂ {(v(x1)− p′x1 + tp′x1 − ĉ)}+
(

1− θ̂
)
{v(x0)− p′x0 + u}

= θ̂ {(v(x1)− p′x1 + tp′x1 − ĉ)}+
(

1− θ̂
)
{[v(x1)− p′x1 + tp′x1 − ĉ]}

= v(x1)− p′x1 + tp′x1 − ĉ

= v(x0)− p′x0 + u

= w0(u).

Therefore, Q(t, θ̂, ĉ, u)−M(u) = 0 and

∂

∂t
B(t, θ̂, ĉ) =

∫ u ∂Q(t, θ̂, ĉ, κ)

∂t
dκ

=

∫ u ∂w1(t, θ̂, ĉ, κ)

∂t
f(w1(t, θ̂, ĉ, κ)|κ)h(κ)dκ

=

∫ u

θ̂

(
(vx1 − p′)

∂x1

∂t
+ (tp′

∂x1

∂t
+ p′x1)

)
f(w1(t, θ̂, ĉ, κ)|κ)h(κ)dκ

= θ̂p′x1

∫ u

f(w1(t, θ̂, ĉ, κ)|κ)h(κ)dκ.

If f is roughly constant on the interval [w1(t, θ̂, ĉ, κ), w1(t, 1, ĉ, κ)], then

θ̂ ≈
∂
∂t
B(t, θ̂, ĉ)

∂
∂t
B(t, 1, ĉ)

.

To derive the sufficient statistics for perceived hassle costs, first note that a small change
in perceived hassle costs changes the buying probability by

∂

∂ĉ
B =

∂u

∂ĉ
Q(t, θ̂, ĉ, u(·)) +

∫ u ∂Q(t, θ̂, ĉ, κ)

∂ĉ
dκ− ∂u

∂ĉ
M(u(·))

= −θ̂
∫ u

f(w1|κ)h(κ)dκ.

This implies that

∂

∂t
B(t, θ̂, ĉ) = − ∂

∂ĉ
B(t, θ̂, ĉ)p′x1.



To a first-order approximation,

∆ĉB(t, θ̂, ĉ) ≈ ∂

∂ĉ
B(t, θ̂, ĉ)∆ĉ

∆ĉ ≈ ∆ĉB(t, θ̂, ĉ)
∂B(t,θ̂,ĉ)

∂ĉ

.

If ∆ĉ = 0− ĉ, then:

ĉ ≈ −∆ĉB(t, θ̂, ĉ)
∂B(t,θ̂,ĉ)

∂ĉ

=
∆ĉB(t, θ̂, ĉ)

∂B(t,θ̂,ĉ)
∂t

p′x1.

As we can see, both θ̂ and ĉ are identified in the same way as in Proposition 1 but s is
replaced by tp′x1.

Next, I derive the sufficient statistics for the true redemption frictions. The redemption
probability is given by:

R(t, θ, c) = θ

∫ u

dH(κ)

such that inattention is identified by

θ =
R(t, θ, c)

R(t, 1, c)
.

To identify true hassle costs, first note that

∂R(t, θ, c)

∂c
= −θh(u)

= −∂R(t, θ, c)

∂t
(p′x1)−1



which implies that, to first order,

∆cR(t, θ, c) ≈ ∂R(t, θ, c)

∂c
∆c

= −∂R(t, θ, c)

∂t
(p′x1)

−1∆c

⇔ c ≈ ∆cR(t, θ, c)
∂R(t,θ,c)

∂t

p′x1

when ∆c = −c.

B.5 GMM Estimation

Denote the buying probability in the control group by βD. Let the treatment effect on the
buying probability by treatment t ∈ {A,B.1, B.2, C.1, C.2} be denoted by βt. Perceived
inattention is approximated by comparing demand responses to a rebate with and without a
reminder. This is can be identified by θ̂ ≈ βC.1−βB.1

βC.2−βB.2
. In addition, we may also compare how

a rebate with and without a reminder increases demand relative to control. With two rebate
values, this yields two additional moments, i.e., θ̂ ≈ βB.1

βB.2
and θ̂ ≈ βC.1

βC.2
.

Perceived hassle costs are approximated by

ĉ ≈ βA − βB.2
∂
∂s
B(s, 1, ĉ)

. (20)

A linear approximation of the demand derivative is given by ∂
∂s
B(s, 1, ĉ) ≈ βB.2. Assum-

ing linearity, we can thus re-write βA in terms of structural parameters:

βA = ĉ
∂B(s, 1, ĉ)

∂s
+ βB2 = (ĉ+ ∆s1)

∂B(s, 1, ĉ)

∂s
. (21)

These reformulation results in the following moment conditions for demand:



E

[
Ii

(
Buyi−βD−(ĉ+∆s1)

∂B(s, 1, ĉ)

∂s
×Ai−

∂B(s, 1, ĉ)

∂s
∆s1θ̂×B.1i−

∂B(s, 1, ĉ)

∂s
∆s1B.2i

+
∂B(s, 1, ĉ)

∂s
∆s2θ̂ × C.1i −

∂B(s, 1, ĉ)

∂s
∆s2C.2i

)]
= 0, (22)

where Ii = (Ai, B.1i, B.2i, C.1i, C.2i, Di) is the 6×1 vector of instruments indicating the
experimental group of subject i. The monetary changes in the rebate value are ∆s1 = 9.60EUR
and ∆s2 = 14.40EUR. They are obtained by multiplying the rebate values by the median
shopping basket value in group A, which is 96 EUR.1 Since four parameters need to be
estimated, the model is over-identified.

Next, I derive the identification of true redemption frictions. True hassle costs are identified
by

c =
∆cR(s, 1, c)

∂R(s,1,c)
∂s

=
−τB2

∂R(s,1,c)
∂s

(23)

⇔ τB2 = −c∂R(s, 1, c)

∂s
. (24)

(25)

We can insert this into the expression for τC2:

τC2 = τB2 + ∆s
∂R(1, c, s)

∂s

=
∂R(s, 1, c)

∂s
(∆s− c)

True inattention can be identified in multiple ways. The first identification strategy relies
on the comparison between redemption probabilities with and without inattention:

1See Appendix B.4 for a formal proof that it is possible to translate an ad-valorem rebate to a lump-sum
rebate in this way. Instead of the mean, I use the median to adjust for outliers with very large shopping basket
values.



θ =
R(s, θ, c)

R(s, 1, c)
≈ τB1 + τA
τA + τB2

⇔ τB1 ≈ θ(τA + τB2)− τA

= θ(τA − c
∂R(s, 1, c)

∂s
)− τA.

A second identification strategy of inattention relies on the comparison of demand deriva-
tives:

θ =
∂
∂s
R(s, θ, c)

∂
∂s
R(s, 1, c).

We can insert this condition into the expression for τC1:

τC1 = τB1 + ∆s
∂R(s, θ, c)

∂s

= τB1 + θ∆s
∂R(s, 1, c)

∂s

= θ(τA − c
∂R(s, 1, c)

∂s
)− τA + θ∆s

∂R(s, 1, c)

∂s

= θ

[
τA +

∂R(s, 1, c)

∂s
(∆s− c)

]
− τA,

where in the last line, I have substituted for τB1.
These reforumlations yield the following five moment conditions:

E

[
Ji

(
Redeemi − τA −

(
θ(τA − c

∂R(s, 1, c)

∂s
)− τA

)
×B.1i + c

∂R(s, 1, c)

∂s
×B.2i

−
(
θ

[
τA +

∂R(s, 1, c)

∂s
(∆s− c)

]
− τA

)
×C.1i−

(
∂R(s, 1, c)

∂s
(∆s− c)

)
×C.2i

)]
= 0,

(26)

with Ji = (A,B.1, B.2, C.1, C.2i) denoting the vector of instruments, excluding the control



group. Here, ∆s = 4.80EUR is the difference between the 10%- and 15%-rebate. With five
moments and four parameters, the model is overidentified and I use a two-step GMM estimator
to find the optimal weight matrix.

C Heterogeneity Across Basket Value Distribution

In this Section, I study how redemption behavior varies with basket value. Since the rebates
used in the experiment are ad valorem, how much a consumer receives as a discount depends
on the total value of the purchased products. For example, redeeming a 10% rebate translates
to a 10 EUR reduction in costs for consumers who buy 100 EUR worth of goods but only to 1
EUR for those whose basket value is 10 EUR. It is, therefore, interesting to know whether
these two consumer types would respond differently to the rebate, as they receive largely
different benefits from it.

In Figure C1, I plot differences in redemption rates between treatment groups across
quintiles of the spending distribution. It should be noted that the results are to be interpreted
with caution, however, because a promotion may simultaneously affect the value of the
shopping basket and the probability of redemption. In this case, differences in redemption
behavior associated with value of the basket may not have a causal interpretation. However,
causality does not require that the promotions do not affect spending. It only requires that the
relative position of each consumer in the spending distribution is the same between treatment
and control.

With these limitations in mind, Figure C1 reveals interesting differences in redemption
between low- and high-spending consumers that are consistent with a causal interpretation. In
particular, redemption rates are roughly increasing in basket value. For the standard rebate
(B.1), redemption is 41 percentage points lower compared to group A in the first quintile. The
difference drops to around 38 percentage points for the second and third quintiles and even to
27 percentage points for the fourth quintile. For the last quintile, this pattern reverses as the
redemption difference increases again to 34 percentage points. The same trend can be broadly
observed for the other treatment groups: redemption increases in basket value but drops at
the right tail of the value distribution. One potential explanation is that wealth increases
disproportionally more than basket value as we move from the fourth to the fifth quintile. In
this case, the benefits of a larger rebate value due to higher basket value are partially offset by



Figure C1: Redemption Probabilities across Basket Value Distribution

Note: This figure shows differences in redemption rates relative to group A (automatic redemption) across
treatments for each quintile of the spending distribution. Darker shades of blue indicate higher spending.
The error bars indicate 90% confidence intervals.

higher wealth. Redemption rates may then reverse as larger wealth decreases the incentive
to pay attention to the rebate and go through the hassle of redemption. This interpretation is
consistent with the German wealth distribution, where the top decile owns around 60% of
total wealth.2

Differences across treatment groups suggest a similar pattern as our main results in Figure
4. Redemption rates increase with the reminder and the announcement, as well as with the
rebate size.

2See Deutsche Bundesbank (2023), https://www.wsi.de/en/how-is-wealth-distributed-in-germany-14401.htm.



D Browsing Behavior

To further understand consumer behavior, I obtain detailed firm data that tracks the browsing
behavior of website visitors.3 Column 1 of Table D1 reports the probability that a consumer
starts browsing on the website, in percent relative to control.4 If the firm offers a standard
rebate, the probability to start browsing falls by 1.2% (p < 0.05) relative to control for the
10%-promotion. This negative effect of the rebate is almost fully eliminated when the firm
offers a reminder. The fact that the reminder has a positive effect during the first minute of the
website visit illustrates that some subjects make it to the checkout page quickly and see the
reminder. If the reminder is immediately announced, the probability to stay on the website for
more than 1 minute increases further by 1.08+1.96-1.22= 1.82% relative to control. Increasing
the rebate value to 15% mitigates the negative effect of the standard rebate on the probability
to start browsing. The announced reminder increases the probability to start browsing by 1.9%
(p < 0.01). This provides evidence that some consumers anticipate their inattention at the very
outset and select into the shop when their inattention is exogenously reduced by a reminder.

Column 2 shows differences in the probability to visit the checkout page at least once.
The probability is 15% (p < 0.01) higher for the automatically-applied discount relative to
control. For the equivalent rebate it is slightly lower, around 13.6%, and does not increase
with the unannounced reminder. The latter result is to be expected since there is no difference
between group B.1 and B.2a before they visit the checkout page. If the rebate is announced at
the outset, the probability to visit checkout increases by 5% (p > 0.1) and 9% (p < 0.01) for
the 10%- and 15% rebates, respectively.

In column 3, I report the number of subsequent visits on the checkout page conditional
on having visited the checkout page at least once.5 Importantly, the announcement of the
reminder has a negative sign, both for the 10%- and 15%-rebate, and is statistically significant
for the latter (p < 0.05). Subsequent visits are still higher with the announced reminder than in
the standard rebate group (by 6.7%-1.9%=4.8% and 8.6%-4.4%=4.2%, respectively), but the
increase is lower than if the reminder comes as a surprise during checkout. Thus, subjects that

3In the data, I observe for each link that a subject clicked on the following: a time stamp that includes the
date, the hour, and the minute but not seconds. The time a subject spends on a link is calculated as the difference
in minutes between the moment she clicks on that link and the moment she clicks on the next link.

4The outcome variable is a dummy equal to one if the subject either stays on the website for more than 1
minute or clicks on more than one weblink.

5These differences are not necessarily causal and should be understood as suggestive evidence to explore
mechanisms underlying the main results.



receive the announcement (B.2b) already anticipate the reminder when visiting checkout, such
that its impact is attenuated. Conversely, subjects that are not informed at the outset (B.2a)
learn about the reminder during the first visit on the checkout page and, as a result, become
more likely to continue shopping and redeem the promotion.6 This implies that although the
first point of contact with the reminder is different between B.2a and B.2b, in both groups
marginal consumers see the reminder and anticipate that they will be attentive during the final
checkout when they click on the “buy now”-button. This explains why the announcement has
no incremental positive effect on the buying probability (recall Table 1).

Finally, column 4 examines how the browsing time differs among consumers that managed
to redeem the rebate, relative to group A. Redeemers spend 13% more time to finish their
purchase if they need to redeem themselves (p < 0.01). Redeemers who receive a reminder
or announcement do not spend significantly less time to finish their purchase. This provides
suggestive evidence that, as intended, the reminder did not change hassle costs but only
inattention.

In sum, the browsing data provides evidence that i) consumers anticipate their inattention
and are more likely to start browsing if a reminder is offered, ii) consumers who do not receive
the announcement learn about the reminder during the first visit to the shopping basket, iii)
the reminder changes inattention but leaves hassle costs unaffected.

6Note further that subsequent checkout visits are positively associated with B.1 but not A because in B.1
subjects need to move back and forth between checkout and the rebate page in order to redeem the rebate. If an
unannounced reminder is shown at checkout, subsequent checkout visits increase further by 6.7%, highlighting
that otherwise inattentive subjects now also go back to the rebate page in order to redeem the promotion. The
same behavior is replicated for the 15%-promotion.



Table D1: Browsing Behavior

(1) (2) (3) (4)

Pr(Start browsing) Pr(visit checkout)
# of subsequent

checkout visits after
1st checkout visit

Duration among
redeemers

A: 10%, discount 0.8368 14.8971 0.1286
(0.5349) (2.3639) (1.9602)

B: 10%, rebate -1.2174 13.5619 5.2779 12.8482
(0.5333) (2.3535) (1.9667) (4.4816)

× reminder 1.0842 0.7333 6.6844 -3.3829
(0.5335) (2.4292) (2.0331) (4.8465)

× announcement 1.9615 4.5966 -1.9000 -3.7628
(0.5352) (2.4580) (2.0800) (4.3904)

C: 15%, rebate -0.0892 27.3394 8.6167 13.1690
(0.5335) (2.4225) (1.9875) (4.1556)

× reminder 0.3915 -2.0683 8.6122 1.5184
(0.5309) (2.5360) (2.0164) (4.4580)

× announcement 1.8849 9.0972 -4.3671 -5.7717
(0.5317) (2.5694) (2.0264) (4.2163)

N 814,730 814,730 35,257 7,862

Note: This table reports different measures of browsing behavior across treatments. All coefficients are in
percent relative to control. Column 1 reports the probability to start browsing, which is defined as either
being on the website for more than 1 minute or visiting more than one page on the website. Column 2 reports
the probability to visit the checkout page, which is also the shopping basket. The outcome variable in column
3 is the number of subsequent visits on the checkout page conditional on having visited checkout at least once.
Column 4 shows differences in the time spent to finish the purchase among buyers that redeemed the rebate.



E Customer Loyalty

I estimate the effects of the treatment on the probability of buying more than once during the
experimental period. The outcome variable is a dummy equal to 1 if the consumer purchased
twice or more and 0 otherwise. In the regression, the constant represents the mean of group
A that received the automatically applied discount. All treatment coefficients are therefore
interpreted relative to an automatically-applied discount.

Table E1 reports the results. In the group with the automatically applied discount, 1.2% of
all buyers make a second purchase during the experimental period. All other coefficients are
statistically insignificant. There is no clear indication that rebates have a negative effect on
customer loyalty relative to discounts.

However, some effect sizes are relatively large. The standard 10%-rebate (B.1) has a
negative coefficient suggesting that the probability of buying again is 0.47 percentage points
lower for a rebate than for an equivalent discount. Interestingly, the coefficient for the reminder
is positive and almost as large in absolute size as the standard rebate. This could suggest
that the negative effect of the rebate on customer loyalty is partially offset if the firm offers a
reminder. The result would be consistent with the interpretation that consumers are aware of
their inattention but remain mostly naive about hassle costs even after this naiveté has been
exploited.

The directional effects are the same for the 15%-rebate but different in magnitude: the
negative effect of the rebate is smaller, while the positive effect of the reminder is also smaller.



Table E1: Probability to Buy More Than Once

(1)
Probability to buy more than once (in %)

B: 10%, rebate -0.4728
(0.3436)

× reminder 0.3348
(0.3299)

× announcement 0.0406
(0.3631)

C: 15%, rebate -0.2850
(0.3547)

× reminder 0.2792
(0.3439)

× announcement -0.1554
(0.3498)

D: control -0.1170
(0.3909)

Constant (A: 10%, automatic) 1.1816∗∗∗
(0.2696)

N 12,895

Note: This table reports average treatment effects on the probability of purchasing more than once. The
regression constant is the mean of group A. Robust standard errors are in parentheses.



F Sample Selection Model

A large literature in econometrics has developed techniques to address bias resulting from
sample selection building on the influential work in Heckman (1976) and Heckman (1979). A
consensus in the literature is that convincing identification in these models requires a credible
exclusion restriction: a variable that does not directly affect the outcome of interest but affects
whether subjects select into the sample.

The selection model uses regional and temporal variation in internet outages as an exclusion
restriction. I use publicly available data on internet outages from Heise Online, a platform
that documents user complaints about internet outages received by phone across the country.
The dataset includes, among other variables, the area code and the duration of the outage. For
the experimental observations, I only observe the city of each website visitor and not the area
code. To merge internet outages with the dataset from the experiment, I use geo data from
OpenGeoDB to assign each area code to a respective city. This approach allows me to assign
internet outages collected from Heise Online to website visitors in the experiment.

One could use various approaches to construct a dummy variable that indicates whether a
city experienced a major internet outage. In constructing the variable, I closely follow Müller
and Schwarz (2020), who have used outages as exogenous variation in a different setting.
Specifically, they study the effect of social media utilization on hate crime and use internet
outages as exogenous variation for access to social media. Following their approach, I count
the total number of internet outages that occurred in the city of the website visitor. Because
larger cities will have more internet outages mechanically, the authors normalize the number
of internet outages by the number of inhabitants of each city, and I follow their approach. I
then create a dummy variable that indicates whether the subject’s area experienced a major
internet outage. I define major internet outages as the 90th percentile of total internet outages
normalized by the number of inhabitants. Because internet outages may also affect whether
subjects even appear in my dataset (another level of sample selection), I only count internet
outages that happened after the subject’s first visit to the website during the experimental
period. To avoid that subjects who visit at a later point in time have a lower number of outages
mechanically, I count internet outages for each subject seven days after their first visit. Thus,
even for subjects whose first visit was during the last day of the experiment, the following
seven days are accounted for in terms of outages.

Using this exclusion restriction, I estimate a selection model with normally distributed



residuals and a binary dependent variable for both the selection and outcome equation, as first
formulated by Van de Ven and Van Praag (1981). Monte Carlo simulations show that when
these distributional assumptions are violated, the model still performs well in many cases as
long as a valid exclusion restriction exists (Cook and Siddiqui 2020).

The sample selection model follows the standard setup introduced by Van de Ven and
Van Praag (1981) when the dependent variables of both the selection and the outcome equation
are binary. With some abuse of notation, I denote the buying decision of subject i by bi and
her rebate redemption choice by ri. The utility from buying at the shop is given by

ui = γZi + ιXi + ηi, (27)

where Xi is a vector of control variables, including a dummy for the device the subject
uses (desktop, tablet, or smartphone) and date fixed effects. The latent utility component
is denoted by ηi. The vector Zi includes an indicator for each treatment and the instrument
indicating whether the city of subject i experiences a major internet outage. In addition,
the vector includes interaction terms between the instrument and the average income of the
region from which the subject is visiting. Including interaction terms is important because it
reduces the degree of collinearity between the treatment regressors in the outcome equation
and the correction term. A high degree of collinearity is a well-known disadvantage of sample
selection models, which causes inflated standard errors. Collinearity is a particular limitation
in my application because all treatments need to appear in both the selection and outcome
equation. Allowing for the effect of internet outages to vary by income group adds a substantial
degree of flexibility and increases precision of the point estimates on the intensive margin.

Utility from rebate redemption equals

vi = ωTi + χXi + ζi, (28)

where ζi is the unobserved utility from rebate redemption and Xi includes the same control
variables as on the extensive margin.The vector Ti includes the treatment dummies and does
not include internet outages.



Subject i’s buying decision is given by

bi =

1 if ui > 0

0 otherwise .

Her redemption choice is determined by the intensive margin utility and only observed if
she buys:

ri =


1 if vi > 0 and bi = 1

0 if vi ≤ 0 and bi = 1

0 if bi = 0.

(29)

Selection arises when cov(η, ζ) 6= 0. I make the standard assumption that each error
term follows a standard normal distribution, η ∼ N(0, 1) and ζ ∼ N(0, 1), with correlation
between the residuals given by ρ = corr(η, ζ). Monte Carlo simulations show that when these
distributional assumptions are violated, the model still performs well in many cases, as long
as a valid exclusion restriction exists (Cook and Siddiqui 2020).

To estimate the parameters of interest, I maximize the well-known form of the log-
likelihood function that can be derived from the model above:

lnL =
N∑
i=1

{birilnΦ2(Tω, Zγ, ρ)+bi(1−ri)ln[Φ(Tω)−Φ2(Tω, Zγ; ρ)]+(1−bi)riln[Φ(Zγ)

− Φ2(Tω, Zγ; ρ)] + (1− bi)(1− ri)ln[1− Φ(Tω)− Φ(Zγ)− Φ2(Tω, Zγ; ρ)]}, (30)

where I denote the standard normal distribution by Φ and the joint distribution by Φ2. In
the estimation, I maximize the likelihood function in equation 30.7 If the correlation between
residuals is zero, this likelihood simply equals the sum of the likelihoods of two independent
probit models.

7To ensure I have found the global, instead of a local, maximum, I estimate the model for various given
values of the correlation between residuals, ρ, and then compare the log-likelihood values with the one when
ρ is estimated. This exercise confirms that the global maximum has a log-likelihood value of −63, 854 and a
correlation of residuals of around 0.4.



Given the structure of the model, the differences in redemption rates between experimental
conditions, that is, the coefficients in ω, have a causal interpretation.

Table F1: Effect of Internet Outages on Buying Probability

(1) (2)
Buying Probability ×100 Buying Probability ×100

Internet outage -0.1734∗∗∗ -0.1738∗∗∗
(0.0513) (0.0513)

A: 10%, discount 0.3970∗∗∗
(0.0736)

B: 10%, rebate 0.3054∗∗∗
(0.0721)

× reminder 0.1364∗
(0.0774)

× announcement -0.1056
(0.0779)

C: 15%, rebate 0.4847∗∗∗
(0.0740)

× reminder 0.1276
(0.0791)

× announcement -0.0248
(0.0798)

Constant 2.1990∗∗∗ 1.8031∗∗∗
(0.0211) (0.0499)

N 609,468 609,468

Note: This table reports average treatment effects from a linear probability model of internet outages and
treatment indicators on the buying probability. Column 1 only includes internet outages as a regressor, and
column 2 adds the experimental treatments. Robust standard errors are in parentheses.

Before estimating the selection model, I first analyze whether internet outages have a
significant effect on the buying probability. Table F1 provides results from a linear proba-
bility model of the buying decision on internet outages and the treatments. Column 1 only
includes the instrument, whereas column 2 adds the experimental treatments. Major internet
outages cause an economically large and highly statistically significant decrease in the buying
probability by 7.9%, or 0.17 percentage points. The addition of experimental treatments in
column 2 does not affect the coefficient of the instrument. This finding is reassuring because it



indicates the exclusion restriction is not correlated with the experimental treatments—a result
we expect due to random treatment assignment.

Treatment Effects on Redemption Corrected for Selection. Table F2 reports the main
estimation results. The log-likelihood value is –63,854 and corresponds to the global maximum,
as I show in the appendix. The correlation between residuals is 0.41, which would imply that
unobservables that increase the buying probability also increase the redemption probability.
Two independent linear probability models would then overestimate the redemption probability
because subjects with a systematically larger likelihood of redeeming have selected into the
subsample of buyers.

However, there is no indication of significant sample selection bias: the coefficient showing
Fisher’s Z-transformation of the correlation between residuals is not statistically significantly
different from zero. This implies that, given joint normality of residuals, the simple OLS
regression in equation 2 in the main text identifies the causal treatment effects on redemption.

The treatment coefficients are also similar to the ones of the two OLS models with in-
dependent residuals. The effect of hassle costs, as identified by B.2b, equals a reduction in
the redemption probability by 25 percentage points and is, therefore, the same as in the OLS
model. The (announced) reminder increases the redemption rate by 4 percentage points, i.e.,
less than in the model with independent residuals. Overall, the treatment coefficients are fairly
similar to the treatment effects estimated in the main part of the paper, indicating the degree
of selection bias is small if the model is correctly specified.



Table F2: Estimation Results from Sample Selection Model

Redemption Probability (in %)

B.1: 10%, w/o reminder -36.4649
(13.0971)

B.2a: 10%, w/ reminder -29.0568
(8.7967)

B.2b: 10%, w/ reminder+announce -24.9844
(6.6225)

C.1: 15%, w/o reminder -33.2969
(11.3087)

C.2a: 15%, w/ reminder -23.4082
(6.3906)

C.2b: 15%, w/ reminder+announce -20.3822
(5.1640)

ρ 0.4122
(0.2583)

Fisher’s Z-transformation 0.4383
(0.3111)

Log likelihood -63,854.278

N 533,662

Note: This table reports estimation results from the sample selection model in equation 30. Control group
subjects are excluded from the estimation because they cannot redeem by construction. The correlation
between intensive and extensive margin residuals is denoted by ρ. Fisher’s Z transformation is the inverse
hyperbolic tangent of ρ and asymptotically normally distributed. Standard errors are in parentheses.

G Endogenous outside option

This Appendix explains why the identification strategy in the main part of the paper is robust
to the possibility that consumers have endogenous outside options, e.g., a gift card. The crucial
distinction is that i) the choice of the outside option is endogenous while ii) the value of the
outside option is orthogonal to the treatments (by random assignment). As explained in the
main text, the identification strategy of the experimental design only requires ii) and is robust
to i). As long as the distribution of gift cards is identical across the two groups, the effect of
removing hassle from redeeming the rebate is identified.

Figure G1 provides a graphical illustration of this point by plotting a hypothetical distri-
bution of κ. For all values of κ that are below s − c, consumers in group B.2 redeem the



rebate. The redemption probability is equal to the blue-shaded area. If we eliminate hassle
costs, consumers with a gift card value above s − c but below s now decide to redeem the
rebate instead of the gift card. This increases the redemption rate by ∆cR, which is the area
shaded in red. The remaining consumers with a gift card value above s continue to use the
gift card, such that the redemption rate stays below 1. The change in rebate value that induces
the redemption rate in B.2 to increase by the red area is equal to −c.

We also know how consumers would respond to an increase in rebate value, i.e. ∂R(s,1,c)
∂s

,
from comparing B.1 with C.1 (or B.2 with C.2). For another example, consider a consumer
that comes to the shop with a gift card of 13% and is randomized into group B.1 in which
she is offered a 10% rebate. Assume further that she is fully attentive and faces no hassle
costs from finding and typing in the rebate code. Then, her only “hassle costs” of redeeming
the rebate is the value of not redeeming the gift card, i.e. 13% of basket value. She then
chooses to redeem the gift card as 13%>10%. If, instead, she is randomized into group C.1,
she decides to redeem the rebate because the value is now 15% and, therefore, higher than the
gift card. Thus, this variation identifies the redemption elasticity with respect to rebate value,
given some outside option in the form of a 13% gift card. In the model, this is ∂R(s,θ,c)

∂s
. The

fact that consumers endogenously switch from using a gift card to using the rebate is not a
threat to identification of the redemption elasticity. Whether the consumer chooses the outside
option is endogenous, but whether she is in group B.1 or C.1 is exogenous, implying that the
distribution of gift cards is the same in group B.1 and C.1.

These examples illustrate that the experimental design identifies both the effect of removing
hassle and the effect of increasing the rebate value. Together, this identifies our estimate of
money-metric hassle costs c = ∆cR(s, 1, c)/∂R(s,1,c)

∂s
.

These arguments are also illustrated more formally in the model. Proposition 1 is de-
rived without any restrictions on the distribution of κ other than smoothness. Consequently,
Proposition 1 identifies redemption frictions even if consumers have gift cards of different
sizes and switch endogenously from the gift card to the rebate for sufficiently low rebate values.

To study the role of the endogenous outside option further, Table G1 provides the analysis
excluding subjects that did not redeem the rebate in group A. Relative to the main results
in Table 2 of the paper, hassle costs appear larger as the difference between A and B.1 is
now 47% instead of 35%. This result is mechanical because I dropped subjects from group
A without dropping their statistical twins from group B.1. A result that is not mechanical



Figure G1: Distribution of Outside Option

but very reassuring is that all other treatment effects are identical to the main results: i) the
effect of the reminder, ii) the effect of the announcement, and importantly iii) the effect of
increasing the stakes from 10% to 15%. In Table G2, I show how these results translate into
structural estimates: inattention is unchanged at 80%, dR

ds
is unchanged at 0.011, and hassle

costs increase (again mechanically) from 20 to 30 EUR.



Table G1: Redemption Rates Excluding Non-Redeemers in A

(1)
Redemption Probability ×100

× reminder 10.3579
(1.7677)

× announcement 5.1248
(1.7064)

C: 15%, rebate 4.3895
(1.7483)

× reminder 12.1582
(1.6325)

× announcement 3.3309
(1.5315)

Constant (B: 10%, rebate) 52.6117
(1.2623)

N 10,226

Table G2: Structural Estimates Excluding Non-Redeemers in A

Redemption Decision

Inattention and Hassle Costs:
θ 0.8043

( 0.0130)
c (in EUR) 30.9225

( 5.0932)
Other Parameters:
dR
ds × 100 1.1168

( 0.1949)

N 11,683
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