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A Introduction

In this supplementary online appendix, I present several results used in the

calculations in the paper, as well as a series of sensitivity analyses. I begin

in appendix B by showing that the welfare derivative presented in section

2 applies much more generally, by comparing it with results from Lawson

(2015). Appendix C then examines how the liquidity ratio in section 2.2

can be approximated with heterogenous liquidity constraints. Appendix D

presents the calculations leading to the elasticity of average earnings with

respect to student grants, εȲ b. Appendix E considers a number of alterations

to the model, and finds that the main conclusions and numerical results in



the paper are strongly robust. Finally, Appendix F presents a simple model

in which income taxes impose distortions on multiple margins, including both

education and job search, and shows that corrective policies on each margin

are required; an alteration of UI benefits to correct tax distortions on job

search does not eliminate the effect of fiscal externalities on optimal tuition

subsidies, as fiscal externalities affect optimal policies independently on both

margins.

References to numbered equations, tables, etc. not found in this appendix

refer to the numbers from the main paper.

B Comparison of Welfare Derivative with

General Formula from Lawson (2015)

In section 2, I solved a specific model of college education for the derivative

of social welfare with respect to the tuition subsidy denoted as (3). While

the model was simplified and stylized, the results remain very general, as

demonstrated by the analysis of Lawson (2015), where a very similar equa-

tion is derived from a general model that applies to any government transfer

program. Consider the following equation from page 21 of Lawson (2015):

dW

dbj
= Dj

[
Ej[U

′(c)]− Eȳ[U ′(c)]
Eȳ[U ′(c)]

−
M∑
l=1

Dlbl
Djbj

(
εDlbj − ε

ȳ
bj

)]
. (B.1)

In the setting of that paper, there are M different transfer programs, with

(B.1) providing the welfare derivative for program j. Dj is discounted average

percentage of time spent on program j, while Ej[U
′(c)] represents the aver-

age marginal utility of all individuals on program j, and Eȳ[U
′(c)] is average

income-weighted marginal utility for all individuals. Finally, εDlbj represents

the elasticity of time spent on program l with respect to benefit bj, while εȳbj
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is the elasticity of the tax base (average income) with respect to bj.

In the setting of the current paper, there are three “programs”: the tuition

subsidy b, the additional education-related expenditure p, and the exogenous

spending G, and the latter is unresponsive to b by assumption. When consider-

ing the welfare derivative with respect to b, Dj is equal to S
R1

(the general model

assumes a single continuous period, whereas the current model has 12 periods),

and it is clear that
∑M

l=1
Dlbl
Djbj

(
εDlbj − ε

ȳ
bj

)
=
(
b+p
b

)
εSb −

(
1 + G+Sp

Sb

)
εȲ b.

This only leaves the marginal utility terms. First, Ej[U
′(c)] = E1[u′(cui)].

Eȳ[U
′(c)], meanwhile, is the average marginal utility of all individuals weighted

by labour income, and this is identical to v∗c . Therefore, equation (B.1) is

identical in the notation of the current paper to:

dW

db
=

S

R1

[
E1[u′(cui)]− v∗c

v∗c
−
(
b+ p

b

)
εSb +

(
1 +

G+ Sp

Sb

)
εȲ b

]
. (B.2)

There are only two differences between (B.2) and (3): an alternative nor-

malization by S rather than S
R1

, which simply rescales the welfare derivative,

and the substitution of v0
c (c

0
v, l0) for v∗c . The latter is a conservative assumption

allowing empirical evaluation using estimates of the liquidity effect, which de-

pends on v0
c (c

0
v, l0). Therefore, aside from this slight modification, the results

from the general model in Lawson (2015) apply directly to the tuition subsidy

case.

C Liquidity Ratio with Heterogeneous

Constraints

To be as general as possible, let me allow for the possibility that ηi and Ai are

jointly distributed according to some bivariate distribution function F (η, A).

Let me define SA(A) to be the probability of college attendance for an indi-
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vidual with debt limit A; this can be written as:

SA(A) = 1− Fη|A[R1v(c0
v, l0)− u(cu(A))−R2v(c1

v(A), l1(A))|A]

where Fη|A represents the conditional cdf. Then the overall probability of

college attendance is simply S =
∫
A
SA(A)fA(A)dA, where fA is the marginal

density of A.

Next, observe that:

∂S

∂b
=

∫
A

∂SA(A)

∂b
fA(A)dA =

∫
A

fη|A(η∗A|A)fA(A)u′(cu(A))dA

∂S

∂a1

=

∫
A

∂SA(A)

∂a1

fA(A)dA =

∫
A

fη|A(η∗A|A)fA(A)[u′(cu(A))− vc(c0
v, l0)]dA

where η∗A is the critical value for Ai = A. Therefore, using the definition of L

from the text:

L =

∫
A
fη|A(η∗A|A)fA(A)[u′(cu(A))− vc(c0

v, l0)]dA∫
A
fη|A(η∗A|A)fA(A)vc(c0

v, l0)dA
.

Meanwhile, the term I wish to replace is E1[u′(cui)]−vc(c0v ,l0)
vc(c0v ,l0)

; this is greater or

less than L as:

E1[u′(cui)] R

∫
A
fη|A(η∗A|A)fA(A)u′(cu(A))dA∫

A
fη|A(η∗A|A)fA(A)dA∫

A
[1− Fη|A(η∗A|A)]fA(A)u′(cu(A))dA∫

A
[1− Fη|A(η∗A|A)]fA(A)dA

R

∫
A
fη|A(η∗A|A)fA(A)u′(cu(A))dA∫

A
fη|A(η∗A|A)fA(A)dA

.

If the conditional hazard rate
fη|A(η∗A|A)

1−Fη|A(η∗A|A)
is constant, these two terms will

be equal, and I can safely replace E1[u′(cui)]−vc(c0v ,l0)
vc(c0v ,l0)

with L in (3). More gener-

ally, let me continue by substituting h(A) for the conditional hazard rate, and

let me also write k(A) = [1 − Fη|A(η∗A|A)]fA(A) to represent the measure of

enrollees at a particular value of Ai; then the comparison becomes:∫
A
k(A)u′(cu(A))dA∫

A
k(A)dA

R

∫
A
k(A)h(A)u′(cu(A))dA∫

A
k(A)h(A)dA
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∫
A
k(A)h(A)dA∫
A
k(A)dA

∫
A
k(A)u′(cu(A))dA∫

A
k(A)dA

R

∫
A
k(A)h(A)u′(cu(A))dA∫

A
k(A)dA

E1[h(A)]E1[u′(cu(A))] R E1[h(A)u′(cu(A))]

0 R Cov1[h(A), u′(cu(A))].

Therefore, if the covariance of the hazard and the marginal utility among

students is close to zero, it will be a reasonable approximation to insert L into

(3). Meanwhile, I will tend to overestimate the liquidity effect if the covariance

is positive, which would follow, for instance, if h(A) is decreasing in A (given

that u′(cu(A)) should be non-increasing in A).

Given that η∗A is decreasing in A, I would want the hazard to be increasing

in η in order for the liquidity effect to be overestimated, thus making my

results on the importance of liquidity constraints an upper bound. Certain

distributions, such as the Pareto and the χ2 for degrees of freedom less than 2,

feature decreasing hazards, but many other distributions, including the logistic

that I use in my calibration, feature an increasing hazard, in which case I will

tend to overestimate the importance of L.

D Calculation of εȲ b

First, assuming that the only effects of b on Ȳ are from b’s effect on schooling

and from the effect of the tax change on earnings Y01 and Y11, I can write:

εȲ b =
b

Ȳ

dȲ

db
=

b

Ȳ

[
∂Ȳ

∂S

dS

db
+
∂Ȳ

∂τ

dτ

db

]
.

It is clear that ∂Ȳ
∂S

= γ2Y11 − γ1Y01 = [γ2(1.08)4 − γ1]Y01, and given that

I assume that the elasticity of taxable income is 0.4, I have ∂Ȳ
∂τ

= −0.4 Ȳ
1−τ .

Using (2) for dτ
db

and assuming p = 0, the equation for εȲ b becomes:

εȲ b =
[
γ2(1.08)4 − γ1

]
Y01

S

Ȳ
εSb − 0.4

Sb

(1− τ)Ȳ

[
1 + εSb −

(
1 +

G

Sb

)
εȲ b

]
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and rearranging, I arrive at:

εȲ b =

[
[γ2(1.08)4 − γ1]S

γ2(1.08)4S + γ1(1− S)
− 0.4τ

1− τ

(
1 +

G

Sb

)−1
]

1− τ
1− 1.4τ

εSb

− 0.4τ

1− 1.4τ

(
1 +

G

Sb

)−1

.

Inputting G
Sb

= 88.41 into the equation above, I find that εȲ b takes a value of

0.0063 when εSb = 0.1, and 0.0142 when εSb = 0.2, as presented in Table 1.

E Robustness Analyses

This section will be devoted to an examination of the robustness of my results.

I begin with an analysis of optimal policy when G is a public good rather

than an exogenous quantity of required spending, and then I examine the

sensitivity of my results to the coefficient of relative risk-aversion. Next, I

use the estimates of fiscal costs and benefits from Trostel (2010) to assess the

impact on my conclusions of how these fiscal effects are modelled, and I also

examine the optimal policy when part of the government’s tax revenue pays for

a lump-sum transfer, so that the marginal tax rate is not equal to the average

tax rate. I also extend the model to consider uncertainty about future incomes,

as well as heterogeneity in liquidity constraints and returns to education. The

quantitative results are only slightly altered in each case, and the qualitative

conclusions remain very similar: in the baseline case, it is always optimal to

raise tuition subsidies to at least offset the value of tuition, and the effects of

liquidity constraints on optimal subsidies are small and often negative.

E.1 Endogenous G

In the main model of the paper, I assume that G is an exogenous amount of

required government spending above and beyond tuition subsidies. However,
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the results are nearly identical if G is instead a public good chosen optimally by

the government. To demonstrate this, I assume that each individual receives

utility a ln(G) from the total amount G of public good provided.

First, consider the results of the sufficient statistics analysis: if both τ and

G are allowed to change in response to b, the welfare derivative in (1) becomes:

dV

db
= E

(
∂Vi
∂b

)
+ E

(
∂Vi
∂τ

)
dτ

db
+
a

G

dG

db
.

Next, consider that, ifG has been chosen optimally, the following first-order

condition must be satisfied:

dV

dG
=
a

G
+ E

(
∂Vi
∂τ

)
dτ

dG
|db=0 = 0.

This means I can rewrite the welfare derivative with respect to b as:

dV

db
= E

(
∂Vi
∂b

)
+ E

(
∂Vi
∂τ

)[
dτ

db
− dτ

dG
|db=0

dG

db

]
and the term in square brackets is equal to dτ

db
|dG=0, the adjustment in taxes

required to pay for an increase in b holding G constant, and so:

dV

db
= E

(
∂Vi
∂b

)
+ E

(
∂Vi
∂τ

)
dτ

db
|dG=0.

The adjustment in taxes to pay for b holding G constant is exactly what

I used in my calculations in section 2.2. The essential point is that, if G is

chosen optimally, the marginal welfare impact of changing it must be equal to

the marginal welfare impact of changing τ , which means that it doesn’t matter

for welfare purposes which is adjusted, and the welfare derivative is identical

to that derived earlier.

As b changes, however, the government has the option of changing either τ

or G, or both, to balance the budget, so the welfare gain from raising b would

be at least as large if G is endogenous. However, there are no credible empirical
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estimates of how G should change with b; this depends on the structure of the

model, so I can only evaluate it using my calibrated structural model. It is easy

to incorporate endogenous G into the model: I simply calibrate the individual

parameters as before, and then find the value of a that makes G = 68.606

optimal; the resulting values range from 3.2364 to 3.2427 depending on the

case. Then I can numerically evaluate welfare as a function of both b and G

and find the optimum, which is displayed in Table E.1 below.

Table E.1: Results from Calibration and Simulation with Endogenous G

∂̂S
∂a1

εSb 0 0.0021
B. Optimal Combined b and G

0.1 $7047 & 69.194 $6537 & 68.822
0.2 $9441 & 70.789 $9311 & 70.565

C. Welfare Gains from Moving to Optimum
0.1 $1240 (39.9%) $1409 (45.4%)
0.2 $4727 (152.3%) $4600 (148.2%)

As expected, the optimal values of b and welfare gains are slightly higher,

though only by a few hundred dollars at most. However, it is slightly more

surprising that when b increases, the optimal G actually increases slightly,

rather than decreasing to help pay for the increased tuition subsidies. This is

the result of an income effect: with increased college enrollment and loosened

liquidity constraints, average consumption has increased, and marginal utility

of income is lower on average. Therefore, the average individual is more willing

to substitute towards the public good, and the welfare-maximizing value of G

increases slightly. In any case, the changes in optimal policy are minimal

relative to the baseline estimates.
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E.2 Increased Risk-Aversion

My second sensitivity analysis considers how the results change when I specify

a coefficient of relative risk-aversion of ρ = 2 in employment. Since I only

need to specify this parameter when using the structural method, it will only

affect my simulation results. Calibration proceeds as before, assuming p = 0

as usual, and simulation yields the results displayed in Table E.2. The optimal

values of b and welfare effects are smaller in most cases, but the conclusion of

more than offsetting median public tuition continues to hold in the baseline

case, and the effects of liquidity constraints remain small and negative.

Table E.2: Results from Calibration and Simulation for ρ = 2

∂̂S
∂a1

εSb 0 0.0021

A. Numerical Estimate of dW
db

at b = 2
0.1 0.2097 0.2564
0.2 0.4085 0.4307

B. Optimal Student Grants
0.1 $4127 $3707
0.2 $7806 $7611

C. Welfare Gains from Moving to Optimum
0.1 $572 (18.4%) $808 (26.0%)
0.2 $2748 (88.5%) $2702 (87.1%)

E.3 Evidence from Trostel (2010) on Fiscal Effects of
Education

In this subsection, I will test the robustness of my results to a different value

of p, which has been set to zero in all other numerical results in the paper. I

perform my analysis again using the most pessimistic estimates from Trostel

(2010), in which he concludes that each year of college costs the government
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$17845 and saves expenditures amounting to $13955 in present value. Ac-

counting for the fact that $2000 per year of the costs are already included

in b, I therefore set p = 2, and evaluating (4) and using the same statistical

extrapolations as before leads to the results displayed in Table E.3. The val-

ues of dW
db

are smaller now, as are the optimal grants and the welfare gains;

however, the optimal grants all still represent significant increases from b = 2,

and the baseline finding is over $1000 above and beyond the value of tuition.

The effects of liquidity constraints on optimal policy are again small in the

baseline case.

Table E.3: Results from Sufficient Statistics and Extrapolation with p = 2

∂̂S
∂a1

εSb 0 0.0021

A. Estimate of dW
db

at b = 2
0.1 0.1346 0.1817
0.2 0.3213 0.3435

B. Optimal Student Grants
0.1 $4982 $7339
0.2 $6920 $7253

C. Welfare Gains from Moving to Optimum
0.1 $607 (19.6%) $1275 (41.1%)
0.2 $2168 (69.9%) $2468 (79.5%)

Calibration and simulation follows the same procedure as before, and the

results are found in Table E.4. In every case, the welfare derivative at baseline

is smaller, as are the optimal grants and the welfare gains from moving to

the optimum; the optimal grants drop by about $1700, but the baseline result

still involves a subsidy greater than tuition, and once again stronger liquidity

constraints have a small negative effect.
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Table E.4: Results from Calibration and Simulation with p = 2

∂̂S
∂a1

εSb 0 0.0021

A. Numerical Estimate of dW
db

at b = 2
0.9 0.1546 0.2016
1.8 0.3299 0.3521

B. Optimal Student Grants
0.9 $5225 $4734
1.8 $7497 $7380

C. Welfare Gains from Moving to Optimum
0.9 $635 (20.5%) $909 (29.3%)
1.8 $2686 (86.5%) $2693 (86.8%)

E.4 Marginal Tax Rate 6= Average Tax Rate

For simplicity, the main model in the paper features a single flat tax rate

applied to all earned income. In reality, most developed countries’ tax systems

features multiple tax brackets, including an exemption of some initial amount

of earnings from taxation. In this appendix, I consider a setting in which there

is still a single marginal tax rate, but in which part of the spending financed

by this tax is a lump-sum transfer to all individuals, making the average tax

rate lower than the marginal rate.

To be precise, since my calibration corresponds to 2007, I use the average

tax rates for that year. In a publication entitled “Average Federal Tax Rates in

2007,” the Congressional Budget Office estimates that the average household

paid 20.4% of their income in federal taxes in 2007; however, this includes

excise and corporate taxes, which I exclude from my analysis, and a larger

portion of social insurance taxes than considered in my analysis. On average,

federal income tax was 9.3% of income, to which I add 3% for the Medicare

tax, as well as 1.9% in state income taxes, which is the average reported by
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the Institute on Taxation & Economic Policy for 2007, leading to an overall

average tax rate of 14.2%.

Thus, I assume that all individuals receive a lump-sum transfer equal to

m in each period, which I hold exogenously fixed. I find the m that makes

the average tax rate equal to 14.2% for employed individuals: 0.142 = 0.23−
Ŝγ2+(1−Ŝ)γ1

Ȳ
m, which means m = 0.088Ȳ

Ŝγ2+(1−Ŝ)γ1
= $5451. I can then back out G

as the remainder of tax revenues not spent on m or on tuition subsidies.

The results with the sufficient statistics method are actually identical to

baseline, because there what matters are the elasticities and the size of gov-

ernment, which haven’t changed (if the size of government is reinterpreted

to include the lump-sum transfers). The equation for dW
db

takes exactly the

same form as in (4), except that G is replaced by G+ γ1m, which remains an

exogenous quantity of required government spending.

In the calibration case, the changes are modest since the parameters of the

model are calibrated to a given consumption gap, but introducing m changes

the calibrated value of the risk-aversion coefficient θ. Table E.5 presents the

numerical results, and the welfare derivatives at b = 2 are smaller than at

baseline, because the calibration implies a considerably larger θ, so that the

marginal value of an additional dollar to a student is smaller; the welfare gains

at the optimum are unsurprisingly lower as a result. However, the optimal

subsidies are nearly identical to the baseline case, lower by no more than $194.

Thus, the main results of the paper are unaffected by this alteration. And

it should be noted that an alternative, and perhaps more realistic, specification

of the tax system generates even larger optimal subsidies and welfare gains:

if the lump-sum transfer is available only to employed individuals, and not

to students (who the model assumes have no labour earnings), then there is

an added fiscal bonus of tuition subsidies in that they prevent students from
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Table E.5: Results from Calibration and Simulation with Lump-Sum Transfers

∂̂S
∂a1

εSb 0 0.0021

A. Numerical Estimate of dW
db

at b = 2
0.9 0.1191 0.1739
1.8 0.3386 0.3656

B. Optimal Student Grants
0.9 $6848 $6281
1.8 $9150 $9036

C. Welfare Gains from Moving to Optimum
0.9 $724 (23.3%) $566 (18.2%)
1.8 $3451 (111.2%) $3181 (102.5%)

entering the workforce quickly and gaining the right to a transfer. In that case,

the optimal subsidies increase by at least $2500 over baseline in the sufficient

statistics analysis, and by at least $4000 in the calibration analysis; full results

are available upon request. Therefore, the main results of the paper are robust

to the exact specification of the tax system: tuition subsidies should increase

significantly, and liquidity constraints have little impact on optimal policy.

E.5 Income Uncertainty

Next, I consider a case with uncertainty about future incomes. To keep the

problem simple, I assume that all uncertainty is resolved after the first period.

Thereafter, educated individuals receive either Y1tH = (1 + g)t−1Y11H in each

period or Y1tL = (1 + g)t−1Y11L, each with probability 0.5, where Y11H > Y11L

and Y11H+Y11L
2

= Y11. Meanwhile, uneducated workers begin with Y01 in the

first period, and thereafter receive Y0tH = (1 + g)t−1Y01H or Y0tL = (1 +

g)t−1Y01L, each with probability 0.5, where Y01H+Y01L
2

= Y01. The corresponding

consumption values will be denoted as c1
vH and c1

vL for educated workers and

c0
vH and c0

vL for uneducated workers, with c0
v1 representing the consumption of
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first-period workers.

In deriving dW
db

, the only meaningful change will come from the fact that

∂V
∂τ

takes a different form, specifically:

∂V

∂τ
= −γ2

2
S
(
v1
c (c

1
vL, l1L)Y11L + v1

c (c
1
vH , l1H)Y11H

)
−1− S

2

(
v0
c (c

0
vL, l0L)(Y01 + γ2Y01L) + v0

c (c
0
vH , l0H)(Y01 + γ2Y01H)

)
.

However, this equation cannot be used in its current form, and the most reason-

able simplification is still Ȳ v∗c , where Ȳ remains equal to Sγ2Y11 +(1−S)γ1Y01,

so that (4) holds in this case as well, and the results are unchanged.

I will therefore focus on the structural analysis. I assume that αs and δ

take the same values as the baseline case, but I also assume that first-period

workers cannot adjust their labour supply from l01 = 1 (for example, assume

that they are on an apprenticeship program of fixed labour intensity). Then,

after the first period and the resolution of uncertainty, I allow workers of all

types to solve for optimal labour supply, and I solve for the wages that generate

{Y01L, Y01H , Y11L, Y11H} in equilibrium.

The calibration then proceeds largely as before, with p = 0 as usual, except

that A and θ must be chosen simultaneously to generate consumption choices

which match E(c1
v) = 1.26E(c0

v) and u′(cu) = (L̂+1)v′(c0
v1). For the variability

of income, I use the median and interquartile range of income for high school

and college graduates from the CPS in the 4th quarter of 2012. Then I consider

three cases: one case in which I choose the values of {Y0L, Y0H , Y1H , Y1L} that

produce the same interquartile range, specifically 74.3% of the median for

high school graduates and 81.5% for college graduates, one case in which I cut

the high school IQR in half, and one in which I cut the college IQR in half.

The results are displayed in Table E.6, and while the welfare derivatives are
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similar to baseline, the optimal grants and welfare gains are larger in every

case, especially when the college wage variance is large; in those cases, raising

grants allows graduates who end up in low-wage jobs to increase consumption

from a low level, which has a significant positive impact on utility. Effects of

liquidity constraints are small and negative in every case.

Table E.6: Results from Calibration and Simulation with Uncertain Income

CPS Variance Low HS Variance Low College Variance
∂̂S
∂a1

εSb 0 0.0021 0 0.0021 0 0.0021

A. Numerical Estimate of dW
db

at b = 2
0.1 0.2227 0.2695 0.2143 0.2523 0.2237 0.2706
0.2 0.4073 0.4296 0.4185 0.4317 0.4073 0.4296

B. Optimal Student Grants
0.1 $12230 $12140 $12492 $12424 $7622 $7179
0.2 $13520 $13438 $13827 $13758 $9680 $9576

C. Welfare Gains from Moving to Optimum
0.1 $3713 $3550 $4598 $4280 $1409 $1650
0.2 $7854 $7589 $9524 $9251 $4191 $4183

E.6 Heterogeneity in Liquidity Constraints and Two-
Tier Grants

In appendix C, I examined how robust the sufficient statistics condition in (4)

is to a distribution of debt limits; an alternative examination of the robustness

of the results to heterogeneous liquidity constraints can be performed using

a structural approach. I allow for two groups, each representing half of the

population,1 one of which is unconstrained while the other faces a debt limit

A. I calibrate the model for {A, θ, µ, σ} using the sufficient statistics as aver-

1Brown, Scholz and Seshadri (2012) find that approximately half of the children in their
sample did not receive post-schooling cash transfers from their parents, which they claim as
an indicator for student liquidity constraints.

15



ages, and then solve for the optimal lump-sum student grant, with the results

displayed in Table E.7. The values of dW
db

are slightly smaller than in Table 3,

which is to be expected because the logistic distribution for η has an increasing

hazard (see appendix C). The optimal levels of b are also smaller, but only by

$50 at most, and the welfare gains are slightly higher, while the strength of

the liquidity constraints has a negative impact on subsidies.

Table E.7: Results from Calibration and Simulation with Heterogeneous
Liquidity Constraints

∂̂S
∂a1

εSb 0 0.0021

A. Numerical Estimate of dW
db

at b = 2
0.1 0.1951 0.2406
0.2 0.4107 0.4317

B. Optimal Student Grants
0.1 $6954 $6425
0.2 $9158 $9041

C. Welfare Gains from Moving to Optimum
0.1 $1375 (44.3%) $1699 (54.7%)
0.2 $4696 (151.3%) $4709 (151.7%)

With this calibrated model in hand, I could go one step further and consider

what policy the government would want to set if they could observe individu-

als’ debt limits; with two types of individuals, the government could introduce

a two-tier grant system, with one grant amount b1 for the constrained group

and another amount b2 for unconstrained students. However, when I numer-

ically maximize welfare (still measured as equally-weighted utilitarian social

welfare) over the pair (b1, b2), I find the same uniform grant scheme described

in Table E.7; that is, b1 = b2, with both equal to the values listed there. The

reason for this is that the parameters used suggest that a grant of $6000 or

more is sufficient to remove any liquidity constraints that may exist, so for the
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purpose of optimal policy, whether a particular group of people is constrained

or not is irrelevant, because they will no longer be constrained as the subsidy

approaches the optimum. This is another way of making the point that liquid-

ity constraints are of second-order importance for welfare analysis of policy:

in the current model, even a perfectly-informed government could not improve

the outcome with policies specifically targetting constrained individuals.

E.7 Heterogeneous Returns to Education

I now investigate how sensitive the results are to allowing for heterogeneous

returns to education. I assume that the college wage premium P (where

w11 = Pw01) follows some distribution FP (P ), and to be precise I use a

quadratic approximation to the marginal treatment effect distribution pre-

sented in Figure 4 of Carneiro, Heckman and Vytlacil (2011), as displayed in

my Figure E.1.

Figure E.1: College Wage Premium Distribution
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I divide the population into 100 equal masses denoted by j = {1, 2, ..., 100},

with wage premia equal to {F−1
P (0.005), F−1

P (0.015), ..., F−1
P (0.995)}, and nor-
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malize l0 and l1j to one for j = 50. Then I allow for a distribution of η for each

mini-population, where η is allowed to be correlated with P . In particular, I

let ηij = η̄j+ηi, where η̄j is deterministic for each j and ηi comes from a logistic

distribution with mean 0 and scale parameter σ; therefore, college attendance

is positively correlated with ability, but not perfectly, as idiosyncratic tastes

for college still play a role.

I specify η̄j to match the pattern of responsiveness to b found in Carneiro,

Heckman and Vytlacil (2011); specifically, I assume η̄j = U0 − U1j + z −

µs

((
j−40.5

100

)3
+ 0.3953

)
, where U1j = u(cuj) + R2v

1(c1
vj, l1j), and where z is

some constant. This generates the baseline pattern of responsiveness to b

found in my Figure E.2, which compares closely to the dashed line with tri-

angles in Figure 5 in Carneiro, Heckman and Vytlacil (2011), although the

latter corresponds to a more abstract concept of increasing the entire set of

instruments that determine the value of college attendance. As the tuition

subsidy increases, the curve in Figure E.2 will tend to shift to the right, as

individuals with lower returns to college are increasingly affected, and thus the

marginal return to the subsidy will decrease.

Allowing for a distribution of wage premia makes it important to model

the tax system more realistically: I assume that the state and Medicare tax

rates do not vary with income, but I use an approximation to the US federal

system in 2008, with a 15% marginal rate up to $41500 and a 25% rate beyond.

To account for the personal exemption of $3500 and the standard deduction

of $5450, as well as the fact that the first $8025 of taxable income is only

taxed at a 10% rate, I assume a universal tax refund of $1743.75. To avoid

discontinuities in the marginal tax schedule, I use a smoothed approximation to

the tax rate between $39000 and $44000, specifically a sine connecting τ = 0.23

at $39000 to τ = 0.33 at $44000. I assume that the tax rate threshold moves up
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Figure E.2: Responsiveness of Enrollment to b Across Distribution
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with wage growth, and that when taxes need to adjust to balance the budget,

the base (state and Medicare) tax rate is the one that moves.

When calibrating, I select values for {A, θ, µs, σ, z} in order to match five

quantities, three of which are familiar: E1[u′(cuj)] = (L̂ + 1)v0
c (c

0
v, l0), Ŝ =

0.388, and εSb = {0.1, 0.2}, although in this case εSb is interpreted as a partial

derivative. I also choose z to generate a probability of attendance of 95% for

the highest-return group, and I use the fact that college graduates consume

73.9% of their pre-tax income and high school graduates consume 83.4% to

motivate setting
E1(c

1
v)

E1(Y1)

c0v
Y0

= 0.739
0.834

.

This leads to the results presented in Table E.8. The striking finding is

that the welfare derivative at baseline is significantly larger, because the aver-

age return to education among those induced to go to school is higher using

the estimates from Carneiro, Heckman and Vytlacil (2011), further suggesting

that my assumption of an 8% return to a year of education was a conser-

vative estimate. However, there are diminishing returns to inducing college
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attendance, because increasingly generous grants induce students with lower

monetary returns to go to school; therefore, optimal grants are lower when

εSb = 0.2, though they are larger when εSb = 0.1 because the returns to in-

ducing college attendance do not decline as quickly in that case. However, the

qualitative conclusions are essentially identical to the baseline case: the opti-

mal subsidy is greater than median public tuition in each case, and effects of

liquidity constraints are small. Meanwhile, the welfare gains are significantly

larger than before, amounting to $80.5 billion per year in the baseline case.

Table E.8: Results from Calibration and Simulation with Heterogeneous
Returns to Education

L̂
εSb 0 1

3

A. Numerical Estimate of dW
db

at b = 2
0.1 0.6102 0.6865
0.2 1.1968 1.2501

B. Optimal Student Grants
0.1 $8912 $9455
0.2 $7236 $7478

C. Welfare Gains from Moving to Optimum
0.1 $6946 (223.8%) $8567 (276.0%)
0.2 $11504 (370.6%) $12563 (404.7%)

This analysis provides us with a sense of how heterogeneity in returns can

affect the results, but naturally has more of a “black box” character than

the baseline analysis. The current method is not as well suited to answering

questions about how financial aid could be better targetted at students on the

margin of attending college or from groups with high returns; research with

multiple dimensions of heterogeneity such as Abbott et al. (2013) provides a

complementary analysis which provides answers to some such questions, and

additional future work along these lines could also be useful.
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F A Simple Model of Multiple Fiscal

Externalities

The analysis of optimal tuition subsidies in this paper, as well as the anal-

ysis of optimal unemployment insurance in Lawson (2016), starts from the

assumption of a distortionary marginal income tax used to raise revenues for

government spending. In each case, this tax also imposes distortions on an-

other margin, such as the decision about how much education to obtain, or

how hard to search for a new job: the tax reduces the return to both actions,

leading to inefficiently low education and job search. As a result, when con-

sidering a policy that is targetted at one of these margins, we must account

for the pre-existing distortion of taxation, and the optimal policy involves in-

creased subsidies to education, and decreased unemployment benefits, to offset

the distortion from income taxes.

In this appendix, I demonstrate that these results hold in a model with mul-

tiple margins in combination; specifically, I present a simple model in which

income taxation affects a total of three margins: labour supply while employed,

education, and job search while unemployed. With a distribution of income

among employed individuals, there is a role for distortionary income taxes to

provide for redistribution, and such taxation requires changes to education sub-

sidies and unemployment insurance: as the government revenue requirement

increases, the jointly optimal policy features rising marginal income tax rates

and education subsidies, and decreasing unemployment insurance, exactly as

found when each policy was considered on its own.

This analysis demonstrates that the main results in the present paper, as

well as those in Lawson (2016), are not dependent on any assumption that the

policy in question is the only way to offset pre-existing tax distortions, or even
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necessarily the best way. Rather, the point is that taxes can distort a wide

variety of margins, from the intensive margin of labour supply to job search

to education, and beyond,2 and if we are considering policy on any of these

dimensions, the distortionary impact of income taxation must be taken into

account. Thus, solving the distortion of taxation on job search by reducing

unemployment insurance does not solve the distortion on education, as they

are two very different margins of choice; reducing unemployment benefits gen-

erally does not restore the education choice to the efficient level. The essential

assumption is simply that the distortionary marginal tax is necessary, that

lump-sum taxes are either not possible or not desirable; the main model in

the current paper simply imposes this assumption, but this appendix demon-

strates that the same general results hold when it arises endogenously from

inequality.

F.1 Model Setup

The model features a population of ex-ante identical individuals who live for

three periods. In the first, the representative individual chooses the level of

education they wish to obtain, denoted by e, and they also choose a level of

borrowing d1 to provide for consumption, as I assume that individuals begin

and end life with zero wealth. They receive consumption utility U(ce), where

ce = d1 + bee is total consumption, and where be is the government subsidy to

education attainment; for simplicity, I assume that the only cost of education

is a convex loss of utility due to effort, he(e).

2An anonymous referee rightly points out that “there are countless ways in which to
change the distortions created by public finance needs”, and that fiscal externalities could
thus be an argument for changing other policies, such as investment subsidies for physical
capital. If other margins are impacted by taxation, corrective policies on those margins
could well be optimal.
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In the second period, the representative individual starts out unemployed

and searches for a job; they choose their search intensity s subject to a convex

effort cost hs(s), and spend the first (1− s) percent of the period unemployed

and the remaining s employed at a wage of 1. Individuals also choose a level

of borrowing d2 when re-employed; I assume that no borrowing is allowed

during unemployment, so that consumption during that time is cu = m + bu,

where m is exogenous home production and bu is an unemployment benefit.

Consumption when re-employed is cj = 1−τ+bw+ d2
s

, where bw is a lump-sum

transfer to employed individuals and τ is the marginal tax rate on employment

income; borrowing d2 is divided by s because the borrowed amount is only

needed for a fraction s of the period, generating an instantaneous consumption

stream of d2
s

. Education does not affect productivity in this period; this is

a simplifying assumption to prevent strong interactions between education

and job search, and corresponds to the idea that the first job is a training

job at a lower productivity. Therefore, consumption utility in period 2 is

(1− s)U(cu) + sU(cj).

Finally, in period 3, the representative individual chooses a labour supply

l subject to a convex effort cost hl(l), and works at a stochastic wage that is

realized after the labour supply choice: each with probability 0.5, the wage

can be wL = (1 − θ)(1 + e) or wH = (1 + θ)(1 + e). Expected utility from

consumption is 0.5U(cL) + 0.5U(cH), where cL = (1− τ)wLl+ bw−d1−d2 and

cH = (1− τ)wH l + bw − d1 − d2.

Putting everything together, and assuming zero interest and discount rates,

overall expected utility given by:

V = U(ce)−he(e)+(1−s)U(cu)+sU(cj)−hs(s)+0.5U(cL)+0.5U(cH)−hl(l).
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F.2 First-Order Conditions & the Effect of Taxation

To understand the workings of this model, consider the first-order conditions

for the representative individual given a policy vector {be, bu, bw, τ}:

∂V

∂d1

= U ′(ce)− 0.5u′(c1)− 0.5u′(c2) = 0

∂V

∂d2

= U ′(cj)− 0.5u′(c1)− 0.5u′(c2) = 0

∂V

∂e
= U ′(ce)be − h′e(e) + 0.5(1− τ)l [u′(c1)(1− θ) + u′(c2)(1 + θ)] = 0

∂V

∂s
= −U(cu) + U(cj)− U ′(cj)

d2

s
− h′s(s) = 0

∂V

∂l
= 0.5(1− τ)(1 + e) [u′(c1)(1− θ) + 0.5u′(c2)(1 + θ)]− h′l(l) = 0

The first two first-order conditions, for d1 and d2, ensure consumption

smoothing between the first period, the time spent working in the second pe-

riod, and the third period (in an average marginal utility sense). Thus, the only

remaining opportunities for consumption smoothing are in unemployment, and

between high- and low-income third-period workers. The rest of the first-order

conditions are a bit more complicated, but we can easily evaluate the effect of

an increased tax rate τ on e, s and l:

• The substitution effect of a higher τ on education is clearly negative, as

∂V
∂e

is decreasing in τ ; of course, there is also an income effect if c1 and

c2 are affected, so it is not clear that a higher tax rate will necessar-

ily decrease e, but we know that an income effect is not distortionary.

Therefore, we can conclude that taxation causes e to be inefficiently low.

• While τ does not appear directly in the first-order condition for s, it does

appear in the definition of cj, and from the perspective of job search, a re-

duction in U(cj) from an increase in τ is a marginal substitution effect,
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changing the relative returns attached to unemployment and employ-

ment. Therefore, higher taxes reduce ∂V
∂s

, leading to an inefficiently low

s (unless d2 is very large, so that ∂V
∂s

is actually increasing in s, which

cannot be true in equilibrium unless s is at the upper bound of 1).

• Finally, the substitution effect of a higher τ reduces ∂V
∂l

, making l ineffi-

ciently low.

From this analysis, it is clear that higher marginal tax rates not only distort

labour supply l downwards, they also lead to inefficiently low values for both

e and s. Furthermore, those distortions are not dependent on each other - the

tax rate impacts both margins independently.3

To consider the welfare implications of policy, I also need to present the

government budget constraint:

τ(s+ (1 + e)l) = bee+ (1− s)bu + (1 + s)bw +G

where G is a revenue requirement beyond UI and education. However, a

sufficient statistic welfare analysis is not as effective in this case, with three

different margins and four policy instruments. I need to simulate the structural

model, and the next subsection presents the results.

F.3 Optimal Policy Simulations

This model is meant to be illustrative, rather than a precise model of the real

world; in particular, the assumption of three periods of equal length is clearly

3I could, of course, alter the model to introduce more interactions between choices on
the various margins, but it would still be true that a higher tax rate makes both s and e too
low because the returns to each have declined. For example, if the income from work in the
second period depended positively on education, then there would be a positive feedback in
which higher education raises the return to job search, and more intense job search raises
the time spent working and thus the return to education. This would worsen the overall
impact of income tax distortions, but solving one margin still wouldn’t solve the other.
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not realistic. Therefore, I do not attempt a calibration of the model to real-

world empirical quantities. Instead, I use a simple parameterization described

below.

To begin with, I assume that utility from consumption is logarithmic. I

assume home production of m = 0.2, and an earnings distribution parameter

of θ = 0.1. Meanwhile, the effort disutility functions all take the form hx(x) =

σx

(
1−(1−x)1−κx

1−κx − x
)

; this function takes a value of zero at x = 0, and has a

slope that rises from zero and goes to infinity as x approaches 1 (as long as κx >

0), thus constraining e, s and l to be between zero and one. The parameters

are: {σe, κe} = {6, 0.2}; {σu, κu} = {1, 0.5}; and {σl, κl} = {0.5, 0.5}.

Given a value of G, I can then solve for the optimal combined policy

{be, bu, bw, τ} subject to the government budget constraint. I calculate the

optimum for values of G at intervals of 0.05 from 0 to 0.8, and the results can

be found in Figures F.1 and F.2; Figure F.1 presents the optimal transfers,

while the optimal marginal tax rate τ is displayed in Figure F.2.

Figure F.1: Optimal Transfers
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Figure F.2: Optimal Budget-Balancing Tax Rates
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First of all, we can see that the marginal tax τ increases and the lump-sum

transfer bw decreases with G; whatever the mix between lump-sum taxes (or

transfers) and marginal taxes that is optimal when G = 0, both are used to

raise more revenue when G increases. While unsurprising, this supports my

assumption that a positive G implies a larger marginal tax rate.

More interestingly, the optimal unemployment benefit declines rapidly with

G, from over 0.25 at G = 0 to slightly below zero when G = 0.8, while the

education subsidy increases substantially, from about 0.023 to 0.093. While

the latter numbers may seem relatively small, the average employed income in

the current model is about 1.28 at baseline, or about 1.34 at G = 0.8; in the

main model of the paper, baseline tuition is about 15% of average income, and

thus my results roughly correspond to a subsidy on tuition going from about

12% up to 46%. Given that tuition is not included in the current model, and

thus does not need to be financed by the agent, this is quantitatively a large

subsidy, particularly at the upper end.
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Thus, while I again note that the model is not calibrated to the real world,

the results do confirm the intuition discussed at the beginning of this appendix:

we need to subsidize education more and unemployment less when G is higher.

Solving the distortion on one margin doesn’t solve the distortion on the other

margin, because the cause of the distortion in the first place - the marginal

income tax - is still in place. The implications for policy extend well beyond

just unemployment insurance and education subsidies, but the analysis of the

current paper and Lawson (2016) indicate that the impact is first-order on

both of those margins.

References

Abbott, Brant, Giovanni Gallipoli, Costas Meghir, and Giovanni L.
Violante. 2013. “Education Policy and Intergenerational Transfers in Equi-
librium.” Working Paper.

Brown, Meta, John Karl Scholz, and Ananth Seshadri. 2012. “A New
Test of Borrowing Constraints for Education.” Review of Economic Studies,
79(2): 511–538.

Carneiro, Pedro, James J. Heckman, and Edward Vytlacil. 2011.
“Estimating Marginal Returns to Education.” American Economic Review,
101(6): 2754–2781.

Lawson, Nicholas. 2015. “Social Program Substitution and Optimal Policy.”
Labour Economics, 37: 13–27.

Lawson, Nicholas. 2016. “Fiscal Externalities and Optimal Unemployment
Insurance.” Unpublished Paper.

Trostel, Philip A. 2010. “The Fiscal Impacts of College Attainment.” Re-
search in Higher Education, 51(3): 220–247.

28


