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Estimation

A1. Model Fitting for Probit Model with Selection

For the estimation of the Probit model for marijuana use with selection based
on binary access via MCMC methods we introduce the latent continuous access
and marijuana use variables fa�img and fu�img and use the common latent variable
representation of the probit
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where for each sample subject ~him refers to the combined covariate vector for
the access model containing intercept, individual attributes, state �xed e¤ects,
market-speci�c variables in�uencing access, and ~xim is the combined covariate
vector for the net utility model that contains the price pim, individual attributes,
market speci�c variables, year �xed e¤ects, and state �xed e¤ects in addition to
the intercept. We de�ne the vector of model parameters as � = (
;�; �). Under
the assumption that (�im; "im) � N2(0;�), where � is 2x2 covariance matrix
with 1 on the diagonal and � on the o¤-diagonal and following to the de�nition
of the likelihood contribution given in the paper equation 11, the likelihood of the
model for all subjects in market m augmented with the latent access and net-use
variables, f(a;u;fa�img; fu�imgj�;W;fpimg) can be expressed asY
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where the inclusion of the latent data improves the tractability of the likelihood
(Albert and Chib, 1993). The joint distribution of access and use for access
subjects is now expressed in terms of the marginal-conditional decomposition.
The indicator functions ensure that we choose the correct bivariate distribution
with the distribution of latent use truncated according to the observed use.

For the Bayesian analysis we proceed with the common assumption of normal
independent priors for the slope coe¢ cients and correlation coe¢ cient. The latter
is restricted to the region R = �1 < � < 1 to ensure the positive de�niteness of
�. The joint prior is given by

�(�) = N (�jb0;B0) N (
jg0;G0) N (�jr0; R0)�R

The prior means are set at zero. In combination with large prior variances this
implies relatively uninformative prior assumptions. It should be noted that in the
context of our very large data set the in�uence of the prior is very small as the
information from the data via the likelihood will dominate the inference about
the model parameters summarized in the posterior distribution. The posterior
distribution, with the parameter space augmented by the latent access and mari-
juana variables, �(�;a�;u�ja;u); is proportional to the product of the likelihood
and the prior. We employ a straight forward Metropolis within Gibbs simulation
algorithm with �ve blocks to generate draws from the posterior distribution of
the parameter vector, as well as the marginal distributions of each parameter.
By augmenting the parameter space with the latent access and net-use variables,
the priors on the regression coe¢ cients are conditionally conjugate, thus allowing
for normal updates of slope the coe¢ cients. The latent variables are also normal
updates. A Metropolis Hastings update is used for the correlation parameter as
the structure of the covariance matrix and the likelihood do not allow a Gibbs
update. The detailed steps of the algorithm are as follows:

First, we draw a�im from N (a�imj~h0im
; 1) I[a�im � 0] for i 2 I0 and from
N (a�imj~h0im
 + �(u�im � e�uim); 1 � �2) I[a�im > 0] for those subjects with i 2 I,
where i 2 I0 refers to the subset of subjects with no access and i 2 I1 to those
with access.

In the second step, we draw u�im for all subjects i 2 I1 from eitherN (u�imj~x0im�+
�(a�im � ~h0im
); 1 � �2) I[u�im � 0] if uim = 0 or from N (u�imj~x0im� + �(a�im �
~h0im
); 1� �2) I[u�im > 0] if uim = 1.
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̂ = Ĝ[G�1
0 g0 +

X
i2I0

~hima
�
im +

X
i2I1

~him(1� �2)�1(a�im � �(u�im � ~x0im�)]
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In the fourth step we draw � based on the subjects in I1 from N (�̂; B̂) where
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In the last step we update � in Metropolis Hastings step based on the subjects
in I1, since the conditional posterior distribution of � is not tractable. Following
Chib and Greenberg (1998) we generate proposal value �0 from a tailored student-
t density t�(�; V ) where � is the mode of
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and V is the inverse of the Hessian of the density evaluated at �. The proposed
value �0 is accepted with probability
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We repeat the above steps for M iterations after an initial burn-in phase of
M0 iterations to allow for the convergence of the chain. We obtain a vector of M
draws for each model parameter that re�ects the (marginal) posterior distribution
of each parameter. (Under the Bayesian approach the model parameters are
random variables and all information about the parameters from the estimation
is summarized in their respective posterior distributions.) In the main text we
provide summaries of the posterior distributions in terms of the posterior means
(coe¢ cient estimate) and standard deviations or the 90% and 95% credibility
intervals.

Simulated Prices

We address the issue of the unobserved individual prices as described in the
paper in section III.A. by adding an additional step to the above described al-
gorithm to draw the individual price for each subject i in market m with access
from the market speci�c empirical price distribution (equation 7 in the paper).
At the beginning of each iteration g of the algorithm we generate an individual
price p(g)im from

3X
t=1

�gimt � p
g
imt ;

3X
t=1

�gimt = 1
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where t takes the values t = 1; 2; 3. The probability of using type t (�gimt) and
the corresponding price for type t (pgimt) are drawn from the constructed em-
pirical distributions (see equation 6) based on the observed data. Here we use
normal distributions truncated at zero below and centered at the observed val-
ues of the prices and usage for each type in each market, TN(0;1)(pmt;


p
mt) and

TN(0;1)(�mt;

�
mt), respectively. The variances are based on observed variation

in the data. By generating the price by type and usage of type from these distrib-
utions we can exploit the information on prices by type and market and usage of
types within a market among users in the data, while at the same time allowing
for some variation of prices and usage among subjects in a market. Note that
di¤erent choices of distributions are possible and independence of the distribu-
tions across types is not necessary but chosen here based on the data restrictions.
The graphs below show the resulting empirical price distributions for a subset of
markets.
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Figure A1. Simulated Price Distributions

A2. Marijuana Use Prediction Counterfactual

In the paper in Section V we report the probabilities of marijuana use for di¤er-
ent counterfactual scenarios under various speci�cations of the selection model for
the extensive margin of marijuana use. The reported probabilities are obtained
using the standard Bayesian approach for prediction. The approach enables us
to exploit all the information about the parameters summarized in the posterior
distribution and to compute credibility intervals (Bayesian con�dence intervals)
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for the probabilities of use and address the issue of unobserved individual prices
via an empirical distribution generated as described above.

Let n = 1 refer to a random subject in market m from the sample, with
demographic characteristics and market features in the use model and access
model given by vectors ~xn+1;m, including price pn+1;m; and ~hn+1;m, respectively.
Under the selection model on marijuana use we can obtain the probability of
marijuana use for the subject from the expression

Pr(un+1;m = 1ja;u) =Z
Pr(un+1;m = 1jan+1;m; ~xn+1;m; ~hn+1;m; pim) d bPm(pn+1;m) dF�(� )

dFdata(~xn+1;m; ~hn+1;m)

where

Pr(un+1;m = 1jan+1;m; ~xn+1;m; ~hn+1;m; pim) = �(mn+1;mj�;~xn+1;m; ~hn+1;m; pim)

is the conditional probability of use (assuming access) with the conditional mean
given bymn+1;m = ~x0n+1;m � +��n+1;m. The term ��n+1;m accounts for selection
on unobservables, where the value of the unobservable term �n+1;m is found
using information on the distribution of unobservables in the data by exploiting
the data on the observed access of a subject within our model. Speci�cally, if
an+1;m = 0, then it follows directly from the model of access that �an+1;m +
�n+1;m � 0, or �n+1;m � ��an+1;m where �an+1;m = ~h0n+1;m
. As �n+1;m follows a
standard normal distribution we generate �n+1;m from TN(�1;��an+1;m)(0; 1) for
the subject. Similarly, for the case of an+1;m = 1 we have �an+1;m+�n+1;m > 0, so
that we generate �n+1;m from TN(��an+1;m;1)(0; 1). Note that if we set ��n+1;m =
0 we would implement the prediction based on the marginal model for marijuana
use. While predictions are often based on the marginal model, this approach
would lead us to considerably underpredict the benchmark case of use under
pre-legalization relative to the observed use pre legalization, due to ignoring the
important role that selection on unobservables plays in the context of marijuana
use and more generally in the use of illicit drugs.

As indicated by the above integral expression, from the conditional probability
we integrate out the prices based on the empirical price distribution bPm(pim),
the model parameters using the posterior distribution F� = �(� ja;u) and the
individual and market characteristics based on the empirical distribution of the
sample. The above integral expression can be estimated in a straight forward
manner using the draws from the posterior distribution from the MCMC al-
gorithm discussed in the previous section. Essentially, at each iteration of the
MCMC algorithm after the burn-in phase, we add an additional step where vec-
tors ~xn+1;m and ~hn+1;m are drawn from the data and �(mn+1;m) is computed
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using the current MCMC draws on the model parameters and prices. The result-
ing vector of probabilities describes the predictive distribution of the probability
of use. In tables 9 and 10 we report the mean probabilities and standard devia-
tions of the predictive distributions.
We implemented the predictions under the following counterfactual scenarios

s with the �rst scenario being the status quo:

Table A1� Counterfactual Scenarios

Scenario Access Legality Price
1 no no pre­legality
2 yes no pre­legality
3 yes yes pre­legality
4 yes yes 25% increase
5 yes yes cigarette price
6 yes yes price at marginal cost

For the prediction under these di¤erent scenarios let evn+1;m denote the vector
of market and demographic characteristics without the price and the disutility
variables, pn+1;m and Lillegaln+1;m. Let �v; �p and �l denote the corresponding pa-
rameter (vectors) . We can then write the conditional probability of use under
scenario s for our baseline model speci�cation without interactions as

Pr(un+1;m = 1jan+1;m; ~xn+1;m; ~hn+1;m; pn+1;m)
= � s(ev0n+1;m �v + psn+1;m�p + Lillegal;sn+1;m �l + ��n+1;m)

where psn+1;m is drawn from an empirical distribution using the approach de-
scribed above, with the mean of the price distributions for each type adjusted
according to the assumed price change for scenarios 4 to 6. The disutility variable
Lillegal;sn+1;m is set to zero for all subjects in scenarios that assume legality (s > 2),
and otherwise remains as unchanged. Note that by predicting use for any random
subject in the sample we assume that marijuana is accessible for all subjects. To
account for limited access in our benchmark scenario s = 1 we follow the described
approach, but set �(mn+1;m) = 0 if an+1;m = 0. For the predicted probabilities
of use by various demographic groups presented in table 10, we draw evn+1;m and
~hn+1;m from the corresponding subsamples of subjects with no access and sub-
jects with access. For those with no access we set �(mn+1;m) = 0 under scenario
1. Finally, the counterfactual use results in the paper in Section V are generated
using our baseline model speci�cation as well as our model speci�cation with
price and legality interaction terms. For the latter the expression in the mean
probability of use (psn+1;m�p + L

illegal;s
n+1;m �l) is replaced with the corresponding

interaction terms with age brackets.
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A3. Model Fitting and Counterfactuals for Ordered Probit Model with Selection

We also estimate an ordered probit model with selection (intensive use margin
model) for the discrete ordered marijuana frequency of use variable, yim = 0; 1; 2,
for the analysis of tax revenues in the paper in section V.C.:

y�im = ~x0im� + �im; where yim = 0 if y�im � 0, yim = 1 if 0 < y�im � �
and yim = 2 if � < y�im

where � refers to the cut-o¤ point that has to be estimated. The �rst cut-o¤
point has been set to zero for identi�cation purposes. The model for access
remains unchanged and as before we assume that access and marijuana use may
both be a¤ected by unobserved factors so that (�im; �im) � N2(0;�) where �
is 2x2 covariance matrix with 1 on the diagonal and � on the o¤-diagonal. The
likelihood of the model, f(a;y;fa�img; fy�imgj�;W;fpimg) where � = (
;�; �; �),
can be again expressed in terms of the latent data to improve the tractability of
the likelihood (Albert and Chib, 1993) asY
i:aim=0

N (a�imj~h0im
; 1) I[a�im � 0]aim

Y
i:aim=1

N (a�imj~h0im
; 1)I[a�im > 0]1�aim fN (y�imj~x0im �+ �(a�im � ~h0im
 ; 1� �2)

�(I[yim = 0] I[y�im � 0] + I[yim = 1] I[0 < y�im � � ] +
I[yim = 2] I[y�im > � ])g

We again assume independent normal priors for (
;�; �) as in the probit model
with selection (extensive use model). For the cut-o¤ points it is su¢ cient to
assume a priori that � > 0.
To simulate the posterior distribution �(�;a�;y�ja;y) we employ a 6 step

MCMC algorithm that is an extended and modi�ed version of the 5 step al-
gorithm for the Bivariate Probit with Selection discussed above. We add a 6th
step to draw the cut-o¤ point and also adjust the generation of the latent utility
y�. For the latter, we draw y�im for all subjects i 2 I1 from the truncated normal
distributions T N (a;b)(y

�
imj~x0im� + �(a�im � ~h0im
); 1 � �2) I[a < y�im � b], where

(a = �1; b = 0) for k = 0, (a = 0; b = �) for k = 1 and (a = � ; b = +1) for k = 2.
To update the cut-o¤ point we employ a Metropolis Hastings algorithm as the
conditional posterior distribution is of an unknown form. To improve the perfor-
mance we update the cut-o¤point marginalized over the latent utilities fy�img and
generate the proposal values from the tailored student-t density q(�) = t10(�; V ),
where here � is the mode of the likelihood of the access subjects with with yim=1
and yim =2, f(a = 1; fa�img; fyim=1g; fyim=2gj
; �;�;W) and V is the inverse
of the Hessian of the density evaluated at �. We maximize the proportional con-
ditional likelihood expression (omitted N (a�imj~h0im
; 1)I[a�im > 0]1�aim as it does
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not depend on cut-o¤ points)

ln

0@ Y
I1: yim=1

�
�(
� �mim

�
)� �(�mim

�
)

�1A+ ln
0@ Y
I1: yim=2

�
1� �(� �mim

�
)

�1A
where mim = ~x0im� + �(a

�
im � ~h0im
) and � =

p
1� �2. The maximization is

subject to the constraint that � > 0:

The proposed value � , with � > 0, is accepted with probability

� = min

�
1 ;

f(fyim=1g; fyim=2gjfa�img;a = 1;
;�; �; � 0;W) t�(� j�; V )
f(fyim=1g; fyim=2gjfa�img;a = 1;
;�; �; � ;W) t�(� 0j�; V )

�
;

where again we use the conditional form of the likelihood of marijuana use, omit-
ting the marginal likelihood of access as it does not depend on the cut-o¤ point.
As in the algorithm for the probit model we draw the prices for the access subjects
from the corresponding empirical distribution at the beginning of each iteration
of the algorithm. The estimates are presented in table 8.

For the estimation of the tax revenues in the paper in Section V.C. we again
employ the Bayesian predictive approach described in Appendix A.A2. Instead of
predicting the probability of use we predict the probability of use in each category
k; bGikr; for each subject i (in market m) in the sample under two di¤erent tax
regimes r = 1; 2 from

bGikr = Z Pr(yim = kjai;m; ~xim; ~him; prim) d bPm(prim) dF�(� ) dFdata(~xim; ~him)
where as before we integrate over the price distribution, now also depending on
the tax regime, the posterior distribution of posterior distribution of the relevant
model parameters and the empirical distribution of the data (covariates). As in
the extensive use model the prediction is based on the conditional probability
of use, now for each category. For example, for k = 0 we have Pr(yim = 0j�) =
�(��im) with �im = ~x0im � +��im (~x

0
im � includes age interactions): Under tax

regime 1 with 25% tax on current prices, following equation 7 in the paper, the
price the individual faces under the tax regime is generated from

p1im �
3X
t=1

Z
(�imt � p1imt) dF�(�imt) dFp(p1mt)

where we adjust equation 6 in the paper and now have p1imt � TN(0;1)(1:25 �
pimt;


p
mt) with the mean set at the current average market price of each type plus

a 25% tax. Under tax regime 2 the price is set at the marginal cost of production
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of each type, MCt, so that the price distribution simpli�es to

p2im �
3X
t=1

Z
(�imt �MCt) dF�(�imt)

As before the prices re�ect a weighted average over the prices of three di¤erent
types based on the usage probabilities of each type and its distribution F�(�imt).

Price Counterfactual Calculation

For the counterfactual price calculation under the ordered probit (intensive
margin) with selection we �nd the counterfactual price that implies a predicted
�post-legal� probability of no use among teenagers under legalization that is
comparable to the probability of no use observed in the data before legaliza-
tion. Given the model we implement the analysis at the market level, �nding the
counterfactual prices for all teenagers in market m to match the observed prob-
ability of no use in their market, call this Sobsm . Let SPostim (b�; data; pim) represent
the probability of no use for teenager i in market m under a counterfactual of
legalization, and pCFim the counterfactual price, where pCFim is chosen so that

nmX
ni=1

SPostim (b�; data; pim = pCFim )
nm

= Sobsm

where nm refers to the number of teenagers in market m and the estimated
parameter set b� (here means of the posterior distribution of the parameters). To
�nd the counterfactual prices for each teenager in market m, we �rst predict post
legalization probability of no use, as described in Appendix A.2, with price pim
coming from the corresponding (pre-legal) empirical distribution (equation 7 in
the paper). We then �nd the counterfactual price, where pCFim is the price that
equates

SPostim (b�; data; pCFim ) = Sobsm :

From our ordered probit model on marijuana use with selection it follows that the
probability of no use is SPostim (b�; data; pCFim ) = �(�(�im = f(b�; data; pCFim )), where
�im is the conditional mean of marijuana use taking into account preferences and
the selection of unobservables for teenager i so that under our model speci�cation
with price and age interactions

�(�(�im = pCFim b�p;teen + Lillegalim
b�l + ev0im b�v + b��im)) = Sobsm ;

where Lillegalim denotes the disutility from illegality variable, evn+1;m the vector of
demographic characteristics and market characteristics without the price. b�p;teen
, b�l and b�v and refer to the estimated coe¢ cients (posterior means) on price
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for teenagers, the e¤ect of disutility and the e¤ects of the elements in evn+1;m,
respectively. As before ��im accounts for selection on unobservables with �im s
TN(�1;�b�aim;) if aim = 0 and �im s TN(�b�aim;1) if aim = 1 using the observed
access before legalization (see also Appendix A.2). The counterfactual price is
obtained from

pCFim = max

(
���1(Sobsm )� ev0im b�v � Lillegalim

b�l � b��imb�p;teen ; 0

)
;

where ��1 is the inverse of the normal CDF and the maximum condition ensures
non-negative prices. The latter is needed as some teenagers have SPostim (pim) >=
Sobsm and for some teenagers their probability of no use is far above the market
average at current prices and we would obtain a negative price to lower it to the
market average level. (An alternative approach is to set pCFim = pim for teenager
with SPostim (pim) >= S

obs
m and only compute the counterfactual price as described

above for teenagers who�s probability of no use is below the market average. This
approach yields similar results.) In the main paper we provide summaries of the
estimated counterfactual prices for teenagers needed to keep the proportion of
non-users at pre-legal levels and also by gender. Since use remains illegal for
teenagers the disutility variable Lillegalim remains unchanged.

*
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