Online Appendix: “The Allocation of Future
Business,” Isaiah Andrews and Daniel Barron»

Omitted Proofs

Proof of Lemma 1

We begin this proof with a lemma that bounds each player’s punishment payoff

from below.

Lemma A.1

For relational contract ¢* and on-path history A, consider h*!', h**! € H4H
such that h'*! € supp{o*|h'} but h**! ¢ supp{o*|h'}, for h'*' € supp{o*|h'}
the support of h**! conditional on ' under o*. Suppose I;(h**1) = I;(h*)
Vj ¢ {0,4}. Then

E,. [Ui,t+1|fi(ﬁt“)] >0 (7)

>0 T = ) Ly — wie =)W

J#i t'=t+1
(8)

y [Uo,t+1’ilt+1] > Eg-

Proof of Lemma A.1

If (7) were not satisfied, then agent i could profitably deviate by paying no
transfers and choosing d; = 0.

If (8) is not satisfied, then we claim the principal has a profitable deviation
at ht!. Consider the following recursively-defined deviation following At*!.
For any hi*" ¢/ > 1, the principal plays of(h*"), except he pays no transfers
to agent i. Let h*+! be the observed history at the beginning of ¢ + ¢/ + 1.
The principal chooses hi+t+! according to the distribution of length ¢ + ¢ + 1

H'We frequently refer to “all histories on the equilibrium path” such that some condition
holds. Formally, interpret “all histories on the equilibrium path” as “almost surely on the
equilibrium path.”
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histories induced by o*(h*"'), conditional on the event [;(h*¥+1) = [;(Rt+¥+1)
Vj # i. Under this strategy, agents j # i cannot distinguish A" and At for
any t' > 1, so the principal earns at least the right-hand side of (8). O

Proof of Lemma 1, Statement 1

Fix two histories hf, hj € H; whose sole difference is that y; = v,,; in h}; and
v = 0 in h%. Define R;(j) = Eq [(1 — 0)Tit + (5Ui7t+1]hﬂ for j € {L,H}. On

the equilibrium path, agent ¢ chooses e; = 1 only if
piRi(H) + (1 =pi)Ri(L) — (1 = 0)e > poRi(H) + (1 — po)Ri(L).  (9)
By Lemma A.1, 7, is paid at h* € H}, in equilibrium only if
(1= 0)Ege [1340] < 0By [3057 111 8" 711 = 0)Liw(ywr — cen)|B']
—(1 = 0)Eg« [1ia] Li(h")] < 0Eq« Ui rs1|L:(RY)]
Otherwise, either the principal or agent ¢ would deviate by not paying ;.
Plugging these constraints into (9) yields (1). O

Proof of Lemma 1, Statement 2

We construct relational contract o* given a strategy o that satisfies (1). For
any strategy profile &, define H(5) C H as the set of on-path histories. De-
fine an augmented history as an element of H x H. We will denote histories

corresponding to o or o* by hl or h%*, respectively.

Constructing equilibrium strategies: We recursively construct a can-
didate equilibrium ¢*. The construction begins with an augmented history

consisting of two histories at the start of the game, (h$, hy™), where h) = hy™.
1. For any ¢’ > t, let (h}, hg*) € HA with h, hy™ € HY.
2. For each hL* € H! in the support of o*|hg*, let k! be the corresponding

successor to hfy with the same productivity realizations. The principal
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chooses an h! according to o|h%. The principal chooses x} as in h!, and

pays w;, = 0 Vi # xy, with

)
1—9¢

Eq [Sipralli(ht), ye =
(10)

wy, ;= | (1= €)vg, 0o + € <U1't,tp1 + (1 —p1)

3. Agent z; chooses df = 1 iff w}, , > vy, 4po and e = 1 iff w}, ; > vy, 41p1-

_ _ * _ w;t,tf’uztytpl : * _
4. If e, =1 and y = 0, then 77 , = ——t5———. Otherwise, 77 , = 0. For

all agents i # xy, 77, = 0.

5. Let hgt"™ € HLM be the realized history after following these steps. Let
hi, € M, be the successor to h. with the same y; as in hit'*. The
principal chooses hitt € H5M according to the conditional distribution

o|h. Repeat with the new histories (h§™', hg™).

6. If a deviation occurs in any variable except ¢;, the principal thereafter
chooses z; = 1 and pays no transfers. Agents who observe a deviation

choose d; = e; = 0 and pay no transfers.

Payoff Equivalence of 0 and ¢*: We claim that o and 0* generate the same
distribution over {v;, x, ys}izl, Vt > 1. By induction: the result is immediate
for t = 1. If it holds for ¢, let (h§, hi™) be the augmented history at the start
of period ¢ + 1 in the recursive construction. F' is exogenous. Conditional on
vy, for pg > 0 actions (z},d;,e;) are drawn as in o|hf, while for py = 0 the
analogous statement holds for (z},d}e;). In either case, the distribution over
output is the same in ¢ and o*. Finally, the augmented history (A5, hi™")
is drawn from the distribution o|h; over hitt. So the conditional distribution
given by o*|(hf, hg*) over period t 4 1 augmented histories is the same as the
conditional distribution o|hY over HS™. The distribution over (z},d}, e}) is
also identical in o and ¢*, which proves the claim.

We immediately conclude that for any (h, h5*) in the construction, o|hf

and o*|h} have the same expected total continuation surplus.
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The principal has no profitable deviation: Under ¢*, the principal earns
0 in each period. In period ¢, the principal could deviate from o* in zj,
{w;, 3Ly, or {77,}iL,. Following the deviation, the principal earns 0 in all
future periods. Since 7, < 0, the principal has no profitable deviation in

{7, 1L, A deviation from w}, = 0 for i # x; would be similarly unprofitable.

*

Following a deviation in wy, 4,

the principal earns y; — Wy, 4 — Topp. If Wy, <
Ug, +tPo, then df = 0 and the principal’s payoff equals 0. If wg, ; = vs, Do, then
either agent z; detects a deviation (y; = 7, = 0), or he doesn’t and chooses
dy =1, e = 0. In either case, the principal’s payoff is weakly negative. If
wy, + satisfies (10) and is not detected as a deviation, then agent z; chooses
di = e; = 1 and pays 7;, ;, so the principal earns 0. Any other w,, ; is detected
as a deviation and so is unprofitable. Since the principal can never earn more
than 0 for any allocation decision, she has no profitable deviation from x}. So

the principal has no profitable deviation.

Each agent has no profitable deviation: We must show that an agent
cannot profitably deviate from dj, e}, and 77, < 0.

As a first step, suppose (h', ht*) and (', h%*) are two augmented histories
from the construction. Suppose I;(h') = I;(h'). Then we claim I;(ht*) =
I;(h*). For t = 1 the result trivially holds. Suppose it holds for all histories
of length t — 1, and suppose towards contradiction that I;(h%*) # I(h5*).
Then there exists some variable in period ¢t — 1 that differs between h%* and
ht* and is observed by agent ¢. All non-transfer variables are the same in h%*
and h** because they are the same in ' and h'. Transfer 77, depends only
on w;,, and w;, depends only on non-transfer variables and I;(hl™"'), where
L;(ht1) = I;(ht1) by assumption. Therefore, I;(h**) = I;(h'*) as desired.

Now, suppose the agent deviates from 77,. If 77, = 0, then such a deviation
cannot be profitable. Suppose 7, < 0. By the proof that o and ¢* are payoff

equivalent,

Ey [Sianalh§™] = Eg | D 6" 7711 = 8) i (g — cen)| (™ 1)

t'=t+1
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for an augmented (b5, h6+1’*) from the construction of ¢*. Since the prinicpal

earns 0 in each period of o*,

o)

> 8 L= Syl (h )

t'=t+1

EU* - Ea‘ |:Si7t+1|h6+l} . (11)

Consider a history h* such that 7", <0 (so e = 1 and y; = 0). Then

Yy

E,. [E {Si,mui(ﬁ;)} |(ht, Bt st L(ht*) = Ii(h;*)} — B, [Sipm|L(hE)]

Yy

Eoe [Ussa (k)] = Eoe |Sian |t ) st L") = Li(h)| =

The first of these equalities holds by (11). The second equality holds for two
reasons: (a) o* induces a coarser partition over agent information sets than o
by the previous argument, and (b) by construction, the distribution induced
by o* over (ht, h"*) is the same as the distribution induced by o over h'.}? The
final equality holds because if IZ(EZ*) = [;(hy"), then wj, = w], in these two
histories. But then B, [Si 1 |L(hL),y, = 0] = E, [Si,mui(i}g), Yo = o] by the
definition of wy,.

Following a deviation, U;+y; = 0. Therefore, agent 7 has no profitable

deviation if
—(1=0)17, < 0F, [Siasa|Li(hl), e = 0] ,

which holds (with equality) by construction.

Finally, we argue that agent 7 has no profitable deviation from d; or e;. If
d;y = 0 or e; = 0, the result follows immediately. Agent 7 has no profitable
deviation from e; = 1 if his IC constraint (9) holds. Given 7, this constraint

may be written

&
pl—po'

0 Eg- [Uspia|L;(RL*), yf > 0] > (1 —10)

But Ey« [U; 11| Li(hL*), y > 0] = E, [Siis1|Li(hL), y: > 0] by the argument above.

2Note that every on-path h® in o corresponds to a unique augmented history (hf, ht*) in
the construction.
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So this inequality holds by (1).
We conclude that o* is a relational contract that satisfies the conditions of

Lemma 1. O

Lemma A.2

Statement of Lemma A.2

For QIS4 and Q) as defined in the proof of Lemma 3, QFsA < Q, for all t.

Proof of Lemma A.2

Define bF (h', k) = 1,4 (k) 1{i ¢ H (h")}, and let 8, (k) = E, [bF (h', k)] . For
any strategy which both implies first-best surplus and treats agents symmet-
rically (from an ex-ante perspective), however, 8- (k) + 8 (k) = +F* for
F¥ = Pr {vmaxs = vF} (where we again use symmetry to drop the ¢ subscript).

Thus we can thus re-write obligation as

t K t K
Q=35 B (k) <p155 +(1-9) v,f’B) =YY %F’“VkFB.
s=1 k=1 s=1 k=1

Note that (for fixed model parameters) obligation is entirely determined
by the sequence {{BtL (k)}lil} , which we will denote by B. Letting B
=)=

and BF54 be the sequences implied by ¢ and o754, with elements 57 (k) and

= F5A (k) respectively (again using symmetry to drop the ¢ subscript), we
prove the lemma by constructing B™ for n = 0, 1,2, ... such that B! = B and
Q7 the obligation implied by B", is decreasing in n with lim,,_,, QF = QIS4
To formally define B7, for each n > 1 set 55" (k) = tL’FSA (k) for t < n, and

tL’n (k) = BtL (k) for t > n. For t = n, select 8" (k) such that
B () > masc { B4 (k) BE (k) | for all k

and

S8 (k) = - (12)



Lemma A.3 establishes that such selections are always feasible. The constraint
(12) is a summing-up constraint on the allocation probabilities, and one can
show that any sequence B generated by a strategy profile o yielding first-best
surplus (including & and o¥'P) must satisfy this constraint. Note, however, that
there are other constraints on the set of sequences B which may be generated
by first-best strategy profiles which we do not require of B, so it will not in
general be the case that B" corresponds to any strategy profile, though we can
still calculate the implied obligation.

We need to show that for any n, t pair, QF > Q!'. Note that 82" (k) =
BLnFL(E) for s < n, and BL" (k) > BLL (k) by construction, so since €y is
increasing in B (k) for all s and k the result is immediate for ¢ < n. Hence, it
remains only to address the case with ¢ > n. In this case, note that S (k) and
BLnHL (k) still coincide for all s ¢ {n,n + 1}, so the difference in obligations
is

n n+1
Qt - Qt

K
=& (Z (165 + (1= ) VFP) (B (k) — BE"+ (k) + 081 (k) — 0B (s >)> .
We know by construction of B" that

Ln (/{2) o ﬁi,n—i-l (k‘) — 57%% (/{2) _ pL,FSA (k?) Z 0

n n

while
Buly (k) = By (k) = By (k) = B (k) <0
and by (12) and the fact that 82" (k) and S2"+ (k) coincide for s ¢ {n,n + 1}
K K
Z 5Ln ﬁL nH Z < n+1 - ﬁflﬂ (k)> = A,
k=1 k=1

for some value A,, > 0. Thus, we can bound Q7 —Q"*! from below by assuming
that B’rlLﬁn (1) - /671’:,TL+1 ( ) Ana /Bn—',-l ( ) - 5£f1+1 (K) = _Ana and all other



differences are equal to zero. This yields
Qr — Qutt > gnet ((pl(SS 4 (1-4) vlFB) Ay — And (p155' +(1-96) v,?B)>

which is greater than zero if and only if §VEP < VB 4,65, which is precisely

the condition assumed in the statement of Lemma 3.1

Proof of Lemma A.3
Statement of Lemma A.3

For all n, we can select B” such that 87" (k) = 8754 (k) for t < n, B2 (k) =
BE (k) for t > m, BE™ (k) = max { BEFSA (k) BE (k) |, and Y52, S50, 877 (k) =
1

p_l.
Proof of Lemma A.3

Note that
B (k) = max { BEFSA (k) , B (k) }

if and only if
BE™ (k) = BE (k) = max { BE754 (k) = BE (k) .0} .

Since our choice of B2 (k) is restricted only by the adding-up constraint (12),

we are able to choose such 827 (k) for all k if and only if we can ensure that

i < o7 (k) — B (k)) > imax{ LESA (k) — BE (k) ,0} . (13)

Since 87" (k) and BF (k) coincide for ¢t > n, (12) and its counterpart for B
imply that

n

f( P (k) = BE (k) =0

t=1 k=1
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which since /" (k) and 877" (k) coincide for ¢ < n, implies that

i (B (k) = BE (k) = i (BF (k)= 8175 (k)

Thus, we can re-write (13) as

1

n

i( LFSA(k)>ZZmaX{Aﬁ(k)—~£(k),0}.

1 k=1 k=1

t

This statement holds if and only if

[y

P 3 i ( JLESA )) +p kZ:min {Bg (k) — BEFSA () ,o} > 0.

t=1 k=1
(14)

Note that

first time in round ¢, and the output type is v

plﬂtL (k> = Pro {

agent ¢ produces high output for the }
k Y

where the events inside the probability are disjoint for different ¢ and/or k.
Thus, for I any subset of {1, ..., K} and

C(n,K) :{

agent ¢ produces high output in first n — 1 rounds, }

or produces high output v* for k€ K in round n

we have that

PT’ FSA {C (TL /C } P1 Z BL FSA ‘|‘ P1 Z 6£’FSA (k)

n—1 K
t=1 k=1 ke

Note, however, that

pr Y min {BF (k) = BEFSA ()0} = min py > (B (K) = BT (k).

’Cg{l ----- K} kel
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Thus, (14) is equivalent to

Pryrsa{C (n,K)} < Prs {C (n,K)} forall X C{1,...,K}

and it suffices to show that o4

minimizes Pr, {C (n, )} over strategies o.
In particular, for symmetric strategy profile o define v, (m) = Pr, {|H(h")| = m}
to be the probability that exactly m agents have produced high output before

period t under o, and let
wt (m, ]{7) = PTU {I‘t € H (ht) 7Umax,t - UkHH(ht)’ = m}

to be the probability that the principal chooses an agent who has already
produced high output conditional on this event, decomposed by productivity

type. These probabilities have a direct connection to 8 under o:

N-1 K
B = 5 S m) Y (P~ i (m. ).
m=0 k=1
Note, in addition, that for any strategy profile yielding first-best surplus,
Ye (m, k) < Pro My N H (h") # 0, vaxy = V*||H (B') | = m},

since otherwise ¢ must allocate production to inefficient agents with positive
probability."® Finally, note that we can define ~; (m) recursively in terms of
U (m, k), since v (0) = (1 — p1) -1 (0), while for m > 1

:i“t v (m, B (m) + (F 'f—wt_1<m,k>><l—plm_1<m>>.
1 (F — Y1 (m =1, k))p1ye—1 (m — 1)

Using these new definitions, note that

Pr, {C(n,K)} = ]{, Zﬁ oMY (M) + D1 D e an (k)
:%Zgzom%( ) + Zkezczm 0V (M ) (F* =t (m, k) .

3Technically, this is not a problem if v, (m) = 0, but in this case v; (m, k) has no effect
on obligation and may be chosen arbitrarily.

(15)
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Note further that 3, v, (I) = 1 by construction, so S % = 0, while
for s < n,

0 ifl<m
OVn (l)

W: >0 ifl=m.

<0 ifl>m

Since 0 < >, (F’“ — Yy (m, k)) < 1 for all m by definition, m+p; > _, (F’€ — 1y (m, k))
is increasing in m, with the result that (15) is weakly decreasing in ¢ (m, k)
for all s. Since o4 implies ¢, (m, k) as large as possible this proves the

lemma.

Proof of Corollary 1

Any stationary first-best equilibrium must satisfy x; € M, in each period
t > 1. Agents are symmetric, so in any stationary equilibrium there exists

some agent ¢ such that

Pr{i € My, x; = i} Evmax|i € My, 2 = 1] < %E[Umax,t}y

¥Vt > 1. Then (1) implies that first-best is attainable by a stationary equilib-
rium only ifS < % (E[vmaxtp1 — ¢) , which implies that § > 6% is a necessary
condition. It is sufficient because the allocation rule that chooses x; € M, uni-
formly at random and efforts e; = 1, Vt, satisfies (1) for any § > §%.

Since (1) is continuous in 4, to prove 6754 < §9%at it suffices to show that

FS4 at § = §5t, By Assumptions 1 and

(1) holds with strict inequality for o
3, S&SA is strictly decreasing in j. But then Sg)SA > L F[vmax,p1 — ¢} because
SN, SESA = Elvgaapr — o] = VP Thus 754 < §5t by definition of

5Stat..
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For Online Publication: Supplemental Results

Alternative Transfer Schemes
Description of Alternative Transfer Schemes

The equilibrium we construct has the following features: in each period ¢, the
principal chooses x; as in FSA. The chosen agent picks e,, ; = 1. The following

transfers are paid:

1. wg, equals
Wayt = (Vo ap1 — Elta,aler = 1]) — S,

where 7., , is defined below. Note that w,,,; could be either positive or

negative (paid by either the principal or agent ;).

2. Each agent i # x; pays

Wit = —(555\%14

3. For agents @ # =z, 7, = 0. Agent z; believes her dyad-surplus is
E[Sy,.41]L, (h5T)] following low output. Then

s = 1%6655\,5)‘4 if yo = Vg1 |
_%<E[Sl’t7t+1|]1‘t(h6+l)] - 555\%4) ify: =0

Following any deviation that is observed by the principal and agent ¢, agent
i thereafter chooses d; = ¢, = 0 and w;; = 7,;, = 0. The principal continues
to allocate production as in the FSA. If agent ¢ is allocated production after
he has observed a deviation, then he is treated as if he produced y; > 0 with

probability p; and is otherwise treated as if y; = 0.

Statement of Result

Suppose that there exists a PBE that attains first-best and that the conditions
of Proposition 1, Part 2 hold. Then the strategies described above are a PBE
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that attains first-best.

Proof

By Proposition 1, it suffices to show that the strategies described above are a
PBE whenever the FSA with transfers as described in the paper is a PBE. At
each on- and off-path history, the principal earns a fixed continuation payoff
from each agent (equal to 0 if the agent has observed a deviation and 5S(FNS)A
otherwise), regardless of her allocation decision at that history. The alloca-
tion decision also determines each agent’s beliefs about their current rankings.
However, these beliefs have exactly offsetting effects on the fees and bonuses
for each agent and so have no effect on the principal’s payoff. So the principal
is indifferent between all allocation decisions and hence is willing to follow the
FSA allocation rule.

An agent who is not allocated production earns no less than S@%A — 5S(FNS)A
in continuation surplus in each period because S(%% > 85\%‘4 for all k£ €
{1,..., N}. An agent earns 0 following a deviation. So agent i # x; is willing
to pay w; if

—(1 = 8wy < 5(1—0)S{RY!

which holds by construction. If w,,,; < 0, then a sufficient condition for agent

x; to be willing to pay w,, ; is
—(1 = 6)(vapr — e = 65™) < 5(1 = )SGR

which holds because v, ;p; —c > 0. The principal earns (N—l)éSf]\%A following

a deviation observed by agent i. So the principal is willing to pay w,; > 0 if
(1 = 6) (vgy.tp1 — Waypp — Elp,4er = 1]) + 5255\}9)’4 > 0.
Plugging in w,,, yields 555\,5)A > 0, which always holds. So there are no

profitable deviations in fees.

The agent earns 0 continuation surplus following low output and 555?‘4
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surplus following high output, so is willing to work hard if

c 0
p—po 1—0"W

This is exactly the condition in Proposition 1.
The principal is willing to pay 7,,; > 0 because she earns 5S(FNS)A from agent

x¢ from period ¢t + 1 on, and

J
(1 - 5)7'%715 = (1 - (S)TééS’(F‘]\%A S (5235\[3)14
by construction. Agent z; believes his continuation surplus is E[Sy, 11| L, (h6T)]—

(5S(F]\f)A if y, = 0, so he is willing to pay 7,,+ < 0 because
_(1 _5)T$t7t = 6(E[S$t+1|jﬂct<h6+l)] _55(};\%4) < 5(E[S$t,t+1|lwt(h6+l)] _555\%4)

Thus, this strategy is an equilibrium that attains first-best whenever FSA
attains first-best.

Following a deviation that is observed only by agent 7, the principal earns
(N — 1)555\%‘4 regardless of the allocation rule and so is willing to follow
the equilibrium allocation. The principal’s relationship with agents j # i is
unchanged, so there is no profitable deviation in these relationships. In the
relationship with agent i, w;; = 7;; = 0 and d; = e¢; = 0 whenever x; = ¢ are
myopic best responses. A similar argument applies if any subset of agents has
observed a deviation. So there is no profitable deviation off the equilibrium
path.H

The Equations for S@fA

As in Section IL.A, let F(';) be the probability that vy, = v* and that the

j — 1 most recently productive agents are not in M, at time ¢:

F(];) f— P’r {{1, 7] - 1} th == ®7Umax,t = Uk}
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and let
Fyy =Y Fly=Pr{{l,.,j—1}nM,=0}.
k

FSA continuation surplus SS)SA is defined recursively by

st -
J
N
(1= F) 0S(54 + X (F@) - F(,;'—I—l)) (1= 0)(vfp1 —c)+
(Fy) — Fign) 0 <P15(F1)SA + (1 —p1) 5539A> + Fj+1)0 (msgiﬁ‘) +(1—=p1) 5&“)
(16)

where we define F{y;1) = 0 and have used the fact that

P’f‘ {{1, ,j — ].} N Mt = @,] S Mt;vmax,t = Uk}
_ k k _ k k
= (1 - F<j+1>) - (1 - F(j)) = F — Fiy:

Stacking these equations, we can write

st dm-c) [ S
A A
st em—c || st
SA SA
S(F]\?)A vEp —¢ Sf]\%A

or more compactly,
SFSA — A (vpy — tgc) + BSFSA

for N x K and N x N matrices A and B which collect the coefficients from

(16), and tx a K x 1 vector of ones. Solving for SFS4 finally yields
SFSA = (IN — B)il A (Vpl — LKC)

which allows us to easily calculate FSA surplus for all parameter values.
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