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I ntroduction

This corrigendum corrects a mistake in proving the optityalf a crowdfunding contract in Strausz
(2017). In particular, the corrigendum proves that theradsloss in assuming that an optimal
mechanism in Strausz (2017) does not leave any (informatemts to consumersonditional on
the project’s cost structur@/, ¢). As pointed out by Ellman and Hurkens (2017), Lemma 5 in Sizau
(2017) falsely claims a stronger version: consumer rergszaro conditional oni/, ¢, 1), ie, also
conditional on the realization of a randomized contraclizaion [. The corrigendum corrects this
mistake and thereby shows that it is inconsequential fop#per’s results concerning the optimality
of crowdfunding contracts.

This corrigendum is to replace subsection Ill.B and the @ased proofs that appeared in the
appendix. The numbering of equations and references icthiggendum follow Strausz (2017).

B. Optimal Allocations and Mechanisms

A (possibly constrained) efficient mechanigm= {(pr, 1, 30) Yier maximizesST subject to con-
straints (21)—(29). In order to solve this maximizationlgem, we follow the usual approach in
mechanism design to focus first on a relaxed maximizatioblpro. In particular, we replace the
entrepreneur’s truthtelling constraint (27) by

n°(I,e)> > PYT|I.)aTV(I,c.T,d). (30)
TeTT (1)

The constraint is weaker than (27), because its right-hatelis larger than the right-hand side of
(30), whereas their left-hand sides are identtcal.

*Humboldt-Universitat zu Berlin, Institute for Economicd@ory 1, Spandauer Str. 1, D-10178 Berlin, Germany
(strauszr@wiwi.hu-berlin.de).

IReferring to (16), it considers only one element within theximum operator and fot,(I’, ¢, v) = 0, constraint
(22) impliesII (I', |1, c,v) = Y, [t (I, ¢ v) + (I, ¢/, v)] > 0.
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Formally, we say thal is weakly feasibléf it satisfies constraints (21)—(26), and (28)-(30), and
an output schedule : £ xV — AX is weakly-implementabléd there exists a weakly feasible
mechanisni' that implements it. A weakly feasible mechanisris optimalif it maximizesS" over
all weakly feasible mechanisms.

In the following, we derive an optimal weakly feasible memisanT" with the feature that it is also
(strictly) feasible. Hence, it also represents a constdhiefficient mechanisi. In particular, we
show that such a mechanism is a crowdfunding mechanispthese is a threshold functidh(/, c)
so that all the deterministic mechanismsn I satisfy (10)—(13).

We first derive a series of lemmas that allow us to simplifyrieximization problem. The first
lemma establishes the relatively intuitive result thatedepment-efficiency is a necessary feature of
optimal weakly feasible mechanisms.

Lemma 2 Aweakly feasible mechanidm= {(p;, f;, Z;) }1c is optimal only if each; is development-
efficient.

The next lemma validates the suggestion of the previousosetttat, in order to optimally con-
trol entrepreneurial moral hazard, a mechanism uses ddfpayments and limits the entrepreneur’s
information. In particular, it shows that developmentaéincy is a sufficient condition under which
it is optimal to initially provide the entrepreneur only withe investment amourtand, hence, min-
imize the information which she gleans from receiving a mgtendation to invest. The result is
an illustration of Myerson’s general observation that,caspanying a recommendation, mediators
should give agents only the minimum information possibéap@re information only makes it harder
to satisfy incentive compatibility.

Lemma 3 Supposd’ = {(p;, 1, %) }ier is weakly feasible andi;},c. are development-efficient.
Then there are transfer schedulgs} < - such tha(21) binds and the direct mechanidm= { (5, 1, &) }ie
is weakly feasible and payoff equivalent, 42&) simplifies to

Yoientun(Le,v) > e vl e, v) V(I 1, c,v) € LXKV, (31)

Because Lemma 2 shows that an optimal weakly feasible messrhas development-efficient,
there is no loss of generality in restricting attention tcalg feasible direct mechanisms that give
the entrepreneur exactly the amount the entrepreneur is to develop the product.

Combining Lemmas 2 and 3 allows us to considerably simphi&dptimization problem. Indeed,
if the feasibility constraint (21) binds théR" (1, ¢) = {I} so that the obedience constraint (26) has to
hold only with regard td” = I. By defining, for an output schedutec R"*!, the set and probability

Vm(lv C) = {U|ZE0([, ¢ U) = 1} andﬂ-m(lv C) = Zvevz(l,c)ﬂ-(v)a
the obedience constraint (26) simplifies to

ZZELZUEV””Z(I,c)zie./\/plﬂ-(v)(tfi(la G, U) - Cxli(la G, U))

(32)
>3 eemm™ (L c)adl Y(I,c)eK;



and the relaxed truthfulness constraint (30) to
Y (1,¢) > 7a"(I', ol Y(I,c,I', ) € KxK, (33)

wherer' (I,¢) = Y, . mn™ (I, c).

Following the previous two lemmas, there is no loss of gditgren focus on weakly feasible
mechanismsy = (£, ) that satisfy (23), (24), (25), (28), (29), (31), (32), an@)3and (21) in
equality. Given this observation, we next prove that optimeakly feasible mechanisms do not
produce a product for consumers who do not value them.

Lemma4 A weakly feasible mechanism= {(5;, #;, #;) }ic is optimal only if it holds that
za(l,c,0,v5) =0V(,i,1,c,0;) € LXNXKXV,;. (34)

The result sounds intuitive, since it implies that an optimeakly feasible mechanism does not
display any form of artificial inefficiency. It is, howevepnimmediate because, in general, artificial
inefficiencies may help to relax incentive constraints. kgt lemma shows that it also implies that
there is no loss of generality in assuming that an optimaklydaasible mechanism leaves no rents
to consumers.

Lemma5 Suppose a weakly feasibie = {(p,, %, 7;) }ic. satisfies constraint€9), (31)~(34), and
(21)in equality. Then there exists a weakly feasible mechahism{ (j;, #;, #;) }c which yields the
same aggregate surpln%F and satisfies the additional constrairf®, (31)- (34)and the constraints
(21), (28), and(29) in equality. Moreover if(28) and (29) are satisfied in equality, the(34) implies
(24) and (25).

The lemma provides the insight that optimal weakly feasibéchanisms extract all rents from
consumers and assign them as revenues to the entrepreheuntdition as to why this rent extraction
is optimal follows directly from the moral hazard probleny. diving all rents in the form of deferred
payments to the entrepreneur, she has the least incertives tith the money.

As we show in the next lemma, the rent extraction result iegahat there is no conflict between
maximizing the aggregate surplus and maximizing the ergrequr's ex ante expected profits. In
order to make this statement explicit, define for a mechahisa{ (p;, v/) } e = {(p1, t1, 1) }ier the
entrepreneur’s ex ante expected profits as

= 3 oI, oI (1),

(I,e)ek

wherell" (1, c¢) represents the equilibrium profit in cost stéafec):

(1) =Y pll™(I,c);

leL

and the aggregate surplus in the cost state) as

SY(I,¢c) = ZplS””([, c).

leL
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Lemma6 It is without loss of generality to assume that an optimal ki&easible mechanisin =
{(p1, 1, %) hiee Maximizes the entrepreneur’s ex ante expected pidfitsand exhibitsII' (1, ¢) =
SU(1,c)forall (I,c).

To summarize, Lemmas 2 to 6 imply that, with respect to thexgdtweakly feasible mechanism,
it is without loss of generality to replace the constraitk)(29) with the following constraints:

YoientisUc,v) = (L, c,v) I V(1 1, c,v); (36)
Yoientn(Le,v) > e o vri(L e, v) V(I 1, ¢, v); (37)
FeN x;(l,c,v)=1= x10(I,c,v) =1V(, I,c,0); (38)
U (I,c]1) =0V(i,I,c); (39)
UF(I,cl0) =0V(i, I,c); (40)
Z Z Zpﬂr Yt (I, c,v) — cxy(l,c,v)) > 7" (I, c)al Y(I, c); (41)
leL vev®i(I,c) ieN

zi(1,¢,0,05) =0V(1,4,1,c,05); (42)
SY(I,e) > 7" (I, )al' Y(I,c,I',C). (43)

Constraint (43) effectively represents the entrepresancentive constraint (18). The insight that
the mechanism leaves all rents to the entrepreneur in codgstimally deal with the entrepreneur’s
moral hazard problem, enables us to rewrite this constesrdepending only on output schedules
and not on transfers.

Since the deterministic version of this constraint turnistoylay a key role for implementability,
we say that an output schedules R™*! is affluentif for all (7, c) € K it holds:

S*(I,c) > ®(x) = max an”(I,¢)l. (44)
(I,e) ek
We moreover denote by/(x),(z)) a maximizer of the right-hand side of (44). Note that for a
deterministic mechanisi = (1,~,) = (1, x1, t;), constraint (43) amounts to the requirement that
is affluent. This leads to the following result.

Proposition 2 The efficient output scheduté is implementable if and only if it is affluent. If imple-
mentable, a crowdfunding mechanism implements it and lblgar@aximizes both aggregate surplus
and the entrepreneur’s ex ante expected profits.

The proposition identifies affluency as the crucial conditid is both necessary and sufficient
for the implementability of the efficient output scheduléeTintuition behind this result is that the
entrepreneur needs to receive a rent of at I€dst) to induce her to invest properly rather than
employing the combined strategy of misreporting her casictire and, subsequently, taking the
money and running. Since the consumers ultimately pay &g the project then has to generate a
surplus of at leasb(z*) so that the consumers’ participation is still individuaioaal. The efficient
output schedule™, however, only guarantees such a surplus if it is affluent.

More generally, we can interpret the required réft) as theagency costsf implementing some
output schedule. To obtain more insights concerning the extent to which inloaaard and private
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cost information are responsible for these agency costs that if the entrepreneur cannot falsify her
cost structure, the output schedulenduces the entrepreneur to invest if

S*(I,c) > d™(z) =a-n"(I,c)l.

This suggests interpretin™ (x) as the agency cost associated with moral hazard and thermegai
part,
O'(z) = () — 2" (2) = a- [7"(I(2),(x))I(x) — 7*(1,c)I] =0,

as the agency cost associated with private informationtahelcost structure.

The proposition further shows that if there is no moral hdzaoblem & = 0), the efficient output
schedule is implementable even if the entrepreneur haatprimformation about the cost structure.
In this case, agency costé*(x) and®’(z) are both zero. Hence, private cost information alone does
not lead to distortions in crowdfunding. This observatiomializes the insight of Section 2 that
entrepreneurial moral hazard is a first-order problem imvdfanding while private cost information
is of second order.

It also demonstrates that the presence of private costaion does not alter the intuition be-
hind the inefficiency result of Proposition 1. Effectivethe existence of a tension between the
entrepreneur’s budget constraint and the moral hazardggrobemains solely responsible for the
inefficiencies, and prevents the implementability of tHecefnt output.

Yet, even though private cost information by itself caneaid to an inefficiency, it does, however,
intensify the moral hazard problem. This is because witvgpei cost information, consumers have to
grant enough rents to prevent theubledeviation of the entrepreneur combining lies about the cost
structure with the intent to take the money and run. In theeexe, this multiplier effect destroys all
potential benefits from crowdfunding. In particular, if te@s a cost structurg/, ¢) in K for which
S*"(I,¢) = 0, then an affluent output schedule necessarily exhitditg, &) = 0 for all (I,¢) € K.
This means that crowdfunding is ineffective: for any demesalization and any cost structure, im-
plementability impliescy = 0.

We next address the question of which constrained efficietput schedule is optimal when the
efficient output schedule is not affluent. Note that afflueiscg necessary condition for an imple-
mentable output schedule Hence, an intuitive approach toward finding the consthiekéicient
output level is to start with the efficient output and adapt it to make it affluent. Because the effi-
cient outputz* maximizesS*(-) and, hence, the left-hand side of (44), such an adaptatoprires a
change inc that lowers its right-hand side. That is, the output schedhbuld decrease”(-). Ef-
fectively, this means lowering the likelihood that the epteneur will receive a recommendation to
invest when reporting the cost structuiéz), &(z)). Intuitively, this change reduces the profitabil-
ity of the double deviation to misreport the cost structisé/dz), ¢(z)) and subsequently take the
money and run.

The required adaptation af implies a downward distortion of the output schedule: the-co
strained efficient mechanism has to recommend the entrepreot to invest for some demand reve-
lations that yield a positive surplus. Hence, lowerirfgcomes at the cost of underinvestment. These
costs are minimized when the mechanism makes the inefficBmoimmendation not to invest for
those demand realizations that yield the least surplusermg of crowdfunding, this means that the
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crowdfunding targef is raised above the efficient one, as the demand realizatlossst to target
yield the least.

The reasoning to adapt toward some affluent output schedule suggests that alsotistrained
efficient mechanism is a crowdfunding mechanism, but withnefficiently high targetl’. Since
the adaptation away from* comes at a cost, the crowdfunding target should be raiseul thiat
the affluency constraint (44) is just met. Due to the discreste of the problem, this is generally not
possible with deterministic output schedules. As a consece, we cannot exclude the possibility that
the optimal mechanism is stochastic and displays the morar 6f randomness in that it randomizes
between two crowdfunding schemes such that the affluencsti@nt is satisfied with equality.

In two steps, we formally confirm that the heuristic argursgmiesented above are correct. In
a first lemma, we show that optimal weakly feasible mechasisgtessarily exhibit a single cut-
off 7' for each cost structuré/, ¢). This implies that crowdfunding mechanisms implement them
Proposition 3 then shows that these weakly feasible mestranare actually (strictly) feasible.

Lemma7 A weakly feasible mechanisin= {(;, f;, #;) },c. that satisfieg36)(43) is optimal only
if for each(I, ¢) € K there exists somg € N such that for all(l,,v) € LxN xV it holds:

1 ifn(v) > T,
0 ifn(v) <T;

v; ifn(v) > T,

0 ifn(v) <T. 43)

Ti(l,c,v) = { and &;(1,c,v) = {

The next proposition shows that any output schedule thesfiest(45), is actually implementable
by a (strictly) feasible mechanism that, in addition to (388), also satisfies properties (11)—(13).

Proposition 3 If the efficient output* is not affluent, the optimal allocation is constrained eéfiti
A crowdfunding mechanism implements it and thereby alsamizes the entrepreneur’s ex ante
expected profits.

A Appendix

Proof of Lemma 2 Consider a weakly feasible mechanim-= {(p1, £, 1) hiee With somez; that is
not development-efficient. That iB,satisfies (21)—(26), and (28)-(30), and there exists a coatioin
(I,¢0) such thati,(I,¢,0) = 1 and@,(I,¢,0) = 0 foralli € . Lowering (1, ¢, 7) to zero
raises the objectivé™ by p;p(I,é)n(v)I. We show that this change yields a weakly feasible
and as a resulf is not optimal. To show thdf’ is weakly feasible, we show that it satisfies (21)—
(26), and (28)-(30), given that satisfies these constraints. Note first that the change adesfact
any of the constraints (24), (25), (28), and (29), while feefs (21) and (22) only fofl, I, ¢, v)

by lowering the right-hand side b§. Hence, these constraints remain satisfied. Note furttar th
becausei“(f, ¢,v) = 0foralli e N, (23) is vacuous fo(l, I, ¢,v) so that the change does not
affect it. Moreover, the change only affects (26) féré, ©) by raising the left-hand side and, hence,
it remains satisfied. Finally, the change also keeps (3®%feat, because it raisd%f(l, c), i.e., the
left-hand side, while it lower#® (T'|1, ¢), i.e., the right-hand side. Q.E.D.



Proof of Lemma 3 Fix a weakly feasiblé" = {(pr, 11, %)) hiee With &4, . . ., &1, development-efficient.
Define for eachl, I, ¢, v):

Ki(I,c,v) Ztlcv—[xlo(lcv)
ieN

Sincel is weakly feasible, (21) implies that;(I,c,v) > 0 for all (1,1, ¢,v). For any(l,1,c,v),
let n(1,c,v) = > o Tu(l, c,v) represent the total number of consumers with= 1. For any
(I, 1,¢,v) with @(1,c,v) = 0, definetl(I,c,v) = 0 and ) (I,¢c,v) = (1, c,v) + (1, ¢,v).
Similarly, for #,y(1, c,v) = 1 definetl(I,c,v) = 141, ¢c,v) — (I, ¢, v) K (I, ¢,v)/mi(I, c,v) and
(I, c,v) = B(1,e,v) + 2u(1,¢,v) Ki(I,c,v)/m(I,c,v). Sincel is weakly feasible and; is
development-efficient, it holds; (7, ¢, v) > 0 if and only if z,0(/, c,v) = 1. Hence, the transformed
transfer scheduléis well defined.

By construction) ", (1, c,v) = 0forany(l, I, c,v) with iy (1, c,v) = 0, andd_, 1 (1, c,v) =
Sien il c,v) — auy(L e, 0) K (1, c,v) /ry(I, e,v) = Y. U6(1,¢,v) — Ki(I,¢,v) = I for any
(I,1,c,v) with i,0(1,c,v) = 1. Hence,(t,#;) satisfies (21) in equality. We show that, because
Iis weakly feasiblel = {(p1,4;,4;)} is weakly feasible. To see this, note first that—because
(I, c,v) + 101, ¢,v) = (1, ¢c,v) + (I, c,v) forall (I, I, ¢,v)—the change froni' to T leaves all
constraints (22) (25) and (28)—(29) unaffected. We tloeeebnly have to check that remains to
satisfy (26) and (30).

In order to show thal' satisfies (26), first note that, by constructioriofor all (I,1,c) we have

veVi(I|l,¢) e 3T e TN, ¢):v e VI(T|I,¢).
Hence, for all(l, I, ¢) we have
{(v,D]v € VI(I|I,0)} = {(v, )3T € T"(1,¢):0 € VI(T|I, )}, (A7)
which for all (1, I, ¢) implies
Z Z Z m(v).
veVIL(I|1,c) TeTT(I,c) veVIL(T|I c)
Multiplying by p;, summing ovel, and rearranging terms yields

I\[c Z Z pm(v) = Z Z Z pm(v)

leL yeVvi(I|l,e) TeTT(I,c) €L veEVII(T|I,c)

= Y PYTII¢).

TeT (I,c)

(A8)

Note that, by definition ofL’,

(T|] C)HF (T'|I,c,1,c¢) Z Z pr (V)T (I, e| 1, c,v).

lEL veVIL(T|Ic)
Becausd’ satisfies (26), a multiplication of (26) b‘yf(T\[, c) yields

Z Z pr (V)L c|I, e,v) > PY(T|I,c)aT VT € TV (I, ¢).
leL veVI(T|I,c)



Summing ovefl’ € TF(I, c¢) and noting thaf” > I yields after an exchange of sums,

Yoo > wrIIdlLev)= Y PUT|Lc)al.

l€L TeTT(I,c) vEVI(T|Ic) TeTT (1)

Using (A7),I17(I,c|I, c,v) = 11 (I,c|I,c,v), and (A8) yields

Z Z pm(v)H“A”(I,c\[,c,v)ZPf([|I,c)aI.

leL yeVvVi(I|1,c)

Dividing both sides byP! (1|1, ¢) shows thaf’ satisfies (26), sincg (1, c) = {I}. )
Moreover, sincd" satisfies (30) and, for ariy € 7" (1, ¢), we havel’ > I and7"(I,¢c) = {1},
it follows for all (7, ¢, I, ) € Kx K that, by (A8),

M(I,e)=T"(I,c)> > PYT|I,d)aT
TeTV(I',c)
> > PNII,d)al = PRI, )l
TeTI(I,¢)

which shows thaf' satisfies (30).

We conclude thaf is weakly feasible. Because for &ll I, ¢, v) we haveiy (I, ¢, v) = @o(1, ¢, v),
ii(I,¢,v) = @u(1,c,v), andi (I, ¢, v) +15(1, ¢, v) = 1%(1, c,v) + (1, ¢,v), T is payoff equivalent
toI". Finally, because (21) holds in equality for (22) reduces to (31). Q.E.D.

Proof of Lemma 4 To see that any maximiz&r= {(p;, ;, &}, of ST subject to the constraints (23),
(24), (25), (28), (29), (31), (32), and (33), and (21) in ddueaexhibits (34), suppose to the contrary
that it is violated for somél, ¢, 0,v;) € KxV, i.e., for somé€, we havei; (1, c,0,v;) = 1. But then
lowering it to 0 and lowering?,(1, ¢, 0, v;) by c raises the objective by,p(1, c)7(0,v.)c so thatl’

is not optimal if the changed mechanism respects all thetints. To see that it does so, first note
that the change does not affect (21) and (23) and (29). Théicead reduction ir; (7, ¢, 0, v.;) and
*(I,¢,0,v.;) also implies that (31) and (32) remain satisfied, while dl$o(I’, ¢, v)|I, c) remains
unaffected for anyI,c, I’, ) € K*. HenceJI?(I, c) remains unaffected and, therefore (33) remains
satisfied. The change further relaxes (24) and (28), sincases the left-hand side. Finally, the
change also keeps (25) satisfied, because it does not afdeftthand side, while it lowers the
right-hand side by p(I, ¢)m;(v4)(1 — ¢). Q.E.D.

Proof of Lemma 5 We first prove that i’ = {(p1, 11, %)) hec is weakly feasible and satisfies con-
straints (9), (31)—(34), and (21) in equality, then we fipd (¢7,#}) with 7 identical to#¢ such
that the mechanisi = {(p1, 11, 21) e is weakly feasible, satisfies constraints (9), (31)—(34) a
(21) in equality, yields the same surplus, and exhibits (@&ging, ie. sz(f,c|0) = 0 for any
(i,1,c). Define i as follows: &(I,¢,0,v,;) = (I,¢,0,v;) + UL (I,c0) and i%(1,¢,1,v,) =
(I,¢,1,v,) + U (I,¢/0). By construction the mechanisin exhibits UL(I,c|0) = 0. Because
I" andI” exhibit the same output schedules, they generate the sa*p1a$u?f — ST. We next show
that, becaus€& satisfies (9), (23), (24), (25), (28), (29) (31)—(34), antl)(d equality, so does the
constructed”. To see this, note first that the change fronto I affects only the transferé(-) so
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that (9), (21), (23), and (34) remain unaffected and, theesfsatisfied fof. Becausé’ (I, c,0,v.)
and#?(I,c, 1,v;) are changed by the same amount, the change lowers the léftight-hand side of
(24) and (25) also by the same amount so that they remaiffisdti8y construction’ satisfies (28),
while (29) follows fromtUL'(1]1) > UL (0]1) > UL (0|0) = D (Leyek p(I,e)UL(I,c|0) = 0, where
the first inequality uses (25), the second inequality uses 1 > v, = 0, and the final equality uses
(28) Finally note that, becaugesatisfies (28), it holdsfr(l ¢|0) > 0 so that the change frointo

[ only raises the transfers, i.&2(1,c,v) > t'(I,c,v). Hence, the constraints (31), (32), and (33) are
relaxed so thaf remains to satisfy them.

To see that for a weakly feasiblethat satisfies (9), (23), (24), (25), (28), (29) (31)—(34)da
(21) in equality, we can also find such a weakly feasibléor which, in addition, both (28) and
(29) bind, note first that we already established that givethere exists such a mechanighfor
which (28) binds, yielding the same aggregate surplus. ds therefore remains to show that given
this T' there exists such & for which, in addition, (29) is binding, ie.U (I, ¢, |1) = 0 for all
(1,1, ¢), and which yields the same surplus. To construct suEhtakeT as identical tol’ except
thatt],(I, c, 1, v, ) =t (1, c,1,v,) + UF(I ¢, |1). By construction]" satisfies (29). Note moreover
that, becausé satisfies (29), it holdéfr(l c|1) > 0 so thatl" differs fromI only in that the ex post
transfers® are higher. Hence, if satisfies (9), (23), (31)—(34), and (21) in equality, thesoal.

Finally, note that (34) |mpI|e§IF(O\1) = UT(0]0). Together with (28) and (29) binding, this

implies UT (1]1) = 0 andUF(0]1) = ( |0) = 0, and therefore (25) is satisfied (in equality).
Moreover, (24) follows from/T(0[0) = 0 = UF(1|1) > UF'(1]0). Hence, (34), with (28) and (29)
binding, implies (24) and (25). Q.E.D.

Proof of Lemma 6 Following Lemma 5, we may assume without loss of generati&t &in optimal
weakly feasible mechanisin satisfies (28) and (29) in equality. That is, for &ll I, ¢) it holds
UL (1,c|0) = 0andU} (I, c|1) = 0. It then follows for any(, ¢) that
(I, 0) = XuerDiendorecm () (1, v) + (1, ¢, v)]
=D vev2ien2ecT(O)PiTu (L, e, v)e = 30 ) e T (V)P (L, ¢, v) ]
- Zvevzz‘eNZzecW( v)pii (1, ¢, v)v;
= Y vev2ien e TW)PEN(L, ¢ v)e = 30 D e m(0)piEa (1, ¢, v) = ST(I, ¢);

where the second equality follows from

Zvel}ZieNZleﬁﬂ-< )ﬁl [f?l(], C, U) + iZ(L C, U)]
= 2N 2wy ev™ (Wi Vi) D e Pt (1 €, 0) + (1, ¢, 0)]}

=3 N [Z(om ey (0, v, {Zleﬁpl[th(l c,0,v_) + (I, ¢,0,v_ )]}
+Z(1,v>i)ev7r(17 V- {Zleﬁﬁl[tlai(I ¢ 1, U*') + t '(Ia ¢ 1, U*Z)]}}

= ien [m(0)>, Zev i () { e ePlEe (1, ¢, 0,0-) + (1, ¢,0,v_,)] }
+7Ti(1>2v,iev,i i\V-i {Zleﬁpl tli<1767 17U*i) lz’(Iacv 17@*0]}}

= Tien [T { e Tieemividpiiu(L e, 0,0-) - 0= U (1, ]0)}



7 (1) { e, Dieemlvapiau(l, e, 1,0 - 1= UN(L, 0) |
=D ien [E(o,v.i)evﬁ(ov 040)D e DL, ¢, 0,v-) - 0
+Z(1,U.i)€Vﬂ-(]‘7 U'i)Zleﬁﬁli’li(Ia c, ]-7 U—i) -1

= Ez‘e/\/ Z(vi,v_i)evﬂ(via U-i)zleﬁﬁlfﬁ(lv G, Ui, U—i)vi
= ZUEVZiENZleLW(U)ﬁlfli(Ia c, U)Ui-
Q.E.D.

Proof of Proposition 2 If the efficient output schedule® is implementable, then the optimal feasible
mechanismi’ must implement it, because, by definition, no other outptiedale yields a larger
surplus. Moreover, the proof of Proposition 1 already ndted, because* is deterministic, it is
implementable if and only if there exists a transfer schedslich that the deterministic mechanism
I'=(1,%) = (1,1,2%) is feasible.

Note that for deterministic mechanisms, constraint (43)pdifies to

ST (I, c) > 7" (I', ol V(I,c,I',¢) € KxK.

It is therefore immediate that affluency is a necessary ¢mmdior the implementability of:* by a
weakly feasible mechanisinand, hence, also for the implementability by a (fully) féesimecha-
nism1.

It remains to prove that affluency is also a sufficient condifor the implementability of*. We
will do so constructively and, under the assumption tiais affluent, construct an explicit crowd-
funding mechanism that implements it.

Becauser™ is development-efficient, it holds(v) = Y ..\ v; > 0 foranyzi(/, c,v) = 1 so that
defining? = (%, ") as

(v /n(v),v;[1 —I/n()]) if z5(I,c,v) =1,
(0,0) otherwise,

(t(1,c,v), (1, c,v)) = {

yields a well-defined. ForT(I,c) = I/(1 — ¢), the output schedule* and transferd satisfy
(10)—(13) and the deterministic mechani$m= (1,5) = (1,f,z*) is, therefore, a crowdfunding
mechanism.

As we next show, given that* is affluent, the crowdfunding mechanismsatisfies constraints
(36)—(43) so that it is weakly feasible and, moreover, (27hat it is also feasible.

To see (36), note fary(7,c,v) = 0, it follows Y, t4(I,c,v) = 0 = x§(I, ¢,v)I. Moreover,
because* is development-efficient it follows fatj (1, ¢, v) = 1 that

SientiL e, v) =3, vl /n(v) = [Zze/\fvi] [/Ejvj =1 =ux{(l,c,v)l.

Note that (38) holds, becausé is development-feasible. To see (39) and (40), note thaguse
x* is development-efficient,

U (uill, c,v0) = Y miv)[vis (I, e,1) = E(1,¢,1) = (1, ¢,1)] = 0.

V-, €V
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To see (37), note that, singéis development-efficient, far; (7, ¢,v) = Owe havey, (I, ¢, v) =
0= > ,enzi(L,c,v)c. Moreover, because” is development-efficient angj(1, c,v) = 1 implies
n(v) > 1/(1 —c¢), forazj(I,c,v) = 1itfollows that

Dienti (I c.v) =3 icpuill = I/n(v)] = n(v) = I = en(v) = 3 e @i (1, ¢, v).
To see (39), note
UM (I, ¢[1) =UT(1)1,¢,1)
= Y me) Ui, e, 1,04)[1)

v, €V

= Y m)zi(I, el vg) — (e, 1 vg) — (1, 1,0.)]

v, €V

— > mi(va)wi (I, e, 1,v)[1 —1] =0,

vl (I,e,lv.4)=1

while (40) follows directly from the observation th&{(7, ¢, 0,v_;) = (I, ¢,0,v_;) = 0.
To see (41), note that sinaé is development efficient and affluent, we have

Z Z Y (I, e,v) —cxi(l,c,v))

veVe* (I,c) 1EN

= Y ] Y a-1mw-9]= ¥ w@he)0-o-1]

veEVT* (I,c) il (I,cv)=1 veEVe* (I,c)
=3 w )Y - il e.v) = Ll e,0)] = 57 (1,¢) = 77 (1, c)al.
veY ieN

Finally, (43) follows because* is affluent and:* satisfies (42) by definition. Sine€ is efficient,
it also satisfies (42). Hence,satisfies all constraints (36)—(43) and, therefore, is \ydalasible.
To see (27), note that, becaugg!’, ¢’,v) = 0 impliesI’(I’, ¢ |1, ¢,v) = 0, (27) holds if

(1, ¢) > 7 (I',d) max{IIL(T|I, ¢, I', ), oI’}
That is, it holds if
(1, ¢) > 7 (I', YIS (|1, ¢, I', ') andIT' (1, ¢) > 7 (I, )l

The latter follows, since, by LemmaB! (I, ¢) = S*" (I, ¢) andz* is affluent. To see also the former
inequality, note, becausg(I’, ¢, v) = 0 impliesII(I', d|I, ¢, v) = 0, we have

(0 O e, T ¢ N> I I, T e,v)
vey
= Y wIdev) =) w01, v)
vevz*(p ) veY
—Z . )| e)
vey
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_Z {Z . v)+tp(1',c’,v)—xf([',c’,v)c]—I:cé([',c’,v)}

veY 1eEN
=Y w(){zgl', ¢, 0)n(v)(1 - ¢) - 1]}
veY
< Z {xO ] G, U [ (U)(]' - C) - I]} = Sﬁ(I,C) = H:Y(I,C) = HF(I,C),
veV
where the inequality follows becauséis efficient. Q.E.D.

Proof of Lemma 7 The proof consists of 3 steps. We first prove that, for an ogitim= {(pr, t, %) hier
satisfying (36)—(43), for alll, 7, ¢,v) € LXK xV, it holds

(L, c,v) =1=@,(1,c,v) =v;. (A9)

Second, we prove thatIf is optimal, then for eacti, I, ¢) € £ x K there exists & € N such that
(10) holds. In a final step, we prove thHats independent of so that for eacli/, c) € K there exists
aT € N such that (10) holds for anlye L.

Step 1: Consider a' = {(f;, 1, %) hier that satisfies (36)—(43), but for which condition (A9)
is not satisfied. Hence, it holds that for soifiel, c,v) € L x K xV thati(l,c,v) = 1 but
(I, c,v) # v; € {0,1}. Constraint (42) then implies; = 1 so thati;(/,c,v) = 0. It then
follows that by raisingi;; (1, ¢, v) to 1, the objectiveST is increased byip(, ¢)w(v)(1 — ¢). By
accompanying the raise i;(I, ¢,v) by a raise in? (I, ¢, v) of 1 a changed mechanism obtains that
remains to respect all constraints (36)—(43). It is theeeflso weakly feasible, and henkcés not
optimal.

Step 2: Next we show that it is optimal then iYiy (1, ¢, ©) = 1 impliesiy (I, ¢, 7) = 1 for any
v such that(v) > n(v), and ii) #,0(1, c,v) = 0 impliesz;o (1, ¢,v) = 0 for anyn(v) < n(v). From
this it then directly follows that, for anfi, I, ¢) € Lx K, there is & € N such that, for alb € V, it
holdszy (1, c,v) = 1if n(v) > T andzy (I, c,v) = 0if n(v) < T.

To see i) and ii), assume to the contrary that one of the twalitions does not hold, meaning
there exists arfl, I,¢) € £LxK ando,o € V with n(3) < n(0) such thatiz(I,é7) = 1 and
i1, ¢ 0) = 0. Sincen(v) < n(d) there exists a bijectiof : N' — N such that; = 1 implies
i = 1. To show thaf is not optimal, we distinguish three casesx ) = 7 (?); 2. 7(v) < 7(d),
and 3.7(v) > m(0).

Case 1: Adapt the mechanisinto the mechanisni’ by only replacingy; by the mechanism
4 = (t, &), which is identical toj; for all (I, ¢,v) € K xV except for(I, ¢ o) and(I, ¢ 7). Hence,
forall (1,c,v) € (KxV)\{(I,¢7),(I,¢, )} it holdst(] ¢,0) = fi(I,¢,v) € R*" andi(I, c,v) =
#1(1,¢,v) € {0,131, Foralli € N, let@o(1,¢,0) = &;(1,¢,0) = 0, #(1,¢0) = ¢(1,¢0) —

in (1, é,@)f/ (v), andf(1, ¢ v) = i (1, é 17) (I, 0)[1 — I/n(v)]. Moreover, for alli € NV, let
2o(1,¢,0) = 1 andi;q (1, ¢ 0) = 75(1, ¢ 0), 51, ¢,0) = f?j(i)(], ,0) 4 @50 (1, & 0)I /n(v), and
f? N,E, 0) = & (1,2, @) +;f:j(i)(f,~ 0)[1 — I/n(v)]. Becauser(7) = n(0), it holds=% (I, ¢) =

.....

tion of determlnlstlc mechanismig asT' but with 4; exchanged by the deterministic mechani¥m
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as defined in Case 1, also contains the deterministic meshani = (,, Z,). This deterministic
mechanism is identical tg; for all (I,c,v) € K xV except for(I, ). Hence, for all(1,c,v) €

KxWV\{(I,&70)}, letig(I,c,v) = if(I,c,v) € R* andiy(1,c,v) = (I, c,v) € {0,1}*. For

alli € N, letig(l,¢,0) = @,(1,6,0) = 0, £8,(1,¢,0) = %(1,¢,0) — @;(1,¢,0)I/n(v), and
t,(1,¢,0) = (I, ¢,v) — ;(1,¢v)[1 — I /n(v)]. ForT we further sefy, = p, for all 1 € £\{l},

pi = p(0)/n(9) < prandpy = jiln(0) — 7(0)]/7(0) € (0,1). HenceY ), = 1. Note that
WF( ~) Zzecﬁlﬁ ( ) Zzg{o L}plﬂ- (I C) =T (] C)

-----

.....

tion of determlnlstlc mechanismig asT' but with 4; exchanged by the deterministic mechani¥m
as defined in Case 1, also contains the deterministic mesthani = ({y, i,). This deterministic
mechanism is identical tg; for all (I,c,v) € K xV except for(I, ). Hence, for all(1,c,v) €
(K x VW\{(I,&0)}, letty(I,c,v) = (1, ¢,v) € R andio(I,c,v) = (I, c,v) € {0, 1+
Foralli € N, letig(I,é9) = 1 andiw (1, ¢ 0) = ip(1, ¢ ), 0](2( ¢, 0) = tl“()([ ¢,0) +
o) (1,6 0)1 /n(v), andtp (I ¢,0) = ?’()(f ¢,0) + Zoj) (1,6,0)[1 — I/n(v)). ForT, we further
setp = p for allleﬁ\{l} pi = pir(0)/7(0) < prandpo = pi{n(v) = (@ )J/~ m(v) € (0,1). Hence,

> 1o = 1. Note thatr™ (1, ¢) = Dt P (1, ) S (1,e) = 7'(1,¢). B
In all 3 cases, we obtain an adapted mecharishat satisfies (36)— (43) but, becadse. , z;(1, ¢, 0) =

n(v) < n(?), it does not satisfy (A9). According to step 1, the mechariisis not optimal. Since
ST = ST this means that alsbis not optimal.

Step 3: Due to step 2, ifi" is optimal, then, for anyl, I,c) € £ x K, there exists an integer
Ti(I,c) € N such that ifz, (I, c,v1) # xp(l,c,v2) andn(vy) = n(vg), thenn(vy) = n(vy) =
T,(I,c). Moreover,T;(I,c) is a cutoff in the sense thafy(/,c,v) = 0 for all v € V such that
n(v) < T)(1,c), andx, (I, c,v) = 1 forall v € V such that(v) > T,(I, ¢).

We next show that for an optimal there is a cutoffl;(I, ¢) that is independent df That is,
we show that ifzg, (1, 0,) # xj0(1, & 02), n(t1) = n(vy) = n(v), z5,(I, ¢, @1) # x;(I,¢, ) and
n(ty) = n(iy) = n(v), thenn(v) = n(v). By step 2 it then follows thaf (I, ¢) = n(v) = n(d) is
such an-independent cutoff.

To see this, suppose to the contrary thét) # n(v) and, without of loss of generality, assume
n(v) < n(0). This implies a bijectiory : N' — N such thaty;, = 1 |mpI|e5vj = 1. By step 1,
optimality of I implies i, (I, &, ©) = v, andxlo(] ¢,0) = 0impliesz; (I, ¢,9) = 0

Consider the (deterministic) direct mechanismthat is identical toj; except for(1, ¢ 7) in
thata:l/o([ ¢, ) = 0 and, for alli € N, it holds #;,(I,¢,7) = 0, t;%i(l,c, v) = t“(l: ¢,0) —
i (1,6,0) /n(v), andiy (I,¢,0) =1t (1,¢,0) — @5(1,¢,0)[1 — I/n(0)].

Consider the (determlnistic) direct mechani%rrwhich is identical toy; except for(/, ¢, ) in that

, U
xl,o(_f ¢,v) = land, foralli € NV, it holdsz;,; )(I ¢, 0) = g1, ¢, v),tl, ()(I ¢,0) = f?j i)(f, ¢,0)+
Tp i )(I ¢ 0)I /n(v), and, Slmllarly,tp )(I,c,v) = tp( )(I E,0) + Tp i) (I,&0)[1 —1/n(v)].
Once more, we distinguish three cases;r(b) 7(0); 2.7(v) < 7(v), and 3.w(v) > 7(0).
Case 1: We adapt the mechanibrto I by exchanglngyl by 55 and% by 4 %, It then follows that,
becauser(v) = 7(0), we haver! (I, ¢) = D e ™(1,6) = S ™I, 6) =71 (1,¢6).
Case 2: We adapt the mechanignto I by exchangingy; by vy and+; by ¥y~ In addition, we

add to the collection’ the mechanisny, = (o, 7o) as defined in Case 2 above. Howe further set
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p=mpforalll e E\{Z}V, pp = pim(v)/m(0) < pyandpy = pylw(0) — m(v)]/7(2) € (0,1). Hence,
Sob = 1. Note thatr™ (7,6) = Yoo, iin™(1,6) = Y yeqo.py D™ (1,6) = 7' (1,€).

Case 3: We adapt the mechani$nto I by exchangingy; by 4 and¥; by ¥;. In addition, we
add to the collection the mechanisny, = (o, 7o) as defined in Case 2 above. Howe further set
p=pforalll e L\{Z}V, pp = Py (0)/7(0) < pyandpy = pilw(0) — 7(v)]/7(0) € (0,1). Hence,
Ssob = 1. Note thatr' (7,6) = 3", iin™ (1,6) = Y yeqo.py D™ (1,6) = 7' (1,€).

In all 3 cases, we obtain an adapted mecharishat satisfies (36)—(43), but, becajse. xii(f ,C,0) =
n(v) < n(v), it does not satisfy (A9). According to Lemma 7, the mecharlisis not optimal. Since

ST = ST alsol is not optimal. Q.E.D.

Proof of Proposition 3 By Lemmas 2—6, we can assume that the optimal weakly feasibtdanism

I = {(p, 11, @1) e satisfies (36)—(43). By Lemma 7, we can moreover assumedhanfoptimal
weakly feasible mechanism, there is a functioniC — N that satisfies (10). Lemma 7 implies that for
any(l,i,I,c,v) € LXNxKxV such than(v) = T(I,c), we havg iy (I, c,v), Z;(I,c,v)) = (0,0) or
(Zo(I,c,v),2,(1,c,v)) = (1,v;). Hence, the optimal weakly feasible mechanism specifiesquan
output schedule(7, ¢, v) € {0, 1} forany(I, ¢, v) such that(v) # T(I, c), and it mixes between
at most two output schedules whe(v) = T'(, ¢).

With these observations, the proposition then follows biingpthat we can complete any col-
lection {(p;, #;) }:c. that satisfies the above conditions by a transfers schefdulg . as defined
by (11)-(13). The resulting mechanisi= {(j;,#,4;)}ic. then satisfies (36)—(43) and the con-
straints (27). It is therefore not only weakly feasible bisbgstrictly) feasible. We conclude that any
constrained efficient allocation is implementable by a afmmding mechanism and maximizes the
entrepreneur’s ex ante profits. Q.E.D.
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