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A1. Institutional Details and Evidence on Strategic Cleaning

ENVIRONMENTAL REGULATIONS IN CHINA. — In this section, we review three particular
regulatory policies that change the evaluation rules for local officials and thus directly
affect their incentives for pollution control. The major policy document that set the
stage for China’s “war on pollution” is the “Action Plan for Air Pollution Prevention
and Control” (Air Ten hereafter), announced in September 2013. To better implement
the Air Ten at the local level, the Ministry of Ecology and Environment (MEE), Chi-
nese equivalence of EPA, signed a “Target Responsibility Agreement (mubiao zeren-
shu) for Atmospheric Pollution Prevention and Control” (Target hereafter)—essentially
performance contracts–with 31 provinces after Air Ten was issued. Another key doc-
ument, titled “Notice of the General Office of the State Council on Performance As-
sessment Measures for Air Pollution Prevention and Control Action Plan” (Document
NO. GUOBANFA[2014]21, Assessment hereafter), issued on April 30th, 2014, provides
more details on environmental performance assessment metrics with respect to the Air
Ten action plan. Table A1 of the Appendix contains further detail on the three documents.

The key points of these documents are summarized below:

1) Air Ten—Air Ten set the national guidelines on air quality improvement targets
and laid out ten tasks. These tasks include industrial upgrading, clean produc-
tion, management of coal and oil sources, regulation of coal-power plants, vehicle
pollution control, and so on.

2) Target—Each provincial government signed its Target Responsibility Agreement
with the MEE. In the agreements, provincial leaders pledge to attain certain air pol-
lution reduction targets for the 2013-2017 period using the 2012 pollution level as
the base. There are two major components to the target: air quality targets and the
progress with the ten tasks. Notably, the air quality targets vary across provinces:
for some, the focus was on reducing PM2.5 concentration levels, while for others,
the goal was set to reduce PM10. To ensure accountability and implementation,
the provincial targets are further decomposed and allocated to city governments,
again through the target responsibility system.
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3) Assessment—The Assessment lays out metrics of both the air quality targets and
tasks progress. The final score will be a minimum of two (both standardized to
have a full mark of 100).

a) Air quality improvement is measured as the annual average concentration
reduction rate of PM2.5 (PM10).The annual concentration of PM2.5 (PM10)
of a city is measured as the annual arithmetic mean concentrations across its
central monitors.

b) Key tasks on the prevention and control of air pollution: a scoring system
with deduction points from violations to performance standards of the ten
tasks, which could also vary by provinces (An example of the deduction
point is: “gas stations in a region will be randomly checked for qualified fuel
supply. Non-compliant fuel sales will result in a penalty of 1 point.”).

4) Assessment—Regions that fail to pass the annual assessment will face the follow-
ing penalties:

a) Local leaders would be summoned for questioning by upper-level officials
from the province or other departments.

b) Financial penalties will be imposed, such as a reduction in the central grants
to the local governments.

c) The procedures for approving new projects that have environmental impacts
will be suspended.

5) Assessment—Falsification of monitoring data during the assessment results in a
disqualification result, followed by a serious investigation by the Supervision Or-
gans.

LOCAL GOVERNMENT DOCUMENTS AND NEWS ARTICLES RELATED TO STRATEGIC CLEAN-
ING. — In this section, we perform additional analysis on 121 local government docu-
ments that mandate strategic cleaning in their pollution control action plans. In the upper
panel of Figure A1, we create a heat map to visualize the spatial distribution of those of-
ficial documents. In the lower panel, we plot the histogram of the related distance range
mentioned.

We further present collaborative evidence from news articles in support of the channels
of strategic cleaning. First, some local governments have targeted air pollution near the
ground monitors for strategic intervention using water or water vapor. Since the monitor
locations are well known by local officials, they sometimes sprayed water in adjacent
areas or targeted fog cannons at the monitors (a high-risk yet effective approach) or
toward other subjects near the monitors (lower risk, but less effective). As a case in
point, in January 2018, it was reported that the Environmental Protection Agency’s office
building in Shizhuishan, a city of Ningxia Province, where a central monitor is located,
was turned into an “ice sculpture” after being targeted by fog cannons.1 The next set of

1Source: CCTV (2018).
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strategies involves various traffic restriction policies targeted at the monitored areas. An
official report by Tianjin’s environmental inspection team documented the strategic use
of temporary traffic control plans by the local agency.2 The media also reported incidents
in which the gas stations near the monitors in Pingdingshan City were temporarily shut
down, again a carefully calibrated approach taken by the local government to improve
air quality in the immediate area around the monitors.3 A longer-term strategy was to
shut down major sources of pollution to unmonitored suburban areas.4

EXAMPLES OF GOVERNMENT DOCUMENTS ON STRATEGIC CLEANING. — 1.Spraying Wa-
ter

Title: Notification on the Issuance of the Implementation Plan for the Prevention and
Control of Air Pollution in Baiyin City in 2017 by the Office of the People’s Government
of Baiyin City
Document Number: Municipal Office [2017] No. 39
Issue Time: 2017.03.27
Related Content: 3. Comprehensive Implementation of Dust Control Measures (12)
Enhance the efforts in dust control on roads, fully implement road sprinkling and
spraying operations to reduce dust, especially within a one-kilometer radius around
two monitoring stations, and increase the frequency of sprinkling to keep the road sur-
face moist. Before and after sand and dust weather events, carry out comprehensive
sprinkling and spraying to reduce dust. Baiyin District will conduct environmental sani-
tation management work at the entrances and exits of the city in the southeast, northwest,
and other directions. Reasonable locations will be selected for car washing points, and

2See “The Central Environmental Protection Supervision Team: A short-cut plan to guarantee good air quality is set
up around the Tianjin Monitoring Station” (dated on July 29th, 2017) for an example. Source: The Paper (2017).

3See news and media coverages of the existing manipulation strategies by Chinanews (2018), and The Economic
Daily (2015) for more details.

4See “Linfen Data Falsification Case: One Year Later, Part of Shanxi’s Environmental Information Still Undisclosed”
(dated May 10, 2019) for an example. Source:Sina (2019) .
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construction vehicles carrying mud will be prohibited from the roads. Additionally, mea-
sures such as sprinkling to reduce dust, establishing green belts, comprehensive roadside
garbage cleaning, and regular cleaning will be implemented to solve the problem of
dust pollution effectively. (Responsibility: Baiyin District Government, Implementation
timeframe: Full year)
2.Ban the Coal-fired boiler/ polluted firms and Spray Water

Title: Notification on the Issuance of the Task Decomposition Plan for the Prevention
and Control of Air Pollution in Xuzhou City in 2014 by the People’s Government of
Xuzhou City
Document Number: Xu Zhengfa [2014] No. 47
Issue Time: 2014.07.17
Related Content: 38. Completely ban coal-fired boilers and open-air barbecues
within a one-kilometer radius around seven air quality monitoring stations in the
urban area. Encourage catering enterprises that meet environmental protection require-
ments to implement three-dimensional greening and sprinkler measures, strengthen traf-
fic diversion, promote wet cleaning, and reduce secondary dust and vehicle exhaust pol-
lution.
3.Vehicle Restriction

Title: Notification on the Issuance of the Special Action Plan for the Control of Cooking
Issue Time: 2017.07.11
Related Content: Oil Fume Pollution in the Central Urban Area of Ji’an City and the
Special Action Plan for the Control of Motor Vehicle Exhaust Pollution in Ji’an City by
the Office of the People’s Government of Ji’an City
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(5) Organize the diversion and prohibition of trucks in a scientific manner. Develop
control plans for the prohibition and restriction of trucks on major roads within a
3-kilometer radius of the central stations. The plans will specify prohibited and re-
stricted areas, time periods, and vehicle types, and appropriate signage will be installed.
Heavy-duty freight vehicles passing through the central urban area will be required to
take detours at remote locations, and crossing the main urban area will be strictly prohib-
ited. Cement tankers, construction waste transporters, and specialized vehicles involved
in urban construction will be subject to strict limitations on operating time and routes.
For freight vehicles related to public livelihood, the Public Security Traffic Management
Department will conduct a rigorous vehicle approval process, following the principles of
“avoiding peak hours, staying away from the city center, and entering during nighttime”
to approve the designated times and routes for passage.
4.Ban Open-Air Barbecues

Title: Notification on the Issuance of the Work Plan for the Prevention and Control of
Air Pollution in Guiyang City in 2015 by the People’s Government of Guiyang City
Document Number: Zhu Fu Fa [2015] No. 26
Issue Time: 2015.06.23
Related Content: (3) Strengthen the standardized management of night market barbecue
stalls. Place a special emphasis on regulating open-air barbecues and strictly restrict
and regulate open-air barbecues in the urban area. Particularly, take decisive actions
to prohibit unregulated emission of pollutants from barbecue sites within a one-
kilometer radius of automatic air monitoring stations.

A2. Additional Data Details and Robustness Checks

SATELLITE-BASED PM2.5 DATA. — Our main dependent variable is the annual AOD-based
PM2.5 data compiled by Van Donkelaar et al. (2016). We note, however, that the monthly
level data were also made available in a more recent data release by Van Donkelaar et al.
(2021).

As detailed in the reference, annual and monthly ground-level fine particulate mat-
ter (PM2.5) for 1998–2021 were estimated by combining Aerosol Optical Depth (AOD)
retrievals from the NASA MODIS, MISR, and SeaWIFS instruments with the GEOS-
Chem chemical transport model, and subsequently calibrating to global ground-based
observations using a Geographically Weighted Regression (GWR). Meanwhile, raw satel-
lite AOD data are available at the daily level, but their temporal resolution largely de-
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pends on satellite coverage. For example, the NASA MODIS instrument collects AOD
data every 1 to 2 days from two satellites, Terra and Aqua, which only record AOD on
cloud-free days and are sensitive to light surfaces and other weather conditions, leading
to missing values at the daily or even weekly level.

Here we assess the pros and cons associated with more- and less-aggregated data. In
particular, we examine the correlation between ground-based and AOD-based PM2.5 data
at the annual and monthly levels, respectively. As shown in Figure A2, there appears to
be a stronger correlation at the annual level. This is possibly due to the fact that satellite-
based PM2.5 measures are subject to idiosyncratic measurement errors from time to time,
such as cloud covers, light interference, and other temporal meteorological variations, but
can be smoothed out over longer time periods.

Relatedly, we also assess the quality of satellite-based PM data by checking the cor-
relation between AOD-based and ground-based pollution measures before and after au-
tomation. However, note that monitoring stations in China only recorded PM10, not
PM2.5 prior to automation, so we could only investigate the correlation between AOD-
based PM2.5 and ground-based PM10 throughout the sample period. As shown in Figure
A3, the correlation becomes strong after automation. We interpret it as evidence of data
quality change: PM10 data before automation were subject to tampering and were not
reliable, as documented by (Greenstone et al., 2022). Automation has improved the ac-
curacy and reliability of ground station data.

ROBUSTNESS CHECKS TO ADDRESS SATELLITE-BASE PM2.5 MEASUREMENT ERRORS. —

USING RAW AOD DATA. — As discussed above, the AOD-based PM2.5 data were derived
from raw satellite images, and the calibration procedure also required information from
ground-based monitoring stations. Specifically, the Geographical Weighted Regression
method assigns larger weights to areas closer to ground monitors and smaller weights
to areas that are farther away. One might worry that the resulting measurement errors
are correlated with the distance to monitors and could also be systematically linked to
the establishment of new ground monitors. Beyond the validation evidence in Section
3, we conduct our own analysis with raw AOD measurements as an alternative outcome
indicator. The pertinent results are reported in Table A2 and Figure A4. Reassuringly,
they are largely consistent with the baseline estimates.5

USING SATELLITE-BASED POLLUTION MEASURES AT FINER TEMPORAL VARIATION. —
We further explore the potential aggregation bias, also known as the “ecological fallacy”,
associated with annual data (Banzhaf, Ma and Timmins, 2019). To this end, we re-run

5The estimated coefficients are smaller with AOD as the outcome, largely because the raw satellite images are sensi-
tive to meteorological conditions (e.g., cloud coverage). In the case of extreme conditions such as haze and fog events,
which tend to be associated with heavily-polluted time periods and regions, AOD data may be missing or become unreli-
able. Thus, without considering such spatial and temporal meteorological variations, the annual average effect estimated
from the daily AOD observations (which partially average out) is likely to be small.
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analyses on monthly AOD-based PM2.5 data and other monthly moments (the maximum
and minimum value of daily observations in a month) of raw AOD data.

In order to assess the relevance of aggregation bias, consider the daily regression form
of Equation (1) below:

ln(PM2.5icdt) = αAutoct +βNeari ×Autoct + γXct +Cellid +Yeart + εict(1)

Where i and c denote the cell and the city, as previously defined; d denotes the day, and t
denotes the year. Aggregating the daily regression to the yearly level means that we can
no longer control for the cell-by-day-of-year-fixed effects (Cell × day of the year), which
essentially capture location-specific within-year daily or seasonal patterns of pollution–
for example, cells near a factory would be polluting during working days, especially
in the summer, but not during weekends. Because of this distinction, estimation biases
would arise in the aggregated vis-à-vis disaggregated level when these within-year daily
patterns differ (non-causally) before and after automation. We conduct our own analysis
to partially evaluate the extent of this omission. In particular, we use a variant of Equation
(1) that is based on monthly data. We then estimate β with and without the inclusion of
cell-by-calender-month fixed effects (Cellid). The results are reported in Table A3 (also
in Figure A5, and ring analysis are shown in Figure A20). As shown, they are consistent
with our baseline estimates obtained using the annual data, as reported in Table 2. The
estimated β with our preferred specification (Column 5) is -0.025, compared to -0.032
in the baseline specification.

Another issue about analyses based on the annual data is that temporal aggregation
might discard information: it averages out the rich variation in the heterogeneity of β

across clean and dirty days. The same average treatment effect at the aggregated level
could represent very different compositions of individual treatment effects across dif-
ferent days. And the different compositions might entail different welfare implications.
Just to take one example (conceptually), if local governments attempted to reduce pollu-
tion during clean days but increase pollution during dirty days, the resulting health costs
could be much greater than those if pollution was reduced during dirty days and increased
during clean days, even though the annual average change in pollution levels remained
the same under these two scenarios. To shed light on the potential distributional effects,
we collect daily raw AOD data, which is the highest resolution possible, and collapse
them to the monthly level. This allows us to obtain monthly summary statistics, includ-
ing the mean, maximum, and minimum values, which can offer a deeper understanding
of the within-month distributional response to automation. The results are reported in
Table A4. Our findings indicate that monitoring station automation reduced the AOD
levels across all three measures. However, the largest log-point change was observed for
max AOD. This result indicates that automation likely leads to a reduction in pollution
across the entire distribution, but with greater strategic cleaning efforts observed around
the monitors during extreme pollution days.
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BIAS CORRECTION WITH MULTIPLE IMPUTATION. — Lastly, we address measurement er-
rors due to remote sensing by following the lead of Proctor, Carleton and Sum (2023)
in utilizing multiple imputation methods to establish the relationship between AOD-
imputed PM2.5 values and ground-based monitoring data. Specifically, we employ boot-
strap sampling to randomly select 70% of the ground-based monitoring data, and then
generate the remaining 30% of the sample through multiple imputations for 100 times.
We then utilize that sample of 70% original data and 30% imputed observations to per-
form regression analysis and simulate the relationship between satellite PM2.5 values and
their corresponding ground-based readings.

Following that, we predict PM2.5 values for all grids in our main dataset using the
satellite data and the regression model derived in the previous step. Subsequently, we
employ the corrected PM2.5 values to repeat our baseline regressions. To account for
both sample and imputation uncertainty, we repeat the process of random sampling and
prediction 100 times. The results are robust, as reported in Appendix Table A5.

HETEROGENEOUS TREATMENT WITH STAGGERED DID. — This section discusses potential
biases arising from the traditional two-way fixed effects (TWFE) estimator in a staggered
difference-in-differences design. These biases can arise when early treated units are used
as control groups for later treated ones, particularly when there are heterogeneous dy-
namic treatment effects (Goodman-Bacon, 2021; De Chaisemartin and d’Haultfoeuille,
2020; Sun and Abraham, 2021; Callaway and Sant’Anna, 2021).

To address this issue, we first employ a Goodman-Bacon decomposition of the DiD
estimation that regresses the pollution gap between monitored and unmonitored areas on
the staggered treatment of monitor automation in a city-year panel. Figure A6 plots the
average treatment effect against the weight of each of the six 2×2 comparison groups in
the present study. It appears that the average effects of the three early versus later treated
groups (i.e., Wave 1 vs. 2, Wave 2 vs. 3, and Wave 1 vs. 3) concentrate around -0.003
and are very close to the TWFE estimator of -0.0039. The sum of the weights of all the
earlier versus later groups adds up to more than 50%. Of the three later versus earlier
treated groups, which tend to introduce biases to the TWFE estimate, the share of Wave
3 versus Wave 1 and that of Wave 3 vs. Wave 2 add up to 26.7% and 10.3%, respectively.
Therefore, we exclude monitors treated in Wave 3 from the treated units and repeat the
analysis, again using the triple-difference specification and lnPM2.5 concentrations as
the outcome variable.6 The estimation results are presented in Table A6. Specifically,
in our preferred specification, Column (3) shows that the triple difference estimator, i.e.,
the coefficient of (0-3km)×Auto, increases from -0.032 of the baseline to -0.039 and
remains statistically significant. The event study result using pre-2015 data is present in
Figure A19. In a similar vein, the results on thermal anomalies are reported in Table A7.

In addition, we employ an alternative estimation approach proposed by Callaway and
Sant’Anna (2021), which estimates the group-time average treatment effects (ATTgt)

6To maximize identification power from the earlier versus later treated comparison, we switch the treatment status of
all monitors treated in Wave 3 to untreated in years 2014 and 2015, based on the assumption that treatment effects would
not be realized in the first year (most were treated in December 2014). We also drop all the post-2015 observations.
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separately for all treatment cohorts (each group/cohort corresponds to units treated in the
same period) relative to never-treated or not-yet-treated control units, and aggregates all
of them into simpler parameters. Since the method only applies to a DiD setting, we
modify our triple-difference model into a DiD specification, using the pollution gap as
the outcome variable. As presented in Figure A7, the result is in line with that of our
main triple difference analysis: the pollution gap evolves in parallel between the treated
and control monitors before the treatment, and drops significantly in the post-treatment
period, implying that the observed improvement in air quality around the monitors rela-
tive to the entire city is not driven by biases in the TWFE estimators.

VALIDATION OF THERMAL ANOMALIES DATA. — Before proceeding to the empirical
specification, we conduct a set of external validation exercises. We start by assessing
the geographical correlation between thermal anomalies and polluting activities. To do
so, we obtain two lists of major polluting plants: the first is drawn from the MEE’s
Key Centrally Monitored Polluting Enterprises database, which consists of 1,829 heav-
ily polluting industrial firms. The other composes of 10,491 power plants, sourced from
the China Emissions Accounts for Power Plants (CEAP) database. Figure 5 maps the
locations of thermal anomalies along with the geographic distribution of those polluting
plants. It is clear from the figure that key centrally monitored industrial firms (Panel A)
and power plants (Panel B) are always located in spots with observed thermal anoma-
lies, although those industrial firms and power plants are more spatially dispersed. On
that basis, we argue that thermal anomalies provide sufficiently comprehensive cover-
age of major polluting sources. At the extensive margins, Table A8 shows that, for each
10km-by-10km cell, the presence of any thermal anomaly increases the probability of the
presence of a polluting plant by 99%. At the intensive margins, Column (2) of Table A9
shows that for the sample of plant sites, a one percent increase in the radiant heat output
around each power plant (capturing the rate at which fuel is consumed and smoke emis-
sions released) is associated with a 0.14 percent growth in the satellite-derived PM2.5
measures from the plant, confirming the quality of the thermal anomaly data.

We also test if short-run variations in thermal anomalies respond to temporary drastic
government measures on pollution. As a case in point, a series of strict emission control
policies were adopted in Beijing and the surrounding regions to ensure blue skies during
the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Figure A8 presents the
time series of two measures of thermal anomalies one month prior to and one month fol-
lowing the summit for the affected region of Beijing, Tianjin, and Hebei. Both indicators
dropped sharply preceding the event and picked up immediately after the summit ended.
The observed synchronized pattern again highlights the validity of the thermal anomaly
measure in measuring temporal variation in local pollution.

RING ANALYSIS WITH THERMAL ANORMALIES. — Figure A9 further reports the impact of
monitor automation on thermal anomalies across different distance bins. The estimated
magnitudes of the responses of thermal-based industrial activities to automation decrease
as the distance from the monitors increases, which is consistent with the uneven pollution
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reduction pattern documented in Section 4.3. However, the effect appears to be more
localized, with the reduction in industrial activities approaching zero at around 20 km
away from the monitors, compared to around 100 km for PM2.5 reductions. One possible
explanation is that the spatial impact of localized shutdowns of industrial sources on
pollution could extend tens of kilometers away as pollutants disperse.

A3. Dynamic Monitor Representativeness

Using fine-scale pollution data and spatial information from the national environmen-
tal air monitoring network, we examine the spatial representativeness of these moni-
tors, defined as the difference between the monitor-based and satellite-based city average
PM2.5. First, we use the 3km by 3km gridded population count from the 2015 National
Population Census as the weight for each cell and calculate the weighted average PM2.5
for each city. Taking this estimate as the “true” city-level PM2.5, we then compare it with
the monitor-based population-weighted average PM2.5.

The map in Figure A10 (a) shades cities according to representativeness errors (i.e.,
how well the monitors capture average air pollution). The blue shading denotes that the
monitor under-represents a city’s average pollution. At the base year of our study period
(i.e., 2008), the monitoring system was indeed fairly representative for most Chinese
cities, and monitor locations are unlikely to change once they are placed.7 However, the
spatial representativeness of air quality monitoring is not static but an involving process
that can be profoundly shaped by local interventions that target monitored areas. Recall
the estimate for the localized pollution reductions in monitored areas: grid cells within
a 3km radius of monitors experience a 3.2% greater reduction in PM2.5 concentrations
than those farther away. Using this central estimate and the last year of the sample pe-
riod (i.e., 2017), we calculate the projected pollution levels for the five-year period from
2018 to 2022, as shown in Figure A10 (b).8 The forecast suggests that some previously
over-representative monitors seem to move closer to a city’s average air quality. How-
ever, the most striking result is that monitors in approximately 52 cities are predicted to
under-represent overall air pollution by the end of 2022, having been greatly affected by
dynamic local strategic conduct.

7The current air quality monitors in the U.S. were built two decades ago and covered populated areas following
federal guidelines. Other than adding new monitors to counties that did not have them, the existing monitor locations
have not changed since then.

8We do not extend the extrapolation beyond 2022 because of the large uncertainty and the possibility of new regula-
tions.
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(a) Spatial Distribution

(b) Strategic Cleaning Distance Range

Figure A1. : Government Documents Mentioning “Strategic Cleaning”

Note: Panel A shows the spatial distribution of 121 documents that directly mentioned strategic cleaning around monitors,
while Panel B shows the histogram of cleaning range (distance from the monitored) stated in 42 of them.
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Figure A2. : Correlation between AOD-based and Ground-based PM2.5 Measurements

(a) Yearly Data

(b) Monthly Data

Notes: This figure depicts the correlation between AOD-based PM2.5 and ground reading data.
Panel A displays the correlation at the yearly level, while Panel B shows the correlation at the
monthly level. Ground reading data for PM2.5 only became available after automation.
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Figure A3. : The Correlation between AOD-based PM2.5 and Ground-based PM10 Before
and After Automation

Notes: This figure shows the correlation between yearly AOD-based PM2.5 and Ground-based
PM10 reading data. The red and blue lines represent the fitted linear relationship before and after
automation, respectively.
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Figure A4. : Robustness Check: Event Study of Monitor Automation, using AOD Raw
Data

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for βn from
Equation (3), replacing PM2.5 with raw AOD data. Detailed estimates are reported in Table A10. The omitted
time category is one year before a city joined the automatic monitoring program. Each estimate represents
the difference in ln(AOD) between monitored areas (cells within a 3km radius of a monitor) and unmonitored
areas (cells outside a 3km radius around a monitor) at a given period. The regression includes cell fixed
effects and year fixed effects, along with flexible interactions between year dummies and an array of pre-
treatment city characteristics (such as average GDP, population, PM2.5 at the city level from 2008 to 2011,
the maximum distance between cells and monitors within a city and a dummy indicator for an environmental
priority city), and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at
the city level.
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Figure A5. : Event Study: The Effect of Automation on Air Pollution within 3km
(Monthly)

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for
βn from Equation (3) by using monthly PM2.5 Data. Each estimate represents the difference
in PM2.5 between monitored areas (cells within 3km of monitors) and unmonitored areas (cells
outside the 3km radius) at a given period (also reported in Table A3). The omitted time category
is the year before a city joined the automated monitoring program. The regression includes cell
fixed effects and year fixed effects, along with flexible interactions between year dummies and
an array of pre-treatment city characteristics (such as average GDP, population, and PM2.5 at the
city level from 2008 to 2011, the maximum distance between cells and monitors within a city and
a dummy indicator for an environmental priority city), and city-level concurrent PM10 and PM2.5
reduction targets. Standard errors are clustered at the city level.
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Figure A6. : Robustness Check: Effects of Automation on Pollution Gap of Monitors,
Bacon Decomposition for Difference-in-differences

Notes: This figure shows each 2x2 DD estimate from the Bacon decomposition Goodman-Bacon (2021)
against their weight for the automation impact analysis. The outcome variable is the pollution gap, defined
as the difference between the average pollution within a 3km radius of a monitor and the city’s average
pollution level. The horizontal dashed line is the difference-in-difference estimate with the pollution gap as
the dependent variable (-0.0039 at the 1% significance level). In the Bacon decomposition, the estimate of
the “Later vs. Earlier Treated” groups equals -0.0051 and the weights are 0.50.
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Figure A7. : Robustness Check: Event Study of Monitor Automation on Pollution Gap,
Group-Time Average Treatment Effect Estimation

Notes: This figure shows the aggregate event study result following the approach of Callaway and Sant’Anna
(2021). The sample includes the period from 2008 to 2015 and sets Wave 3 as the never treated group. The
outcome variable is the pollution gap, defined as the difference between the pollution level within 3km of a
monitor and the city’s average pollution level. All regressions control for cell fixed effects, year fixed effects,
and interactions between year dummies and the average city population, and average city-level PM2.5 over
the 2008–2011 period. Standard errors are clustered at the city level.
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Figure A8. : Validation of Thermal Anomalies Using the APEC Event

Notes: This figure shows the time series of the thermal anomalies measured shortly before and
after the APEC event. Month 0 denotes the month APEC was held (November 2014). FRP is
defined as the rate of radiant heat output, which is related to the rate at which fuel is consumed,
and smoke emissions are released.
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Figure A9. : Effects of Automation on Thermal Anomalies at Different Distances from
Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for the monitor
automation effects on the number of days with active thermal anomalies across different distance bins from
the monitor. Each point estimate represents the pollution change in each distance bin relative to the baseline
group at the outer range (distance to monitor >150 km), which on average experiences a 1.4% pollution
increase. The absolute effect becomes positive above the dotted line. The regression includes cell fixed
effects and year fixed effects, along with flexible interactions between year dummies and an array of pre-
treatment city characteristics (such as average GDP, population, PM2.5 at the city level from 2008 to 2011,
the maximum distance between cells and monitors within a city and a dummy indicator for an environmental
priority city), and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at
the city level.
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Figure A10. : Monitor Representation Errors: All Cells vs. Monitored Cells

(a) Representation Errors in 2008

(b) Representation Errors in 2022

Notes: This figure presents the monitor representation errors. Panel A shows monitor representation errors
at the base year of the study period (2008). Panel B shows the predicted representation errors of monitors
in 2022, which are calculated based on the estimated pollution reductions in monitored areas (cells within a
3km radius of monitors have experienced a 3.2% greater reduction in air pollution relative to unmonitored
areas), and are projected beyond the last year of the sample period (2017). The representation error is defined
as the percentage difference between the population-weighted, satellite-based average pollution in monitored
cells and the average pollution across all cells within the city boundary. Negative measures indicate under-
representation by monitors.
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Figure A11. : Change in Environmental Authorities’ Responsibilities

(a) Before

(b) After

Notes: These two figures illustrate the roles and responsibilities of different environmental authorities, before
(Panel A) and after (Panel B) the introduction of new standards. China National Environmental Monitoring
Centre (CNEMC) is a newly established institution directly under the management of the Ministry of Envi-
ronment and Ecology (MEE). It entrusts and oversees several third-party operational institutes to operate and
maintain the monitoring stations. Among the various responsibilities, Infrastructure Maintenance refers to
ensuring the supply of electricity and communications, and Data Accuracy Checking denotes checking the
anomaly data.
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Figure A12. : Robust Analysis of Event Study on PM2.5

Notes: This figure shows the sensitivity analysis of estimated effects on PM2.5 to potential vi-
olations of the parallel trends assumption following the methods proposed by Rambachan and
Roth (2019). The blue bar represents the 95% confidence interval of the DiD estimate for the last
period (τ = 3) from the estimation of Equation (3). The red bars represent corresponding 95%
confidence intervals when allowing for per-period violations of parallel trends up to M, which is
the largest allowable change in the slope of an underlying linear trend between two consecutive
periods.
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Figure A13. : Cities’ Maximum Distance between Cells and Monitors

Notes: This figure shows the distribution of the maximum distance between cells and monitors (a proxy for
city’s geographical size) across cities. The maximum distance ranges from 18 km to 873 km, and the average
maximum distance is 152 km.
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Figure A14. : Robustness Check: Effects of Automation on ln(AOD) across Distances
from Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for the effects of
monitor automation on the satellite-based ln(AOD) at different distance bins from the monitor. Each point
estimate represents the pollution change in each distance bin relative to the baseline group at the outer range
(distance to monitor >150 km), which on average experiences a 0.4% pollution increase. The absolute effect
becomes positive above the dotted line. The regression includes cell fixed effects and year fixed effects, along
with flexible interactions between year dummies and an array of pre-treatment city characteristics (such as
average GDP, population, PM2.5 at the city level from 2008 to 2011, the maximum distance between cells and
monitors within a city and a dummy indicator for an environmental priority city), and city-level concurrent
PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure A15. : Placebo Tests: Randomizing Treatment Timing and Locations

(a) Random Automation Years

(b) Random Monitor Locations

Notes: This figure presents the results of two placebo tests (See Equation (1)). Figure (a) plots a “placebo”
test that randomly assigns each monitor an automation year within the sample period from 2008 to 2017.
Figure (b) plots a “placebo” test that randomly assigns monitor sites to various locations while keeping the
number of monitors and the year of automation unchanged. For each placebo test, the DiD estimation is
repeated 1000 times. The distribution of the estimates from the 1000 runs (blue lines) is then plotted along
with the benchmark estimate (red line).



A26 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Figure A16. : Event Study: The Effect of Automation on Air Pollution within 3km
Across Different Types of Monitors

(a) Regional Assessing Monitors

(b) Background Monitors

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for βn
from Equation (3) by different types of monitors (Minitry of Ecology and Environment, 2013).
Panel A uses regional assessing monitors that are used to measure a city’s pollution level. Panel
b uses background stations that are placed far away from pollution sources and urban areas to
serve as a reference. Each estimate represents the difference in PM2.5 between monitored areas
(cells within 3km of monitors) and unmonitored areas (cells outside the 3km radius) at a given
period. The omitted time category is the year before a city joined the automated monitoring
program. The regression includes cell fixed effects and year fixed effects, along with flexible
interactions between year dummies and an array of pre-treatment city characteristics (such as
average GDP, population, and PM2.5 at the city level from 2008 to 2011, the maximum distance
between cells and monitors within a city and a dummy indicator for an environmental priority
city), and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered
at the city level.
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Figure A17. : Share of the Population Exposed to Unhealthy Pollution Levels at
Different Distances from Monitors

Notes: This figure displays the proportion of the population exposed to unhealthy levels of pollution at
varying distances from the monitoring stations. The exposure to unhealthy levels of pollution is defined as
residing in grid cells where the concentration of PM2.5 exceeds the established air quality standards–The
World Health Organization (WHO) recommends a standard of 10 ug/m3, while China specifies good air
quality as 35 ug/m3 and excellent air quality as 15 ug/m3. To infer the health threshold of AOD-based PM2.5
from the 10/15/35 ug/m3 standards with the ground monitoring data, we follow a two-step process. Firstly, we
establish the relationship between AOD-imputed PM2.5 and ground-based PM2.5 using a regression model.
Secondly, we pin down the AOD-based PM2.5 levels when ground-based PM2.5 takes on the value of 10/15/35
ug/m3.
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Figure A18. : Uneven Distribution of Air Quality Monitors Across Counties

(a) By Income

(b) By Urbanization Rate

Notes: This figure presents the monitor share across quantiles of counties. Panel A divides counties into 50
groups according to their GDP per capita during the pre-policy period (before 2012). Panel B categorizes
counties into 50 groups based on their urbanization rate. The monitor share is defined as the percentage of
counties with air quality monitors within their corresponding groups.
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Figure A19. : Event Study: The Effect of Monitor Automation on Air Pollution within
3km of a Monitor (2008–2015)

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for βn from
Equation (3). This figure depicts the periods from 2008 to 2015 and sets the sample in Wave 3 as the never
treated group. Each estimate represents the difference in PM2.5 between monitored areas (cells within 3km
of monitors) and unmonitored areas (cells outside 3km) at a given period. The omitted time category is the
year before a city joined the automatic monitoring program. The regression includes cell fixed effects and
year fixed effects, along with flexible interactions between year dummies and an array of pre-treatment city
characteristics (such as average GDP, population, PM2.5 at the city level from 2008 to 2011, the maximum
distance between cells and monitors within a city and a dummy indicator for an environmental priority city),
and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level.
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Figure A20. : Effects of Automation on lnPM2.5 at Different Distances from Monitors
(Monthly)

Notes: This figure plots the estimated coefficients and their 95% level confidence intervals for the effects
of monitor automation on the satellite-based lnPM2.5 at different distance bins from the monitor by using
Monthly AOD-based PM2.5 data. Each point estimate represents the pollution change in each distance bin
relative to the baseline group at the outer range (distance to monitor >150 km), which on average experiences
a 2.9% pollution increase. The absolute effect becomes positive above the dotted line. The regression includes
cell fixed effects and year fixed effects, along with flexible interactions between year dummies and an array of
pre-treatment city characteristics (such as average GDP, population, PM2.5 at the city level from 2008 to 2011,
the maximum distance between cells and monitors within a city and a dummy indicator for an environmental
priority city), and city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at
the city level.
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Table A1—: Key government policy documents about Air Pollution Prevention during
2013–2017

Policy Name Short Name Issue Time
Action Plan for Air Pollution Air Ten 2013.09
Prevention and Control
Target Responsibility Agreement (mubiao zerenshu) Target 2013.10
for Atmospheric Pollution Prevention and Control
Notice of the General Office of the State Council on Assessment 2014.04
Performance Assessment Measures for
Air Pollution Prevention and Control Action Plan

Notes: This table shows the key government policy documents on air pollution prevention and performance as-
sessment during 2013–2017 and their issuing time. All are issued by the Ministry of Ecology and Environment
(MEE) in China.
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Table A2—: Robustness Check: Localized Cleanup Response to Monitoring Program
Automation, using AOD Raw Data

Dependent variable: ln(AOD)

(1) (2) (3) (4)
Unmonitored Areas: >3km >3km >3km >60km

Auto -0.0044 0.0024 -0.0044 -0.0053∗

(0.0027) (0.0027) (0.0027) (0.0031)
(0-3km)×Auto -0.0198∗∗∗ -0.0090∗∗∗ -0.0180∗∗∗

(0.0028) (0.0016) (0.0032)

CellFE X X X X
Year FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × PM2008−2011

2.5 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 10,865,784 10,888,044 10,865,784 7,399,416
R2 0.945 0.930 0.945 0.934

Notes: This table reports the effects of the monitor automation program on the satellite-based ln(AOD). Auto is the treatment
indicator that switches on after a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one
if the cells are located within a 3km radius of a city’s monitoring stations. Columns (3) and (4) use cells within 3km of a monitor
as the monitored group and compare them with different unmonitored groups: cells outside 3km and 60km of the monitors.
PM2008−2011

2.5 is the average city-level PM2.5 and citypopulation2008−2011 is the average city population over the 2008–2011 period.
Other city-level controls include the average city-level GDP between 2008 and 2011, the number of monitors for each city, the
maximum distance between cells and monitors within a city, and a dummy variable that indicates whether or not a city is an
environmental priority city. The Concurrent Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard
errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A3—: Localized Cleanup Response to Monitor Automation (Monthly)

Dependent variable: ln(PM2.5)

(1) (2) (3) (4) (5) (6)
Unmonitored Areas: >3km >3km >3km >3km >3km >60km

Auto 0.0164 -0.0203 0.0168 -0.0154 -0.0202 -0.0168
(0.0116) (0.0140) (0.0116) (0.0115) (0.0140) (0.0233)

(0-3km)×Auto -0.0622∗∗∗ -0.0302∗∗∗ -0.0247∗∗∗ -0.0374∗∗

(0.0093) (0.0073) (0.0079) (0.0157)

CellFE X X X X X X
Year Month FE X X X X X X
CellFE X Month FE X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 124,594,942 124,594,942 124,594,942 124,594,942 124,594,942 90,429,709
R2 0.961 0.962 0.961 0.963 0.956 0.955

Notes: This table reports the effects of the monitor automation program on the satellite-based lnPM2.5. lnPM2.5 is the natural logarithm of the cell-level monthly satellite-based
PM2.5. Auto is the treatment indicator that equals one after a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one if the cells are located
within a 3km radius of a city’s monitoring stations. Columns (1)–(6) use cells within 3km of the monitor as the monitored group, comparing them with different unmonitored
groups: cells beyond 3km from the monitors in columns (1)–(5) and 60km from the monitors in column (6), respectively. PM2008−2011

2.5 is average city-level PM2.5 during the
2008–2011 period and citypopulation2008−2011 is the average city population from 2008 to 2011. Other city-level controls are the average city-level GDP from 2008 to 2011, the
number of monitors in each city, the maximum distance between cells and monitors within a city, and a dummy variable that indicates whether or not a city is an environmental
priority city. The Concurrent Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A4—: Localized Cleanup Response to Monitoring Program Automation: AOD
(Monthly)

Dependent variable: ln(AODMonthlyMax) ln(AODMonthlyMin) ln(AODMonthlyMean)

(1) (2) (3) (4) (5) (6)

Auto 0.0014 -0.0101 -0.00009.33 -0.0028 0.0006 -0.0054∗∗

(0.0064) (0.0069) (0.0023) (0.0022) (0.0023) (0.0025)
(0-3km)×Auto -0.0372∗∗∗ -0.0141∗ -0.0147∗∗ -0.0093 -0.0278∗∗∗ -0.0139∗∗

(0.0096) (0.0079) (0.0062) (0.0059) (0.0072) (0.0064)

CellFE X X X X X X
Year Month FE X X X X X X
CellFE X Month FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × AOD2008−2011 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 114,062,258 113,802,919 114,062,258 113,802,919 114,062,258 113,802,919
R2 0.684 0.692 0.721 0.726 0.769 0.777

Notes: This table reports the effects of the monitor automation program on the satellite-based lnAOD. We construct different monthly AOD statistics based on the daily AOD data
within each month. ln(AODMonthlyMax) and ln(AODMonthlyMin) is the natural logarithm of the cell-level maximum and minimum AOD value of each month, and ln(AODMonthlyMean)
is the natural logarithm of the cell-level average AOD value of each month. Auto is the treatment indicator that equals one after a city has joined the automatic monitoring program.
(0-3km) is a dummy variable that equals one if the cells are located within a 3km radius of a city’s monitoring stations. AOD2008−2011 is average city-level AODMonthlyMax during
the 2008–2011 period and citypopulation2008−2011 is the average city population from 2008 to 2011. Other city-level controls are the average city-level GDP from 2008 to 2011,
the number of monitors in each city, the maximum distance between cells and monitors within a city, and a dummy variable that indicates whether or not a city is an environmental
priority city. The Concurrent Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A5—: Robustness Check: Correction Via Multiple Imputations

Dependent Variable: ln(PM2.5)
(1) (2) (3)

Variables
Auto 0.0250 -0.00989 0.00208

(0.0147) (0.0153) (0.0164)
(0-3km)×Auto -0.0586∗∗∗ -0.0247∗∗∗ -0.0234∗∗∗

(0.0112) (0.00653) (0.00701)

CellFE X X X
Year FE X X X
Year FE × citypopulation2008−2011 X X
Year FE × ln(PM2.5)2008−2011 X X
Year FE × Other City-level Controls X
Concurrent Policy X
Observations 10,413,717 10,413,717 10,413,717

Notes: This table reports the effects of the monitor automation program on the natural logarithm of
the cell-level yearly satellite-based lnPM2.5 with correction. Following the lead of Proctor, Carleton
and Sum (2023), we employ bootstrap sampling to randomly select 70% of the ground-based mon-
itoring data and then generate the remaining 30% of the sample through multiple imputations. We
then utilize that sample of the 70% original data, and 30% imputed observations to perform regres-
sion analysis and simulate the relationship between satellite PM2.5 values and their corresponding
ground-based readings. Following that, we predict PM2.5 values for all grids in our main dataset us-
ing the satellite data and the regression model derived in the previous step. This process is repeated
100 times. The parameters presented represent the means calculated from this distribution of boot-
strap samples. Auto is the treatment indicator that equals one after a city has joined the automatic
monitoring program. (0-3km) is a dummy variable that equals one if the cells are located within
a 3km radius of a city’s monitoring stations. PM2008−2011

2.5 is average city-level PM2.5 during the
2008–2011 period and citypopulation2008−2011 is the average city population from 2008 to 2011.
Other city-level controls are the average city-level GDP from 2008 to 2011, the number of monitors
in each city, the maximum distance between cells and monitors within a city, and a dummy variable
that indicates whether or not a city is an environmental priority city. The Concurrent Policy refers
to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the
city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A6—: Robustness Check: Localized Cleanup Response to Monitor Automation
(2008–2015)

Dependent variable: ln(PM2.5)

(1) (2) (3) (4)
Unmonitored Areas: >3km >3km >3km >60km

Auto -0.029 -0.002 -0.029 -0.057*
(0.021) (0.024) (0.021) (0.029)

(0-3km)×Auto -0.032*** -0.039*** -0.077***
(0.012) (0.012) (0.027)

CellFE X X X X
Year FE X X X X
Year FE × citypopulation2008−2011 X X X
Year FE × PM2008−2011

2.5 X X X
Year FE × Other City-level Controls X X X
Concurrent Policy X X X
Observations 8,330,086 8,330,086 8,330,086 6,067,588
R2 0.980 0.977 0.980 0.980

Notes: This table reports the effects of the monitor automation program on the satellite-based lnPM2.5. The sample covers
the 2008–2015 period, setting monitors treated in Wave 3 as the never treated ones. lnPM2.5 is the natural logarithm of the
cell-level yearly satellite-based PM2.5. Auto is the treatment indicator that switches on after a city has joined the automatic
monitoring program. (0-3km) is a dummy variable that equals one if the cells are located within a 3km radius of a city’s
monitoring stations. Columns (3) and (4) use cells within 3km of the monitor as the monitored group and compare it with
different unmonitored groups: cells outside 3km and 60km of the monitors, respectively. PM2008−2011

2.5 is the average city-level
PM2.5 and citypopulation2008−2011 is the average city population over the 2008–2011 period. Other city-level controls are the
average city-level GDP between 2008 and 2011, the number of monitors in each city, the maximum distance between cells
and monitors within a city, and a dummy variable that indicates whether or not a city is an environmental priority city. The
Concurrent Policy refers to the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the
city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A7—: Robustness Check: Mechanism of Localized Cleaning (2008-2015)–
Thermal Anomalies

(1) (2) (3) (4) (5)
VARIABLES 1(TAP) ln(Days+1) ln(FRP+1) ln(Days+1) ln(FRP+1)

Auto 0.336*** -0.0469 -0.0325 0.00160** 0.00329**
(0.0150) (0.0414) (0.0445) (0.000651) (0.00150)

Marginal Effect 0.0839*** -0.0144 -0.0230
(0.00402) (0.0127) (0.0315)

(0-3km)×Auto -0.377*** -0.263*** -0.233*** -0.00676 -0.00528
(0.0589) (0.0448) (0.0455) (0.00558) (0.0125)

Marginal Effect -0.0660*** -0.0808*** -0.165***
(0.0144) (0.0138) (0.0322)

Cell FE X X X X X
Year FE X X X X X
Year FE × citypopulation2008−2011 X X X X
Year FE × PM2008−2011

2.5 X X X X
Year FE × Other City-level Controls X X X X
Concurrent Policy X X X X
Model Logit Poisson Poisson OLS OLS
Sample All All All 1(TAP) 1(TAP)
Observations 127,288 165,040 165,040 39,125 39,125
R-squared 0.743 0.583

Notes: This table reports the effects of the monitor automation program on thermal anomalies. The analysis uses the sample from 2008 to 2015 and
sets monitors automated in Wave 3 as the never treated ones. Column (1) uses a logit regression model. Columns (2) and (3) use a Poisson regression
model. Columns (4) and (5) use an OLS model. For the logit and Poisson regression models, the marginal effects are also reported. Column (1) reports
the results for a dummy indicator of thermal anomalies presence (TAP), denoted by 1(TAP), which is equal to one if thermal-related economic activities
are present in a cell in that year. Column (2) reports the results for the number of days with active thermal anomalies using the full sample, which
measures the operating time of industrial plants in each cell. Column (3) reports the results for the average intensity of thermal anomalies, denoted by
ln(FRP+1). FRP is defined as the rate of radiant heat output, which is related to the rate at which fuel is consumed, and smoke emissions are released.
We use the natural logarithm of (FRP+1) and (Days+1) to tackle zero observations. Column (4) reports the effect of automation on the logarithm of the
number of days with active thermal anomalies by restricting the sample to only those grid cell-year observations when 1(TAP) is equal to one. Column
(5) reports the effect of automation on the average intensity of thermal anomalies per day (denoted by ln(FRP+1)) when 1(Thermal Anomalies Presence)
is equal to one. lnPM2.5 is the natural logarithm of the cell-level yearly satellite-based PM2.5. Auto is the treatment indicator that takes the value of
one after a city has joined the automatic monitoring program. (0-3km) is a dummy variable that equals one if cells are located within 3km of a city’s
monitoring stations. PM2008−2011

2.5 is the average city-level PM2.5 and citypopulation2008−2011 is the average city population over the 2008–2011 period.
Other city-level controls are the average city-level GDP from 2008 to 2011, the number of monitors in each city, the maximum distance between cells
and monitors within a city, and a dummy variable that indicates whether or not a city is an environmental priority city. The Concurrent Policy refers to
the city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A8—: Validating Thermal Anomalies Data: Extensive Margins

Dependent variable: Presence of any polluting firm Presence of any power plant

(1) (2) (3) (4)

Thermal Anomalies Presence 24.35∗∗∗ 44.26∗∗∗ 22.91∗∗∗ 37.70∗∗∗

(0.1384) (0.000) (0.1408) (0.000)

Marginal Effect 0.997*** 0.996*** 0.995*** 0.992***
(0.000) (0.000) (0.001) (0.000)

City FE X X
Observations 95,168 68,161 380,672 240,188

Notes: This table shows the association between thermal anomalies and polluting firms or power plants at the exten-
sive margin, using the logit model. In columns (1) and (2), the dependent variable is a dummy variable that equals
one if there are any polluting plants within a 10km-by-10km cell. The polluting plants come from the MEE’s Key
Centrally Monitored Polluting Enterprises database. In columns (3) and (4), the dependent variable is a dummy indi-
cator that equals one if there is any power plant within the 10km-by-10km cell. The power plants sample is obtained
from the China Emissions Accounts for Power Plants (CEAP). “Thermal Anomalies Presence” is a dummy variable
that equals one if there are any thermal-related economic activities in a cell. Columns (2) and (4) include city-fixed
effects. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A9—: Validating Thermal Anomalies Data: Intensive Margins

Dependent variable: ln(PM2.5)

Sample Polluting firms Power plants

(1) (2)

ln(FRP+1) 0.129*** 0.136***
(0.009) (0.004)

Observations 1,806 10,491
R-squared 0.108 0.102

Notes: This table shows the relationship between the in-
tensity of the thermal anomalies observed and the satellite-
derived pollution levels of firms or power plants at the in-
tensive margins. The samples are restricted to only those
grid cells with polluting firms or power plants. The pol-
luting plants are defined using the MEE’s Key Centrally
Monitored Polluting Enterprises database, and the power
plants sample is obtained from the China Emissions Ac-
counts for Power Plants (CEAP). The dependent variable is
lnPM2.5, defined as the natural logarithm of the cell-level
yearly satellite-based PM2.5. FRP measures the intensity of
thermal-related economic activities, which is defined as the
average rate of radiant heat output within a 10km radius of
polluting firms, which is based on the rate at which fuel is
consumed, and smoke emissions are released. Standard er-
rors are clustered at the city level. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A10—: Event Study: The Effect of Monitor Automation on Air Pollution within
3km of a Monitor

Dependent variable:

ln(PM2.5) ln(AOD)

(1) (2)

(0-3km)×before4 0.011 -0.0007
(0.009) (0.0023)

(0-3km)×before3 -0.001 0.0037
(0.012) (0.0028)

(0-3km)×before2 -0.004 -0.0030
(0.011) (0.0031)

(0-3km)×after0 -0.018 -0.0006
(0.015) (0.0029)

(0-3km)×after1 -0.033** -0.0048∗

(0.013) (0.0028)
(0-3km)×after2 -0.020 -0.0081∗∗∗

(0.017) (0.0031)
(0-3km)×after3 -0.036** -0.0163∗∗∗

(0.014) (0.0031)
CellFE X X
YearFE X X
Year FE × citypopulation2008−2011 X X
Year FE × PM2008−2011

2.5 X X
Year FE × Other City-level Controls X X
Concurrent Policy X X
Observations 10,413,717 10,407,855
R-squared 0.975 0.964

Notes: The table reports the event study results of monitor automation on air pollution
with different dependent variables. Column (1) shows the effect of monitor automation on
ln(PM2.5) of monitored areas (within 3km of a monitor; Figure 3, and column (2) shows
the effect of monitor automation on the annual ln(AOD)in monitored areas (within 3km of a
monitor; Figure A4). All regressions control for cell-fixed effects, year-fixed effects, and time
dummy interactions. PM2008−2011

2.5 is average city-level PM2.5 and citypopulation2008−2011 is
the average city population over the 2008–2011 period. Other city-level controls are the
average city-level GDP from 2008 to 2011, the number of monitors in each city, the maxi-
mum distance between cells and monitors within a city, and a dummy variable that indicates
whether or not a city is an environmental priority city. The Concurrent Policy refers to the
city-level concurrent PM10 and PM2.5 reduction targets. Standard errors are clustered at the
city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A11—: Placebo Effects of Pseudo Automation Treatment on Cities without Mon-
itors

Dependent variable: ln(PM2.5)

(1) (2) (3) (4) (5) (6)
Monitor Area: Environment Government Environment Government

Bureau Offices All Bureau Offices All

Automation Wave: 2 3

(0-3km)×Auto -0.070 -0.022 -0.059 -0.063 -0.016 -0.054
(0.052) (0.021) (0.033) (0.053) (0.014) (0.034)

CellFE X X X X X X
Year FE X X X X X X
Year FE × citypopulation2008−2011 X X X X X X
Year FE × PM2008−2011

2.5 X X X X X X
Observations 163,746 163,746 163,746 163,746 163,746 163,746
R2 0.980 0.980 0.980 0.980 0.980 0.980

Notes: This table presents the placebo effects of monitor automation on cities that had never received the monitoring automation treatment. lnPM2.5 is the natural
logarithm of the cell-level yearly satellite-based PM2.5. To make them a comparable control group to our treatment group, we identify “placebo” monitor spots in
these nine cities. By checking the existing monitor siting rules, we assigned the counterfactual monitor/s to the location of 1) the municipal Environmental Protection
Bureau, 2) the municipal government building, or 3) both. Further, we assigned their fake automation timing to be either in Wave 2 or 3, denoted by Auto. (0-3km) is a
dummy variable that equals one if the cells are located within a 3km radius of a city’s “pseudo” monitoring stations. In Column (1) and Column (4), monitors are sited
in the environment bureau buildings, while in Column (2) and Column (5), they are sited in government office buildings. In Columns (3) and (6), monitors are assigned
to both environment bureau and government office buildings. PM2008−2011

2.5 is average city-level PM2.5 during the 2008–2011 period and citypopulation2008−2011 is the
average city population from 2008 to 2011. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A12—: Summary of Government Documents Mentioning Strategic Cleaning

Type Policy Measures Number of Government Documents
Coal and other Clean energy replacement 2
energy pollution control Boiler renovation 16

Transportation pollution control
Yellow-label vehicles 2(high-emission vehicles)

Travel restrictions 2

Dust pollution control
Spraying Water 16

Windproof and dust suppression nets 6
Wet cleaning 2

Dust suppression/suction vehicles 3
Agricultural and Banning open burning 4
other pollution control Banning outdoor cookings 22

Industrial pollution control Shutdown 3
key monitoring enterprises 2

Notes: This table reports measures for strategic cleaning which mention in the government documents and the number of documents for each kind of
strategic cleaning measures. There are 121 government documents that mention strategic cleaning in total.
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Table A13—: Mechanism: Effect of Automation on Local Relative Humidity (Monthly)

Dependent Variable: ln(Humidity)
(1) (2) (3) (4) (5)

Unmonitored Areas: All All All Winter Summer

Variables
Auto -0.0053 -0.0054 0.0025 -0.0057 0.0064

(0.0065) (0.0065) (0.0077) (0.0100) (0.0084)
(0-3km)×Auto 0.0288∗∗∗ 0.0210∗∗ 0.0335∗∗∗ 0.0094

(0.0082) (0.0083) (0.0084) (0.0077)

Cell X X X X X
Yearmonth X X X X X
Climate Controls X X X

Fit statistics
R2 0.92948 0.92948 0.95959 0.96254 0.95638
Observations 11,222,880 11,222,880 11,222,880 4,676,200 6,546,680

Notes: This table presents the effects of the monitor automation program on satellite-based relative humidity (monthly) with
meteorological data from He et al. (2020). The variable “Auto” is a treatment indicator that equals one after a city has joined
the automatic monitoring program, while the dummy variable “(0-3km)” equals one if the cells are located within a 3km
radius of a city’s monitoring stations. The climate controls include temperature, precipitation, and wind. Columns (1) to (3)
reports the results for the whole sample period. Column (4) reports the results for the winter period from October of one year
to February of the next year, while Column (5) reports the estimation results for the summer period from March to September
of a year. Standard errors are clustered at the city level, and significance levels are indicated by asterisks: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table A14—: Mortality and Morbidity Impacts of Uneven Pollution Control

Total Monetary Value Total Healthcare Per capita Monetary Value Per capita Healthcare
Distance from Population Excess of Excess Spending Savings from of Excess Spending Savings from
Monitors Death Reduction Death Reduction PM2.5Reduction Death Reduction PM2.5Reduction

(×103 person) (×103 person) (billion $) (billion $) ($) ($)

(1) (2) (3) (4) (5) (6)

(0-3km) 118970.12 13.06 15.02 0.25 126.22 2.10
(3-6km) 92787.05 9.22 10.6 0.18 114.24 1.90
(6-9km) 47720.46 4.29 4.93 0.08 103.41 1.72
(9-15km) 72816.85 5.94 6.83 0.11 93.85 1.56
(15-21km) 63986.63 4.81 5.53 0.09 86.41 1.44
(21-30km) 87327.55 6.05 6.95 0.12 79.63 1.33
(30-45km) 127270.47 7.29 8.39 0.14 65.88 1.10
(45-60km) 107054.99 5.29 6.08 0.1 56.84 0.95
(60-90km) 128741.45 4.15 4.77 0.08 37.09 0.62
(90-120km) 54978.79 0.51 0.59 0.01 10.67 0.18
(120-150km) 21358.18 -0.34 -0.4 -0.01 -18.52 -0.31
(¿150km) 22651.89 -1.54 -1.77 -0.03 -78.36 -1.30
Total 945664.44 58.72 67.53 1.12 677.37 11.28

Notes: This table presents various distance bins from the monitors, the monetized health benefits of automation— the value of PM2.5-attributable death
reduction and healthcare spending saved annually. Column (1) shows the corresponding population of each distance bin. Columns (2)–(6) report the
benefits, as shown in the heading. These outcomes are computed using the pollution reduction from automation, which is denoted by ∆PMwel f are

2.5 =

α ×Auto×PMpre
2.5 +∑

(>150)
n=(0−3) βnAutoct ×Binn ×PM2.5pre

2.5 . PMpre
2.5 is the average cell-level yearly satellite-based PM2.5 from 2008 to 2011 (the pre-treatment

period). Auto is the treatment indicator that equals one after a city has joined the automatic monitoring program. The annual reduction of excess deaths in
column (2) is equal to the PM2.5-attributable monthly mortality rate 3.25% from He, Liu and Zhou (2020) (i.e., a 10 µg/m3 increase in PM2.5 increases monthly
mortality by 3.25%) × pollution reduction calculated above (∆PM2.5)/10 × population2015 × 12 months. Based on Fan, He and Zhou (2020), the average
value of a typical Chinese person’s statistical life was around 1.15 million USD in 2015. Column (3) then infers the monetary value of lives saved from PM2.5
reduction. According to Barwick et al. (2018), a medium-run reduction of 10 µg/m3 in daily PM2.5 would lead to $22.4 annual savings in healthcare spending
per household. Given that the average household size is 3 people (source: National Bureau of Statistics, UNICEF China, UNFPA China, ‘Population Status of
Children in China in 2015: Facts and Figures’, 2017) and using population data in 2015, the healthcare spending savings are thus calculated as population2015/3
× ∆PM2.5/10× $22.4 in Column (4). Columns (5) and (6) report the per capita health benefits from reduced mortality and morbidity.
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