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Online Appendix A. Teacher Followers and Prior Scores

In this appendix, we provide further detail on why including teachers who follow students across

grades can produce correlations between changes in current VA and prior test scores across cohorts.

Consider the relationship between changes in math test scores and math teacher VA from 1994

to 1995 in 5th grade in a given school. Suppose a teacher with high estimated VA leaves 5th grade

after 1994 and is replaced by a teacher with average VA; assume there are no other changes in the

teaching roster. We know that the high-VA teacher who departed did not teach the children who

were in grade 5 in 1995 when they were in 4th grade in 1994 (because she taught 5th grade in

1994). However, she may have taught the children who were in grade 5 in 1994 when they were in

4th grade in 1993. As a result, the high VA of the departing teacher is positively correlated with

lagged test scores of the cohort that reaches 5th grade in 1994, but not the test scores of those who

reach 5th grade in 1995. This effect makes lagged (4th grade) test scores fall on average across the

two cohorts. Since (by construction) teacher VA is also falling in this example, there is a positive

correlation between changes in lagged (4th grade) scores across the two cohorts and mean teacher

VA.

It is useful to distinguish between two separate channels that drive this correlation. The first

channel is fluctuations in student test scores that are not related to the persistent component of

teacher value-added, i.e., noise in student test scores. The teachers in 5th grade in 1994 could have

higher estimated VA simply because her students in 4th grade test in 1993 did particularly well

by chance (e.g., because the curriculum in the school happened to be well aligned with the test

questions that year). This creates a mechanical correlation between lagged scores and VA estimates

but has no bearing on our estimate of forecast bias using current test scores. Second, the correlation

could be driven by teacher treatment effects. If the 5th grade teachers in 1994 were of truly high

quality, they would affect the performance of 4th graders in 1993 (because some of them taught

4th grade in 1993), but not the 4th graders in 1994 (because we know they are teaching 5th grade

in 1994). Note that, in contrast to the first channel, the direct treatment effect of teachers in prior

grades could potentially bias our estimate of λ, as having better teachers in prior school years can
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increase current scores. The magnitude of bias depends upon the rate of fade-out in the sample

where a teacher teaches the same child twice. The fact that the estimates of λ do not change when

we exclude followers (Columns 1 and 2 of Table 4) shows that in practice, there is little or no bias

in our estimate of λ from this latter channel.

Online Appendix B. Residualization Using Within-Teacher Variation

In a standard partial-regression implementation of a multivariate regression model, one must

residualize both the left- and right-hand side variables with respect to the covariates to obtain a

consistent estimate of the regression coefficient of interest. In this appendix, we show why one

should not residualize the right hand size variable (teacher VA) with respect to covariates Xit when

the effects of the covariates on long-term outcomes Y ∗
it are estimated using within-teacher variation.

Suppose the statistical model for earnings is

Y ∗
i = α+ κmj + βY Xit+}ηit, (1)

with ηit orthogonal to Xit and mj defined as normalized teacher VA, as in equations (2) and (4) in

CFR-II.

First, observe that if we knew βY , we could mechanically construct Yit = Y ∗
i − βY Xit and

then simply regress Yit on mj (without including any controls) to obtain an unbiased estimate of κ

under the selection on observables assumption in CFR-II (Assumption 2). In this case, residualizing

value-added mj with respect to Xit would not yield a consistent estimate of κ because the true

model is Yit = α+ κmj + ηit.

Now suppose that we do not know βY and estimate it using an OLS regression (without teacher

fixed effects) of the form

Y ∗
i = a+ bY Xit + εit.

Here bY does not provide a consistent estimate of βY if teacher VA mj is correlated with Xit: bY

converges to βY +κCov(mj , Xit)/V ar(Xit). Since b
Y is not a consistent estimate of βY , one cannot

simply regress Y ∗
i − bY Xit on mj to obtain a consistent estimate of κ. Intuitively, the reason one

must residualize both Yit and mj in a multivariate regression is that an OLS regression of Yit on

Xit does not produce a consistent estimate of the structural parameter βY in (1) because it partly

picks up the effect of mj , which is correlated with Xit. To correct for the incorrect estimate of

βY , one must residualize the right-hand-side variable mj with respect to Xit and then regress the

earnings residuals Yit on the VA residuals m̃jt = mj − γXit.



Now consider our approach, where we estimate βY using an OLS regression with teacher fixed

effects aj :

Y ∗
i = aj + bYf Xit + ε

′
it.

Here, the coefficient bYf is identified purely from within-teacher variation in Xit that is mechanically

uncorrelated with variation in mj . Therefore, under the model in (1), the coefficient bYf converges

to βY and hence regressing Y ∗
i − bYf Xit on mj yields a consistent estimate of κ, for the same reason

that regressing Y ∗
i − βY Xit on mj when βY is known yields a consistent estimate of κ in the first

case considered above. In contrast, using residual VA m̃jt = mj − γXit in the second regression

would yield an inconsistent estimate of κ. Intuitively, when we use within-teacher variation to

estimate βY , we immediately obtain a consistent estimate of the effect of X on earnings that is not

contaminated by the correlation with teacher value-added. Hence, one simply has to regress the

outcome residual on VA to estimate the effect of teacher VA in the second stage.



Online Appendix C. Stata Code for Simulations 
 
 
Imputation of Missing Data 
 
1 
2 **************** 
3 * This simulation shows that imputing zeros reduces the coefficient in the 
regression of changes in scores on changes in mean VA when VA is correlated 
across teachers in a cell 
4 **************** 
5 
6 clear all 
7 
8 *1 Generate data at the school-year-teacher level 
9 set obs 1000000 
10 set seed 5071788 
11 g year = mod(_n-1,2)+1 
12 g teacher = ceil(_n/2) 
13 g school = ceil(teacher/2) 
14 
15 *2 Generate correlated VA within cells 
16 global corr = 0.2 
17 tsset teacher year 
18 g va = rnormal(0,.1) if year == 1 
19 replace va = (${corr}*l.va + sqrt(1-${corr}^2)*rnormal(0,.1)) if year == 2 
20 
21 *3 Generate missing data 
22 g rand = runiform() 
23 g miss = rand<.2 
24 g va_miss = va 
25 replace va_miss = . if miss==1 
26 
27 *4 Generate scores 
28 g score = va + rnormal(0,1) 
29 g score_miss = score 
30 replace score_miss = . if va_miss == . 
31 
32 *5 Imputation of 0 for missing data 
33 g va_impute = va_miss 
34 replace va_impute = 0 if va_miss == . 
35 
36 *6 Collapse to school-year and run regressions 
37 collapse va va_miss va_impute score score_miss, by(school year) 
38 tsset school year 
39 
40 *7 Results 
41 log using imputation.smcl, replace 
42 
43 _eststo clear 
44 _eststo Full_Sample: reg d.score d.va // Coefficient in full sample 
(ideal data) 
45 _eststo No_Missing: reg d.score_miss d.va_miss // Coefficient on subsample 
with no missing data 
46 _eststo Impute_0s: reg d.score d.va_impute // Coefficient with imputation 



is downward-biased 
49 esttab _all, mtitles title("Missing Data Imputation Simulation Results") 
se not 
50 log close 

 

Prior Test Scores (Table 3) 
 

1 *This simulation shows that prior test score changes with be correlated 
with changes in current mean VA across cohorts when there are school-year 
level shocks 
2 *Simulates data for one subject, so shocks should be interpreted as school-
year-subject shocks 
3 *The program simulates class-level data, incorporating teacher effects, 
class effects, student-level noise, and a school-year shock common to all 
classrooms. 
4 
5 clear all 
6 set seed 717806 
7 set more off 
8 
9 * Parameters governing simulation 
10 global min_grade = 3 // Minimum grade level (for readability) 
11 global min_year = 1992 // Start year (for readability) 
12 global n_school = 10000 // Number of schools 
13 global n_year = 6 // Number of years 
14 global n_grade = 6 // Number of grades taught per school 
15 global n_rooms = 4 // Number of classrooms per school and grade 
16 global n_class = 25 // Number of students per class 
17 global var_tot = 0.25 // Total variance of scores 
18 global sd_va = 0.10 // Standard deviation of value added 
19 global sd_class_shock = 0.08 // Standard deviation of classroom-level 
shocks 
20 global sd_sy_shock = .08 // Standard deviation of school-by-year shocks 
21 global rho_sy = 0.35 // Autocorrelation on school-by-year shocks 
22 
23 * Generate basic data 
24 set obs `= ${n_school} * ${n_grade} * ${n_rooms} * ${n_year}' 
25 g school = ceil(_n / (${n_grade} * ${n_rooms} * ${n_year})) 
26 g grade = mod(ceil(_n / (${n_rooms} * ${n_year})) - 1 , ${n_grade}) + 
${min_grade} 
27 g teacher = ceil(_n / ${n_year}) 
28 g year = mod(_n - 1, ${n_year}) + ${min_year} 
29 g id = rnormal() 
30 
31 * Replace some teachers in 1997 
32 * Only in grades 5-8 (since others not used in experiment at end) 
33 g replacement = mod(teacher , ${n_rooms}) < 1 if year == ${min_year} 
34 replace replacement = replacement[_n-1] if year > ${min_year} 
35 replace grade = grade - 1 if replace == 1 & year >= 1997 
36 replace school = mod(school , ${n_school}) + 1 if grade == 
(${min_grade}+1) & year >= 1997 & replace == 1 
37 replace grade = ${min_grade} + ${n_grade} - 1 if grade == (${min_grade}+1) 
& year >= 1997 & replace == 1 
38 replace grade = grade + 1 if replace == 1 & year >= 1997 & grade < ( 



${min_grade}+1) 
39 
40 * Generate true VA and class shocks 
41 g class_shock = rnormal(0, ${sd_class_shock}) 
42 g va_true = rnormal(0,${sd_va}) if year==${min_year} 
43 replace va_true = va_true[_n-1] if va_true==. 
44 
45 * Generate average lagged true VA and average lagged class shocks as 
"double lags" of true 
VA and class shocks 
46 sort school year grade id 
47 g temp1 = va_true[_n - ${n_rooms} * (${n_grade} + 1)] if year > 
${min_year} & grade > ${min_grade} 
48 g temp2 = temp1[_n - ${n_rooms} * (${n_grade} + 1)] if year > ${min_year} 
& grade > ${min_grade} 
49 g temp3 = class_shock[_n - ${n_rooms} * (${n_grade} + 1)] if year > 
${min_year} & grade > ${min_grade} 
50 g temp4 = temp3[_n - ${n_rooms} * (${n_grade} + 1)] if year > ${min_year} 
& grade > ${min_grade} 
51 by school year grade: egen l_va_true = mean(temp1) 
52 by school year grade: egen l2_va_true = mean(temp2) 
53 by school year grade: egen l_class_shock = mean(temp3) 
54 by school year grade: egen l2_class_shock = mean(temp4) 
55 drop temp* 
56 
57 * Generate school-by-year shocks 
58 g sy_shock = rnormal(0 , ${sd_sy_shock} * sqrt(1 - ${rho_sy}^2)) if mod(_n 
,${n_rooms} * ${n_grade}) == 1 
59 replace sy_shock = sy_shock / sqrt(1 - ${rho_sy}^2) if year == 
${min_year} & ~missing(sy_shock) 
60 replace sy_shock = sy_shock[_n - 1] if missing( 
sy_shock) 
61 replace sy_shock = sy_shock + ${rho_sy} * sy_shock[_n - ${n_rooms} * 
${n_grade}] if year > 
${min_year} 
62 g l_sy_shock = sy_shock[_n - ${n_rooms} * ${n_grade}] if year > 
${min_year} 
63 g l2_sy_shock = sy_shock[_n - 2 * ${n_rooms} * ${n_grade}] if year > ( 
${min_year} + 1) 
64 
65 * Generate classroom average score, lagged, and twice-lagged scores 
66 global sd_indv = sqrt((${var_tot} - ${sd_va}^2 - ${sd_sy_shock}^2 - 
${sd_class_shock}^2) / 
${n_class}) 
67 g l2_score = (l2_va_true + l2_sy_shock + l2_class_shock + 
rnormal(0,${sd_indv})) 
68 g l_score = l_va_true + l_sy_shock + l_class_shock + rnormal(0,${sd_indv}) 
69 g score = va_true + sy_shock + class_shock + rnormal(0,${sd_indv}) 
70 
71 *Make dataset balanced panel 
72 replace l_score = . if l2_score == . 
73 replace score = . if l_score == . 
74 
75 * Residualize scores using a single lag 
76 sort teacher year 
77 sum score 
78 global tot_var = r(Var) 



79 tsset teacher year 
80 corr score l.score, c 
81 global teach_var = r(cov_12) 
82 global ind_var = (${n_class} / (${n_class} - 1)) * (${var_tot} - 
${tot_var}) 
83 global class_var = ${var_tot} - ${ind_var} - ${teach_var} 
84 
85 * Construct leave-two-out shrinkage and VA estimate 
86 g temp = ~inrange(year , 1996 , 1997) & ~missing(score) 
87 by teacher: egen temp1 = sum(temp) 
88 g shrinkage = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / (${n_class} 
* temp1)) 
89 g temp2 = score if ~inrange(year , 1996 , 1997) & ~missing(score) 
90 by teacher: egen temp3 = mean(temp2) 
91 g va = temp3 * shrinkage if inrange(year,1996,1997) 
92 drop temp* 
93 
94 * Construct Rothstein (2016) leave-three-out shrinkage and VA estimate 
95 g temp = ~inrange(year , 1995 , 1997) & ~missing(score) 
96 by teacher: egen temp1 = sum(temp) 
97 g shrinkage_3out = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / ( 
${n_class} * temp1)) 
98 g temp2 = score if ~inrange(year , 1995 , 1997) & ~missing(score) 
99 by teacher: egen temp3 = mean(temp2) 
100 g va_3out = temp3 * shrinkage_3out if inrange(year,1995,1997) 
101 drop temp* 
102 
103 * Construct prior shrinkage and VA estimate 
104 g temp = (year < 1997) & ~missing(score) 
105 bys teacher: egen temp1 = sum(temp) 
106 g shrinkage_prior = ${teach_var} / (${teach_var} + ${class_var} / temp1 + 
${ind_var} / ( 
${n_class} * temp1)) 
107 g temp2 = score if (year < 1997) & ~missing(score) 
108 bys teacher: egen temp3 = mean(temp2) 
109 drop temp* 
110 
111 save vam_simulation, replace 
112 
113 * Collapse data to school-grade-year level to implement quasi-
experimental analysis 
114 keep if inrange(year,1996,1997) 
115 collapse score l_score va va_3out va_true, by(school grade year) 
116 egen sy = group(school year) 
117 egen sg = group(school grade) 
118 tsset sg year 
119 save vam_simulation_collapse, replace 
120 
121 * Results 
122 log using lagged_score_simulation.smcl, replace 
123 eststo clear 
124 _eststo d_score: qui reg d.score d.va 
125 _eststo d_score_sy: qui reg d.score d.va , a(sy) 
126 _eststo d_score_3out: qui reg d.score d.va_3out 
127 _eststo lag_d_score: qui reg d.l_score d.va 



128 _eststo lag_d_score_sy: qui reg d.l_score d.va , a(sy) 
129 _eststo lag_d_score_3out: qui reg d.l_score d.va_3out 
130 esttab _all, mtitles title("Quasi-Experimental Forecast Bias Estimates") 
se not 
131 log close 
 

Long-Term Effects of VA (Table 5) 
 

1 *This simulation shows that estimates of long-term impacts are downward-
biased in a multi-variable regression because VA is estimated with error and 
is correlated with X 
2 
3 clear all 
4 set seed 7817806 
5 *Specify target: true effect of 1 unit increase in va_score on earnings 
6 *Note that this is equivalent to effect of 1 unit increase in mu (not m = 
mu/sd(mu)) 
7 global true_coeff = 100 
8 
9 *************************PART 1********************** 
10 ********************Generate data******************** 
11 ***************************************************** 
12 
13 set obs 1000000 
14 global n_class = 20 
15 global classes_per_teach = 10 
16 g class = ceil(_n/$n_class) 
17 g teacher = ceil(_n/(${n_class}*${classes_per_teach})) 
18 
19 *Generate test-score VA (mu_j) 
20 bys teacher: g temp = _n 
21 g temp1 = rnormal(0,0.1) if temp == 1 
22 bys teacher: egen va_score = mean(temp1) 
23 
24 *Generate pure earnings component of VA 
25 g temp2 = rnormal(0,0.1) if temp == 1 
26 bys teacher: egen va_earn = mean(temp2) 
27 drop temp* 
28 
29 *Generate total earnings VA (tau_j) 
30 g va_comb = va_score + va_earn 
31 
32 *Generate covariate X correlated with teacher's total earnings VA 
33 global rho = 0.33 
34 g x = (${rho}*va_comb + (1-${rho})*rnormal(0,0.1))/sqrt(${rho}^2+(1-
${rho})^2) 
35 
36 *Generate scores and earnings 
37 *Note that only va_score affects test scores, while both va_score and 
va_earn affect earnings 
38 g score = va_score + x + rnormal(0,sqrt(1-.1^2)) 
39 g earn = ${true_coeff}*va_comb + 10*x + rnormal(0,10) 
40 
41 ***********************PART 2. ********************* 
42 **Estimate VA using within-teacher residualization** 



43 **************************************************** 
44 
45 * Residualize scores using within teacher variation as in CFR (2014b) 
46 qui areg score x, a(teacher) 
47 predict score_res, dr 
48 
49 * Estimate teacher-level variance 
50 preserve 
51 collapse score_res, by(teacher class) 
52 tsset teacher class 
53 qui corr score_res l.score_res, c 
54 global teach_var = r(cov_12) 
55 restore 
56 
57 * Estimate residual variance and shrinkage 
58 sum score_res 
59 global tot_var = r(Var) 
60 global ind_var = ${tot_var} - ${teach_var} 
61 scalar shrinkage = ${teach_var}/(${teach_var} + ${ind_var}/(${n_class} * ( 
${classes_per_teach}-1))) 
62 
63 * Estimate Leave-Out VA 
64 bys teacher: egen temp = mean(score_res) 
65 bys teacher class: egen temp1 = mean(score_res) 
66 g va = (${classes_per_teach}*temp - temp1)/(${classes_per_teach}-1) 
*shrinkage 
67 drop temp* 
68 
long_term_controls_simulation - Printed on 2/4/2015 9:33:20 PM 
Page 2 
69 *Confirm that regressing test score residuals on VA gives a coeff of 1 
70 reg score_res va 
71 
72 ***********************PART 3**************************** 
73 **Alternative Estimators of Teachers' Long-Term Effects** 
74 ********************************************************* 
75 
76 log using long_term_controls_simulation.smcl, replace 
77 
78 ***Column 1. Estimate long-term effects using two-step residualization as 
in CFR (2014b) 
79 *Yields correct estimate of long-run effects as expected 
80 qui areg earn x, a(teacher) 
81 predict earn_res, dr 
82 reg earn_res va, cl(teacher) 
83 
84 ***Column 2. Estimate long-term effects using multivariable regression as 
in Rothstein (2016) 
85 *Yields attenuated coefficient as expected 
86 reg earn va x, cl(teacher) 
87 
88 *Column 3: Rothstein (2014) 2SLS estimator yields estimate similar to OLS 
in #3 
89 ivreg earn (score_res = va) x 
90 
91 log close  
92 


