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1 Derivation of the autocoherence conditions

in model 1

For convenience let us replicate Table 2 from the text:

Observable Expression
Output Y = QU+ Qye€ + Gy
Price T = QryU + Qreé + Qry?
Coefficients Expression
- o
CLyu b + 6—;
A A u
Ay 0b
Qye ya
i b+ 2
oy p(bh — 1)
Qe pya
Table 2

Table 1 is obtained trivially from the above by removing hats. The six
autocoherence conditions are Ez? = E22, Eyz = Eyz, Erz = Enz, Ey* =
Ey, and En? = Ex2. Clearly, we can replace the second and third conditions
by the simpler ones E(y | z2) = E(y | z) and E(r | 2) = E(7 | 2).

In what follows we assume, as in the paper, that w is common knowledge:

W= w.

We get the following formulas
1. Variance of z. For this we only have to use the definition of z.



Ez? = 1:w2/0i—0—a§
= E22=uw?/62 + 62 (1)

Because (1) has to hold, we can simplify the following expressions:

E(u z) = = wz; 2
(| )= )
2
~ oz
E(e z) = : =622; 3
C | =gz = ®
abi abw
Yy = - = (4)

(ot @))%+ 67 prad

2. Expectation of y conditional on z. This is easily obtained from Table
1 and (4):

E(y | 2) = Qyuw + aysag = E(y | 2) = Gyuw + dyeﬁg
~ " CU2 N o ~
— wb+ay +ayol =wb+ay=wb+ay
ol

u

~

<~ 7y(a—a)=w(b-0»). (5)

3. Expectation of 7 conditional on z. From Table 2,

E(r | 2) = arw + az02 = pE(y | 2) = pE(y | 2),

which, since E(y | z) = E(y | z) from the preceding autocoherence condition,
is equivalent to

p=p- (6)
Since the steps in proving (6) do not hinge on the assumption that w is

known, this proves Proposition 1.
4. Covariance between y and 7

_ 2 2 2
Emy = Qyu0ru0y + Qyelre0? + Gy, 07
~ A A A2 A A A2 A~ A A2
= Eny = Gyy0ry0), + Qyeln07 + Gy, 0, (7)

This is equivalent to, using Table 2 and (6),

azuaz + azeag + ayy(ay, — 1)03 = dzuﬁi + djgaﬁ + Ay (g — 1)&5 (8)



5. Variance of y

2 2 2 2 2 2 2
Ey" = a0, + a,0; + a0,
2 A2 A2 2 A2 2 A2
- Ey - ayuau + ayaae + ayvav‘ (9)
6. Variance of m
2 2 2 2 2 2 2
Em = Qry0y + Are0c + Ay Oy
_ (2 A2 A2 A2 A2 ~2 A2
= Ern*=a,,0,+a,. 0.+ a.,0,. (10)
This is equivalent to
2 2 2 2 2 2 A2 A2 ~2 2 ~ 242
ayuau + &yaaa + (ayv - 1) JU - ayuau + ayaaa + (ayv - 1) UU (11)

Now, combining (9) and (8) we find that (8) can be replaced by

Ayo02 = Gy (12)
Combining (9) and (11) we find that (11) can be replaced by

02(1 = 2ay,,) = 62(1 — 2ay,). (13)
In turn, (12) and (13) are equivalent to
o, = 0y

ob = 6b, (14)

where I have used the definitions in Tables 1 and 2 for a,, and a,,.
Finally, using these same tables, as well as (1), we can rewrite condition
(9) as follows:

V2o? + a*y? + 2abyw = b%62 + a*y? + 2abyw. (15)
The following table summarizes the 6 autocoherent conditions, in the
simplified forms we have just derived:

w62 +62=1

7(& —a) =w(b—b).

p=p
612,:03
0b = 0b

0262 + 0242 + 2abyw = b%02 + a2y% + 2abyw
Table A1 — The autocoherence conditions.

Proof of Proposition 2 — Table A1l proves claim (ii) in Proposition 2.
Claim (i) then derives from the formula for v and from (1). Claim (iii) comes
from the equalities in Table A1l and the definitions of a,, and a,, in Table 2.
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2 Proof of Proposition 3

The autocoherent model picked by the expert must achieve v = ~y, or equiv-
alently

abw abw

_30+d2 _SOE+CL2.

As seen in the text (Equation (16) in the text), a and b are linked by the
following autocoherence condition:

© + a?

b=b——.
@+ aa

(16)

Solving for these two equations we get

A 2

a = a—;
YE

; Pl + a*p
901213 + a2<PE

This proves the first two conditions in Proposition 3. Conditions (iv) and
(v) are already known, and the value of # in condition (iii) is straightforward
from (14). Finally, it can be checked that Equation (17) in the text can be
obtained from substituting (i) and (ii) of Proposition 3 into (15).

Conversely, it is straightforward to check that if the perceived model has
the parameter values of Proposition 3, all the autocoherence conditions hold
for v = v, which is the stabilization level that the government will choose.

3 Proof of Proposition 4

First, recall that a = 5 fﬂn and b = ﬁ From (i) and (ii) in Proposition 3
we get that
~ PE + CL2
Q= ap—5=——.
Y taty
Therefore,
dé

2 2 2
—_— -2 — )
dngO(a‘P a9y —PE

This expression is negative for ¢z > —a? + \/a* + a2y, which is smaller
than ¢/2.



Using (i) and (ii) again, we have that

P vp+a’op  1app = o)
pEt+a’e n g +a’p
It is easy to check that
di
d—” X —¢ + a*p + 2ppp,
YE
which, from the discussion in the text following Proposition 3, is clearly
positive for ¢ < ¢,,.
Q.E.D.

4 Correct model equilibrium with inflation
inertia
PROPOSITION A1l — A correct model equilibrium exists such that

0 < ¢ <1,
cy < 0,
v > 0.

PROOF — To construct such an equilibrium, we have to show that there
exists a solution to these three equations:

¢y = —p(h—1)c+ cyen +ay — aryen, (17)
= pey+ B +1-4. (18)
. mm
V=

Where by definition

O‘(l — ﬁCW>
1 — Beqr — pey + pp(h — 1)eg + pay’
(1= B)(cy —plh —1)cx — an)
1 — Ber — pey + pp(h — V)ex + pay
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From (17), we have that

:u(h — 1)072r (21)

At g
which is < 0 for ¢, < 1. It follows that for ¢, < 1, the denominator of (19)
and (20) is positive.

Note that for any c, the values of ¢, and v can be solved uniquely from
(17) and (18). Let us denote these solutions by ¢,(c) and v(c,). We have
that

%@a=%@Arw%a+ﬁ—1> (22)

and

_ eylen)(L = cx) + p(h = Deg
7(C7r) - 04(1 . Cﬂ-> (23)

Clearly, ¢,() is continuous over R and () is continuous over R — {1}. We can
also compute the corresponding values for m and n denoted by m(c,) and

n(cy). These also are continuous functions of ¢, over [0,1). An equilibrium
obtains if there exists a value of ¢, for which

o) = _mlesIn(es)

= T orm(@) e

From the above equations it is easy to check that

__1-8
¢, (0) = =< 0, (24)
_ 15
7(0) = o S 0,
m(0) = a > 0.
n(0) = 0. (25)

Therefore,
7(0) = 0> ~(0).
Furthermore, from (23), (19) and (20),

limlv(cw) = +o0,
lim m = 0,
cr—1
lim n = —1/p.

cr—1



Therefore,

lim ’V(CW) =0< lim v(cw)

Cqr— Cnr—

By continuity, there exists ¢, € (0,1) for which v(¢;) = 4(¢,), which
proves that there exists an equilibrium.

In any such equilibrium, one must have v > 0. To see this, note that,
m > 0 since its denominator is > 0 and both  and ¢, are between 0 and 1.
Furthermore, substituting (21) into the numerator of (20) implies that n < 0.
Consequently, ¥ =~ > 0.

Consider now the sign of ¢,. By (18), it is the same as that of ¢, — 3¢2 —
(1 —f3). The two roots of this polynomial are equal to 1 and % If % > 1,
this expression is negative over (0,1), implying that ¢, < 0. Assume that
% < 1. We show that we can then pick ¢, < %, implying again that
cy < 0. To see this, compute

¢y 5 ) = 0, (26)
1-8, _ ph-1) (1-p)
S T e -y 0
1-5 af
™) = 6+up(h—1)§ﬁ;ﬁl>0’ )
1-5 (1=p)2  p(h-1)
n( 5 ) R 1)B_ﬁ<0. (29)
Hence
T N ap(1 - B)(h— 1)
b 25_1¢(5+up( — 13525 >+a%’2
< 7(%)-

Therefore in this case we can pick an equilibrium such that ¢, <
ing that ¢, < 0.
QED.

5 , imply-



5 Linearization of equilibrium conditions

I now derive the formulas that form the basis of the numerical results for the
model with inflation inertia. Let

Cy = Cye+ Acy,
Cr = Cre+ Acy,
B = B+AB,
p = p+Ap,
Y = Yt Ay,
vp = ¢+ Ay,
m = m.+ Am,
n = n.+ An,
m = m+ Am,
n = n+ An,
5 = 0.+ AGy,
52 = o2+ A2

The subscript ¢ refers to the equilibrium value in the correct model (CM)
equilibrium. For any variable z, Az is the difference between its perceived
and actual value in the autocoherent model (ACM) equilibrium associated
with o = @g. On the other hand, Az is the difference between its actual
value in the ACM equilibrium and its actual value in the CM equilibrium.
The effect of Ay, the preference gap between the expert and the government,
on the gap between the perceived and actual value of any variable z, Az /Ay,
is called its ideological sensitivity.

The set of equilibrium conditions is summarized in the following tables:



Equation

Meaning

¢y = —p(h — 1)c2 + ¢yer + ay — ayey,
Ce=pey + B2 +1—0.
_ a(l—LBecx)
1—Beqr—pey+pp(h—1)cr+pary
(1_/3)(031_#(}1_1)0#_067)

1—Ber—pey+up(h—1)cr+pay
mn

Equilibrium condition (17)
Equilibrium condition (18)
Definition of m, (19)
Definition of n, (20)

y=— Government’s choice of ~
p+m ( A )
A &(1—PBex .. . . .
m = T T Definition of m, from Equation (32) in the text
f = =B —plh=1)en—a) Definition of 7, from Equation (33) in the text

Lty ap—Ben—pg+ip(h—1)éx
Cr=pey + B2 +1—0.
_ __mn
v optm?

AC condition (41) in the text!
Expert’s choice of ~

Table A2 — Model’s solution for VAR coefficients and autocoherence con-

dition for ¢,

A m

Qyu =0

~ _pm __ ph

Qyy =0 o _B

a —_=

™ O‘( Bcﬂ)

P 201y

a —=

2 200 o o

ayuau+a o, :ayuau2 ayvavz,
— 5 PP I

aﬂuau + 0/71'1)0-1} a u —"_ a/7T’U0-’U

"y AA A2
ayuamau + QyyQryO, = ayuamou + Gy Qg0 -

Impact effect of demand shock on output
Impact effect of supply shock on output

Impact effect of demand shock on inflation

Impact effect of supply shock on inflation

Variance of output innovations matched
Variance of inflation innovation matched
Covariance of innovations matched

Table A3 —

The model can be solved as follows.

Aurocoherence conditions on VAR innovations

First, There are 5 equations that define a real block, i.e. which charac-

terizes the actual behavior of the economy. These equations are

¢y = —plh—1)c+cyer +ay — avye, (30)
Cr = pey+ B +1-4. (31)
a(l — Bey)
= 32
m 1 — Ber — pey + pp(h — L)ep + pary (32)
1- — u(h —1)e, —
n — ( B) (e, — i )er — ) (33)
1 — Ber — pey + pp(h — )ex + pary
mn
pum - . 34
ot - (34)

'Recall that the autocoherence condition for ¢, holds, i.e. eq. (40) in the text, holds

given our assumption that « and § are common knowledge.



Given ¢, these equations allow to compute ¢y, ¢, m,n, and . When lin-
earized around a correct model equilibrium, they deliver Ac,, Ac,, Am, An,
and Ay as a function of Agy. In particular, from the last equation we have
that

(¢ +mHAY + v, Ap + 2y, mAm = —m.An — nAm. (35)

The remaining 4 equations of Table A2 define a perceived block, given by
1-— ¢ T

= a(l = fer) (36)

1+ yap — Bey — pey + pp(h — 1)cq

A

(1=08)(cy = pu(h —1)ex — ay)

no= > ; - (37)
L+ yap — Bex — pey + pp(h — 1)cx
¢ = poy+PBE+1-8 (38)
i
= 39

We have used the autocoherence conditions for ¢, and ¢, and the assumption
that a and p are common knowledge. These equations solve for p, 5,m and n

for any 7 delivered by the real block. I now show that they imply proposition
5.

Proof of Proposition 5 — Linearizing Equation (39) yields
(o +m2)Ay + 2y.m (A + Am) = —me(An + An) — n (A + Am). (40)
Subtracting (35) from (40) we get
—v Ap + 2y, mAM + m AN+ n.Am = 0. (41)

By construction, from (31) and (35) in the text, it must be that ym+n =
¢y, = ym + 7, implying that

AR = —y, A, (42)

Substituting into the preceding formula, we get that

A
A = 1e2P (43)

Cyc

which proves point (iii) and, together with (42), point (iv).
Next, from (36) and (37), we get that

m a(1 — Bey)
= - :

(1 - ﬁ)(cy - ﬂ(h - 1)C7r - O‘/V)
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Consequently,

~

A AR AR . Af
me Ne B 1- /Bcﬂ 1- ﬁ
Substituting (42), we get that

(mey, + ne) Am _ 1 — Cre AR
MeNe (1=5)1 = Bey)
Replacing m.vy, + n. with ¢, and substituting in (43), we get (ii).
Linearizing (38) and (31) and taking differences, we get the trade-off
between Ap and AS :

eeldp— AB(1—2,) = 0. (44)

Substituting into (ii), we get (i).
QED

The rest of the equilibrium perceived model is determined by Table A3

which can be labelled the "residual block". It determines (Gyy, Gyy, Gru, Gro, 0 02 [72)

This block can be linearized and then solved numerically. Let v = (A, An, Ap, Af )
and w = (Adyy, Adyy, Ay, Adg,, AD, A&i, A&g)’, where again Ady,, = Gy, —
ayy, €tc. We have that

Pw + Qv =0,

where P is a 7 x 7 matrix and () a 7 x 4 matrix. The nonzero coefficients
are:

Py = 1,Pyp=1,Ps=—m./a,Ps3=1/ary,
Py = 1/a7rvc>P43__1/a7rucaP45_1/(1_ g).

Py = 2,02, Py = 20,02, Psg = ayuc, Py7 = yvc’

Ps3 = 2a7ruca Psy = QGWU Pse = mc, Psr = a2,

P71 = aTruco- P72 - a/7TUCO- P73 - ayucg P74 - ayvcav7 P76 = Oyuclruc P77 = Qyuclryc-
and

Qu = —1/047 Q21 = —9/0476222 = P/(l - 5)7

Qs = n¢/(1—=05),Qa = %,
Qa1 = —1/me, Q33 =—1/p,Qss = 1 —Cﬂﬁc,r'

11



Then, w = —P~'Qu. These formulas allow to numerically compute the
ideological sensitivity of the structural and reduced form parameters. This
has been done for 19683 different set of parameters, defined by the following
Table:

1.2,1.5,1

0.2,0.6,0.8

0.2,1,3

0.1,0.3,1

0.02,0.1,0.6
0.1,0.2,0.5
0.00004,0.0004,0.004
0.00004,0.0004,0.004
0.1,1,5

9 9 T 2 >

S NS N

AS)

Table A4 — Parameter sets

In all these simulations, without exception, the ideological sensitivities
A&2/Ap and AG2/Ap are negative. Furthermore, that of the perceived
share of output fluctuations due to demand shocks, defined by

A A2 A A2
5 = ayuo-u o ayuo-u
u - - )
~D A 2 ~9 ~2 2 2 2 2

is always negative in all cases.

The real block can also be solved by linearization. We get that Az +
BAyp = 0, where z = (Acy, Acy, Am, An,Av)', A is a 5x5 matrix and B
is a bx1 vector with the following nonzero coefficients (here (33) has been
replaced by the simpler equation ym +n = ¢,):

All = 1- Cres A12 = 2N<h - 1)C7rc — Cyc + a7, A15 - _04(1 - C7TC)7
Ay = 1—-28cr., Ao1 = —p,

a(l — ﬁcﬁc
Azr = —pme, Azg = (@ —m.)B + mepp(h — 1), Azz = %, Ass = apm,
Ay = -1 A =7,Au=1 A5 =m,,
Ass = 2mey, + N, Ass = Mg, Ass = o + mz
B51 = Vc'

These formulas allow to compute the response of z to Ap. In particular,
it has been checked that in all the simulations above, one has 2—; < 0.

12



6 Non-myopic government and expert

Assume the government is non myopic and cannot commit on its fiscal policy
rule. At each date it sets g;, so as to maximize

~

V(Wt—hgt) = H;?XEA(_SOQE - (?Jt - Ut)2 + 5‘7(7%9(7“)))7

where ¢ is the discount factor, g; = g(m;_1) is the equilibrium policy rule and
expectations are conditional on ;1 and g;. That is, g; is freely chosen by
the government at ¢. On the other hand, in the absence of commitment, the
government rationally anticipates that it will follow the equilibrium policy
rule at any future date s > t.

The FOC is, using the fact that V,(m;, g(m,)) = 0,

0 = ‘A/g(ﬂ-tflagt)

A A

dyy ~ dmy ~ ~
= —2(pgu + =2 Ey) + 65 BV (i, g(m). (45)
dg: dgy
By the envelope theorem, we have that
- dy, - dmy -
Ve(mior, g0) = —2-—2 By + 6= BV (m, g(m)). (46)
Tt-1 dmi_1

As above, we look for an equilibrium where the optimal policy is a linear
function of the state variable,

gt = V-1 (47)

From the two perceived model equations in the text (29)-(30), which I
rewrite here for convenience,

Y = —ﬂ(h — 1)67T7Tt + éyﬂt + agy + U + é@t — Qrymy, (48)
T = Py + Béﬂrt + (1 = B)ms—1 — piy, (49)

we get that
Eyt = mgt + TAL7Tt71, (50)

as before, and

EA’7Tt = qut + 727?15—17 (51)

13



where

. ap
q = — - —, (52)
1= Ber — pey + pp(h — 1)ex + pary

~

Fo= 1-5 (53)

1= Bex — pey + pp(h — 1)ex + pay

In those formulas, we readily make use of the assumption that o and g
are common knowledge and of the autocoherence conditions ¢, = ¢, and
Cy = Cy.

Furthermore, since (48)-(49) is additive in the shocks @; and vy, it is also
=, e

dyt A dyt _ 5
r hat £ = - &t — g, and
true that dgt M, dmi—1 dgt ¢ dmi—1

Elimination of EV, between (45) and (46), shows that in equilibrium
V. (7m¢—1, g¢) must be linear in (7;_1, ;). Consequently, it must be that Vﬂ(ﬂt, g(my)) =
Vw(ﬂt, ymy) = emy, where e is a coefficient which remains to be determined.
From (51), it follows that

Acfm 7

EVW(W; g(m)) = e.(4ge + 7m—q). (54)

To compute e, we apply (46) at g, = g(m;_1) = ymy_1, which yields

—2n(my +n) + der(¢y + 1),

e
and noting that from (50) and (51) it must be that my+n = ¢, and ¢y +7 =
Cr, it follows that

_ —2ng,
1= 0re,
Substituting (54) and (50) into the FOC (45), and then using (55), we

get a formula for the equilibrium ~ :

e (55)

ne,
1—drc,
This expression should replace (39). The expert will equate v with the
policy parameter he would pick on the basis of his own preferences, therefore

. .. nc
Y ((p +m? + 8¢° ) = —mn — 5qrﬁ. (56)

2 2 NGy ncy
- —mn — ) 57
7<(’0E+m +0pg 1—(5Erc,r) o 5Eqr1—(5E7“c,r (57)
where obviously
g AL (58)

Tl Bex — pey + pp(h — 1)er + pay’
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and
1-p
1= By — pey + pup(h — Ve + pay’
Equation (57) replaces (34). It is the only equation of the model where the
expert’s preferences appear.
It is again possible to construct a correct model equilibrium, as summa-
rized by the following proposition

r

(59)

PROPOSITION A2 — A correct model equilibrium exists such that

0 < ¢ <1,
cy < 0.

PROOQOF — The steps are the same as in Proposition A1, but the 4 function
in its proof now has to be replaced with a new formula from (57), that is,

—m(cy)n(cg) — 5q(cw)r<cw)ngzwgccy(cg)
H(ex) = e )

 +m(cr)? + Oq(er) Pgeles)

The functions ¢() and r() are obviously defined by expressing the RHS of
(58) and (59) as functions of ¢, by using (22).

Next, note that from (25), ¥(0) =0 > ~(0) = —t—f.

Second,

clir_n}l'?(cﬂ) =0< Cligllw = +00,

since ¢,(1) = 0 = limm = limr = limg.

By continuity, again, there exists an equilibrium such that ¢, € (0,1).

To complete the proof, we again prove that we can choose the equilibrium
such that ¢, < 0. Note that (22) still holds. Clearly, then, if (1 —5)/5 > 1,
¢y < 0. Assume that (1 —)/8 < 1. Since ¢,((1 —5)/8) = 0, from (60), (58),
and (26)-(29) we have that

p(h = 1ap(1 - B)* _ih=1) (1=p)’

1-p

7((1-8)/8) = : s
' (26 1) [90 (84 nolh - 122)" + “252} o BRE-1)

As in Proposition A1, by continuity, there exists a solution such that
Cr € (0, %) and therefore ¢, < 0.

This completes the proof of Proposition Al. Note that now we cannot
establish an analytical result for the sign of ~.
QED

15
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Proof of Proposition 6 — The system is recursive in the sense that Ay
and Ad only appear through Equation (57). Consequently, any equilibrium
quantity, whether it is perceived or real, will depend on Ay and AJ only
through w,Ap + ws;Ad, where w, and w; are the coefficients that multiply
Ay and A in a linearization of (57). Next, observe that since ¢, < 0 and,
from (21), ¢, — a7y < 0, we have that ¢ > 0 and 0 < r < 1 in the CME, as well
as m > 0 and n < 0. From this it follows that (i) an increase in ¢ raises the
LHS of (57) if v > 0, (ii), an increase in dg raises the LHS of (57) if v > 0,
and (iii) an increase in §g reduces the RHS of (57). Therefore, w,ws > 0 if
~v > 0, from which the statement in Proposition 6 follows trivially.

QED

Under this extension, it is no longer possible to prove analytical results
regarding the perceived model. The entire system has to be linearized.

First, linearizing both (56) and (57) and subtracting one from the other
yields:

2me(1 — 0rcCre) AT — 8(0 + M2)Cre AT + 26q.AqncCye + G2y AR
—(1 = 0reCre) Ap + (o + M) eCac DS — ¢211ecye NS

= —Ne(1 = 07eCre) A1 — Me(1 — 07cCre) AT+ SMeN Cre AT — 67 c1eCye NG — IGencCye AT

Ve (61)
—0qcrcCyc AN + AdGercCyene — AdMeNCrere.

where Ag is implictly defined by linearizing (52), or equivalently the sim-
pler relationship ¢ = pri/(1 — Be,), yielding
NG Ap AR AL
¢ _2p Am cxAf |
Ge p me 1= e

~

and similarly from (53), which is equivalent to 7 = (1 — 8)m/ [a(l - Bcﬂ)} )

we have that .
A7 Am (Cre — AS

Te B me * (1_/6)(1_/807'(0)

Equation (61) replaces (41) and is completed by three equations that are
unchanged from the myopic model: (42), (44), and the linearization of (36)
minus that of (32), which boils down to

Am 1 . creAf
— ([ —CreAB — Cye AP — 1)ereAf AA> =
o + D ( Cre AP — cye AP+ p(h — 1)ere AP + ay AP .
where

Dl =1- 6C7rc — PCyc + N’p(h - 1)C7rc + apy,.
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These four equations allow to solve for v = (A, An, Ap, AB)’ as they
can be written as Guv + H(Ap, Ad)" = 0, where G is a 4x4 matrix and H a
4x2 matrix with the following nonzero coefficients:

Gll

G21
G33

G41

Gz
G43

G44

H41
Hyp

1 —Cye + p(h — 1)cre + ary Cre Cre
Gy = ¢ Guy=—rey Cre
o 13 D, ,G1g D, + 1= fe.,
’7@ G22 = 17

2
Cyc, G34 = Cre — 17

2meY (1 = 0reCre) — 0(0 + m?)cwc%i + 25%37%%%
Me m

C

+ne(1 = 0reCre) — ONeCrere + 257‘Cnccyc£
me

0V Cye + Me(1 — 0T eCre) + 0T eqeCye
257(:‘]3631077/0/9 + 57“chCycnc/p

5chﬂ67c(90 + mg)(crrc - 1) 25qgn07ccyccﬂc

(1= B)(1 = Bexe) 1 — Bere
IMNeCrele(Cre — 1) 0TeqeCyeNeCre  OTcqeCyeNe(Cre — 1)
(1—=p8)(1 = Bere) 1 — Bere (1—=p8)(1 - Bere)

—¥.(1 = 0reCre)
VeTeCre( + MZ) = Vo G2NcCye — QeTeCyele + MNeCrcTe

Clearly, then, v = —G 'H(Ap, Ad)'. The residual block is unchanged
compared to the myopic model, therefore w can again be computed as w =

— P Qu.

Relative to the myopic case, the real block is defined as follows: (30)-
(32) are unchanged, as well as the condition ym + n = ¢, which is used
instead of (33). The definition of ¢ (58), in the form ¢ = pm/(1 — fe,) is
added to the system, while r is replaced by the RHS of (59), expressed as
(1—=p8)m/ [a(l — Beg)], and the optimality condition (34) has to be replaced
by (57). As a result, when linearized, the real block is now expressed as
Az + B(Ap, Ad)' = 0, where now = = (Acy, Acy, Am, An, Ag, A~y) and the
matrices A and B are 6x6 and 6x2 respectively, and their nonzero coefficients
are now defined as
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All = 1- Cres A12 = 2#(]1 - 1)C7rc — Cyc + ave, A16 = —Oé(l - Cﬂ'c)a
Ay = 1—28cCre, A1 = —p,

a(l — Beg,
Azr = —pme, Azg = (@ —me)B + mepp(h — 1), Azz = %a Aszs = apme
Ay = =1, A =7, Au =1, A = me,
A52 - _6/(]— - 6@1’0)71453 = _1/mca A55 = 1/QC7
O o

A = ’ycéqfnc + 0qenere, Asa = —7.07:(p + mz) — MeNOTe + Al e
— PCre

Ags = (2v.me+ne)(1 — Orecqe) + zzlrc/mc,
A64 - 5%(]30;/(: + mc(l - 5ch7rc) + 5C_Icrccycv A65 = 27C5QCnccyc + nc(srccycv
Agg = (go + mg) (1 = 67cCre) + 6G2NcCyes

Bsi = 7.(1 = 07reCre), Boa = =7, (¢ + ME)reCre + V@2 NeCye — MMl cCre + QT MeCye-

and the quantity A stands for —Y0¢re( + m2) + dqcncCye — dCremen.

The simulations above have been run for the entire alternative sets of
parameters and for 6 = 0.5,0.9, and 0.99. In all these simulations, without
exceptions, we get that Ap/Ag > 0,AB/Ap < 0,Am/Ap < 0, Af/Ap >
0,A62/Ap < 0,A6%/Ap <0, AA‘Z‘ < 0, and %é < 0, as in Proposition 5 and
the simulations that follow it. In all those simulations, . > 0, so that Propo-
sition 6 applies. Consequently, we also have that Ap/Ad > 0,A8 JAS <
0, A /A6 < 0,An/AS > 0,A62/A6 < 0,A62/A5 < 0, 53 < 0, and

A AS
Ay
a5 < 0.

7 Scilab source code for the simulations re-
ported in section II.B.

h=1.5
mu=0.6
ro=1
al=0.3
be=0.1
th=0.2
siu=0.0004
siv=0.0004
phi=0.1

fpos=zeros(4,1)
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nsim=3*3%3*3*3*3%3*3*3

avg=fpos

for h=[1.2 1.5 2]

for mu = [0.2 0.6 0.§]

for ro =[0.2 1 3]

for al =[0.1 0.3 1]

for be = [0.02 0.1 0.6]

for th = [0.1 0.2 0.5]

for siu=[0.00004 0.0004 0.004]

for siv =[0.00004 0.0004 0.004]

for phi = [0.2 1 5]

// First we compute benchmark correct model equilibrium
cpimin=0

cpimax=min(1,(1-mu)/mu)

while cpimax-cpimin>0.0001
cpi=(cpimin+cpimax) /2
cy=(cpi-mu*cpi”2+mu-1) /ro
gal=(cy+be*(h-1)*cpi~2-cy*cpi)/al/(1-cpi)
m=al*(1-mu*cpi)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpit+ro*al*gal)
n=(cy-be*(h-1)*cpi-al*gal)*(1-mu) /(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
gar=-m*n/(phi+m~2)

dif=gar-gal

if dif>0 then

cpimin=cpi

else

cpimax=cpi

end

end

ga=gar

ayu=m/al

ayv=(th*m/al-ro*n/(1-mu))
apiu=ro*m/al/(1-mu*cpi)
apiv=ro*(th-1)*m/al/(1-mu*cpi)

dmh=ga/cy

dnh=-ga"2/cy
dmuh=-(1-mu)*(1-mu*cpi)/(1-cpi)/(phi+m"2)
droh=-(1-mu)*(1-mu*cpi)/(phi+m~2)*(1+cpi)/cy
v=[dmh dnh droh dmuh]’

pp=zeros(7,7)

qq=zeros(7,4)

pp(1,1)=1
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pp(2,2)=1
pp(2,5)=-m/al
pp(3,3)=1/apiu
pp(4,4)=1/apiv
pp(4,3)=-1/apiu
pp(4,5)=1/(1-th)
pp(5,1)=2*ayu*siu
pp(5,2)=2*ayv*siv
pp(5,6)=ayu”2
pp(5,7)=ayv"2
pp(6,3)=2*apiu*siu
pp(6,4)=2*apiv¥siv
pp(6,6)=apiu”2
pp(6,7)=apiv"2
pp(7,1)=apiu*siu
pp(7,2)=apiv¥siv
pp(7,3)=ayu*siu
pp(7,4)=ayv*siv
pp(7,6)=ayu*apiu
pp(7,7)=ayv*apiv
qq(1,1)=-1/al
qq(2,1)=-th/al
qq(2,2)=ro/(1-mu)
qq(2,3)=n/(1-mu)
qq(2,4)=ro*n/(1-mu)"2
qq(371):'1/m
qq(3,3):—1/r0

aq(3,4)=-cpi/(1-mu*cpi)

ww=-inv(pp)*qq*v

chdemprop=2*ww(1,:) /ayu+ww(6,:) /siu

//for chdemprop this gives the sign, not the exact value
fpos(1:2,1)=fpos(1:2,1)+(ww(6:7,1)>=0)
fpos(3,1)=fpos(3,1)+(chdemprop>=0)
avg(1:2,1)=avg(1:2,1)+ww(6:7,1)
avg(3,1)=avg(3,1)-+chdemprop

// Now we numerically compute the changes in the real economy
aa=zeros(5,5)

bb=zeros(5,1)

aa(1,1)=1-cpi

aa(1,2)=2*be*(h-1)*cpi-cy+al*ga

aa(1,5)=-al*(1-cpi)
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aa(2,2)=1-2*mu*cpi
aa(2,1)=-ro
aa(3,1)=-ro*m
aa(3,2)=-mu*m+al*mu+m*be*ro*(h-1)
aa(3,3)=al*(1-mu*cpi)/m
aa(3,5)=al*ro*m
aa(4,1)=-1

aa(4,3)=ga

aa(4,4)=1

aa(4,5)=m
aa(h,3)=2*m*ga+n
aa(5,4)=m
aa(5,5)=phi+m"2
bb(5,1)=ga

xx=-inv(aa)*bb
fpos(4,1)=tpos(4,1)+(xx(5,1)>0)
avg(4,1)=avg(4,1)+xx(5,1)
end

end

end

end

end

end

end

end

end

avg=avg/nsim

8 Scilab source code for the simulations re-
ported in Section II.C.

h=1.5
mu=0.6
ro=1
al=0.3
be=0.1
th=0.2
siu=0.0004
siv=0.0004
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phi=0.1

de=0.5

fpos=zeros(4,2)
nsim=3%3*3*3*3*3*3*3*3
avg=fpos

gpos=zeros(4,2)

gavg=gpos

gasgn=0

fpos2=zeros(3,1)
gpos2=zeros(4,1)

nl=0

mulmean=0

rolmean=0

allmean=0

belmean=0

thlmean=0

philmean=0

siulmean=0

sivlmean=0

for h=[1.2 1.5 2]

for mu = [0.2 0.6 0.§]

for ro = [0.2 1 3]

for al = [0.1 0.3 1]

for be = [0.02 0.1 0.6]

for th = [0.1 0.2 0.5]

for siu=[0.00004 0.0004 0.004]
for siv =[0.00004 0.0004 0.004]
for phi = [0.2 1 5]

// First we compute benchmark correct model equilibrium
cpimin=0
cpimax=min(1,(1-mu)/mu)

while cpimax-cpimin>0.000001
cpi=(cpimin+cpimax) /2
cy=(cpi-mu*cpi”2+mu-1)/ro
gal=(cy+be*(h-1)*cpi~2-cy*cpi)/al/(1-cpi)
m=al*(1-mu*cpi)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
n=(cy-be*(h-1)*cpi-al*gal)*(1-mu)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
g=ro*m/(1-mu*cpi)
r=(1-mu)*m/al/(1-mu*cpi)
z=de*q*n*cy/(1-de*r*cpi)
gar=(-m*n-r*z) /(phi+m~"2+4+q*z)
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dif=gar-gal

if dif>0 then

cpimin=cpi

else

cpimax=cpi

end

end

ga=gar

ayu=m/al
ayv=(th*m/al-ro*n/(1-mu))
apiu=ro*m/al/(1-mu*cpi)
apiv=ro*(th-1)*m/al/(1-mu*cpi)
ee=zeros(4,4)

ff=zeros(4,2)
d1=1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+al*ro*ga

ee(1,1)=1/m

ee(1,3)=(-cy+be*(h-1)*cpi+al*ga)/d1

ee(1,4)=-cpi/d1+cpi/(1-mu*cpi)

ee(2,1)=ga

ee(2,2)=1

ee(3,3)=cy

ee(3,4)=cpi~2-1

ee(4,1)=2*ga*m*(1-de*r*cpi)-de*(phi+m~2)*cpi*ga*r/m+2*de*q "~ 2*n*cy /m*ga+n*(1-
de*r*cpi)-de*n*r*cpi+2*de*r*n*cy*q/m

2)=de*ga*q"2*cy+m*(1-de*r*cpi)+de*r*q*cy

ee(4,3)=2*de*ga*q"2*cy*n/ro+de*r*q*cy*n/ro

ee(4,4)=-de*r*cpi*ga*(phi+m~2)*(cpi-1)/(1-mu)/(1-mu*cpi)+2*de*q " 2*n*cy*cpi*ga/(1-
mu*cpi)-de*m*n*cpi*r*(cpi-1)/(1-mu)/(1-mu*cpi)+de*r*q*cy*n*cpi/(1-mu*cpi)+de*r*q*cy*n*
1)/(1-mu)/(1-mu*cpi)

ff(4,1)=-ga*(1-de*r*cpi)

ff(4,2)=ga*r*cpi*(phi+m~2)-ga*q " 2*n*cy-q*r*cy*n+m*n*cpi*r

//The following lines compute v=-inv(ee)*ff in a way which is robust to
singularities in ee, due to the use of intermediate expressions m and n that
may turn up to be colinear for some parameter values

v2=-inv(ee(3:4,3:4)-ee(3:4,1:2)*inv(ee(1:2,1:2)) *ee(1:2,3:4) ) *{f(3:4,:)

vl=-inv(ee(1:2,1:2))*ee(1:2,3:4)*v2

v=cat(1,v1,v2)

gpos=gpos+(v>0)

gavg=gavg—+v

gasgn=gasgn+(ga>0)

pp=zeros(7,7)
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qq=zeros(7,4)

pp(1,1)=1
pp(2,2)=1
pp(2a5) —m/al
pp(3,3)=1/apiu
pp(4,4)=1/apiv
pp(4,3)=-1/apiu
pp(4,5)=1/(1-th)
pp(5,1)=2*ayu*siu
pp(5,2)=2*ayv*siv
pp(5,6)=ayu”2
pp(5,7)=ayv"2
pp(6,3)=2*apiu*siu
pp(6,4)=2*apiv*siv
pp(6,6)=apiu”2
pp(6,7)=apiv"2
pp(7,1)=apiu*siu
pp(7,2)=apiv¥siv
pp(7,3)=ayu*siu
pp(7,4)=ayv*siv
pp(7,6)=ayu*apiu
pp(7,7)=ayv*apiv
qq(lal) —1/&1
qq(2,1)=-th/al
qq(2,2)=ro/(1-mu)
4a(2.3)=n/(1-m)
qq(2,4)=ro*n/(1-mu)"2
qq(371) _1/m
qq(3,3) —1/1‘0

4(3.4)=-cpi/(1-mu*cpi)

ww=-inv(pp)*qq*v

chdemprop=2*ww(1,:) /ayu+ww(6,:) /siu

//for chdemprop this gives the sign, not the exact value
fpos(1:2,:)=fpos(1:2,:)+(ww(6:7,:)>=0)
fpos(3,:)=fpos(3,:)+(chdemprop>=0)
avg(1:2,:)=avg(1:2,:)+ww(6:7,:)
avg(3,:)=avg(3,:)+chdemprop

//Now we numerically compute the changes in the real economy
aa=zeros(6,6)

bb=zeros(6,2)
atilda=-ga*de*cpi*(phi+m~2)4de*q*n*cy-de*cpi*m*n
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aa(1,1)=1-cpi

aa(1,2)=2*be*(h-1)*cpi-cy+al*ga
aa(1,6)=-al*(1-cpi)

aa(2,2)=1-2*mu*cpi

aa(2,1)=-ro

aa(3,1)=-ro*m
aa(3,2)=-mu*m+al*mu+m*be*ro*(h-1)
aa(3,3)=al*(1-mu*cpi)/m

aa(3,6)=al*ro*m

aa(4,1)=-1

aa(4,3)=ga

aa(4,4)=1

aa(4,6)=m

aa(5,2)=-mu/(1-mu*cpi)

aa(5,3)=-1/m

aa(5,5)=1/q

aa(6,1)=ga*de*q"~2*n+de*q*n*r
aa(6,2)=-ga*de*r*(phi+m"2)-m*n*de*r+atilda*r*mu/(1-mu*cpi)
aa(6,3)=(2*ga*m+n)*(1-de*r*cpi)+atilda*r/m
aa(6,4)=de*ga*q"2*cy+m*(1-de*r*cpi)+de*q*r*cy
aa(6,5)=2%*ga*de*q*n*cy+de*n*r¥cy
aa(6,6)=(phi+m~2)*(1-de*r*cpi)+de*q~2*n*cy
bb(6,1)=ga*(1-de*r*cpi)
bb(6,2)=-ga*(phi+m"~2)*r*cpi+ga*q~2*n*cy-m*n*r*cpi+q*r*n*cy

xx=-inv(aa)*bb

fpos(4,:)=tpos(4,:)+(xx(6,:)>0)

avg(4,:)=avg(4,:)+xx(6,:)

//gpos2 and fpos2 check that phi and de have opposite effect on perceived
parameter iff dga/dde>0

end

end

end

end

end

end

end

end

end

avg=avg/nsim

gavg=gavg/nsim
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