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Section 2.3
First, we show that concavity of B(m) is suffi cienty for the optimal choice of m to

be zero.

Lemma 1 For any IC, IR direct mechanism, (p, q,m), there exists an IC, IR mecha-

nism with m(θ) = 0 ∀θ ∈ [θ, θ], so that E [q(θ)−m(θ)− p(θ)] is higher for the latter.

Proof. Assume m(θ) > 0 for some value θ, and consider a change in the mechanism

so that q′(θ) = q(θ) − m(θ), m′(θ) = 0, and p′(θ) = p(θ) − B(m(θ)). The profits of

type θ do not change. Also, a type θ′ imitating type θ could achieve

p(θ)− min
z∈[0,q(θ)]

{C (q(θ)− z; θ′) +B(z)} ,

with the original mechanism, whereas with the modified mechanism she can obtain

p′(θ)− min
z∈[0,q′(θ)]

{C (q′(θ)− z; θ′) +B(z)}

= p(θ)−B(m(θ))− min
z∈[0,q(θ)−m(θ)]

{C (q(θ)−m(θ)− z; θ′) +B(z)}

= p(θ)− min
z∈[0,q(θ)−m(θ)]

C (q(θ)−m(θ)− z; θ′) +B(z) +B(m(θ))

= p(θ)− min
h∈[m(θ),q(θ)]

C (q(θ)− h; θ′) +B(h−m(θ)) +B(m(θ)).

where we have used the change of variable h = z +m(θ). This expression is smaller

since B is concave and the choice set of h is smaller than the choice set of z in the
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original mechanism. The profits of θ′ imitating any other type have not changed, and

the profits of θ imitating any other type are not larger.

Next, we prove the claim that the results in Proposition 3 extend to the concave

case, provided assumptions A1, A2, and A3 are satisfied

Claim 2 Under concavity of B(m), A1, A2, and A3, if qNB(θ) violates (12) then there

exist θa and θc, with θ < θa ≤ θc < θ such that at the optimal mechanism; (i) q(θ) = 0

if θ > θc ; (ii) q(θ) = qNB(θ) if θ ∈ (θa, θc); and (iii) q(θ) = qNB(θa) if θ < θa.

Proof. Given an exogenous q(θ), the result is proved exactly as Proposition 3. Thus,

we need only show that the sponsor’s surplus is maximized for q(θ) < qNB(θ). The

sponsor’s objective is still given by (22), and so its derivative at qNB(θ) is also given

by (23). Then, we only need show that dθc

dq(θ)
< 0. Totally differentiatin the equivalent

now to (21),

B(q(θ))− C(q(θ); θ)−
θa∫
θ

Cθ(q(θ); z)dz −
θc∫

θa

Cθ(q
NB(z); z)dz = 0,

we have

dθc

dq(θ)
=

B′(q(θ))− Cq(q(θ); θ)−
θa∫
θ

Cθq(q(θ); z)dz

Cθ(qNB(θ
c); θc)

< 0,

where the inequality follows from A2 and the fact that Cθq(q; θ) > 0.
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