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A No Trade Condition

This section provides a more formal exposition of the no trade condition in Section 4. To provide a general treatment,
I begin by relaxing the condition of uni-dimensional heterogeneity in the population. Individuals are indexed by a
heterogeneity parameter, 6, and make choices {cpre (0),cu (0),cc (0),a(0),p(0)} € Qo , where the constraint set
varies arbitrarily across types.

Consider a policy that provides a small payment, db, in the event of losing one’s job that is financed with a small
payment in the event of remaining employed, dr, offered to those with observable characteristics X. By the envelope
theorem, the utility impact to type 6 of buying such a policy will be given by

dU = — (1= p(0))v' (ce (0)) dT +p () (cu (6)) db

which will be positive if and only if
PO (e (0) - dr
(1=p(0)v'(ce (0)) — db

The LHS of equation (21) is a type 0’s willingness to pay (i.e. marginal rate of substitution) to move resources from

(21)

-

the event of remaining employed to the event of job loss.*” The RHS of equation (21), %, is the cost per dollar of
benefits of the insurance policy.

Let © ( ) denote the set of all individuals, 6, who prefer to purchase the additional insurance at price % (i.e.
those satlsfylng equation (21)). An insurer’s profit from a type 6 is given by (1 — p (6)) 7 —p (6) b. Hence, the insurer’s

marginal profit from trying to sell a policy with price § d—T is given by

oo co ()] - poweo (5] epoes (§)]) oo

Premiums Collected Benefits Paid Moral Hazard

The first term is the amount of premiums collected, the second term is the benefits paid out, and the third term is
the impact of additional insurance on its cost. If more insurance increases the probability of job loss, dE [p (6)] > 0,
then it reduces premiums collected, 7, and increases benefits paid, b.48

However, for the first dollar of insurance when 7 = b = 0, the moral hazard cost to the insurer is zero. This insight,
initially noted by Shavell (1979), suggests moral hazard does not affect whether insurers’ first dollar of insurance is
profitable — a result akin to the logic that deadweight loss varies with the square of the tax rate.

The first dollar of insurance will be profitable if and only if

i, _EbOLOE)
&= EL-p®)0co (%))

(22)

4"Note that, because of the envelope theorem, the individual’s valuation of this small insurance policy is independent
of any behavioral response. While these behavioral responses may impose externalities on the insurer or government,
they do not affect the individuals’ willingness to pay.

48To incorporate observable characteristics, one should think of the expectations as drawing from the distribution
of @ conditional on a particular observable characteristic, X.
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dr

If inequality (22) does not hold for any possible price, 57, then providing private insurance will not be profitable at

any price. Under the natural assumption49 that profits are concave in b and 7, the inability to profitably sell a small
amount of insurance also rules out the inability to sell larger insurance contracts.

Equation (22) characterizes no trade under an arbitrary dimensionality of unobserved heterogeneity, . To provide
a clearer expression of how demand relates to underlying fundamentals, such as marginal rates of substitution and
beliefs, it is helpful to impose a dimensionality reduction on the unobserved heterogeneity.

Assumption Al. (Uni-dimensional Heterogeneity) Assume the mapping 8 — p(0) is 1-1 and continuously
differentiable in b and T in an open ball around b = 7 = 0. Moreover, the marginal rate of substitution, ﬁ%,
18 increasing in p.

Assumption Al states that the underlying heterogeneity can be summarized by ones’ belief, p (¢). In this case,
the adverse selection will take a particular threshold form: the set of people who would be attracted to a contract
for which type p (0) is indifferent will be the set of higher risks whose probabilities exceed p (6). Let P denote the
random variable corresponding to the distribution of probabilities chosen in the population in the status quo world
without a private unemployment insurance market, b = 7 = 0.50 And, let ¢, (p) and c. (p) denote the consumption
of types p(f) in the unemployed and employed states of the world. Under Assumption Al, equation (22) can be

re-written as:
u’ (cu (p))
Ve o) ST® P (23)

where T (p) is the pooled price ratio defined in Hendren (2013):

EPIP>p 1—p
E[l-PIP>p] p

T (p) =

The market can exist only if there exists someone who is willing to pay the markup imposed by the presence of higher
risk types adversely selecting her contract. Here, % — 1 is the markup individual p would be willing to pay and
T (p) — 1 is the markup that would be imposed by the presence of risks P > p adversely selecting the contract. This
suggests the pooled price ratio, T (p), is the fundamental empirical magnitude desired for understanding the frictions
imposed by private information.

The remainder of this Appendix further discusses the generality of the no trade condition. A.1 discusses multi-
dimensional heterogeneity. Appendix A.2 also discusses the ability of the firm to potentially offer menus of insurance
contracts instead of a single contract to screen workers. Appendix A.3 illustrates that while in principle the no trade
condition does not rule out non-marginal insurance contracts (i.e. b and 7 > 0), in general a monopolist firm’s profits
will be concave in the size of the contract; hence the no trade condition also rules out larger contracts.

A.1 Multi-Dimensional Heterogeneity and Robustness to Outlier Willingness
to Pay

In reality, there are many reasons beyond one’s chance of job loss that drive differences in willingness to pay. To
understand the impact of multidimensional heterogeneity, this section solves for the no-trade condition in the case

1;1((2%((90)))) among the set of those with the same risk type, p (0). In this

where there is an (unbounded) distribution of
case, there is heterogeneous willingness to pay for additional UI for different types 6 with the same p ().
I show that there exists a mapping, f (p) : A — © , that maps A C [0, 1] into the interior of the type space, ©,

such that the no trade condition reduces to testing

In this sense, even though some types are willing to pay an unboundedly high amount for UI, their extreme willingness
to pay does not directly affect the no trade condition. Rather, one needs to search through an interior subset of the
type space. Hence, if there are sufficiently many people of risk type p with very high willingness to pay, then one
would expect the type f (p) to be willing to pay the pooled cost of worse risks, so that equation (24) will not hold.
But, the results illustrate that a simple addition of individuals with outlier willingness to pay for UI will not open
up a market unless there are sufficiently many other types with the similar risk type that are also willing to pay the
pooled cost of worse risks.

19See Appendix A.3 for a micro-foundation of this assumption.
50In other words, the random variable P is simply the random variable generated by the choices of probabilities,
p (0), in the population.
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I prove this result as follows. First, I assume for simplicity that the distribution of p (0) has full support on [0, 1]
and the distribution of % has full support on [0, 00) (this is not essential, but significantly shortens the proof
— note this allows for some individuals with unboundedly high willingness to pay). Now, fix a particular policy, %,
and consider the set of § that are willing to pay for this policy:

B |:p(9)|9 co (%)]

Without loss of generality, there exists a function p ( ) such that

aT
db

glheiece ()| =elrone =5(5))

so that the average probability of the types selectlng is equal to the average cost of all types above p ( b ) Without
loss of generality, one can assume that p is strictly i 1ncreas1ng in d—T so that p~! exists. 1
I construct f (p) : A — O as follows. Define A to be the range of p When taking values of % ranging from 0 to

oo. For each p, define f (p) to be a value(s) of § such that the willingness to pay equals ™! (p):

p_ ' (c(f(p))
1—pv' (cu(f(P))

Now, suppose ' (p) < T (p) for all p. One needs to establish that inequality (22) does not hold for any Z—b

=p ' (p)

dr _ _E[p(0)|0€6(5)]
db = E[1-p(6)]6 €0 (5)]

To see this, note that

Ep@l0co(F)] _ EpOIp©) >5(F)]
E[1-p(0)]0€0(F)] Ep@)lp©) >5(5)]
so that we wish to show that [ O o ( )}
E p 6 ﬁ b dT
> — 2
T EpO) @) =5 (5)] b =
for all 4=, Note that the set A is generated by the variation i flz, so that testing equation (25) is equivalent to

testing this equation for all p in the range of A:

Ep0)lp6) > pl "
1-E[p@®)|p@ )zp]

which is equivalent to

Elp©)lp6) >

p o (c(f ()
T Ep®)p©) =7 = K

Vs,

P]
which proves the desired result.

Intuitively, it is suf‘ﬁcient to check the no trade condition for the set of equivalent classes of types with the same
willingness to pay for ¢ —p Within this class, there exists a type that one can use to check the simple uni-dimensional
no trade condition.

A.2 Robustness to Menus

Here, I illustrate how to nest the model into the setting of Hendren (2013), then apply the no trade condition in
Hendren (2013) to rule out menus in this more complex setting with moral hazard. I assume here that there are
no additional choices, a, other than the choice p, although the presence of such additional choices should not alter
the proof as long as they are not observable to the insurer. With this simplification, the only distinction relative to
Hendren (2013) is the introduction of the moral hazard problem in choosing p. This section shows that allowing p to
be a choice doesn’t make trade any easier than in a world where p (0) is exogenous and not affected by the insurer’s
contracts; hence the no trade condition results from Hendren (2013) can be applied to rule out menus.

5Mf $ is not strictly increasing (e.g. because of “advantageous selection”), it will be strictly more profitable to an
insurance company to sell the insurance at a higher price. Hence, one need not test the no trade condition for such
intermediate values of Z—Z where p is decreasing in p.
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I consider the maximization program of a monopolist insurer offering a menu of insurance contracts. Whether
there exists any implementable allocations other than the endowment corresponds to whether there exists any alloca-
tions other than the endowment which maximize the profit, m, subject to the incentive and participation constraints.

Without loss of generality, the insurer can offer a menu of contracts to screen types, {v (6), A (0)},. where v (6)
specifies a total utility provided to type 8, v (0) = p(8) u(cu (8)) + (1 —p(6)) v (ce (0)) — ¥ (p; 0), and A () denotes
the difference in utilities if the agent becomes unemployed, A (8) = u (cy (0)) — v (ce (6)). Note that v (0) implicitly
contains the disutility of effort.

Given the menu of contracts offered by the insurer, individuals choose their likelihood of unemployment. Let
G (A, 0) denote the choice of probability of employment for a type 6 given the utility difference between employment
and unemployment, A, so that the agent’s effort cost is ¥ (G (A;6)60). Note that a type 6 that accepts a contract
containing A will choose a probability of employment ¢ (A;6) that maximizes their utility. I assume that § is weakly
increasing in A for all 6.

Let Cy (z) = u ' (z) and C. (z) = v~ ' (2) denote the consumption levels required in the employed and unem-
ployed state to provide utility level z. Let 7 (A, v;0) denote the profits obtained from providing type 6 with contract
terms v and A, given by

T (A, v;0) = 4(A;0) (cc = Ce (v = ¥ (4;0))) + (1 = 4(A;0)) (¢ = Cu (v — A = W (A;0)))

Note that the profit function takes into account how the agents’ choice of p varies with A.

Throughout, I maintain the assumption that profits of the monopolist are concave in (v, A). Such concavity can
be established in the general case when wu is concave and individuals do not choose p (see Hendren (2013)). But,
allowing individuals to make choices, p, introduces potential non-convexities into the analysis. However, it is natural
to assume that if a large insurance contract would be profitable, then so would a small insurance contract. In Section
A.3 below, I show that global concavity of the firm’s profit function follows from reasonable assumptions on the
individuals’ utility function. Intuitively, what ensures global concavity is to rule out a case where small amounts of
insurance generate large increases in marginal utilities (and hence increase the demand for insurance).

I prove the sufficiency of the no trade condition for ruling out trade by mapping it into the setting of Hendren
(2013). To do so, define 7 (v, A; ) to be the profits incurred by the firm in the alternative world in which individuals
choose p as if they faced their endowment (i.e. face no moral hazard problem). Now, in this alternative world,
individuals still obtain total utility v by construction, but must be compensated for their lost utility from effort
because they can’t re-optimize. But, note this compensation is second-order by the envelope theorem. Therefore, the
marginal profitability for sufficiently small insurance contracts is given by

7 (v, A;0) < 7 (v,A;0)

Now, define the aggregate profits to an insurer that offers menu {v (6),A (0)}, by

U(V(9)7A(9))=/7T(V(9),A(9);9)du(9)

and in the world in which p is not affected by II,

fI(V(9)7A(9)):/W(V(9)»A(9);9)du(9)
So, for small variations in v and A, we have that
(v (0),A(0) <TI(v(8),A(6))

because insurance causes an increase in p. Now, Hendren (2013) shows that the no trade condition implies that
I < 0 for all menus, {v (0),A (8)}. Therefore, the no trade condition also implies TT < 0 for local variations in the
menu {v (0),A (0)} around the endowment. Combining with the concavity assumption, this also rules out larger
deviations.

Conversely, if the no trade condition does not hold, note that the behavioral response is continuous in A, so that
sufficiently small values of insurance allow for a profitable insurance contract to be traded.

A.3 Concavity Assumption and Sufficient Conditions for Concavity

The presence of moral hazard in this multi-dimensional screening problem induces the potential for non-convexities in
the constraint set. Such non convexities could potentially limit the ability of local variational analysis to characterize
the set of implementable allocations. To be specific, let 7 (A, u; 6) denote the profit obtained from type 6 if she is
provided with total utility p and difference in utilities A,

(A, p;0) = (1= p(A;0)) (cc = Co (u =W (1= p(A50)))) + 5 (A;0) (ci — Cu (p— A =¥ (1= p(A;0))))
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To guarantee the validity of our variational analysis for characterizing when the endowment is the only implementable
allocation, it will be sufficient to require that m (A, p; ) is concave in (A, ).

Assumption. « (A, u;0) is concave in (A, ) for each

This assumption requires the marginal profitability of insurance to decline in the amount of insurance provided.
If the agents choice of p is given exogenously (i.e. does not vary with A), then concavity of the utility functions, u
and v, imply concavity of m (A, u;0). Assumption A.3 ensures that this extends to the case when p is a choice and
can respond to 6.

Claim. If ¥ (¢;0) > 0 for all § and Z,Ef)) < 2 then 7 is globally concave in (i, A).

For simplicity, we consider a fixed 6 and drop reference to it. Profits are given by
(A, p) =G (A) (cc = Ce (n—¥(4(A)))) + (1 —G¢(A)) (c = Cu(p— A =¥ (4(A))))

The goal is to show the Hessian of 7 is negative semi-definite. I proceed in three steps. First, I derive conditions

which guarantee % < 0. Second, I show that, in general, we have gi“g < 0. Finally, I show the conditions provided
to guarantee % < 0 also imply the determinant of the Hessian is positive, so that both eigenvalues of the Hessian
must be negative and thus the matrix is negative semi-definite.

A.3.1 Conditions that imply 235 <0

Taking the first derivative with respect to A, we have

= M4 - A -V @A)
(1= G(8)) Cl (p = A= W (@A) — 4(8) CL (= W (@ (A))

Taking another derivative with respect to A, applying the identity A = ¥’ (p (A)), and collecting terms yields

O = [0 a@) AP O a W @G(a) +d(8) (AT (8))° " (u— W G ()]
F L1 A O (= A=W (G(A) + G (A)C (u— W (G(A)) ~ (24207 () €' (u— &~ ¥ (@ (A)]
b [ C = A=W GA) ~ C (= W (GAN) + (L= G(A) AC (4= A~ W (§(A)) +4(A)C (1~ W (4 (A

We consider these three terms in turn. The first term is always negative because C” > 0. The second term,
multiplying g—g, can be shown to be positive if

(A+G(A)C (n=A =T (G(A) 2 G(A)C" (n—A)

which is necessarily true whenever
o (e
v’ (cg)
This inequality holds as long as people are willing to pay less than a 100% markup for a small amount of insurance,
evaluated at their endowment.

Finally, the third term is positive as long as ¥" > 0. To see this, one can easily verify that the term multiplying
32(1 I
Az T (w2

~

<2

2 .
974 is necessarily positive. Also, note that Therefore, if we assume that U'”” > 0, the entire last term

A2

’ e
will necessarily be negative. In sum, it is sufficient to assume Z/EZZ)) < 2 and ¥ > 0 to guarantee that gi’; < 0.

A.3.2 Conditions that imply giﬁ <0

Fortunately, profits are easily seen to be concave in . We have

%Z =—(1-GA)C (n—A =¥ (G(A)—q(A)C" (n—T(G(A)))
so that o
377; =—(1-GA)NC" (=2 =V (G(A)—q(A)C" (u—T(G(A)))

which is negative because C"' > 0.
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A.3.3 Conditions to imply 32"2 g%g - (aa%gu) >0

Finally, we need to ensure that the determinant of the Hessian is positive. To do so, first note that

*n _
OudA

(1=G(A)C" (h=A=T(G(A) (1+ A (A) +q(A)C" (=T (4(A))) A (A)

w(es)

Also, we note that under the assumptions ¥”’ > 0 and o7 (ee) < 2, we have the inequality

&%

0A2

2

<=[0=a@) 0 +A)Cl - A - (@A) +d(A) (AT (2))° C" (1 — ¥ (a(A))]

Therefore, we can ignore the longer terms in the expression for ng’; above. We multiply the RHS of the above equation

2
with the value of 227’; and subtract ( 6(9:5#) . Fortunately, many of the terms cancel out, leaving the inequality

(1=G(A)d(A) (1+Ad (A)°C" (n—A=T(G(A)C" (=T (d(A))

+3(A) (1-G(A)) (AG (A)°C" (1= T (§(A) C" (n— A= (3(A)))
—2(1=q(8)q(8) (1+A7 (A) A7 (A)C" (n— A =T (4 (L)) C" (=T (3 (D))

%r 82777 _ %t \°
OA2 Ou? O0AIp

which reduces to the inequality

2
o () 2 A=A C (= A=W @A) (a =¥ (A K ()
where
K(nd) = (1+A4 (8)"+ (A4 (A))" — 240 (A) —2(Ad' (4))
= 1
So, since C” > 0, we have that the determinant must be positive. In particular, we have
0*m 0*n ( 0*n

- m) > G(A) (1= G(A) C” (=B = T (G(A) C" (1 — ¥ (§(A)))

A.3.4 Summary
u'(<h)

< 2, the profit function is globally concave. Empirically, I find that (et < 2.

As long as ¥ > 0 and u,gcf"))

Therefore, the unsubstantiated assumption for the model is that the convexity of the effort function increases in
p, U > 0. An alternative statement of this assumption is that g‘i‘z < 0, so that the marginal impact of A on
the employment probability is declining in the size of A. Put differently, it is an assumption that providing utility
incentives to work has diminishing returns.

Future work can derive the necessary conditions when individuals can make additional actions, a (6), in response
to unemployment. I suspect the proofs can be extended to such cases, but identifying the necessary conditions for
global concavity would be an interesting direction for future work.

B Details of Empirical Approach

B.1 Details on Lower Bounds on Average Pooled Price Ratio

This section provides details on the estimation of the lower bounds on the average pooled price ratio. I begin by
providing theoretical motivation for the average pooled price ratio by showing it characterizes when an insurer can
earn positive profits if it enters with a particular random pricing strategy. Then, I provide conditions under which
the average pooled price defined by the predicted values provides a lower bound on the average pooled price ratio,
Tz < E[T(P)).
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B.1.1 Motivating the Average Pooled Price Ratio when Insurers don’t know P

To see the theoretical relevance of E [T (P)], suppose an insurer seeks to start an insurance market by randomly
drawing an individual from the population and, perhaps through some market research, learns exactly how much this
individual is willing to pay. The insurer offers a contract that collects $1 in the event of being employed and pays an
amount in the unemployed state that makes the individual perfectly indifferent to the policy. If p is the probability
this individual will become unemployed, then all risks P > p will choose to purchase the policy as well. The profit
per dollar of revenue will be

u’ (cu (p))

T(p)zm—T(P)

So, if the original individual was selected at random from the population, the expected profit per dollar would be
positive if and only if
/
B[S D> b
v’ (ce (p))
If the insurer is randomly choosing contracts to try to sell, the average pooled price ratio, E [T (P)], provides
information on whether or not a Ul market would be profitable.

B.1.2 Conditions under which E [Tz (Pz)] < E [T (P))

Here, I provide conditions under which E [Tz (Pz)] provides a lower bound on the average pooled price ratio,

E[T (P)]. To begin, assume that (a) the elicitations, Z, have no more information about U than do true be-

liefs, P. Stated formally: Pr{U|X,Z, P} = Pr{U|X,P}. Second, assume that beliefs are unbiased, so that

Pr{U|X,P} = P. Hendren (2013) shows that these two assumptions imply that E [m (Pz)] < E[m(P)]. This
E[m(P)] Elm(

suggests that E [Tz (Pz)] < 1+ (i} - S0, what remains to show is that 1+ le?] < E[T (P)]. For this, we

make one additional assumption that cov (@, P) < 0. This is a natural assumption because m (p) is, on average,
a decreasing function in p (because m (1) = 0), so dividing by P renders it an even more strongly decreasing function
in P. Indeed, I have been unable to find a random variable P for which cov (@, P) > 0.

Given these assumptions note that

ET(P) = E {E [Pf = 1— El[;lil > p]}
> kB {1+ mT(M]
> 1+F {@}

where F, represents the expectation with respect to drawing p from the distribution of P. Note the second line
follows from the fact that E[P|P > p] > p.

So, it suffices to show that E [@] > %. Clearly

Efm (P) = E [@] E[P]+ cov (p, @)

so that

m E[m(P)] —cov | P, m}()P)
E[ <p>]i E[P]( )

Imposing cov (@, P) < 0yields E[T (P)] > 1+ E[];'EEDI]D)], which in turn implies E [T (P)] > E [Tz (Pz)].

B.2 Specification for Point Estimation

I follow Hendren (2013) by assuming that Z = P + ¢, where € has the following structure. With probability A,
individuals report a noisy measure of their true belief P that is drawn from a [0, 1]-censored normal distribution with
mean P+« (X) and variance o®. With this specification, a (X) reflects potential bias in elicitations and & represents
the noise. While this allows for general measurement error in the elicitations, it does not produce the strong focal
point concentrations shown in Figure 1 and documented in existing work (Gan et al. (2005); Manski and Molinari
(2010)). To capture these, I assume that with probability 1 — A individuals take their noisy report with the same bias
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a (X) and variance o2, but censor it into a focal point at 0, 50, or 100. If their elicitation would have been below &,
they report zero. If it would have been between x and 1 — k, they report 50; and if it would have been above 1 — &,
they report 1. Hence, I estimate four elicitation error parameters: (o, A, kK, « (X)) that capture the patterns of noise
and bias in the relationship between true beliefs, P, and the elicitations reported on the surveys, Z.

Specifically, the p.d.f./p.m.f. of Z given P is given by

(1= X @ (=200 4 hp (==rZet) if Z=0

- M@ (et g (atze) if Z=05
(2P, X) = 1-X) (1 P— a(X)) +)\(1 (1*&*1::&(X)>> if Zz=1
;d) (M) if o.w.

where ¢ denotes the standard normal p.d.f. and ® the standard normal c.d.f. I estimate four elicitation error param-
eters: (o, A\, k,a(X)). o captures the dispersion in the elicitation error, A is the fraction of focal point respondents,
k is the focal point window. I allow the elicitation bias term, o (X), to vary with the observable variables, X. This
allows elicitations to be biased, but maintains the assumption that true beliefs are unbiased. This approach builds
upon Manski and Molinari (2010) by thinking of the focal point responses as “interval data” (i.e. 50/50 corresponds
to some region around 50%, but not exactly 50%). However, the present approach differs from Manski and Molinari
(2010) by allowing the response to be a noisy and potentially biased measure of this response (as 50/50 corresponds
to a region around 50% for the noisy Z measure, not the true P measure).

Ideally, one would flexibly estimate the distribution of P given X at each possible value of X. This would enable
separate estimates of the minimum pooled price ratio for each value of X. However, the dimensionality of X prevents
this in practice. Instead, I again follow Hendren (2013) and adopt an index assumption on the cumulative distribution
of beliefs, F (p|X) = fOp fr (p|X)dp,

F(plX) = F (p| Pr{U|X}) (26)
where T assume F (p|qg) is continuous in ¢ (where ¢ € {0,1} corresponds to the level of Pr{U|X}). This assumes
that the distribution of private information is the same for two observable values, X and X', that have the same
observable unemployment probability, Pr{U|X} = Pr{U|X'}. Although one could perform different dimension
reduction techniques, controlling for Pr{U|X} is particularly appealing because it nests the null hypothesis of no
private information (F (p|X) =1{p < Pr {U\X}}).52

Beta versus Point-Mass Distribution Hendren (2013) flexibly approximates F (p|q) using mixtures of Beta
distributions. In the current context,A key difficulty with using functions to approximate the distribution of P is
that much of the mass of the distribution is near zero. Continuous probability distribution functions, such as Beta
distributions, require very high degrees for the shape parameters to acquire a good fit. Therefore, I approximate P
as a sum of discrete point-mass distributions.?? Formally, I assume

F(plg) =wl{p<qg—a}+(1—w)Zi&l{p < ai}

where a; are a set of point masses in [0,1] and &; is the mass on each point mass. I estimate these point mass
parameters using maximum likelihood estimation. For the baseline results, I use 3 mass points, which generally
provides a decent fit for the data. Appendix Table IV presents the raw estimates for these point mass distributions.

Given the estimate of F' (plq), I then compute the pooled price ratio at each mass point and report the minimum
across all values aside from the largest mass point. Mechanically, this has a value of T (p) = 1. As noted in Hendren
(2013), estimation of the minimum 7 (p) across the full support of the type distribution is not feasible because of
an extremal quantile estimation problem. To keep the estimates “in-sample”, I report values for the mean value of
g =Pr{U} = 0.031; but estimates at other values of ¢ are similarly large.

52Moreover, it allows the statistical model to easily impose unbiased beliefs, so that Pr {U|X} = E [P|X] for all X.

53This has the advantage that it does not require integrating over high degree of curvature in the likelihood function.
In practice, it will potentially under-state the true variance in P in finite sample estimation. As a result, it will tend to
produce lower values for T' (p) than would be implied by continuous probability distributions for P since the discrete
approximation allows all individuals at a particular point mass to be able to perfectly pool together when attempting
to cover the pooled cost of worse risks.
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C Willingness to Pay Metrics
C.1 Taylor Expansion

Note that u (¢) = v (¢) so that

u'(cu (p)) v (ce (p) + " (ce (p)) (cu (p) = ce (p) + 31" (e (p)) (cu (p) — ce (p))?
v/ (ce (p)) u' (ce (p))

Q

u” (ce (p)) cu (p) — ce (p)
e w) T ww)
@) (e 0) e () — cuv) %@uw%@nmmw%@n<%@—%@y
u/ (ce (p)) ce (p) u” (Ce (p)) u (Ce (p)) 2 Ce (p)
- 1+0%( ) [1+;ACC( )]

And, under an assumption of constant relative risk aversion, we have y = o + 1

W) | o SAc o+1Ac
u (ce (p)) 1 - () |:1+ 9 (p):|
2
= G%(p)ﬂfa;l <Acc(p)>

C.2 Proof of Proposition 1

Note under state independence, the Euler equation implies

' (cpre (p)) = pu (cu (p)) + (1 = p) ' (ce ()

so that

Dividing,

u (cpre (P))

W (epre () dp o (e (7)) W eu(p)) d e () dp
o (eone () 0 =) ey g (e0) — tog (e (e ) o =T 1y e () o~ L (2)

So, dividing by u’ (c. (p)) yields:

u' (cpre (p) = dlog (cpre) "(cu (p)  —dlog (cu (p)) —dlog (ce (p))

= o [log (cc) — log (c)] +p7; +(1-p)o

' (ce) dp " (ce (p) dp dp
And, using the Euler equation, pu’ (¢, (p)) + (1 — p) u’ (ce (p)) = ¢’ (cpre (D)),
pu' (eu () + (A = p)w' (ce (p) —dlog (cpre (1)) _ v/ (cu (@) =’ (ce(P) w'(cu(p)) —dlog(eu(p) (1 pyo Z 09 (cc (@)
u’ (ce (P)) dp u’ (ce (p)) u’ (ce (P)) dp dp
' (cu (p)) —dlog (cpre (p)) w’ (cu (p)) = ' (ce (P)) < v (cu () ) —dlog (ce (p)) | v (cu(p)) (d[log(ce) — log (cu)]
1— = +1—
( W (e (7)) ”) T W W (ee (P)) Pueewy )T oy ( dp
so that
u'(cu(p)) _ u(cu(p))
,—dog (cpre) _ wieew) — ! 5 —dlog (ce (1)) Purtee)  (dllog(ce) —log (cu)]
d B u'(cu (p)) d weu®) 4 1 _ d
p 1+p<u’(ce(£>> - 1) P Puteeony T1-P P

65

)



or
1 (W (cu®) _ "(cu(p))
dlog (epre) _ 5 (5 —1) L odlog(ce @) | Putey [ dllog (ce) — log (cu)]
d B u’ (cu () d wleu(@) | _ d
P 1+p(u,(T“’,’))—1) P Purectmy 1P b
Note that the assumption is maintained that log (cpre) is linear in p, in addition to log (ce) and log (¢, ) being linear
in p. This is of course an approximation in practice, as the equation above illustrates this cannot simultaneously be

true for all p. Therefore, I assume it is true only in expectation, so that

W (cu (p))
—dlog (cpre) _ 1 (“' (cu(p) 1) B 1 —dlog (ce (p)) P (e () (d[log (ce) —log (cu)])
A T | N R e A

which if it holds for all p must also hold for the expectation taken with respect to p. Let kK = F |:1(u,(3<p))1):| .
u’(ce(p))
Note also that

Y P) _ 3 6B llog (c. (p)) = log (cu (5))]

which implies

u’(cu(p))
—dlog (cpre) —dlog (cc (p)) Pree (o)) d[log (ce) — log (cu)]
=F e - u E / :
= [log (ce (p)) — log (cu (p))] K + e + Pl 1 dp
u’(ce (p

Now, consider the impact of unemployment on the first difference of consumption. Define A" as the estimated
impact on the first difference in consumption:

AFP = Ellog (¢) — log (c—1) |U = 1] — E [log (¢) — log (¢—1) |U = 0]
Adding and subtracting F [log (ce) |U = 1] yields
AFP = Ellog (¢)|U = 1]—E [log (c.) |U = 1]+E [log (c.) |U = 1]—E [log (¢) |U = 0]—(E [log (c—1) |[U = 1] — E [log (c—1) |U = 0])
Note that ¢ = ¢, for those with Uy = 1 and ¢ = ¢, for those with U = 0. The following three equations help expand

AFP.
dlog (cpre) var (P)

Ellog(c—1)|U =1] — Elog (c_1)|U =0] =

dp var (U)
and
Ellog () [U = 1] — Eflog (co) [U = 0] = Ellog(e.) U = 1] - Ellog (co) |U = 1]
— Bllog(e.) ~ tog (e)] + N 0N (g piy — 1y - (P
and

Ellog (c.) U =1] — Ellog () U = 0]

Elog (c.)|[U =1] — Elog (ce) |U = 0]
dlog (ce) var (P)

dp  war(U)
So, substituting these into AFP yields:
Fp e [ u' (cu) dlog (ce) — log (eu)]] | [dllog (ce) — Log (cu)] o
AFP = Bllog (eu) — tog ()l = T 3 | (B llog (ec) —log (ca)) + B P) - — ]+[ — }(E [PIU=1] - E[P])

Let % = %ﬁog(cuﬂ denote how the consumption drop varies with p. Solving for E [log (cc) — log (ce)] yields

AFP 4 A (B[P|U = 1] — E[P])
B log (c.) — log (ce)] = BT p——
1- uar(U)K; - pO'@

where k =which yields the desired result. Note that if the consumption drop does not vary with p, then this reduces

to AFD "
Elog (cu) — log (ce)] = 1 var(®) =A

~ var(0D)

More generally, if the size of the consumption drop is increasing with p, then E [log (c.) — log (c.)] > ATV
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C.3 Maximum Willingness to Pay

While the analysis to this point estimates the average causal effect of unemployment, Equation (8) requires comparing
the willingness to pay for all p to the pooled price ratio. Therefore, it is also useful to understand the heterogeneity in
the potential willingness to pay across the population. How much might some people be willing to pay for insurance?

Estimating minima and maxima is always more difficult than estimating means; but this section attempts to
make a bit of progress to help shed light on this important question. Let A™™ denote the largest causal effect of
unemployment in the population,

A" = min[log (cu (p)) = log (ce (p))] (27)
Following equation (9), note that the willingness to pay satisfies
u’ (Cu) —u (Ce) min Y min
> _ A
u’ (ce) =7 ( A ) (1 * 2 ( A )) (28)

Therefore, A™™ generates a upper bound on the willingness to pay (note that A™™ < 0).
This motivates the question: How big can the causal impact of unemployment be? To address this, note that
one can write the causal effect as the sum of two first differences:

log (cu (p)) — log (ce (p)) = log (cu (p)) — log (ct—1 (p)) — (log (ce (p)) — log (ct—1 (p)))

where the first term captures consumption change if unemployed and the second term is the consumption change
if employed. Let A7'*® = max, {log (ce (p)) — log (ct—1 (p))} denote the maximum consumption change experienced
by those who did not lose their job. And, let A" = min, {log (cu (p)) — log (ct—1 (p))} denote the minimum
consumption change experienced by those who lose their job. Note that we expect A™%® > 0 and A" < 0. The
Euler equation ((6)) combined with the assumption of CRRA preferences implies that c;—1 lies between ¢, (p) and
ce (p), ct—1(p) € [cu (p),ce (p)] for all p. Under this natural assumption, the causal impact of unemployment is
bounded below by the difference between these drops:

Amzn 2 A’Zn’n _ A’;naz

Therefore, one can bound the causal effect of unemployment on consumption by the largest consumption drop
minus the smallest consumption increase. The question now becomes: how large can the consumption drop upon
unemployment be, A™"? And, how large can the consumption increase upon learning that you didn’t lose your job
be, AZ"**?

If one observed consumption directly, one could estimate the full distribution of first differences in consumption
for those who become unemployed, log (c. (p)) — log (ct—1 (p)), and remain employed, log (ce (p)) — log (ct—1 (p)).
Then, one could in principle find A7 and AT*® directly from the data.

However, consumption data in the PSID and other datasets is quite noisy in practice (see for example Zeldes
(1989); Meghir and Pistaferri (2011)).54 Therefore, I proceed as follows. Note that the Euler equation implies that
ci—1 (p) € [cu (p) , ce (p)] for all p. In particular, this implies that the log consumption change should always drop for
those who lose their job, c¢i—1 (p) > cu (p). Therefore, I use the extent to which one observes consumption increases
for those who become unemployed to provide information about how the consumption change distribution and its
minimum, A7Y" is affected by measurement error.

I begin by removing systematic variation in consumption changes due to life cycle and year effects. In particular,
I regress the consumption change on the observables, X, in Equation (4) (an age cubic and year dummies) and let
Aj; denote the residuals.’® Online Appendix Figure VI plots the distributions of Aj; for those with U;; = 1 and
Uir = 0. As one can see, the wide dispersion is suggestive of considerable measurement error, as noted in previous
literature.

Let Q (a, U) denote the a—quantile of the distribution of Aj; as a function of unemployment status, Us. Appendix
Table II reports that 41.7% of the sample who become unemployed have A}, > 0 (i.e. Q(58.3,1) = 0), even after
controlling for age and year effects. Because the Euler equation suggests consumption changes should not be positive,

54This “left-hand-side” measurement error was necessarily not a problem for estimating the mean consumption
impact of unemployment (assuming the error is classical). But, for estimating properties of the distribution of
consumption changes such as minima and maxima, this measurement error becomes a significant limitation.

55This residualization can be formalized by assuming there are known time and year preference shocks affecting
the marginal utility of consumption that are common across individuals. Note the residuals now satisfy the ex-ante
Euler equation, E[A};] = 0. But, the means of the residuals will differ for those who do and do not experience
unemployment, E [A};|U;s = 1] < 0 and E [A};|U;e = 0] > 0.
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it suggests the excess dispersion is the result of measurement error. The key assumption I impose is that the impact
of measurement error is symmetric across the distribution of consumption changes. In particular, I assume that the
probability that the observed consumption change lies above the maximum plausible consumption change of 0 is less
than or equal to the probability that the observed consumption change is below the minimum actual consumption
change, Pr {A:‘t < AT Uy = 1} > Pr{Aj;, > 0|Uy = 1}, where Pr{A}; > 0|U;s = 1} = 41.7%. Appendix Figure V
shows that the observed distribution of consumption chan%es is fairly symmetric, which would be consistent with the
underlying assumptions needed for Equation (29) to hold.”® With this assumption,

AP > Q(Pr{A} > 0|Us =1}, 1) (29)

Because Pr {Aj; > 0|U;s = 1} = 41.7%, one can bound the consumption drop by the 41.7th quantile of the observed
consumption drop distribution. This equals —13.7%, as shown in Appendix Table II.

Similarly, one can impose an analogous assumption on the distribution of consumption changes for the employed
that the observed fraction of the population that experiences a consumption decline when remaining employed is less
than or equal to the fraction who experience a consumption increase that is above AZ**®) Pr{Aj, <0|U; =0} =
Pr{Aj, > AT**®|U;; = 0}. Under this assumption,

Al < Q(Pr{A}, < |Ui = 0},0) (30)

Appendix Table II shows this maximal consumption increase equals 0.5%. Combining equations (29) and (30) yields
the lower bound on the causal impact of unemployment on consumption:

AT > Q (Pr{AY 20U = 1},1) - Q (Pr {A}, < Uit = 0},0)
where the right hand side equals —13.7% — 0.5% = 14.2% (s.e. 1.1%), as reported in Table V, Column (7). Therefore,
the maximum causal impact on food expenditure is 14.2%, or roughly twice as large as the mean consumption drop.

The lower rows in Table V scale this estimate by various values of risk aversion. With a conservative estimate of 3,
it suggests the maximum markup individuals would be willing to pay is 54.7%.

C.4 Proof of Proposition 2

Differentiating the Euler equation under assumption (b) yields

() = (e0) = o (cpre () 222

Now, dividing by v’ (c.) yields
u' (cu) =V (ce) _ v (cpre (p)) depre
vle) T () dp

and expanding the RHS yields
' (cu) =0 (ce) _ V' (cpre (P)) Cpre (P) 0" (Cpre (p)) 1 depre

v (ce) S v’ (cpre (P)) cpre (p) dp
And, imposing the Euler equation to replace v’ (cpre (p)) in the numerator on the RHS (v’ (cpre (p)) = pu’ (cu) +

(1 —p) v (ce)) yields,

W) v () [ (e ] cpre ) (Cpre () 1 depre
o () ‘[pv'(ceﬁ“ ”)} (e (B) e () dp

+ (1 — p) and taking expectations over p yields

Ku' (cu) — v (ce) _ cpre (P) V" (cpre (p)) 1 depre
o (o) g { V (Cpre () e () dp ]

4%2,(272:1,6((;7;36(1))) cwi ) dcfpr - = dlogg;pre), and dividing by & yields:
w(ed —v'(ce) _op {M}
v’ (ce) Tk dp

56While the symmetry assumption is not directly testable, it can be micro-founded from many common assump-
tions on measurement error distributions. For example, if the true distribution of consumption changes is symmet-
ric and the distribution of measurement error is symmetric and unbiased, then it is straightforward to show that
Pr {Aft < AT U, = 1} > Pr{Aj; > z|U;t = 1}, where z < 0 is the maximum consumption change for those who
become unemployed. Symmetric and median-unbiasedness is a common assumption measurement error models (see,

e.g., Bollinger (1998); Hu and Schennach (2008)).

)

/(c

Dividing by p

for all p, noting that

Now, imposing o =
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C.5 Ex-ante labor supply derivation

This section illustrates how to use the spousal labor supply response, combined with known estimates of the spousal
labor response to labor earnings, to estimate the ex-ante willingness to pay for Ul

To begin, one needs a model of extensive margin labor supply response. I assume spousal labor force participation
generates income, y, but has an additively separable effort cost, n(0). I assume a spouse labor supply decision,
1 € {0,1}, is a binary decision and is contained in the set of other actions, a. Formally, let utility be given by

v (epre) +pu(es) + (1= p)vee) + 1{ = 1} (6) + ¥ (1 - p,a,0)

where 7 () is the disutility of labor for type 6, distributed £, in the population.
Let k (y, 1, p) denote the utility value to a type p of choosing [ to obtain income y when they face an unemployment
probability of p. The labor supply decision is

k(y7 17p) - k(0707p) > 77(0)

so that types will choose to work if and only if it increases their utility. This defines a threshold rule whereby
individuals choose to work if and only if 7 (6) < 77 (y,p) and the labor force participation rate is given by @ (y,p) =
F (7 (y, ).
Now, note that

dd .07 |0k (y,1,p 0k (0,0, p

W _ p) 00 =y |2 Lp)  O(0.0.0)

dp dp dp op
and making an approximation that the impact of the income y does not discretely change the instantaneous marginal
utilities (i.e. because it will be smoothed out over the lifetime or because the income is small), we have

dd a%
o =I5

tBk:

Finally, note tha 3y = V" (cpre (p)) is the marginal utility of income. So,

® st [<cm<p>>]y

and integrating across all the types p yields

By |52 ] = B | 1) o0’ e )]

To compare this response to a wage elasticity, consider the response to a $1 increase in wages

dq> ok
=My,
so,
5 {dg] N dgyﬁv’ (cpre (p))]
" ldp dy~ v’ (cpre (P))

Now, let e¢™ = denote the semi-elasticity of spousal labor force participation. This yields

ki 5 { (core (p»}

esemi v’ (cpre (P))

d®
dlog(y)

so that the ratio of the labor supply response to p divided by the semi-elasticity of labor supply with respect to wages
reveals the average elasticity of the marginal utility function. Assuming this elastl(:lty is roughly constant and noting

that a Taylor expansion suggests that for any function f (z), we have W log ),

5% v 270
esemi v’ (0

Now, how does one estimate %? Regressing labor force participation, [, on Z will generate an attenuated coefficient
because of measurement error in Z. If the measurement error is classical, one can inflate this by the ratio of the
variance of Z to the variance of P, or
v (1) =o' (0) 1 war(2)
v’ (0 - ﬂes'imi var (P)

69



‘[2A9] pjoyasnoy 2y je Jurjdwesar suonnedar densjooq 00g Suisn payndwiod 1e SI0LI pIepuRlS *L66] 1B PUR 210J3q

03 ojdwes 3y 101121 (£)-(9) suwnjo)) ‘GG 95 M0[oq pue dA0qe 3soy) 03 djdwes Jy Jo1sI (§)-(4) suwnjo) sarewd) pue safew 03 djdwes Ay 11 (€)-(7) suwnjo) ‘dnoidqns Aq sarewnsa ay) ur A112UF01913Y
oy a10[dxd (£)-(7) suwnjo)) ojdwes SyYH dulaseq Y} sasn () UWN[0)) “dINSLIUN dIBJ[OM d)UL-X9 Jf} JOJ 95e)S ISI1J oY) 03 SPuU0dsarIod (,,90UdIJI(],,) MOI [RULJ ) ‘INSLIUW dIBJ[dM }s0d-X2 d) Jo] 93e)S ISI1J
9y} 0 Spu0dsal1109 MO1ISITJ Y[, "SYIUOW -7 Juanbasqns 2y (q) pue sypuow ¢ juanbasqns o) () Y10q Ul paInsedw juswiAo[dwiaun uo “Z ‘Uone)Idld oy} JO SUoISSaIZaI Woly sajewnsd sjuasaid a1qe) SIy L, :9J0N

01Z°1 69081 1L5°8 PEITL 905°S1 006°ST 0vL01 0¥9°9C 'SqQO Jo wmN

¥790°0 0100 9700 S610°0 6S10°0 96100 0610°0 0100 *9's densjooq
SE91°0 78600 9¢CI0 1800 98I11°0 6LLO0 1320 1€01°0 OUAIRIIA

¥290°0 0r10°0 9200 S610°0 651070 9610°0 0610°0 02100 oS
7$¥0°0 L¥80°0 0801°0 76600 £680°0 6611°0 €190°0 L£60°0 (sypuowr -7 1) ssoT qof
7 U0 sypuout pz-g [ juanbasqns ui ssoj qol fo uo1ssai3ay g joung

¥290°0 or10°0 9200 S610°0 6S10°0 96100 0610°0 02100 oS
68020 67810 91€T0 9081°0 6L0T°0 8L61°0 9661°0 8961°0 (sypuow 7 1XdN) $SO'T qOf
SUOIIDII1]D UO SSOTT QOf JO UOISSIUZIY [ [oUDg

) ) 9) () (¥) (€) () (1
L66T => Tedx L66T < 180X L661 => 189X §g =>03y 6§ <03y o[ewd,{ SleN ordureg g

‘6 => 03V ‘Ole

(,98®15 1811,,) -} pUB Z-} USAIMIE UOIILZI[BOY UOHBWLIOJU]

[ 4T9dVL XIANdddV



APPENDIX TABLE II
Maximum Causal Effect of Unemployment on Food Expenditure

Baseline Sample

€3]

Estimate for max {log(c,(p))-log(c.(p))}, A™ -0.137

s.e. (0.02)
Lower bound for drop when unemployed, A,™" -0.138

s.e. (0.02)
Upper bound for increase when unemployed, A" -0.001

s.e. (0.002)
Fraction unemployed with positive consumption change 0.415
Fraction employed with negative consumption change 0.499
Num of Obs. 65,808
Num of HHs 9,562

Note: This table presents the calculation for the maximum causal effect of unemployment on food expe
resulting estimate, A™". The second rows present the estimates for the lower bound on the consumption
third rows present the estimates for the upper bound for the increase in consumption when employed, ¢
fraction of people who are unemployed, U,=1, who experience a positive consumption change, A",>0,

U;=0, who experience a negative consumption change,A ;>0 . All standard errors are constructed using
LTNONN wnnmntitinna)
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APPENDIX TABLE IV

Estimation of F(p|X)
Alternative Controls Sub-Samples
Below Above Tenure >5  Tenure <=5
Specification Baseline Demo Health Age <=55 Age>55 Median Wage Median Wage yrs yrs
@ 2 A3 “* ) © () @®) ©
Ist mass
Location 0.001 0.012 0.002 0.001 0.002 0.007 0.000 0.000 0.022
s.e. (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.000) (0.003)
Weight 0.446 0.713 0.449 0.437 0.461 0.530 0.452 0.422 0.612
s.e. (0.024) (0.071) (0.054) (0.035) (0.030) (0.032) (0.034) (0.036) (0.034)
T(p) 63.839 6.301 39.032 101.038 36.986 12.413 262.088 6.9E+08 5.052
s.e. 6.1E+06 1.7E+00 1.8E+06 1.0E+07 1.1E+06 3.2E+00 7.6E+07 2.5E+08 6.0E-01
2nd mass
Location 0.031 0.031 0.032 0.030 0.031 0.037 0.024 0.018 0.0575
s.e. N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weight 0.471 0.202 0.470 0.483 0.456 0.365 0.486 0.508 0.2771
s.e. (0.024) (0.071) (0.052) (0.035) (0.030) (0.032) (0.034) (0.037) (0.0341)
T(p) 4.360 8.492 4.228 4.325 4.442 5.217 4.223 5.736 4.7392
s.e. 0.203 4.194 4.576 0.306 0.279 0.417 2.181 3.008 0.5227
3rd Mass
Location 0.641 0.639 0.642 0.639 0.643 0.626 0.649 0.641 0.6420
s.e. (0.004) (0.004) (0.028) (0.005) (0.005) (0.005) (0.006) (0.005) (0.0055)
Weight 0.082 0.086 0.081 0.081 0.083 0.105 0.061 0.070 0.1105
s.c. (0.002) (0.002) (0.006) (0.003) (0.003) (0.003) (0.003) (0.002) (0.0040)
Controls
Demographics X X X X X X X X X
Job Characteristics X X X X X X X X
Health Characteristics X
Num of Obs. 26,640 26,640 22,831 11,134 15,506 13,320 13,320 17,850 8,790
Num of HHs 3,467 3,467 3,180 2,255 3,231 2,916 2,259 2,952 2,437

Notes: This table presents estimates of the distribution of private information about unemployment risk, P. Column (1) reports the baseline specification. Columns (2) uses
only demographic controls; Column (3) uses demographic, job characteristics, and health characteristics. Columns (4)-(9) report results for the baseline specification on
various subsamples including below and above age 55 (Columns 4 and 5), above and below-median wage earners (Columns 6 and 7) and above and below 5 years of job
tenure. The F(p) estimates report the location and mass given to each point mass, evaluated at the mean q=Pr{U=1}=0.031. For example, in the baseline specification, the
results estimate a point mass at 0.001, 0.031, and 0.641 with weights 0.446, 0.471 and 0.082. The values of T(p) represent the markup that individuals at this location in the
distribution would have to be willing to pay to cover the pooled cost of worse risks. All parameter estimates are constructed using maximum likelihood. Because of the non-
convexity of the optimization program, I assess the robustness to 1000 initial starting values. All standard errors are constructed using bootstrap re-sampling using 1000 re-

samples at the household level.



ONLINE APPENDIX FIGURE I: “First Stage” Impact of Unemployment on Beliefs
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Notes: This figure presents the estimated coefficients of a regression of the elicitations (elicited in year t) on unemployment
indicators in year t + j for j =1, ..,8. To construct the unemployment indicators for each year ¢ + j, I construct an indicator
for involuntary job loss in any survey wave (occurring every 2 years). I then use the data on when the job loss occurred to
assign the job loss to either the first or second year in between the survey waves. Because of the survey design, this definition
potentially misses some instances of involuntary separation that occur in back-to-back years in between survey waves. To the
extent to which such transitions occur, the even-numbered years in the Figure are measured with greater measurement error.
The figure presents estimated 5/95% confidence intervals using standard errors clustered at the household level.



ONLINE APPENDIX FIGURE II: Impact of Unemployment on Total Consumption Expenditure
(2-year intervals)
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Notes: This figure presents the estimated coefficients of a regression of leads and lags of log household consumption expenditure
on an indicator for unemployment. The figure replicates the sample and specification in Figure IV (Panel B) by replacing
the dependent variable with log total consumption expenditure on a sample beginning in 1999, surveyed every two years. I
restrict the sample to household heads who are employed in ¢ — 2 or t — 4. Following the baseline specification, the sample is
restricted to observations with less than a threefold change in consumption expenditures. Note that after 1999, the PSID asks
a broader set of consumption questions but is conducted only every two years, which prevents analyzing total 1-year interval
responses to unemployment.



ONLINE APPENDIX FIGURE III: Impact of Job Loss on Consumption
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Notes: This figure re-constructs the analysis in Figure IV using job loss instead of unemployment. I define job loss as an
indicator for being laid off or fired from the job held in the previous wave of the survey. The figure present coefficients from
separate regressions of leads and lags of the log change in food expenditure on an indicator of job loss, along with controls for
year indicators and a cubic in age. Sample is restricted to household heads who are employed in years t — 1 and ¢ — 2.



ONLINE APPENDIX FIGURE IV: Household Income Pattern Around Unemployment
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Notes: This figure presents the estimated coefficients of a regression of leads and lags of log household income on an indicator
for unemployment. The figure replicates the sample and specification in Figure IV by replacing the dependent variable with
log household income as opposed to the change in log food expenditure. I restrict the sample to household heads who are not
unemployed int —1ort—2.



ONLINE APPENDIX FIGURE V: Illustration of No Trade Condition Using Demand and
Average Cost Curves

A. MRS versus Average Cost
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Notes: This figure illustrates the no trade condition using the marginal and average cost curves as in Einav, Finkelstein and
Cullen (2010). Panel A presents an illustrative example for the demand for a contract that pays $1 in the event of becoming

unemployed. The willingness to pay out of income if employed is given by the marginal rate of substitution, %%.

Under a standard single crossing condition, all types P > p would also purchase the insurance policy (see text for discussion
of multi-dimensional heterogeneity). Therefore, the cost to the insurer of the contract is given by the average likelihood that
the payment is made, E [P|P > p| relative to the likelihood the payment is received, 1 — E[P|P > p], %. Panel B
normalizes by 177” to illustrate the empirical approach that compares the pooled price ratio, T (p) = k—p%, to one

P
plus the markup individuals are willing to pay for insurance, Z,(%((g;. The empirical results suggest the willingness to pay

lies below the pooled price ratio, as depicted in Panels A and B.



ONLINE APPENDIX FIGURE VI: Distribution of Reported Log Food Expenditure Growth, A%,
for Employed and Unemployed
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Notes: This figure plots histograms of A}, for those who are employed, U;;: = 0, and unemployed, U;; = 1. A}, is defined as
the residual from a regression of log (c¢;t) —log (cit—1) on an age cubic and year dummies, X. I restrict the sample to household

heads who are employed in ¢t — 1 and ¢ — 2. Following the baseline specification, the sample is restricted to observations with

less than a threefold change in consumption expenditures.
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