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Online Appendix

for “Financial Intermediation, Investment Dynamics, and Business Cycle Fluctu-

ations”, by Andrea Ajello

This online appendix provides supplementary material for “Financial Intermediation, Investment

Dynamics and Business Cycle Fluctuations” by Andrea Ajello, published on the American Economic

Review.

Section A compares Flow of Funds and Compustat corporate cash flow data, while section B maps

Compustat’s financing gap into the model. Section C describes the data used for the estimation.

Section D compares financial intermediation shocks and liquidity shocks. Section E reports the model

equilibrium conditions. Section F simulates the economy to replicate features of the Great Recession

under a binding effective lower bound for the nominal federal funds rate. Section G presents a version

of the model with constant aggregate investment technology, while section H studies the accuracy

of the log-linearized model solution. Section I presents a version of the model with constant shares

of buyers, keeper and sellers. Section J describes an estimated version of the model with shocks to

the dispersion of investment technologies. Section K concludes the online appendix with additional

robustness estimates and figures.

A Flow of Funds and Compustat Corporate Cash Flow Data

Figure 28 and Table 5 compare dynamic properties of level and growth rates of capital expenditures

in Compustat, CAPXt with those of aggregate corporate capital expenditures from the Flow of

Funds table, FoF CAPXt and of aggregate investment, It. Capital expenditures for the aggregate

of U.S. Compustat corporations account for around 60% of quarterly Flow of Funds U.S. corporate

capital expenditure and 32% of aggregate investment from 1989:Q1 to 2008:Q2.

I find that capital expenditures growth in Compustat correlates well with aggregate capital

expenditures growth from the Flow of Funds table for corporations (F.102). The two series show

similar averages and standard deviations of their annual trailing growth rates. The Compustat series

in the graph was seasonally adjusted using the Census X12 procedure.

The same Flow of Funds table for corporations (F.102) reports a measure of financial dependence

of the whole corporate sector on transfer of resources from other actors in the economy (e.g., house-

holds) defined as the financing gap. This variable is computed as the difference between internal

funds generated by business operations in the United States for the aggregate of firms, U.S. Internal

Fundst, U.S. internal funds in a given quarter t are computed as corporate profits net of taxes,

dividend payments and capital depreciation:

U.S. Internal Fundst = Profitst − Taxt −Dividendst +K Depreciationt
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and total investment (or expenditure) on fixed capital, CAPXt:

Financing Gapt = FGt = U.S. Internal Fundst − CAPXt. (35)

In a given quarter FGt is positive when the aggregate of U.S. corporations generate cash flows from

their business operations large enough to cover their capital expenditures and lend resources to the

rest of the economy. On the other hand, in a quarter when FGt is negative, the firms draw resources

from the rest of the economy to finance a fraction of their capital expenditures. This aggregate

measure, however, is not informative of the degree of dependence of single corporations on financial

markets. Firms in deficit are aggregated with firms in surplus and positive values for the aggregate

financing gap can coexist with corporations with large deficits at the micro-level. In Flow of Funds

data from 1952 to 2008, the average share of the financing gap out of total capital expenditures for

U.S. corporations amounts to +8%, showing that the corporate sector has on average been a net

supplier of savings to the rest of the economy.

Table 5: Compustat and Flow of Funds data on Capital Expenditures and Investment

Moment CAPXt FoF CAPXt FoF It

E[CAPXt
Vt

] 1 57.11% 35.23%

E[Σ3
s=0

Δ log Vt−s

4 ] 1.01% 1.07% 0.92%

Stdev[Σ3
s=0100

Δ log Vt−s

4 ] 1.60% 2.13% 1.45%

Corr[Σ3
s=0100

Δ log Vt−s

4 , Σ3
s=0100

Δ logCAPXt−s

4 ] 1 0.45 0.79

Variables Vt in columns are: CAPXt: Compustat aggregate capital expenditure; FoF CAPXt: Flow of
Funds Corporate capital expenditure; FoF It: Flow of Funds Aggregate Investment. The table reports:
1. E[CAPXt

Vt
]: the average fraction that CAPXt represents of each variable Vt; 2. E[Σ3

s=0100
Δ log Vt−s

4 ]:

the four-quarter trailing average of the growth rate of Vt; 3. Stdev[Σ3
s=0100

Δ log Vt−s

4 ]: the standard

deviation of the four-quarter trailing average of the growth rate of Vt; 4. Corr[Σ3
s=0100

Δ log Vt−s

4 ,

Σ3
s=0100

Δ logCAPXt−s

4 ]: the correlation of the four-quarter trailing averages of the growth rate of Vt

and CAPXt. All series are seasonally adjusted using the Census X12 procedure. Sample Period 1989:Q1
- 2008:Q2.
Source: Compustat quarterly files and Flow of Funds Tables

B Mapping Compustat’s Financing Gap into the Model

I interpret the aggregate of entrepreneurs in the model as the universe of corporations in Compustat

and derive the equivalent of the financing gap share series, FGSt, from their flow of funds constraints.

Entrepreneurs earn operating cash flows from their capital stock and use them to finance new capital

expenditures. They also access financial markets to either raise external financing or to liquidate

part of their assets. Starting from the accounting cash flow identity (2) in section 1, I can map its

components to the flow of funds constraint of an entrepreneur that is willing to buy and install new
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investment goods in my model in section 2:

PCe,t︸ ︷︷ ︸
DIVe,t

+ PK
t ie,t︸ ︷︷ ︸

CAPXe,t

−

⎡⎢⎣QA
t φ (1− δ)Ne,t−1︸ ︷︷ ︸

NFIe,t

+
(
RB

t−1Be,t−1 −Be,t

)︸ ︷︷ ︸
ΔCASHe,t

⎤⎥⎦− θQA
t Ae,tie,t︸ ︷︷ ︸

(CFD
e,t+CFEO

e,t )

= RK
t Ne,t−1︸ ︷︷ ︸
CFO

e,t

(36)

The returns on the equity holdings, RK
t Ne,t−1, correspond to the operating cash flows, CFO

e,t. En-

trepreneur’s nominal consumption, PtCe,t, can be identified with dividends paid to equity holders,

DIVe,t, and the purchase of new investment goods, PK
t ie,t, with capital expenditures, CAPXe,t.

Net financial operations in Compustat, NFIe,t, are mapped into net sales of old equity claims,

QA
t φ (1− δ) Ne,t−1, while variations in the amount of liquidity, ΔCASHe,t, correspond in the model

to net acquisitions of government bonds,
(
RB

t−1Bt−1 −Bt

)
. Finally transfers from debt and equity

holders, CFD
e,t+CFEO

e,t , correspond to issuances of equity claims on the new units of capital installed,

θQA
t Ae,tie,t.

From (36), it is easy to derive the model equivalent of the financing gap share defined in (4).

Entrepreneurs with the best technology to install capital (sellers) are willing to borrow resources

and to utilize their liquid assets to carry on their investment. The aggregate Financing Gap over

the χs,t measure of sellers, S =
[
PK
t

QA
t
, Ahigh

t

]
, can be written as:

FGt =

∫
S

⎡⎢⎢⎣RK
t Ns,t−1︸ ︷︷ ︸
CFO

s,t

−PCs,t︸ ︷︷ ︸
DIVs,t

− PK
t is,t︸ ︷︷ ︸

CAPXs,t

⎤⎥⎥⎦ f(As,t)ds

=

∫
S

⎡⎢⎢⎣QA
t φ (1− δ)Ns,t−1︸ ︷︷ ︸

NFIs,t

+
(
RB

t−1Bs,t−1 −Bs,t

)︸ ︷︷ ︸
ΔCASHs,t

− θQA
t As,tis,t︸ ︷︷ ︸

(CFD
s,t+CFEO

s,t )

⎤⎥⎥⎦ f(As,t)ds

= QA
t

(
φ (1− δ)χs,tNt−1 +

∫
S
θAs,tis,tf(As,t)ds

)
+RB

t−1χs,tBs,t−1.

so that the financing gap share is equal to the ratio of the market value of the resources raised by ex-

ternal finance, QA
t θAs,tie,t, those raised by liquidation of selling illiquid securities, QA

t φ (1− δ)χs,tNt−1,

and from the liquid assets that come to maturity, RB
t−1χs,tBt−1, over aggregate investment, It in

each quarter:

FGSt =
QA

t

(
φ (1− δ)χs,tNt +

∫
S θAs,tis,tf(As,t)ds

)
+RB

t−1χs,tBt

It
.

. Following the definitions introduced in section 1, I compute the model equivalent for the Liquidation

Share, LIQSt, as the fraction of sellers’ financing gap, FGt, that is funded by the liquidation of
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financial claims and liquid assets:

LIQSt =
QA

t

(
φ (1− δ)χs,tNt

)
+RB

t−1χs,tBs,t−1
FGt

. (37)

and the Cash Share as the fraction of sellers’ financing gap funded by the return on liquid assets:

CASHSt =
RB

t−1χs,tBs,t−1
FGt

. (38)

C Data: Observables

To estimate the model parameters, I use the following vector of eight observable variables:[
Δ logGDPt, Δ log It, Δ logCt, Δ log

Wt

Pt
, πt, RB

t , logLt, Spt, F̂GSt

]
Aggregate series can be obtained from the BEA via Haver Analytics. The dataset is composed of

the log growth rate of real per-capita GDP, GDPt (Haver mnemonic: GDP@USECON minus net

export XNET@USECON), investment, It (sum of durable consumption CD@USECON and invest-

ment I@USECON), aggregate consumption, Ct (sum of non-durable consumption CN@USECON

and services CS@USECON) and real hourly wages, Wt
Pt

(non-farm business sector compensation per

hour, LXNFC@USECON). The dataset also includes the federal funds rate (FFED@USECON),

mapped into the model nominal risk-free rate RB
t , the growth rate of the GDP price deflator

(JGDP@USECON), mapped into the model inflation rate πt, and the log of per-capita hours worked,

Lt (non-farm payroll aggregate hours LHTNAGRA@USECON). Per-capita variables are obtained

by dividing aggregates by the hp-filtered total U.S. population, defined as the sum of the civilian

labor force and the individuals 16 and higher that are not in the labor force (LF@USECON and

LH@USECON respectively). On top of the macro variables that are standard in the literature,

the observables include the spread between the 10-year BBB-rated corporate bond yield (Moody’s

seasoned Baa) and the 10-year Treasury note yield, Spt (from the FRB H.15 table).

D Financial Intermediation and Liquidity Shocks

This section provides a comparison of the effects of financial intermediation shocks and liquidity

shocks à la Kiyotaki and Moore (2012) on asset prices under different model assumptions.

Financial intermediation shocks in my model look similar to liquidity shocks described by KM

and Del Negro et al. (2010), as they both hit the intertemporal Euler equation for equity holdings and

affect the trading margin between sellers and buyers of equity. Following KM original contribution,

I define a liquidity shock in the model as an exogenous change in the share of resalable assets in the
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economy, φ. In particular, I assume that φ = φt follows an AR(1):

φt = (1− ρφ)φ+ ρφφt−1 + εφt ,

with εφt ∼ N(0, σ2
φ), i.i.d.

In the section below I compare impulse responses of the economy to financial intermediation

shocks and to liquidity shocks in the presence and in the absence of nominal rigidities and for

different degrees of inertia in the central bank’s nominal interest rate rule.

D.1 Nominal Rigidities and The Dynamics of Asset Prices

Figure 13 compares impulse responses of a negative financial intermediation shock (blue solid line)

and a negative liquidity shock (red dashed line) with the same impact and persistence in the response

of GDP, in the baseline model with price and wage stickiness. The two shocks are essentially equiva-

lent, generating the same impulse responses for observable variables as well as for other endogenous

variables such as use of liquid assets and cash reserves to fund financing gaps (a reduction in asset

liquidity makes the liquidation share LIQSt drop and the use of cash reserves CASHSt rise). Figure

13 suggests that the two types of disturbances might not be separately identifiable, if a model that

featured both shocks were to be estimated on macro and financial data for the United States. I

confirmed this intuition by running numerous posterior maximizations and explorations under the

assumption that both financial intermediation and liquidity shocks can affect my model. In all such

attempts The posterior was clearly bimodal: in one mode the financial intermediation shock was

more persistent than the liquidity shock and in the other the degree of persistence of the two shocks

was reversed. Persistent shocks would leave to prolonged higher borrowing costs, lower financial

dependence and reduced economic activity and would matter greatly in explaining business cycle

fluctuations, while transient ones would mean-revert quickly and explain little of medium frequency

fluctuations in macro aggregates.

In models without nominal rigidities, Shi (2015) shows that liquidity shock generate a negative

co-movement between output and asset prices. I confirm this finding and show that financial in-

termediation shocks instead are immune to Shi (2015)’s critique in models without price and wage

rigidities. I also show that Shi (2015)’s critique of liquidity shocks extends to models with nominal

rigidities in which the degree of inertia in the central bank’s nominal interest rate rule is low.

As noted by Shi (2015), under plausible calibrations of the KM model, a negative liquidity

shocks generates a recession while on financial markets the contraction in asset supply pushes up

the price of financial claims.29 In contrast, Del Negro et al. (2010) emphasize that liquidity shocks

can produce positive co-movement between output and asset prices in a calibrated variation of the

29Nezafat and Slavik (2015) show how shocks to the share of pledgeable units of capital θ in a model similar to KM
also generate countercyclical asset price movements.
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Comparison of IRFs for Financial Intermediation and Liquidity Shocks
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Figure 13: Comparison of impulse responses to a financial intermediation shock (black solid line)
and liquidity shock (blue dashed line) in the baseline model with nominal rigidities.

original KM model when the economy features a certain degree of nominal rigidities and when the

nominal interest rate in the economy is at the zero lower bound.

Figures 14 and 15 compare the impulse responses of the model to a negative liquidity shock

and financial intermediation respectively, under different model parameterizations. The impulse

responses are computed at the posterior mode of the model (black solid lines), under the assumption

that prices and wages are nearly flexible to replicate an economy similar to KM and Shi (2015)

(ξp = ξw = 0.01, magenta dotted line) and finally under the assumption of (nearly) flexible prices

and wages and lower persistence of the shock (ξp = ξw = 0.01 and ρτ = ρφ = 0.5 compared to 0.96

in the baseline).30

The magenta lines in figure 14 confirm that a negative liquidity shock in a model without nominal

rigidities is accompanied by a marked and prolonged drop in the real interest rate. Both the real

purchase and resale prices of equity claims, qBt and qAt , rise to maintain the no-arbitrage equilibrium

on equity and bond markets. The countercyclical responses of asset prices are more pronounced

when the liquidity shock is less persistent.31

30All impulse responses are normalized so that the drop in aggregate GDP on impact is of the same magnitude
as under the estimated baseline financial intermediation shock (figure 15, panel 1). The persistence of the baseline
liquidity shock is set equal to that of the estimated financial intermediation shock, ρφ = ρτ = 0.96.

31If liquidity shocks are highly persistent, then the household considers equity claims to be more risky: they cannot
be sold easily for longer periods of time once a negative liquidity shock hits. The demand for illiquid assets drops more
after more persistent liquidity shocks. The drop in demand offsets the reduction in the supply of traded assets at first
and delivers an initial drop in the resale price of equity, qAt . Nonetheless, after a short-lived reduction in the price of
equity, the supply effect dominates and translates in a marked increase of the resale price of equity.



vii

In contrast, in the presence of nominal rigidities and inertial nominal interest rates, liquidity

shocks induce equity prices to drop on impact. As described in section 4.1.1, nominal rigidities and

inertial nominal rates prevent the real rate to drop on impact after the shock hits. The black solid

lines in figure 14 show that real rate rises on impact, while buyers’ real purchase price of financial

claims from intermediaries, qBt , drops to equate the expected returns on equity claims and bonds.

The downward pressure on qBt translates one-to-one on the resale price of equity qAt , by means of

the zero-profit conditions of the banking sector.

Figure 15, instead, shows the impulse responses of the model after a financial intermediation

shock. Financial intermediation shocks captures an increase in intermediation costs in the banking

sectors that drives down the resale price of equity, qAt , raising the borrowing costs of entrepreneurs,

with negative effects on capital accumulation. The third panel in figure 15 reveals that a negative

financial intermediation shock robustly generates a drop in the real resale price of equity claims, qAt ,

in models with and without nominal rigidities and a lower degree of persistence of the shock.

The evidence in this section corroborates the findings of the literature that point at a short-

coming of the original KM formulation of liquidity shocks as producing countercyclical asset price

movements in models with flexible prices and wages. Financial intermediation shocks can instead

deliver procyclical predictions for asset price dynamics that are robust to the absence of nominal

rigidities.

In such models, the policy rule plays an important role on the dynamic adjustment of the

economy. The next section explores this in more detail.

D.2 Monetary Policy Inertia and The Dynamics of Asset Prices

In this section, I offer a discussion on the role of nominal interest rate inertia in the transmission of

liquidity and financial intermediation shocks in my New Keynesian model with nominal rigidities.

Figures 16 and 17 compare the impulse responses of the model to a negative liquidity shock and

financial intermediation shock, respectively. Each plot shows impulse responses of GDP, consump-

tion, the real interest rate, and the real resale prices of equity, qAt , computed at the posterior mode

(black solid lines), under a degree of interest rate inertia that is half of the one estimated in the

baseline, ρi = 0.43 (magenta dotted lines) and under the extreme assumption of no interest rate

smoothing, ρi = 0, (blue dashed lines).32

Figure 16 shows that the ability of liquidity shocks to produce a procyclical response of asset

prices depends on the degree of inertia of the central bank’s interest rate rule. In contrast fig-

ure 17 shows that the positive co-movement between asset prices and GDP induced by financial

intermediation shocks is robust to changes in the nominal interest rate inertia parameter.

32All impulse responses are normalized so that the drop in aggregate GDP on impact is of the same magnitude as
under the estimated baseline financial intermediation shock (figure 17, panel 1) The persistence of the baseline liquidity
shock is set equal to that of the estimated financial intermediation shock, ρφ = ρτ = 0.96.
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Figure 14: IR Functions to Liquidity Shock: comparison between baseline model with addition of
persistent liquidity shock to φ(black solid lines), flex prices and wages model (blue dashed lines) and
flex price and wage model where the liquidity shock has lower persistence ρφ = .50 (dash-dot lines).
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Figure 15: IR Functions to Financial Intermediation Shock: comparison between baseline model
(black solid lines), flex prices and wages model (blue dashed lines) and flex price and wage model
where the intermediation shock has lower persistence ρτ = .50 (dash-dot lines).
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Under the estimated degree of inertia for the nominal interest rate ρi = 0.86, both liquidity

shocks and financial intermediation shocks deliver positive co-movement of asset prices and output

in the baseline model. Financial intermediation shocks however generate more volatile responses in

asset prices than liquidity shocks for a given change in output. If the Taylor rule features a high

degree of interest rate inertia and prices and wages are sticky, after a shock hits, agents expect the

real interest rate to rise on impact and adjust downward slowly. In the case of liquidity shocks,

the rise in the real interest rate commands a drop of −0.35% in the real price of financial claims,

qAt , to equate the expected return on equity to the real interest rate in a non-arbitrage equilibrium.

After the initial drop, equity prices rise above their steady state level in around 7 quarters and stay

persistently above it. In the case of financial intermediation shocks the resale price of equity, qAt ,

drops more, by −0.6% on impact in the baseline model. After the initial drop, equity prices stay

persistently below their steady state level.

When I reduce the interest rate inertia parameter to half its estimated value, ρi = 0.43 (magenta

dotted lines), and then to zero (dashed blue lines), negative liquidity shocks generate a recession in

which asset prices drop initially but quickly reverse and stay above their steady-state level. Figure

16 shows that this reversal is faster and more pronounced than in the baseline model (solid black

lines), weakening the positive co-movement between asset prices and GDP. In contrast the impulse

responses to a negative financial intermediation shocks in figure 17 show patterns that are in line

with those in the baseline model, with a strong positive correlation between asset prices and GDP.

It is important to note that changes in the degree of Taylor rule inertia do not have as stark as

an effect on the cyclical properties of consumption in the model, while the presence or the absence

of nominal rigidities do (see section 4.1.1): the impulse responses in figures 16 and 17 suggest

that a lower degree of inertia of the interest rate rule does not change the procyclical behavior of

consumption in response to both liquidity and financial intermediation shocks.

In conclusion, the degree of inertia of the central bank’s interest rate rule proves crucial in

generating a strong positive co-movement between output and asset prices in response to liquidity

shocks in a model with nominal rigidities. In contrast, financial intermediation shocks deliver a

robust positive co-movement between asset prices and output, regardless of the degree of inertia of

the Taylor rule.

D.3 Model Fit and Stock Market Growth

In this section I verify that the asset market dynamics implied by my estimated model with financial

intermediation shocks share important properties with U.S. financial market data, other than the

corporate bond spreads.

My model with financial intermediation shocks is estimated by fitting data on credit spreads for

corporate bonds of BBB rating. I discussed the properties of the estimated model in fitting the
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Figure 16: IR Functions to Liquidity Shock: comparison between baseline model (black solid lines),
model with ρi = 0.43 (blue dashed lines) and model with ρi = 0 (dash-dot lines).
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observable corporate spread series in section 4.2. It is interesting, as a source of external validation

of the model fit and in light of the procyclical responses of asset prices to financial intermediation

shocks, to check how the estimated model performs in replicating the dynamics of stock market

prices in the United States.

Table 6 compares first and selected second moments of per-capita real stock market growth in

the data (per-capita SP 500 index normalized by the GDP deflator) and its model equivalent. Data

and smoothed series are both detrended using a two-sided HP filter, to facilitate comparison between

cyclical properties of the variables and in light of the different trend of stock market growth and

macro variables feature in the data.33

SMGt =

QA
t Nt

Pt

QA
t−1Nt−1

Pt−1

=
qAt Nt

qAt−1Nt−1

The average historical realized returns on lower-medium grade corporate bonds (on which the model

is estimated) are not as sizable as realized average equity returns and bond prices are not as volatile

as equity prices in the data. Row 1 in table 6 shows that the average growth rate of the stock market

in the data is higher than the one estimated in the model.34 Moreover, row 2 highlights that the

stock market growth data series features a higher standard deviation than its theoretical counterpart

in the model computed at the posterior mode (2.6% vs. 0.51%). Consistently the standard deviation

of the data series is also higher than the standard deviation of the smoothed stock market growth

series computed at the posterior mode (2.6% vs. 0.17%).

Interestingly, however, stock market growth in the data and in the model show similar auto-

correlation of order one (0.78 in the data, compared to a theoretical moment of 0.65, although the

realized moment for the de-trended smoothed series is much lower at 0.31). Notably, in light of

the discussion in section D.2, stock market growth correlates highly with GDP growth in the data

(coefficient of 0.43) and in the model (theoretical estimate of 0.65 and smoothed estimate of .58).

Most importantly, the stock market growth data series is positively correlated with its smoothed

model equivalent with a correlation coefficient equal to 0.40. All coefficient are significantly different

from zero at the 1% level or below.
The table reports the first and (selected) second moments for the 4-quarter trailing average of Stock Market Growth
(SMG) in the data and in the model (theoretical and of the smoothed series at the posterior mode). Sample period:
1989:Q1 to 2008:Q2). The SMG rate in the data refers to the S&P 500 index divided by the GDP deflator and the
growth rate the of the U.S. population. Moments for the data and (smoothed) model series are HP-filtered to facilitate
comparison, excluding differences in trend. All moments are different from zero at a 5% or lower significance level.
Data source: FRED

33The reference price used to compute the market value in the model is qAt : the resale price of equity shares, also
defined as the highest price that competitive intermediaries are willing to spend to acquire one unit of financial claims
from sellers. Moments computed using the household purchase price qBt do not differ significantly from those reported
in table 6 and an available upon request.

34In the model the average growth rate of stock market growth coincides with the average growth rate of the economy
γ.
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Table 6: Stock Market Growth Moments - Estimated Model vs. Data

Moment Data Model (Theoretical) Model (Smoothed)

Mean 1.26 0.50 0.52
Standard Deviation 2.59 0.51 0.17
AC(1) 0.78 0.75 0.31
Corr. with GDP Growth 0.43 0.65 0.58
Corr. with SMG data 1 −− 0.40
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E Model Equilibrium Conditions

Intermediate Firms

The production function for a generic intermediate firm i takes the form:

Yt(i) = A1−α
t Kt−1(i)αLt(i)

1−α −AtF ,

where:

log

(
At

At−1

)
= log (zt) = (1− ρz) log (γ) + ρz log (zt−1) + εzt (39)

and εzt ∼ N (0, σz). Firms minimize total costs by solving:

min
Kt−1(i),Lt(i)

WtLt(i) +RK
t Kt−1(i)

subject to (E). The first order conditions are:

MCt(i)A
1−α
t

(
Lt(i)

Kt−1(i)

)−α
=

Wt

Pt

MCt(i)A
1−α
t

(
Lt(i)

Kt−1(i)

)1−α
=

Rk
t

Pt
,

where MCt(i) is the marginal cost for firm i. Taking the ratio of the two expressions above I obtain:

Kt−1(i)
Lt(i)

=
Kt−1
Lt

=
Wt

Rk
t

α

(1− α)
, (40)

which pins down a common value for the marginal cost across different firms:

MCt =
1

αα(1− α)1−α
RKα

t

(
Wt

At

)1−α
. (41)

Firms’ profits at time t are defined as the difference between revenues and total costs incurred

producing output Yt(i). Those monopolistic intermediate firms that can re-optimize their price at

time t maximize their future expected profits:

max
Pt(i)

Et

{ ∞∑
s=0

ξsp
βsμΣC

t+s

μΣC
t+s

[(
Pt(i)

s∏
k=1

(π
ιp
t+k−1π

1−ιp)−MCt+s

)
Yt+s(i)

]}

subject to the demand for intermediate inputs from final producers:

Yt+s(i) =

(
Pt(i)

∏s
k=1(π

ιp
t+k−1π

1−ιp)
Pt+s

)(
− 1+λp,t+s

λp,t+s

)

Yt+s
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where marginal costs MCt in (41) are equal to average costs given the structure of the production

function in (E) and:

log (1 + λp,t) =
(
1− ρp

)
log (1 + λp) + ρp log (1 + λp,t−1) + εpt + θpε

p
t−1 (42)

with εpt ∼ N
(
0, σ2

λp

)
, as in Smets and Wouters (2005).

Profits are discounted at the marginal rate of intertemporal substitution of the household,(
βsbt+s

μΣC
t+s

μΣC
t+s

)
, the shareholder of intermediate firms. The maximization is subject to the demand

for intermediate product i, coming from final good producers. The optimality condition is then:

Et

{ ∞∑
s=0

ξspβ
sbt+sμ

ΣC
t+sỸt+s

[
P̃t

s∏
k=1

(π
ιp
t+k−1π

1−ιp)− (1 + λp,t+s)MCt+s

]}
= 0 , (43)

where P̃ is the optimal price chosen and Ỹ = Yt+s(i) is the corresponding optimal demand. Note

that the optimal price depends on present and future marginal costs and mark-ups, MCt+s and

λp,t+s and is therefore common to all re-optimizing firms. Aggregate prices at time t will be a

combination of prevalent aggregate prices at time t− 1, Pt−1, and the new optimal prices, P̃t:

Pt =

[
(1− ξp)P̃

1
λp,t

t + ξp(π
ιp
t−1π

1−ιpPt−1)
1

λp,t

]λp,t

. (44)

Investment Goods Producers

Investment good producers operate in regime of perfect competition and on a national market.

Producers purchase consumption goods from the final goods market, Y I
t at a price Pt , transform

them into investment goods, It, by means of a linear technology:

It = Y I
t .

Producers then have access to a capital production technology to produce it units of investment

goods for an amount It of investment goods:

it =

[
1− S

(
It
It−1

)]
It ,

where S (·) is a convex function in It
It−1

, with S = 0 and S′ = 0 and S′′ > 0 in steady state. Producers

sell investment goods to the entrepreneurs on a competitive market at a price PK
t .

In every period capital producers will choose the optimal amount of inputs, It as to maximize

their expected discounted profits:

max
It+s

Et

∞∑
s=0

βsbt+sEt+s

{
μΣC
t+s

[
PK
t+sit+s − Pt+sIt+s

]}
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s.t.

it+s =

[
1− S

(
It+s

It+s−1

)]
It+s. (45)

The first order condition for a generic time t will then be:

1− PK
t

Pt

[(
1− S

(
It
It−1

))
− It

It−1
S′
(

It
It−1

)]
= Et

{
(βbt)

μΣC
t+1

μΣC
t

Pt+1

Pt

[
PK
t+1

Pt+1

(
I2t+1

I2t

)
S′
(
It+1

It

)]}
.

(46)

Household

The head of the household maximizes the aggregate lifetime utility of the household:

max
Ct+s, ιt+s,ΔN+

t+s,ΔN−t+s, Nt+s, Bt+s,

Ci,t+s,Wi,t+s, ιi,t+s,ΔN+
i,t+s,ΔN−i,t+s, Ni,t+s, Bi,t+s

∞∑
s=0

(β)t+sbt+sEt

[
log(Ct+s − hCt+s−1)− χ0χb,t

L
(1+ν)
t+s

(1 + ν)

]

subject to the individual flow of funds constraints (7), the individual equity accumulation equa-

tion (8), the individual borrowing constraint (14) the aggregate equity accumulation equation (11)

together with the definition of aggregate consumption and aggregate bond holdings (10) and non-

negativity constraints (2.1). The discount factor is subject to random shocks and follows a process:

log bt = ρb log bt−1 + εbt (47)

where εbt ∼ i.i.d. N
(
0, σ2

b

)
. Nominal transfers of profits of intermediate firms and banking costs are

lumped into Dt defined as:

PtDt =
(
PtYt −RK

t Kt−1 −WtLt

)
+

(
PK
t

(
1− S

(
It
It−1

))
It − PtIt

)
+
(
QB

t −QA
t

)
ΔNt (48)
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The first order conditions of the maximization problems are:

Ct :
1

(Ct − hCt−1)
− βbthEt

[
1

(Ct+1 − hCt)

]
= μΣC

t

Nt : μ
N
t = βbtEt

{
EAi,t+1

[
λi,t+1R

K
t+1 + (1− φt+1)μ

N
i,t+1(1− δ) + φt+1(μ

N
i,t+1 + μL

i,t+1)(1− δ)
]}

Bt : μ
ΣB
t = βbtEt

{
EAi,t+1

[
λi,t+1R

B
t

]}
Ci,t : λi,tPt = μΣC

t + μC+

i,t

ιi,t : λi,tP
K
t = μN

i,tAi,t + μL
t θ

PK
t

QA
t

+ μι+

i,t

ΔN+
i,t : λi,tQ

B
t = μN

i,t + μΔ++
i,t

ΔN−
i,t : λi,tQ

A
t = μN

i,t + μL
i,t − μΔ−+

i,t

Ni,t : μ
N
i,t = μN

t

Bi,t : λi,t − μB+
i,t = μΣB

t

together with constraints holding with equality (7), (8), (11), (10) and complementary slackness

conditions:

μC+
i,t Ci,t = 0

μι+
i,t ιi,t = 0

μΔ++
i,t ΔN+

i,t = 0

μΔ−+
i,t ΔN−

i,t = 0

μL
i,t(−ΔN−

s,t + θ
PK
t

QA
t

ιs,t + φ (1− δ)Nt−1)

μB+
i,t Bi,t = 0

Conditional on their draw of the level of capital installation technology Ai,t household members

are optimally sorted into three categories: buyers, keepers and sellers. If QB
t > QA

t their optimal

contingencies plans are as follows:

Buyers receive instructions to set aside their relatively inefficient capital accumulation technology,

not purchase investment goods ιb,t and instead use their income to purchase consumption goods Cb,t,
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equity claims ΔN+
b,t and liquid assets Bb,t > 0:

Cb,t > 0, μC+

b,t = 0

ιb,t = 0, μι+

i,t > 0

ΔN+
b,t > 0, μΔ++

b,t = 0

ΔN−
b,t = 0, μΔ−+

b,t > 0

ΔN−
b,t < θ

PK
t

QA
t

ιb,t + φ (1− δ)Nt−1, μL
b,t = 0

Bb,t > 0, μB+
b,t > 0

Keepers receive instructions to use their capital accumulation technology and use their income

to purchase investment goods ιk,t, while forgoing purchase of consumption goods Ck,t = 0, equity

claims ΔN+
k,t = 0 and liquid assets Bk,t = 0:

Ck,t = 0, μC+

k,t > 0

ιk,t > 0, μι+

k,t = 0

ΔN+
k,t = 0, μΔ++

k,t > 0

ΔN−
k,t = 0, μΔ−+

k,t > 0

ΔN−
k,t < θ

PK
t

QA
t

ιk,t + φ (1− δ)Nt−1, μL
k,t = 0

Bk,t = 0, μB+
k,t > 0

Sellers receive instructions to use their efficient capital accumulation technology and use their

income and resources raised by selling equity on financial markets, ΔN−
s,t > 0, to purchase investment

goods ιs,t, while forgoing purchase of consumption goods Cs,t = 0, equity claims ΔN+
s,t = 0 and liquid
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assets Bs,t = 0:

Cs,t = 0, μC+

s,t > 0

ιs,t > 0, μι+

s,t = 0

ΔN+
s,t = 0, μΔ++

s,t > 0

ΔN−
s,t > 0, μΔ−+

s,t = 0

ΔN−
s,t = θ

PK
t

QA
t

ιs,t + φ (1− δ)Nt−1, μL
s,t > 0

Bk,t = 0, μB+
k,t > 0

To verify that this is an equilibrium, I check that the first order conditions of the maximization

problems hold once I substitute in the guessed solution for buyers, keepers and sellers.

Sellers:

Cs,t : λs,tPt = μΣC
t + μC+

s,t

ιs,t :
pKt (1− θ)

As,t − θ
pKt
qAt

=
μN
s,t

Ptλs,t
= q̃At,s

ΔN+
s,t : q

B
t =

μN
s,t

Ptλs,t
+

μΔ++
s,t

Ptλs,t

ΔN−
s,t : q

A
t =

μN
s,t

Ptλs,t
+

μL
s,t

Ptλk,t

Ns,t : μ
N
s,t = μN

t

Bs,t : λs,t − μB+
s,t = μΣB

t

Since qBt > qAt >
pKt
As,t

then μι+
s,t = 0, μΔ++

s,t > 0, μΔ−+
s,t = 0, μL

s,t = 0, confirming the initial guess

that sellers indeed sell equity claims up to their borrowing constraint to purchases investment goods

ιs,t > 0 but they do not purchase equity claims, ΔN+
b,t = 0.



xix

Keepers:

Ck,t : λk,tPt = μΣC
t + μC+

k,t

ιi,t :
pKt
Ak,t

=
μN
k,t

Ptλk,t

ΔN+
k,t : q

B
t =

μN
k,t

Ptλk,t
+

μΔ++
k,t

Ptλk,t

ΔN−
k,t : q

A
t =

μN
k,t

Ptλk,t
− μΔ−+

k,t

Ptλk,t

Nk,t : μ
N
k,t = μN

t

Bk,t : λk,t − μB+
k,t = μΣB

t

Since qBt >
pKt
Ak,t

> qAt then μι+

k,t = 0, μΔ++
k,t > 0 and μΔ−+

k,t > 0, confirming the initial guess. Buyers

purchases investment goods ιk,t > 0 but they do not purchase nor sell equity claims, ΔN+
b,t = 0

ΔN−
b,t = 0.

Buyers:

Cb,t : Ptλb,t = μΣC
t =

1

(Ct − hCt−1)
− βbthEt

[
1

(Ct+1 − hCt)

]
ιb,t :

pKt
Ab,t

− qBt =
μι+
i,t

μΣC
t

> 0

ΔN+
b,t : q

B
t =

μN
b,t

μΣC
t

ΔN−
b,t : q

B
t − qAt =

μΔ−+
b,t

μΣC
t

> 0

Nb,t :
μN
b,t

μΣC
t

=
μN
t

μΣC
t

= qBt

Bb,t : λb,t = μΣB
t

Since
pKt
Ab,t

> qBt > qAt then μι+

b,t > 0 and μΔ−+
b,t > 0, confirming the initial guess. Buyers do not

purchases investment goods ιb,t = 0 nor they sell equity claims, ΔN−
b,t = 0.

Dividing the first order conditions with respect to ιs,t by the first order condition with respect

to ιb,t, I obtain:

λs,t

λb,t
=

λs,t

μΣC
t

=
qBt
q̃As,t
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and similarly using the first order condition with respect to ιk,t I obtain:

λk,t

λb,t
=

λk,t

μΣC
t

=
qBt
pKt
Ak,t

These equalities, combined with the first order conditions with respect to consumption and bond

holdings for sellers and keepers, imply that:

μC+

s,t = μB+

s,t =
qBt
q̃As,t

− 1 > 0

and

μC+

k,t = μB+

k,t =
qBt
pKt
Ak,t

− 1 > 0

confirming that in equilibrium sellers and keepers do not purchase consumption goods Ci,t, nor liquid

assets Bi,t for i = {s, k}.
To conclude, the solution implies the following optimal choices for sellers, keepers and buyers:

• Sellers

Cs,t = 0, Bs,t = 0.

ΔN−
s,t = θAs,tIs,t + φ (1− δ)Nt−1

ΔN+
s,t = 0.

Substituting the values above for ΔN−
s,t, ΔN+

s,t, Cs,t and Bs,t into the flow of funds constraint

(7), allows to solve for the optimal level of investment goods purchased by seller s:

ιs,t =
1

PK
t (1− θ)

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]

and for the seller’s optimal equity stock:

Ns,t =
1

Q̃A
s,t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1 + Q̃A

s,t(1− φ)(1− δ)Nt−1].

where Q̃A
s,t is the replacement cost of one unit of internal capital:

Q̃A
s,t =

PK
t (1− θ)

As,t − θ
PK
t

QA
t
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The fraction of sellers can be computed using the CDF of Ai,t:

χs = Pr

(
Ai,t ≥ PK

t

QA
t

)
= 1− F

(
PK
t

QA
t

)
• Keepers

Ck,t = 0, Bk,t = 0.

ιk,t =
1

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt]

ΔN−
k,t = 0, ΔN+

k,t = 0

Nk,t =
Ak,t

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +
PK
t

Ak,t
(1− δ)Nt−1].

The measure of keepers in the economy is:

χk,t = Pr

(
QA

t ≤
PK
t

Ae,t
≤ QB

t

)
= F

(
PK
t

QA
t

)
− F

(
PK
t

QB
t

)
.

• Buyers

Buyers’ intertemporal Euler equations for equity and bond holdings coincide with those of the

household in its entirety:

Ct :
1

(Ct − hCt−1)
− βbthEt

[
1

(Ct+1 − hCt)

]
= μΣC

t = Ptλb,t (49)

Nt : Q
B
t = βbtEt

{
μΣC
t+1

μΣC
t

1

πt+1
×

×
[
χs,t+1EAi,t+1

[
QB

t+1

Q̃A
t+1

(
RK

t+1 + (1− φt+1)Q̃
A
i,t+1(1− δ) + φt+1Q

A
i,t+1(1− δ)

)∣∣∣∣∣ PK
t+1

Ai,t+1
≤ QA

t+1

]
+

+ χk,t+1EAi,t+1

⎡⎣ QB
t+1

PK
t+1

Ai,t+1

(
RK

t+1 +
PK
t+1

Ai,t+1
(1− δ)

)∣∣∣∣∣∣QA
t+1 ≤

PK
t+1

Ai,t+1
≤ QB

t+1

⎤⎦+ .

+ χb,t+1EAi,t+1

(
RK

t+1 +QB
t+1(1− δ)

∣∣∣∣∣ PK
t+1

Ai,t+1
≥ QB

t+1

)]}
(50)
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where Q̃A
t+1 =

∫∞
PK
t

QA
t

1
Q̃A

s,t

dF (As,t).

Bt : 1 = βbtEt

{
μΣC
t+1

μΣC
t

1

πt+1
×
[
χs,t+1EAi,t+1

(
QB

t+1

Q̃A
i,t+1

∣∣∣∣∣ PK
t+1

Ai,t+1
≤ QA

t+1

)
+

χk,t+1EAi,t+1

⎛⎝ QB
t+1

PK
t+1

Ai,t+1

∣∣∣∣∣∣QA
t+1 ≤

PK
t+1

Ai,t+1
≤ QB

t+1

⎞⎠+

+ χb,t+1EAi,t+1

(
1

∣∣∣∣∣ PK
t+1

Ai,t+1
≥ QB

t+1

)]
RB

t

}
.

With the optimal plans for each household member in hand, I can aggregate their decision rules

to compute the household-level purchase of investment goods, ιt as well as asset positions:

ιt =

∫ ∞
PK
t

QA
t

ιs,tdF (As,t) +

∫ PK
t

QB
t

PK
t

QB
t

ιk,tdF (Ak,t)

=

∫ ∞

Pt
QA
t

1

PK
t (1− θ)

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]dF (As,t)

+

∫ PK
t

QA
t

PK
t

QB
t

1

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt]dF (Ak,t)

=χs,t

1

PK
t (1− θ)

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]dF (As,t)

+χk, t
1

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt]dF (Ak,t)

(51)

and using the definition of Q̃A
t and Q̃s

t :

Nt =

∫ ∞
PK
t

QA
t

As,tιs,tdF (As,t) +

∫ PK
t

QB
t

PK
t

QB
t

Ak,tιk,tdF (Ak,t) + (1− δ)Nt−1

=

⎛⎝∫ ∞
PK
t

QA
t

1

Q̃A
s,t

dF (As,t)

⎞⎠ [RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]

+
1

PK
t

⎛⎝∫ PK
t

QA
t

PK
t

QB
t

Ak,tdF (Ak,t)

⎞⎠ [RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt] + (1− δ)Nt−1. (52)

• Wage Setting Decision
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The first order conditions of the households’ wage setting decision is:

Et

{ ∞∑
s=0

ξw
sβsμ

ΣC
t+s

Pt+s
L̃t+s

[
W̃b,t

χb,t+s

Πw
t,t+s − (1 + λw,t+s)ω

L̃ν
t+s

μΣC
t+s

]}
= 0 (53)

where:

Πw
t,t+s =

s∏
k=1

[
(πeγ)1−ιw(πt+k−1ezt+k−1)ιw)

]
and:

log (1 + λw,t) = (1− ρw) log (1 + λw) + ρw log (1 + λw,t−1) + εwt + θpε
w
t−1 (54)

with εwt ∼ N
(
0, σ2

λw

)
. Aggregate wages evolve as:

Wt = χb,t

⎧⎨⎩(1− ξw)

(
W̃b,t

χb,t

) 1
λw

+ ξw

[
(πeγ)(1−ιw) (πt−1ezt−1)(ιw) Wt−1

χb,t

] 1
λw

⎫⎬⎭
λw

=

{
(1− ξw)

(
W̃b,t

) 1
λw + ξw

[
(πeγ)(1−ιw) (πt−1ezt−1)(ιw)Wt−1

] 1
λw

}λw

. (55)

Financial Intermediaries

In each period, bank i maximizes its nominal profits:

ΠII
t = QB

t ΔN+
i,t − (1 + τ qt )Q

A
t ΔN−

i,t

s.t.

ΔN+
i,t = ΔN−

i,t

where:

τ qt = τ̄ qt + τ̃ qt

where:

τ̄ qt = (1− ρτ̄ )τ
q
ss + ρτ̄ τ̄

q
t−1 + ετ̄t

τ̃ qt = ρτ̃ τ̃
q
t−1 + ετ̃t

and ρτ̃ = ωτρτ̄ with ωτ < 1. The two processes are buffeted by i.i.d. shocks ετ̄t ∼ N
(
0, σ2

τ

)
and

ετ̃t ∼ N
(
0, σ2

τ̃

)
. Perfect competition among intermediaries implies that their profits are equal to zero

in equilibrium so that:

QB
t = (1 + τ qt )Q

A
t (56)
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Monetary Authority

The central bank sets the level of the nominal interest rate, RB
t , according to a Taylor-type rule:

RB
t

RB
=

(
RB

t−1
RB

)ρR [( π̄t

π

)φπ
]1−ρR (ΔXt−s

γ

)φY

ηmp,t (57)

where the central bank responds to realized 4-quarter average inflation π̄t and output growth ΔY t−s
and

log ηmp,t = εmp,t (58)

and εmp,t is iid N
(
0, σ2

mp

)
.

Fiscal Authority

The government runs a balanced budget in every period:

Bt + Tt = RB
t−1Bt−1 +Gt . (59)

The share of government spending over total output follows an exogenous process:

Gt =

(
1− 1

gt

)
Yt , (60)

where:

log gt = (1− ρg) gss + ρg log gt−1 + εgt (61)

and εgt ∼ iidN
(
0, σg2

)
. I assume the share of transfers over total output, Tt/Yt, evolve according to:

Tt/Yt
ToY

=

(
Bt/Yt
BoY

)−ϕB

. (62)

Equilibrium

An equilibrium in this economy is defined as a sequence of prices and rates of return:

{PK
t , QA

t , Q
B
t ,Wt, R

K
t , RB

t }

such that for a given realization of aggregate shocks:

• final goods producers choose inputs Yt(i) and output {Yt} levels to maximize their profits

subject the available technology;

• intermediate goods producers set their prices P̃t(i) to maximize their monopolistic profits

subject to the demand from final producers (24) and their production function (25);
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• capital producers choose the optimal level of input and output
{
Y I
t , it

}
that maximize their

profits (E) under their technological constraint (45);

• household members choose optimal consumption, investment goods purchases, equity sales and

purchases as well as asset holdings and their relative wage rate:

{
Ci,t, ιi,t,ΔN+

i,t,ΔN−
i,t, Ni,t, Bi,t, W̃i,t

}
that maximize their lifetime utility (6), under their flow of funds constraint (7), and the law of

accumulation of equity (8), while satisfying the liquidity constraint (14) and the non-negativity

conditions (2.1) and the demand for hours worked of employment agencies 19;

• banks maximize their profits (E), to intermediate an amount of equity claims ΔN+
i,t = ΔN−

i,t

between savers and buyers;

• employment agencies maximize their profits by choosing the optimal supply of homogeneous

labor, Lt, and their demand for households’ specialized labor, Lb,t;

• Markets clear:

Yt =

∫ 1

0
Yt(i)di (63)

Yt =

∫ Ahigh
t

Alow

Ci,tdF (Ai,t) + It +Gt (64)

ΔNt =

∫ Ahigh
t

Alow

[
ΔN+

i,t

]
dF (Ai,t) =

∫ Ahigh
t

Alow

[
ΔN−

i,t

]
dF (Ai,t) (65)

it =

∫ Ahigh
t

Alow

ιi,tdF (Ai,t) (66)

Nt = Kt (67)

The 26 equations and 7 exogenous processes (39)-(67) summarize the set of non-linear equilibrium

conditions of the rational expectation model in the 33 variables:

[ Kt, Lt,MCt, R
K
t , W̃t,Wt, Pt, P̃t, P

K
t , RB

t , Q
A
t , Q

B
t

Yt, Ct, It, it, ιt, Gt, Bt, Nt, Tt, Dt,ΔNt, μ
ΣC
t , Ahigh

t , at, At, λp,t, λw,t, bt, τ
q
t , ηmp,t, gt ]
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Productivity At follows a non-stationary process. The price level is also non-stationary. The model

variables can be scaled so that all equations are expressed in terms of stationary real variables:

kt =
Kt

At
, Δnt =

ΔNt

At

nt =
Nt

At
, rKt =

RK
t

Pt

yt =
Yt
At

, wt =
Wt

PtAt

Ît =
It
At

, w̃b,t =
W̃t

PtAt

ît =
it
At

, mct =
MCt

Pt

ι̂t =
ιt
At

, pKt =
PK
t

Pt

ct =
Ct

At
, qAt =

QA
t

Pt

Ĝt =
Gt

At
, q̃As,t =

Q̃A
s,t

Pt

B̂t =
Bt

At
, qBt =

QB
t

Pt

tt =
Tt

At
, μ̂ΣC

t =
μΣC
t

At

dt =
Dt

At
, πt =

Pt

Pt−1

p̃t =
P̃t

Pt
,

The system of stationary equations is composed of the:

log (zt) = (1− ρz) log (γ) + ρz log (zt−1) + εzt (68)

log (1 + λp,t) =
(
1− ρp

)
log (1 + λp) + ρp log (1 + λp,t−1) + εpt + θpε

p
t−1 (69)

log (1 + λw,t) = (1− ρw) log (1 + λw) + ρw log (1 + λw,t−1) + εwt + θpε
w
t−1 (70)

log bt = ρb log bt−1 + εbt (71)

τ̄ qt = (1− ρτ̄ )τ
q
ss + ρτ̄ τ̄

q
t−1 + ετ̄t (72)

τ̃ qt = ρτ̃ τ̃
q
t−1 + ετ̃t (73)

log ηmp,t = εmp,t (74)

log gt = (1− ρg) gss + ρg log gt−1 + εgt (75)
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kt−1 exp(zt)−1

Lt(i)
=

wt

rkt

α

(1− α)
(76)

MCt =
1

αα(1− α)1−α
rαt (wt)

1−α (77)

Et

{ ∞∑
s=0

ξspβ
sbt+sμ̂

ΣC
t+sỹt+s

[
p̃t

s∏
k=1

(π
ιp
t+k−1π

1−ιpπ−1t+k)− (1 + λp,t+s)mct+s

]}
= 0 (78)

1 =

[
(1− ξp)p̃

1
λp,t

t + ξp(π
ιp
t−1π

1−ιpπ−1t )
1

λp,t

]λp,t

(79)

ît =

[
1− S

(
Ît exp zt

Ît−1

)]
Ît. (80)

pKt

[(
1− S

(
Ît exp(zt)

Ît−1

))
− Ît exp(zt)

Ît−1

S′
(
Ît exp(zt)

Ît−1

)]
− 1 =

Et

{
(βbt)

μ̂ΣC
t+1

μ̂ΣC
t

[
pKt+1

(
Î2t+1 exp(zt+1)

2

Î2t

)
S′
(
Ît+1 exp(zt+1)

Ît

)]}
(81)

1

(ct − hct−1 exp(zt)−1)
− βbthEt

[
1

(ct+1 exp(zt)− hct)

]
= Ptμ̂

ΣC
t (82)

qBt = βbtEt

{
μ̂ΣC
t+1

μ̂ΣC
t

ezt+1
1

πt+1
×

×
[
χs,t+1EAi,t+1

[
qBt+1

q̃At+1

(
rKt+1 + (1− φt+1)q̃

A
i,t+1(1− δ) + φt+1q

A
i,t+1(1− δ)

)∣∣∣∣∣ pKt+1

Ai,t+1
≤ qAt+1

]
+

+ χk,t+1EAi,t+1

⎡⎣ qBt+1

pKt+1

Ai,t+1

(
rKt+1 +

pKt+1

Ai,t+1
(1− δ)

)∣∣∣∣∣∣qAt+1 ≤
pKt+1

Ai,t+1
≤ qBt+1

⎤⎦+ .

+ χb,t+1EAi,t+1

(
rKt+1 + qBt+1(1− δ)

∣∣∣∣∣ pKt+1

Ai,t+1
≥ qBt+1

)]}
(83)

1 = βbtEt

{
μ̂ΣC
t+1

μ̂ΣC
t

ezt+1
1

πt+1
×
[
χs,t+1EAi,t+1

(
qBt+1

q̃Ai,t+1

∣∣∣∣∣ pKt+1

Ai,t+1
≤ qAt+1

)
+

χk,t+1EAi,t+1

⎛⎝ qBt+1

pKt+1

Ai,t+1

∣∣∣∣∣∣qAt+1 ≤
pKt+1

Ai,t+1
≤ qBt+1

⎞⎠+ (84)

+ χb,t+1EAi,t+1

(
1

∣∣∣∣∣ pKt+1

Ai,t+1
≥ qBt+1

)]
rBt

}
.
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1 = βbtEt

{
μ̂ΣC
t+1

μ̂ΣC
t

ezt+1 ×
[
χs,t+1EAi,t+1

(
qBt+1

q̃Ai,t+1

∣∣∣∣∣ pKt+1

Ai,t+1
≤ qAt+1

)
+

χk,t+1EAi,t+1

⎛⎝ qBt+1

pKt+1

Ai,t+1

∣∣∣∣∣∣qAt+1 ≤
pKt+1

Ai,t+1
≤ qBt+1

⎞⎠+

+ χb,t+1EAi,t+1

(
1

∣∣∣∣∣ pKt+1

Ai,t+1
≥ qBt+1

)]
RB

t

}
. (85)

q̃As,t =

∫ ∞
pKt
qAt

pKt (1− θ)

As,t − θ
pKt
qAt

dF (As,t) (86)

ιt =

∫ ∞
pKt
qAt

1

pKt (1− θ)
[rKt nt−1 + rBt−1bt−1 + dt − tt + qAt φ(1− δ)nt−1]dF (As,t)

+

∫ pKt
qAt

pKt
qBt

1

pKt
[rKt nt−1 + rBt−1bt−1 + dt − tt]dF (Ak,t)

=χs,t

1

pKt (1− θ)
[rKt nt−1 + rBt−1bt−1 + dt − tt + qAt φ(1− δ)Nt−1]dF (As,t)

+χk, t
1

pKt
[rKt Nt−1 + rBt−1Bt−1 +Dt − Tt]dF (Ak,t) (87)

nt =

⎛⎝∫ ∞
pKt
qAt

1

q̃As,t
dF (As,t)

⎞⎠ [rKt nt−1 + rBt−1bt−1 + dt − tt + qAt φ(1− δ)nt−1]

+
1

pKt

⎛⎝∫ pKt
qAt

pKt
qBt

Ak,tdF (Ak,t)

⎞⎠ [rKt nt−1 + rBt−1bt−1 + dt − tt] + (1− δ)nt−1. (88)

Et

{ ∞∑
s=0

ξw
sβsμ̂ΣC

t+sL̃t+s

[
w̃b,t

χb,t+s

s∏
k=1

(π−1t+k exp(zt+k)
−1)Πw

t,t+s − (1 + λw,t+s)ω
L̃ν
t+s

μ̂ΣC
t+s

]}
= 0 (89)

wt =

{
(1− ξw) (w̃b,t)

1
λw + ξw

[
(πeγ)(1−ιw) (πt−1ezt−1)(ιw)wt−1 exp(πtzt)

−1
] 1

λw

}λw

(90)

qBt = (1 + τ qt ) q
A
t (91)

RB
t

RB
=

(
RB

t−1
RB

)ρR [( π̄t

π

)φπ
]1−ρR (ΔXt−s

γ

)φY

ηmp,t (92)

B̂t + tt = rBt−1B̂t−1 + Ĝt (93)

Ĝt =

(
1− 1

gt

)
yt (94)
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tt/yt
ToY

=

(
Δ log(yt exp(zt))

γ

)−ϕY

(
B̂t/yt
BoY

)−ϕB

(95)

dt =
(
yt − rKt kt−1 exp(zt)−1 − wtLt

)
+

(
pKt

(
1− S

(
Ît exp(zt)

Ît−1

))
Ît − Ît

)
+
(
qBt − qAt

)
Δnt (96)

yt = kαt exp(zt)
−αL1−α

t (97)

yt = ct + Ît + Ĝt (98)

Δnt = θ

∫ ∞

Alow

Ai,tι̂i,tdF (Ai,t) + φ(1− δ)nt−1 exp(zt)−1 (99)

ît = ι̂t (100)

nt = kt (101)

The system is composed of 33 equation, including equation (84) to determine the equilibrium

real interest rate, rBt , and is expressed in 34 stationary variables:

[ kt, Lt,mct, r
K
t , w̃t, wt, πt, p̃t, p

K
t , RB

t , r
B
t , q

A
t , q

B
t , q̃

A
t

yt, ct, Ît, ît, ι̂t, Ĝt, B̂t, nt, tt, dt,Δnt, μ̂t
ΣC , zt, λp,t, λw,t, bt, τ̄

q
t , τ̃

q
t , ηmp,t, gt ]

The stationary model has a steady state solution for a given set of parameters and a steady state

level of inflation, πss, and hours worked, Lss.

I derive a log-linear approximation of the stationary equilibrium conditions (68)-(101) around the

steady state equilibrium, using the analytical differentiation routines built into Matlab.35 For a given

parameter vector, I solve for the steady state equilibrium numerically and evaluate the coefficients

of the log-linear approximation of the dynamic model’s first order conditions. With the numerical

approximation of the model at hand, I finally I then solve the system of linear rational expectation

equation using the algorithm in Anderson and Moore (1985).

35I follow Justiniano, Primiceri and Tambalotti (2010) to compute the log-linear price and wage Phillips curves
analytical from equations (41), (43), (44) and (53) - (55)
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F The Great Recession

In this section I use the baseline model estimates in table 3, to simulate the model buffeted by aggre-

gate shocks and replicate features of the Great Recessions, in the spirit of Christiano, Eichenbaum

and Trabandt (2015). To conduct the experiment, I define the notional nominal interest rate, Rnot
t

as the nominal rate that follows the estimated Taylor rule:

Rnot
t

RB
=

(
Rnot

t−1
Rnot

)ρR
[( π̄t

π

)φπ
(
ΔY t−s

γ

)φY
]1−ρR

ηmp,t.

I assume that the central bank can set the actual nominal interest rate, RB
t to be equal to the

notional rate when Rnot
t > 0 or equal to zero otherwise:

RB
t = max(Rnot

t , 0) (102)

The economy can transition across two regimes, one in which the nominal interest rate is zero and the

other in which it is constrained by the zero lower bound. I compute a piecewise-linear perturbation

solution for the model with the occasionally binding zero bound constraint on the federal funds rate

subject to a series of predetermined aggregate shock, following Guerrieri and Iacoviello (2015).

I simulate the model under the baseline parameters at the posterior mode. I start the estimation

using the smoothed state vector in 2008:Q2 as an initial condition. I then calibrate 4 quarters of

selected aggregate shocks to hit the economy from 2008:Q3 to 2009:Q2 and observe the response

of the macro variables until the end of 2012. I calibrate the shocks to total factor productivity,

government spending, financial intermediation costs, intertemporal preferences and price mark-ups.

I fit the processes for TFP growth estimated in the model (26) to growth data for total factor

productivity from Fernald (2012). This allows me to back out TFP growth shocks that hit the

U.S. economy from 2008:Q3 to 2009:Q2 (see figure 31 for a direct comparison of Fernald’s TFP

growth series and the smoothed TFP growth generated by my model’s estimates). Similarly, I fit

the estimated process for gt, in equation (2.8) to data on the share of government spending over

GDP for the same period to back out a measure of model-consistent shocks to government spending

that hit the economy during the Great Recession.

The financial intermediation shocks affect the intertemporal capital accumulation decision, while

preference shocks affect all intertemporal Euler equations and are the main drivers of aggregate

consumption in the model (see variance decomposition table 4). I select a mix of persistent and

transitory financial intermediation shocks, ε ¯tau
t and ε ˜tau

t to match the rise in corporate spreads after

the collapse of Lehman Brothers and to closely mimic their reversion over the course of 2009. I

select a sequence of preference shocks εβt to match the drop in aggregate consumption observed in

the data. Christiano, Eichenbaum and Trabandt (2015) report that financial shocks that affect the
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cost of raising working capital and firms’ marginal costs are important to explain the moderate

decrease in inflation during the Great Recession. In the absence of such working capital channel, I

introduce a sequence of exogenous positive price mark-up shocks that can match the inflation profile

over the simulation period.
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Figure 18: Great Recession - Simulation of the Estimated Model

Figure 18 compares the evolution of GDP, investment and consumption growth, hours worked,

inflation, the federal funds rate and corporate spreads in the data with the responses of the model to

the 4-quarter sequences of aggregate shocks, solved using first order perturbations without accounting

for the zero lower bound (blue dashed lines, labeled as ‘Crisis, No ZLB’) and using piecewise linear

perturbation methods to account for the occasionally binding constraint on the risk free rate (black

lines, labeled as ‘Crisis + ZLB’). The figure also includes impulse responses of the same variables in

the absence of the financial intermediation shocks (green stars, labeled as ‘No Crisis’).

The calibration matches the short-run evolution of the data series and the mean reversion of

output growth fairly well, although the 4-quarter sequence of shocks misses to capture the persistence

of hours worked after 2009. Comparing the crisis scenario solved taking into account of the ZLB

(black lines) with the non-crisis scenario (green stars) reveals that financial intermediation shocks

can account for as much as half of the drop in investment growth and hours worked observed during

the Great Recession, as well as for 25% of the drop in output growth. In the absence of the sudden

rise of corporate spreads inflation would have remained close to 2% and the federal funds rate would

not have reached its zero bound.

Finally, comparing the crisis scenario solved taking into account of the ZLB (black lines) with a

crisis scenario in which the monetary policy instrument is unconstrained (blue dashed lines) shows
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that the expectation of a zero-bound spell lasting approximately 3 years has a dragging albeit

somewhat limited effect on aggregate investment growth, hours worked and output.
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G Model with Constant Aggregate Investment Technology

In every period household members are endowed with Markov draws of investment technologies, from

a continuous probability distribution, f(Ai,t). Members with more efficient technologies (keepers and

sellers with Ai,t >
PK
t

QB
t
, see figure 3) adopt them to build more capital for the household. Members

with the highest technology draws (sellers, with Ai,t >
PK
t

QA
t
) also borrow resources from the less

efficient household members through the financial system.

A negative financial intermediation shock in the model propagates through two channels: 1) it

directly raises the cost of external funds and limits borrowing for household members with better

technologies, lowering their demand for investment goods, and 2) it decreases the return on financial

claims and creates an incentive for household members with poorer technologies to adopt them and

accumulate new physical capital instead of financial assets (the productivity of the marginal keeper,
PK
t

QB
t
, drops). The credit crunch has an immediate effect on both the demand of investment goods

and on the capital accumulation technology in the system. In other words, the negative financial

shock is accompanied by a negative investment technology shift, in line with the intuition in Buera

and Moll (2015).

When trying to separate the demand effect from the technology effect, it is important to notice

that the individual demands for investment goods for sellers and keepers, ιs,t and ιk,t are homogenous

within member types:

ιs,t =
1

PK
t (1− θ)

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]

ιk,t =
1

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt]

Summing up over sellers and keepers, I can compute the aggregate demand for each type of the

household members:

Is,t = χs,t

1

PK
t (1− θ)

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt +QA
t φ(1− δ)Nt−1]

Ik,t = χk,t

1

PK
t

[RK
t Nt−1 +RB

t−1Bt−1 + PtDt − PtTt]

The aggregate capital accumulation equation is then equal to:

Kt =

∫ ∞

fracPK
t QB

t

Ai,tιi,tdF (Ai,t) + (1− δ)Kt−1 (103)

= Ik,t

∫ PK
t

QA
t

PK
t

QB
t

Ai,tdF

(
Ai,t‖P

K
t

QB
t

< Ai,t <
PK
t

QA
t

)
+ Is,t

∫ ∞
PK
t

QA
t

Ai,,tdF

(
Ai,t‖Ai,,t >

PK
t

QA
t

)
+ (1− δ)Kt−1
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I can define the effective investment technology, Aeff
t , in the model as an auxiliary variable that

solves the following equation:

Kt = Aeff
t (Is,t + Ik,t) + (1− δ)Kt−1 (104)

Aeff
t represents the level of investment technology that is necessary to transform investment goods

purchased by sellers and keepers (Is,t + Ik,t) into aggregate capital in period t, Kt. By comparing

equations (103) and (104), one can see that the effective investment technology maps into the average

technologies adopted by sellers and keepers and depends on the parameters of the distribution

F (Ai,t). I then assume that the location parameter of the lognormal distribution of idiosyncratic

investment technologies μA,t be time-varying and that it adjusts so to keep the effective investment

technology Aeff
t constant in every period and equal to its steady state value:

Aeff
t = Aeff

ss (105)

The mean of the lognormal distribution can adjust so to keep the effective investment technology

adopted by keepers and sellers constant over time. Figure 19 plots the impulse responses of the

observables to a persistent financial intermediation shock for the model with constant technology.

I obtain these plots by adding equations (104) and (105) to the model and calibrating it at the

posterior mode from table 3. The impulse responses clearly show that keeping the effective level

of investment technology, Aeff
t , constant does not alter the impact of the financial intermediation

shock.

5 10 15 20 25 30

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

GDP

5 10 15 20 25 30

−2.5

−2

−1.5

−1

−0.5

0

Investment

5 10 15 20 25 30

−0.2

−0.15

−0.1

−0.05

0
Consumption

5 10 15 20 25 30

−0.1

−0.05

0

Wages

5 10 15 20 25 30

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Inflation

5 10 15 20 25 30

−0.4

−0.3

−0.2

−0.1

0
FFR

5 10 15 20 25 30

−0.8

−0.6

−0.4

−0.2

0
FFR

5 10 15 20 25 30
0

0.05

0.1

0.15

FFR

5 10 15 20 25 30

−0.05

−0.04

−0.03

−0.02

−0.01

0
FFR

 

 

Baseline
Constant Inv. Tech.

Figure 19: Impulse response functions to a one standard deviation financial shock. Comparison
between baseline model (black solid line) and model with high price stickiness and low wage stickiness
(blue dashed line).
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H Accuracy of the Log-linearized Solution

Due to the degree of curvature of the pdf function, the accuracy of the first order approximation

of the model equilibrium conditions that include integrals of f(Ai,t), including the definition of the

financing gap share observable, F̂GSt, can come into question when random shocks take the system

sufficiently away from the steady state. To diagnose the inaccuracy problem, I simulate the model

under different parmeterizations and model assumptions. For each version of the model, I simulate

its log-linearized solution at the posterior mode to produce 10,000 observations (burning the first

5,000). For each observation in the simulated sample I compute the absolute errors of the log-

linearized solution for the share of borrowers in the household, χs,t from the non-linear expressions

of the CDF , χnl
s.t = 1− F (

pKt
qAt

):

εχs
=
‖χs,t − (1− F (

pKt
qAt

))‖
(1− F (

pKt
qAt

))

Table 7 reports the absolute average errors expressed in base-10 logarithms mode under different

model and estimation assumptions. The baseline estimated model is highlighted in bold. The table

also reports the variance decomposition share of financial intermediation shocks for output growth

and shows that each model variant confirms that financial intermediation shocks are the largest

drivers of business cycle fluctuations in output growth.

• Baseline estimation: lognormal idiosyncratic risk and endogenous prior on the volatility of the

observable F̂GSt

The baseline estimation in the paper constrains the model-implied unconditional standard

deviation of the financing gap share, F̂GSt, by imposing a prior distribution on it, centered

around the sample standard deviation of the observable. The penalty can be interpreted as

a GMM-type endogenous prior that reinforces the incentive of the optimizer to match the

second moment of the financing gap share. The prior is useful to penalize parameterizations

under which the model is more likely to visit regions of the state space where the log-linear

approximation of its solution is inaccurate and parameter estimates may be distorted. The

prior is Gaussian, centered around the empirical standard deviation of the Compustat series

(0.12) and has standard deviation equal to 0.06. Line 5 of table 7 reports the average absolute

errors for χs,t at the posterior mode is less than 1% (≤ −2 in log10). Line 3 of Table 7 also

reports the average absolute error in the absence of the prior on the volatility of the financing

gap shares. Absent the prior, the average absolute error goes up to 6% (-1.2 in log10). I verify

that also the average absolute error for the share of keepers, χk,t, (another determinant of the

dynamics of the financing gap share) is also small, faring -1.65 in log10 or approximately 2%

in percentage terms. In the absence of the prior, the average absolute error for χk,t would be

-0.49 in log10, or 32% in percentage terms.
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• Assumption on distribution of idiosyncratic technologies In the previous versions of the paper

I had assumed that f(Ai,t) could be approximated by a generic quadratic function:

f(Ai,t) = a+ bAi,t + cA2
i,t

This assumption was necessary to allow for aggregation of the household’s first order conditions

over its members. Since then, I modified the borrowing constraint of household members

slightly so to allow aggregation under any distributions of idiosyncratic technology risk that

have finite first moments. In the current version of the paper the model is solved under the

assumption of log-normal distribution for Ai,t:

f(Ai,t) =
1

Ai,tσA

√
2π

exp
log(Ai,t)−μA√

2σA

Lines 1 and 3 of the Table 7 shows that model simulations of the share of sellers, χs,t, performed

under the quadratic distribution are less accurate than those performed under the lognormal

distribution, everything else equal.

• Robustness check 1: Prior on the persistence of financial shocks

The model-implied volatility of the financing gap share is a function of the deep parameters

of the model. By imposing a prior distribution on the volatility of F̂GSt as in the baseline

estimation, I remain agnostic on what model parameter estimates exacerbates the inaccuracy

of the model solution.

I verified that I could also obtain more accurate simulations for χs,t by imposing a prior directly

on the autoregressive coefficient of the financial shock, ρτ̄ . The shock is generally estimated to

be very persistent (ρτ̄ ≈ 0.99 at the mode). By imposing a Beta prior on ρτ̄ with mean 0.2 and

standard deviation 0.10, I can penalize extreme values of the parameter and at the same time

reduce the average absolute errors for χs,t to 1.5% from 6% in the unconstrained lognormal

case.

Evidence on the role of transitory financial intermediation shocks ˜tau
q
t in section 4 shows

that lower persistence for financial shocks reduces their relevance on output and investment at

business cycle frequencies. Imposing a tight prior on low values of ρτ̄ then biases the estimation

against the main result of my paper. Nonetheless, these estimates show that the data strongly

favor high values for ρτ̄ and that the financial intermediation shock still explains around 30%

of variation in GDP growth at business cycle frequencies.

• Robustness check 2: Estimation of model with constant household member shares

I estimated a version of the model with constant technologies and household member shares.
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This is described in online appendix I. In such a model results cannot be affected by inaccura-

cies of the log-linearized distribution of capital installation technologies away from steady state.

Results from this simplified model confirm that financial shocks have an important first-order

effect in driving business cycles, explaining around 32% of output growth fluctuations.

Table 7: Mean Absolute Errors - χs,t

Model Mean Absolute Errors Var Decomp Share of
in log10 Fin Shock (GDP Growth)

Distribution Prior χs

Quad. None -0.295 25%
Quad. FGS -1.0378 28%
LogNorm. None -1.2838 30%
LogNorm. ρτ -1.6773 30%
LogNorm. FGS -2.048 24%
Constant None No Error 35%

The table reports mean absolute errors between the log-linear approximations of the share of sellers in the
household, χs, and its non-linear counterparts. The errors are expressed in base-10 logs, so that an error of
-1 and -2 corresponds respectively to errors of 10% and 1% . The baseline is highlighted in bold. The table
reports, in rows, the models for which the errors are computed. These include the model with a quadratic
pdf with no prior on the volatility of the FGS, the model with quadratic pdf and a prior (N(12.58%, 6%))
on the standard deviation of log(FGS), the model with a lognormal pdf and no priors, the model with
the lognormal pdf and a conservative prior on the persistence of the financial shock, the model with a
lognormal pdf and a prior on the volatility of the log(FGS), and finally the model with constant member
shares.
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I Model with Constant Shares of Buyers, Keeper and Sellers

In section H I discussed how the log-linearized approximation of the integrals of the distribution

f(Ai,t) can cause the model solution to be inaccurate away from the steady state under certain

parameterizations. To verify the validity of my results for a model whose solution is not subject to

this source of inaccuracy, I modify the baseline model in the paper to feature time-invariant shares

of member types in the household. In this version of the model the shares of sellers, keepers and

buyers in the economy are set equal to their steady state value in each period:

χi,t = χi,ss for each i = s, k, b

and the investment technology of each member is assumed to be equal to the steady-state average

technology of their member type (Ās for sellers, Āk for keepers and Āb for buyers) in every period,

so that the aggregate capital accumulation equation simplifies to:

Kt = ιs,t

∫ ∞

pssK

qssA

AidF (Ai,t) + ιk,t

∫ pss
K

qssA

pssK

qssB

AidF (Ai,t) = Āsιs,t + Ākιk,t

and the Euler equation for equity in the model becomes:

qBt = βbtEt

{
μ̂ΣC
t+1

μ̂ΣC
t

ezt+1
1

πt+1
×

×
[
χs,ss

[
qBt+1

¯̃qA
(
rKt+1 + (1− φt+1)q̃

A
i,t+1(1− δ) + φt+1q

A
i,t+1(1− δ)

)]
+

+ χk,ss

[
Ākq

B
t+1

pKt+1

(
rKt+1 +

pKt+1

Ai,t+1
(1− δ)

)]
+ .

+ χb,ss

(
rKt+1 + qBt+1(1− δ)

∣∣∣∣∣ pKt+1

Ai,t+1
≥ qBt+1

)]}
(106)

where:

qBt
¯̃qA

=
qBt (Ās − θ pKss

qAss
)

pKss(1− θ)
(107)

When I estimate this model, I confirm that financial shocks are the most important drivers of business

cycle fluctuations. Table 9 reports the variance decomposition of the observables in fundamental

shocks computed around the posterior mode in table 8. Financial intermediation shocks explain more

than 30% of fluctuations in output growth, however, the model with fixed shares of member types has

a hard time explaining fluctuations in the financing gap share and in matching the second moments of

corporate spreads. Without endogenous changes in the composition of sellers, keepers and buyers,

the model needs larger financial intermediation shocks than in the baseline model to match the
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volatility of the macro variables, but fails to explain cyclical fluctuations in the Compustat financing

gap share (more than 70% of its business cycle volatility is explained by measurement error). Larger

financial shocks, can increase the volatility of asset prices (qAt ) in boom and recessions. Table 10,

however, shows that this has the counterfactual implication of increasing the volatility of borrowing

spreads, that become 16 times more volatile than output growth in the model and than corporate

spreads in the data.36.

36The steady-state intermediation cost is calibrated to be 2% for these estimates. Estimating the parameter increases
the average intermediation costs from 2%, up to 10% without altering the relevance of financial intermediation costs,
nor reducing the volatility of corporate spreads in the model. The standard deviation of the discount factor shocks
is also more elevated than in the baseline model. This is compensating for the absence of time-varying weights for
household types in the Euler equation (106) with respect to (83)
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Table 8: Calibrated Values, Priors and Posterior Estimates for the Model Parameters

Parameter Explanation Prior Mode [ 5%2 95%1 ]

γ SS Output Growth Calibrated 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Gamma(0.75,0.05) 1.43 [ 1.21 − 1.65 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 2.48 [ 1.35 − 3.44 ]
h Habit Beta(0.5,0.2) 0.999 [ 0.999 − 0.999 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.10) 0.611 [ 0.586 − 0.633 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.75,0.15) 0.832 [ 0.778 − 0.883 ]
ιp Index Prices Beta(0.50,0.15) 0.244 [ 0.17 − 0.357 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
ξw Calvo Wages Beta(0.75,0.15) 0.987 [ 0.97 − 0.993 ]
ιw Index Wages Beta(0.50,0.15) 0.345 [ 0.198 − 0.532 ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.896 [ 0.876 − 0.916 ]
FGSss FGS Steady State Calibrated 0.35 [ − − − ]
θ Collateral Constr. Collateral Constr. 0 [ 0 − 0 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Calibrated 2 [ − − − ]
θI IAC Gamma(4,2) 0.543 [ 0.425 − 0.713 ]
πss SS inflation Normal(0.5,0.1) 0.0106 [ 0.00931 − 0.0118 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.77 [ 0.694 − 0.849 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.172 [ 0.107 − 0.226 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.221 [ 0.204 − 0.236 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.346 [ 0.223 − 0.52 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.927 [ 0.896 − 0.956 ]
ρg AR(1) G shock Beta(0.5,0.2) 0.358 [ 0.226 − 0.554 ]
ρτ̄ AR(1) Fin. shock Pers. Beta(0.5,0.2) 0.92 [ 0.89 − 0.952 ]
ωτ̃ AR(1) Fin. shock Trans. Beta(0.5,0.2) 0.618 [ 0.528 − 0.706 ]
ρβ AR(1) Beta shock Beta(0.5,0.2) 0.971 [ 0.965 − 0.976 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.403 [ 0.183 − 0.781 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.263 [ 0.0248 − 0.381 ]
θp MA(1) P shock Beta(0.5,0.2) 0.2 [ 0.0283 − 0.368 ]
θw MA(1) W shock Beta(0.5,0.2) 0.728 [ 0.681 − 0.779 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.717 [ 0.623 − 0.821 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.203 [ 0.166 − 0.257 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.686 [ 0.565 − 0.805 ]
στ̄ Stdev Fin. Shock Pers. InvGamma2(0.5,1) 0.0582 [ 0.0388 − 0.0911 ]
στ̃ Stdev Fin. Shock Trans. InvGamma2(0.5,1) 8.31 [ 7.51 − 9.15 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 53.6 [ 47.7 − 60.6 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 0.222 [ 0.156 − 0.298 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 4.45 [ 3.74 − 5.29 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.0397 [ 0.0116 − 0.0858 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.202 [ 0.189 − 0.216 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 Posterior percentiles from 3 chains of 100,000 draws generated using a Random walk Metropolis-Hasting algorithm.
Acceptance rate 19%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.
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Table 10: Model Fit : Standard Deviations

Observables Data Data(Hist.) Model Median [ 5% - 95% ]

Abs. Stdev(Δ logGDPt) 0.58 0.97 0.65 [ 0.56 − 0.75 ]
Stdev(Δ log It) 3.55 3.56 3.10 [ 2.67 − 3.55 ]
Stdev(Δ logCt) 0.65 0.49 0.64 [ 0.51 − 0.82 ]
Stdev(Δ logwt) 1.24 0.58 1.68 [ 1.29 − 2.21 ]
Stdev(πt) 0.39 0.59 0.81 [ 0.56 − 1.15 ]
Stdev(RB

t ) 0.89 0.84 0.80 [ 0.48 − 1.30 ]
Stdev(logLt) 4.98 5.81 6.23 [ 3.53 − 11.91 ]
Stdev(Spt) 0.91 0.71 16.05 [ 11.48 − 23.42 ]

Stdev(F̂GSt) 21.68 – 25.51 [ 16.18 − 43.62 ]

Standard deviations of observable variables. Model implied vs. Data. Source: Haver Analytics. Sample period: 1989:Q1 -

2008:Q2. Posterior percentiles from 3 chains of 100,000 draws generated using a Random Walk Metropolis algorithm. Acceptance

rate 19%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly-selected accepted draws. For each

draw, I simulate 1 sample of length equal to the sample period (178 periods, burning the first 100 observations to control for

randomness of the initial condition). The table reports the 5th, 50th and 95th percentile mean standard deviations for the 1,000

parameter draws.
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J Model with Shocks to the Dispersion of Investment Technologies

In this section, I study the implications of a shock to the dispersion of the idiosyncratic investment

technologies. I assume that the volatility of idiosyncratic technologies, σA follows an exogenous

process:

log σA,t = (1− ρA) log σA,ss + ρA log σA,t−1 + εσA
t

where εσA
t ∼ N(0, σsg). I estimate the baseline model and add this additional shock to σA as a

potential source of aggregate fluctuations. I assume no measurement error on corporate spreads nor

on the financing gap share. Figure 20 shows that the shock has implications for macro and financial

variables that are different than those of the financial intermediation shocks and liquidity shocks

described in section D.

Figure 20 shows that an increase in technology dispersion creates an economic contraction.

Increased dispersion fattens the tails of the technology distribution: it raises the share of inefficient

household members that will not use their technologies to build more capital stock (buyers) and

increases the share and average quality of investing members who are subject to binding credit

constraints (sellers). More technology dispersion can cause a recession in which fewer individuals are

willing to buy investment goods. Those who do, however, fiercely compete for constrained external

funding, pushing up both credit spreads and the aggregate financing gap share. Since spreads and the

financing gap share move in the same direction, the shock can be separately identified from financial

intermediation shocks. Notice that this type of risk shocks is very different from those considered in

Christiano, Motto and Rostagno (2012). In their paper, a risk shock increases the dispersion of the

return on capital of entrepreneurs and their probability of defaulting on nominal debt. Defaults are

costly and larger expected losses on credit contracts lower asset prices, entrepreneurs’ net worth and

aggregate demand. Here dispersion shocks to investment technology squeeze household members

out of the pool of viable investment projects and exacerbate credit constraints for those members

with the best technologies.

Tables 11 and 12 report the estimated parameters and the variance decomposition of the ob-

servables at business cycle frequencies. The variance decomposition shows that the financial inter-

mediation shocks are still the most important drivers of business cycle fluctuations explaining more

than 20% of output growth volatility. Exogenous changes in technology dispersion σA,t can explain

30% of volatility in the financing gap share that was left to the measurement error in the baseline

estimation. However, dispersion shocks have very limited effect on macro aggregates, explaining less

than 5% of business cycle volatility of output growth.

Comparing the shock decompositions of the financing gap share for the modified model in figure

21 with the one of the baseline estimates in figure 11 also shows that dispersion shocks play a very

similar role in explaining the historical dynamics of the financing gap share to the one played by the

measurement error in the baseline estimates.
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Table 11: Calibrated Values, Priors and Posterior Estimates for the Model Parameters - Model with
Technology Dispersion Shocks

Parameter Description Prior Mode [ 5%2 95%2 ]

γ SS Output Growth Gamma(0.5,0.25) 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Calibrated 0.45 [ 0.297 − 0.594 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 1.51 [ 0.64 − 2.49 ]
h Habit Beta(0.5,0.2) 0.851 [ 0.794 − 0.903 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.05) 0.762 [ 0.744 − 0.781 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.66,0.1) 0.788 [ 0.74 − 0.834 ]
ιp Index Prices Beta(0.5,0.15) 0.313 [ 0.136 − 0.501 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
ξw Calvo Wages Beta(0.66,0.1) 0.861 [ 0.802 − 0.913 ]
ιw Index Wages Beta(0.5,0.15) 0.492 [ 0.314 − 0.671 ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.0176 [ 0.0141 − 0.0219 ]
FGSss FGS Steady State Calibrated 0.35 [ − − − ]
θ Collateral Constr. Beta(0.75,0.05) 0.515 [ 0.426 − 0.594 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Gamma(1,0.4) 1.72 [ 1.42 − 2.03 ]
θI IAC Gamma(4,2) 0.794 [ 0.558 − 1.07 ]
πss SS inflation Normal(0.5,0.1) 0.344 [ 0.246 − 0.463 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.85 [ 0.812 − 0.887 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.355 [ 0.249 − 0.461 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.173 [ 0.0994 − 0.248 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.224 [ 0.189 − 0.245 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.366 [ 0.213 − 0.517 ]
ρg AR(1) G shock Beta(0.5,0.1) 0.936 [ 0.909 − 0.961 ]
ρτ̄ AR(1) Fin. shock Trend Beta(0.5,0.2) 0.989 [ 0.984 − 0.993 ]
ωτ̃ AR(1) Fin2 shock Cycle Beta(0.5,0.2) 0.777 [ 0.704 − 0.84 ]
ρσA

AR(1) Beta shock Beta(0.5,0.2) 0.922 [ 0.877 − 0.947 ]

ρβ AR(1) Beta shock Beta(0.5,0.2) 0.508 [ 0.358 − 0.645 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.733 [ 0.579 − 0.875 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.203 [ 0.0477 − 0.378 ]
θp MA(1) P shock Beta(0.5,0.2) 0.248 [ 0.0318 − 0.512 ]
θw MA(1) W shock Beta(0.5,0.2) 0.165 [ 0.0268 − 0.308 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.602 [ 0.526 − 0.685 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.159 [ 0.137 − 0.182 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.122 [ 0.105 − 0.14 ]
στ̄ Stdev Fin. Shock Trend InvGamma2(0.5,1) 0.134 [ 0.101 − 0.17 ]
στ̃ Stdev Fin. Shock Cycle InvGamma2(0.5,1) 0.126 [ 0.1245 − 0.1481 ]
σsg Stdev Dispersion Shock InvGamma2(0.5,1) 0.0732 [ 0.0505 − 0.0971 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 2.59 [ 1.81 − 3.48 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 0.331 [ 0.262 − 0.397 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 0.146 [ 0.117 − 0.18 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.0344 [ 0.0101 − 0.0797 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.121 [ 0.107 − 0.138 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 Posterior percentiles from 3 chains of 100,000 draws generated using a Random walk Metropolis-Hasting algorithm.
Acceptance rate 23%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.
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Impulse Response Functions − Dispersion Shock
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Figure 20: Impulse responses to a one standard deviation dispersion shock σA,t. The shaded areas
represent 90 percent posterior credible sets around the posterior median.

K Robustness Estimates

K.1 Estimation on Alternative Financial Observables

Table 13 and 14 report parameter estimates and variance decomposition results for the model es-

timated on a financing gap share series that does not consider dividend payments as unavoidable

commitments of corporations, as described in section 1.37 If dividend payments are not considered to

be an unavoidable commitment to shareholders, then the average degree of dependence of corporate

firms on the financial system is lower. Accordingly, the average financing gap share in the sample

drops to around 25%, compared to 35% in the baseline calculations in equation (2) and (4) (see

table 2). The estimation on the financing gap measure that excludes dividends confirms the main

result from the variance decomposition in table 4: financial intermediation shocks account for a

large fraction of business cycle fluctuations in output and investment growth. For both variables the

importance of financial shocks in explaining output growth fluctuations is moderately reduced with

respect to the baseline. Under a more conservative definition of the financing gap share, corporate

investment is less dependent on the financial system and the transmission of financial intermediation

37The estimation is performed using the FGSEXDIV plotted in figure 1 as a blue dashed line, instead of the FGS
black solid line in the baseline case. The relative parameter estimates are reported in table 13.
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Figure 21: Historical shock decomposition for the cyclical variation of the Financing Gap Share.

shocks to real activity is partially dampened.

Tables 15 and 16 in the online appendix report the parameter estimates and variance decompo-

sition results of the estimation of the model performed substituting the BBB corporate spread series

with the EBP from Gilchrist and Zakrajsek (2012) in the set of observables.38 Data on corporate

yields and corporate spreads (like the BBB series used in the baseline estimation of the model)

respond both to changes in the expected compensation for default losses on corporate debt as well

as to the evolution of aggregate financial conditions. Gilchrist and Zakrajsek (2012) empirically

separate the excess bond premium (EBP) from the default compensation using firm-level corporate

yield data and show that the economy-wide EBP is related to measures of financial system distress.

The variance decomposition results obtained by estimating the model on the EBP supports the main

result from table 4: financial intermediation shocks account for 21% of business cycle fluctuations

in output growth and 31% in investment growth. By construction the dynamics of the EBP do not

account for one source of variation of corporate spreads, namely the time-variation in the compen-

sation for expected default losses on corporate obligations. Nonetheless, the estimation of the model

on the EBP shows a prominent role for financial intermediation shocks in explaining U.S. business

38The parameter estimates are reported in table 15.
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cycle fluctuations.39

39As an additional robustness check and to verify the empirical results included in a previous version of this paper, I
have also estimated the model on speculative grade B-rated corporate spreads instead of using the BBB spread series
used in the baseline exercise and in the literature. Since lower-rated securities are subject to higher expected default
losses, especially in downturns, the use of speculative grade corporate spreads exacerbates the mismatch between the
data and the model, in which financing spreads move in response to financial intermediation disturbances and not in
response to default risk. Variance decomposition results for the estimation on B-rated corporate bond spreads are in
line with the other sets of estimates reported here. The full set of results is available upon request.
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Baseline Model - FGS EX Dividends

Table 13: Calibrated Values, Priors and Posterior Estimates for the Model Parameters - Estimated
with FGS EX Dividends

Parameter Description Prior Mode [ 5%2 95%2 ]

γ SS Output Growth Calibrated 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Gamma(0.75,0.05) 0.0892 [ 0.0283 − 0.155 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 1.7 [ 0.792 − 2.92 ]
h Habit Beta(0.5,0.2) 0.857 [ 0.803 − 0.907 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.10) 0.774 [ 0.763 − 0.784 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.75,0.15) 0.794 [ 0.755 − 0.832 ]
ιp Index Prices Beta(0.50,0.15) 0.0907 [ 0.0156 − 0.183 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
ξw Calvo Wages Beta(0.75,0.15) 0.882 [ 0.835 − 0.933 ]
ιw Index Wages Beta(0.50,0.15) 0.164 [ 0.0627 − 0.275 ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.00668 [ 0.0061 − 0.00732 ]
FGSss FGS Steady State Calibrated 0.715 [ 0.632 − 0.797 ]
θ Collateral Constr. Collateral Constr. 0 [ 0 − 0 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Gamma(2,0.4) 2.27 [ 2.27 − 2.27 ]
θI IAC Gamma(4,2) 0.901 [ 0.649 − 1.18 ]
πss SS inflation Normal(0.5,0.1) 0.386 [ 0.275 − 0.492 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.864 [ 0.837 − 0.892 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.408 [ 0.329 − 0.49 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.161 [ 0.0812 − 0.246 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.565 [ 0.273 − 0.839 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.317 [ 0.317 − 0.317 ]
ρg AR(1) G shock Beta(0.5,0.2) 0.94 [ 0.913 − 0.966 ]
ρτ̄ AR(1) Fin. shock Pers. Beta(0.5,0.2) 0.988 [ 0.984 − 0.991 ]
ωτ̃ AR(1) Fin. shock Trans. Beta(0.5,0.2) 0.737 [ 0.666 − 0.803 ]
ρβ AR(1) Beta shock Beta(0.5,0.2) 0.527 [ 0.373 − 0.666 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.746 [ 0.638 − 0.852 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.221 [ 0.0345 − 0.424 ]
θp MA(1) P shock Beta(0.5,0.2) 0.353 [ 0.0278 − 0.695 ]
θw MA(1) W shock Beta(0.5,0.2) 0.192 [ 0.0354 − 0.309 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.585 [ 0.513 − 0.662 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.16 [ 0.138 − 0.182 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.524 [ 0.453 − 0.606 ]
στ̄ Stdev Fin. Shock Pers. InvGamma2(0.5,1) 0.0758 [ 0.0618 − 0.0896 ]
στ̃ Stdev Fin. Shock Trans. InvGamma2(0.5,1) 0.0726 [ 0.0518 − 0.0959 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 2.73 [ 1.84 − 3.62 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 0.325 [ 0.253 − 0.404 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 0.103 [ 0.0855 − 0.12 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.0428 [ 0.0124 − 0.0864 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.188 [ 0.164 − 0.213 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 Posterior percentiles from 3 chains of 100,000 draws generated using a Random walk Metropolis-Hasting algorithm.
Acceptance rate 25%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.



l

T
a
b
le

1
4
:
P
os
te
ri
o
r
V
a
ri
a
n
ce

D
ec
o
m
p
o
si
ti
o
n
-
S
ti
ck
y
w
a
g
es

-
F
G
S
E
X

D
iv
id
en

d
s

T
F
P

G
o
v
’t

M
P

F
in
.(
p
e
rs
.)

F
in
.(
tr
a
n
s.
)

P
re

fe
re

n
c
e

P
ri
c
e
M

a
rk

u
p

W
a
g
e
M

a
rk

u
p

M
E

F
G
S

M
E

S
p
re

a
d

Δ
lo
g
G
D
P
t

1
5
.1

3
.2

2
0
.3

2
0
.6

1
.0

1
3
.9

1
3
.0

1
1
.1

0
.0

0
.0

[9
.7

-
1
9
.8
]

[2
.1

-
4
.3
]

[1
5
.0

-
2
5
.9
]

[1
6
.2

-
2
5
.5
]

[0
.4

-
1
.6
]

[9
.9

-
1
8
.1
]

[8
.5

-
1
6
.8
]

[6
.0

-
1
7
.1
]

[0
-
0
]

[0
-
0
]

Δ
lo
g
I t

1
0
.5

0
.1

2
6
.7

2
7
.1

1
.4

1
.4

1
7
.6

1
3
.3

0
.0

0
.0

[6
.4

-
1
4
.7
]

[0
.0

-
0
.1
]

[1
9
.8

-
3
3
.1
]

[2
1
.1

-
3
3
.5
]

[0
.6

-
2
.3
]

[0
.2

-
3
.4
]

[1
2
.4

-
2
3
.5
]

[7
.5

-
2
0
.5
]

[0
-
0
]

[0
-
0
]

Δ
lo
g
C

t
1
1
.9

0
.1

1
.4

1
.5

0
.0

8
2
.2

0
.8

1
.7

0
.0

0
.0

[7
.1

-
1
6
.9
]

[0
.0

-
0
.3
]

[0
.5

-
2
.6
]

[0
.6

-
2
.8
]

[0
.0

-
0
.1
]

[7
4
.9

-
8
9
.2
]

[0
.4

-
1
.4
]

[0
.6

-
2
.9
]

[0
-
0
]

[0
-
0
]

Δ
lo
g
w

t
6
.7

0
.0

0
.4

0
.4

0
.0

0
.5

1
1
.0

8
0
.3

0
.0

0
.0

[4
.5

-
9
.7
]

[0
.0

-
0
.0
]

[0
.1

-
1
.1
]

[0
.1

-
1
.1
]

[0
.0

-
0
.0
]

[0
.0

-
1
.8
]

[7
.2

-
1
6
.4
]

[7
2
.2

-
8
6
.9
]

[0
-
0
]

[0
-
0
]

π
t

4
.2

0
.1

1
1
.3

4
0
.4

0
.2

3
.5

2
5
.0

1
3
.7

0
.0

0
.0

[1
.8

-
6
.7
]

[0
.0

-
0
.2
]

[6
.5

-
1
6
.5
]

[3
4
.3

-
4
6
.5
]

[0
.0

-
0
.4
]

[1
.5

-
6
.2
]

[1
7
.3

-
3
3
.7
]

[9
.3

-
1
9
.0
]

[0
-
0
]

[0
-
0
]

R
B t

0
.9

0
.1

4
9
.4

3
4
.7

0
.3

3
.3

6
.3

4
.1

0
.0

0
.0

[0
.4

-
1
.4
]

[0
.0

-
0
.2
]

[3
8
.8

-
5
6
.7
]

[2
5
.8

-
4
3
.1
]

[0
.0

-
0
.6
]

[1
.2

-
6
.1
]

[3
.3

-
1
0
.1
]

[2
.1

-
6
.7
]

[0
-
0
]

[0
-
0
]

lo
g
L

t
4
.3

0
.8

1
9
.3

1
9
.9

0
.7

6
.7

2
3
.3

2
3
.1

0
.0

0
.0

[2
.3

-
6
.1
]

[0
.5

-
1
.1
]

[1
2
.9

-
2
5
.7
]

[1
3
.3

-
2
6
.2
]

[0
.2

-
1
.3
]

[4
.0

-
9
.7
]

[1
6
.3

-
3
2
.4
]

[1
2
.8

-
3
5
.5
]

[0
-
0
]

[0
-
0
]

S
p
t

2
.3

0
.3

7
.4

1
5
.2

4
8
.8

0
.6

1
8
.6

3
.6

0
.0

0
.9

[1
.3

-
3
.4
]

[0
.1

-
0
.5
]

[3
.6

-
1
2
.4
]

[9
.3

-
2
2
.8
]

[3
9
.8

-
5
7
.8
]

[0
.1

-
1
.4
]

[1
1
.6

-
2
6
.1
]

[1
.9

-
5
.3
]

[0
-
0
]

[0
.0

-
3
.7
]

F
G
S
E
X
D
I
V
t

1
.8

0
.4

5
.2

2
7
.3

1
3
.4

0
.4

1
5
.1

3
.7

3
1
.4

0
.0

[1
.2

-
2
.5
]

[0
.2

-
0
.5
]

[2
.7

-
7
.3
]

[2
1
.6

-
3
2
.6
]

[9
.0

-
1
7
.7
]

[0
.1

-
0
.8
]

[9
.9

-
2
0
.0
]

[2
.5

-
5
.3
]

[2
5
.8

-
3
8
.9
]

[0
-
0
]

V
ar
ia
n
ce

D
ec
o
m
p
o
si
ti
o
n
of

th
e
o
b
se
rv
ab

le
s,

p
er
io
d
ic

co
m
p
o
n
en
t
w
it
h
cy
cl
es

b
et
w
ee
n
6
an

d
3
2
q
u
a
rt
er
s.

M
o
d
e
va
lu
es

a
n
d
9
0
%

co
n
fi
d
en

ce
in
te
rv
a
ls

re
p
o
rt
ed

.
P
o
st
er
io
r
p
er
ce
n
ti
le
s
o
b
ta
in
ed

fr
o
m

3
ch
a
in
s
o
f
1
0
0
,0
0
0
d
ra
w
s
ge
n
er
a
te
d
u
si
n
g
a
R
a
n
d
o
m

W
a
lk

M
et
ro
p
o
li
s
a
lg
o
ri
th
m
.

A
cc
ep
ta
n
ce

ra
te

2
5
%
.
B
u
rn
in
g
p
er
io
d
:
in
it
ia
l
2
0
,0
0
0
d
ra
w
s.

S
ta
ti
st
ic
s
co
m
p
u
te
d
ov
er

1
,0
0
0
ra
n
d
o
m
ly

sa
m
p
le
d
a
cc
ep
te
d
d
ra
w
s.

V
al
u
es

a
re

p
er
ce
n
ta
g
es
.
R
ow

s
m
ay

n
o
t
su
m

u
p
to

1
0
0
%

d
u
e
to

ro
u
n
d
in
g
er
ro
r.

C
o
m
p
u
te
d
u
se
d
p
a
ra
m
et
er

es
ti
m
a
te
s
in

ta
b
le

1
3
.



li

Baseline Model - Excess Bond Premium

Table 15: Calibrated Values, Priors and Posterior Estimates for the Model Parameters - Estimated
with EBP

Parameter Description Prior Mode [ 5%2 95%2 ]

γ SS Output Growth Calibrated 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Gamma(0.75,0.05) 0.665 [ 0.387 − 2.49 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 0.912 [ 0.779 − 2.24 ]
h Habit Beta(0.5,0.2) 0.804 [ 0.762 − 0.905 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.10) 0.791 [ 0.736 − 0.817 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.75,0.15) 0.74 [ 0.198 − 0.827 ]
ιp Index Prices Beta(0.50,0.15) 0.534 [ 0.179 − 0.882 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
ξw Calvo Wages Beta(0.75,0.15) 0.791 [ 0.39 − 0.893 ]
ιw Index Wages Beta(0.50,0.15) 0.692 [ 0.363 − 4.15 ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.0202 [ 0.0136 − 0.856 ]
FGSss FGS Steady State Calibrated 0.417 [ 0.393 − 0.446 ]
θ Collateral Constr. Collateral Constr. 0.612 [ 0.178 − 0.757 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Gamma(2,0.4) 3.67 [ 0.497 − 5.07 ]
θI IAC Gamma(4,2) 0.625 [ 0.446 − 0.909 ]
πss SS inflation Normal(0.5,0.1) 0.409 [ 0.0208 − 0.661 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.796 [ 0.421 − 0.858 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.408 [ 0.183 − 0.543 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.115 [ −0.0894 − 0.246 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.0598 [ 0.0317 − 0.736 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.345 [ 0.187 − 0.496 ]
ρg AR(1) G shock Beta(0.5,0.2) 0.945 [ 0.91 − 0.979 ]
ρτ̄ AR(1) Fin. shock Pers. Beta(0.5,0.2) 0.984 [ 0.977 − 0.989 ]
ωτ̃ AR(1) Fin. shock Trans. Beta(0.5,0.2) 0.719 [ 0.642 − 0.78 ]
ρβ AR(1) Beta shock Beta(0.5,0.2) 0.534 [ 0.374 − 0.661 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.791 [ 0.621 − 0.902 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.247 [ 0.0801 − 0.484 ]
θp MA(1) P shock Beta(0.5,0.2) 0.302 [ 0.0829 − 0.662 ]
θw MA(1) W shock Beta(0.5,0.2) 0.185 [ 0.057 − 0.408 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.584 [ 0.512 − 0.66 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.154 [ 0.135 − 0.179 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.485 [ 0.419 − 0.571 ]
στ̄ Stdev Fin. Shock Pers. InvGamma2(0.5,1) 0.268 [ 0.204 − 0.346 ]
στ̃ Stdev Fin. Shock Trans. InvGamma2(0.5,1) 0.0671 [ 0.0482 − 0.0915 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 2.71 [ 1.9 − 4.04 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 0.321 [ 0.265 − 0.396 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 0.243 [ 0.198 − 0.302 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.035 [ 0.0154 − 0.0884 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.117 [ 0.0995 − 0.141 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 Posterior percentiles from 3 chains of 100,000 draws generated using a Random walk Metropolis-Hasting algorithm.
Acceptance rate 17%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.
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Table 17: Comparison of Selected Statistics - Model with Sticky Wages vs. Model with Flexible
Wages

Statistics Data Flexible Wages Sticky Wages

Marginal Likelihood −− −454 −420
StDev Real Wage Growth 1.24% 2.4% 0.94%
StDev Hours Worked 4.98% 2.9% 3.52%

Standard deviations of selected observable variables. Standard deviations are expressed in terms
of the volatility of GDP growth in the data and in the model. Source: Haver Analytics. Sample
period: 1989:Q1 - 2008:Q2. Moments computed over 1,000 randomly-selected accepted draws for
each model specification. For each draw, I simulate 1 samples of length equal to the sample period
in the data (178 periods, burning the first 100 observations). The table reports the median moments
for the 1,000 parameter draws. Marginal Likelihood computed by means of a Laplace approximation.
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K.2 Estimation under Assumption of Flexible Wages

Table 18: Calibrated Values, Priors and Posterior Estimates for the Model Parameters

Parameter Description Prior Mode [ 5%2 95%2 ]

γ SS Output Growth Calibrated 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Gamma(0.75,0.05) 0.288 [ 0.167 − 0.413 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 1.43 [ 0.897 − 2.03 ]
h Habit Beta(0.5,0.2) 0.778 [ 0.694 − 0.855 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.10) 0.769 [ 0.754 − 0.784 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.75,0.15) 0.726 [ 0.668 − 0.783 ]
ιp Index Prices Beta(0.50,0.15) 0.0792 [ 0.0188 − 0.147 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.00943 [ 0.00825 − 0.0107 ]
FGSss FGS Steady State Calibrated 0.35 [ − − − ]
θ Collateral Constr. Collateral Constr. 0.702 [ 0.616 − 0.79 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Gamma(2,0.4) 2.63 [ 2.27 − 3.04 ]
θI IAC Gamma(4,2) 0.385 [ 0.269 − 0.512 ]
πss SS inflation Normal(0.5,0.1) 0.396 [ 0.285 − 0.514 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.796 [ 0.752 − 0.837 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.424 [ 0.346 − 0.511 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.158 [ 0.0542 − 0.253 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.55 [ 0.277 − 0.883 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.181 [ 0.0761 − 0.285 ]
ρg AR(1) G shock Beta(0.5,0.2) 0.946 [ 0.918 − 0.972 ]
ρτ̄ AR(1) Fin. shock Pers. Beta(0.5,0.2) 0.984 [ 0.978 − 0.988 ]
ωτ̃ AR(1) Fin. shock Trans. Beta(0.5,0.2) 0.726 [ 0.665 − 0.79 ]
ρβ AR(1) Beta shock Beta(0.5,0.2) 0.602 [ 0.468 − 0.728 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.77 [ 0.668 − 0.87 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.94 [ 0.876 − 1 ]
θp MA(1) P shock Beta(0.5,0.2) 0.2 [ 0.0222 − 0.416 ]
θw MA(1) W shock Beta(0.5,0.2) 0.0781 [ 0.0161 − 0.146 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.594 [ 0.514 − 0.675 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.157 [ 0.136 − 0.181 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.558 [ 0.466 − 0.657 ]
στ̄ Stdev Fin. Shock Pers. InvGamma2(0.5,1) 0.0871 [ 0.0713 − 0.105 ]
στ̃ Stdev Fin. Shock Trans. InvGamma2(0.5,1) 0.124 [ 0.084 − 0.166 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 1.87 [ 1.27 − 2.52 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 1.53 [ 1.24 − 1.86 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 0.121 [ 0.102 − 0.14 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.0324 [ 0.0113 − 0.0603 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.166 [ 0.142 − 0.19 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 N stands for Normal, B Beta, Γ Gamma and Inv. Γ Inverse-Gamma1 distribution.
2 Posterior percentiles from 3 chains of 100,000 draws generated using a Random Walk Metropolis algorithm.
Acceptance rate 19%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.
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K.3 Estimation on Sample Period that ends in 2012:Q4

Table 20: Calibrated Values, Priors and Posterior Estimates for the Model Parameters

Parameter Description Prior Mode [ 5%2 95%2 ]

γ SS Output Growth Calibrated 0.5 [ − − − ]
(β−1 − 1)× 100 Discount Factor Gamma(0.75,0.05) 0.237 [ 0.0699 − 0.353 ]
δ Capital Depreciation Calibrated 0.025 [ − − − ]
ν Inverse Frisch Gamma(2,0.75) 1.52 [ 0.583 − 2.64 ]
h Habit Beta(0.5,0.2) 0.926 [ 0.901 − 0.944 ]
lss Labor Supply Calibrated 0 [ − − − ]
η Labor Share Beta(0.6,0.10) 0.804 [ 0.789 − 0.821 ]
λp Price Mark-up Calibrated 0.15 [ − − − ]
ξp Calvo Prices Beta(0.75,0.15) 0.878 [ 0.836 − 0.923 ]
ιp Index Prices Beta(0.50,0.15) 0.195 [ 0.0796 − 0.387 ]
λw Wage Mark-up Calibrated 0.15 [ − − − ]
ξw Calvo Wages Beta(0.75,0.15) 0.989 [ 0.986 − 0.993 ]
ιw Index Wages Beta(0.50,0.15) 0.172 [ 0.0679 − 0.251 ]
μA Mean Idiosyn. Technology Calibrated 0 [ − − − ]
σA Std. Idiosyn. Technology Gamma(0.1,0.04) 0.0269 [ 0.0235 − 0.0358 ]
FGSss FGS Steady State Calibrated 0.35 [ − − − ]
θ Collateral Constr. Collateral Constr. 0.65 [ 0.514 − 0.696 ]
Bsss Liquidity over GDP Calibrated 0.02 [ − − − ]
gsss Govt. Spend. over GDP Calibrated 0.17 [ − − − ]
τqss × 100 SS Intermediation Cost Gamma(2,0.4) 3.19 [ 2.4 − 3.65 ]
θI IAC Gamma(4,2) 2.53 [ 1.69 − 3.27 ]
πss SS inflation Normal(0.5,0.1) 0.354 [ 0.259 − 0.528 ]
ρi Taylor Rule inertia Beta(0.85,0.1) 0.919 [ 0.902 − 0.941 ]
φπ Taylor Rule inflation Normal(0.7,0.05) 0.511 [ 0.46 − 0.61 ]
φDY Taylor Rule GDP growth Normal(0.125,0.1) 0.119 [ 0.0162 − 0.18 ]
ϕB Fiscal Rule - Debt Normal(0.5,0.2) 0.244 [ 0.176 − 0.252 ]
ρz AR(1) TFP growth shock Beta(0.5,0.2) 0.439 [ 0.319 − 0.597 ]
ρg AR(1) G shock Beta(0.5,0.2) 0.941 [ 0.919 − 0.965 ]
ρτ̄ AR(1) Fin. shock Pers. Beta(0.5,0.2) 0.994 [ 0.992 − 0.996 ]
ωτ̃ AR(1) Fin. shock Trans. Beta(0.5,0.2) 0.76 [ 0.672 − 0.826 ]
ρβ AR(1) Beta shock Beta(0.5,0.2) 0.454 [ 0.303 − 0.566 ]
ρp AR(1) P Mark-up shock Beta(0.5,0.2) 0.981 [ 0.96 − 0.99 ]
ρw AR(1) W Mark-up shock Beta(0.5,0.2) 0.0651 [ 0.0137 − 0.147 ]
θp MA(1) P shock Beta(0.5,0.2) 0.119 [ 0.0501 − 0.646 ]
θw MA(1) W shock Beta(0.5,0.2) 0.102 [ 0.0119 − 0.193 ]
σz Stdev TFP Growth Shock InvGamma2(0.5,1) 0.669 [ 0.588 − 0.749 ]
σg Stdev G Shock InvGamma2(0.5,1) 0.176 [ 0.154 − 0.199 ]
σi Stdev MP Shock InvGamma2(0.1,1) 0.11 [ 0.0986 − 0.126 ]
στ̄ Stdev Fin. Shock Pers. InvGamma2(0.5,1) 0.229 [ 0.198 − 0.308 ]
στ̃ Stdev Fin. Shock Trans. InvGamma2(0.5,1) 0.0268 [ 0.0156 − 0.0396 ]
σβ Stdev Beta Shock InvGamma2(0.5,1) 5.87 [ 4.29 − 7.27 ]
σp Stdev P Mark-up Shock InvGamma2(0.1,1) 0.316 [ 0.261 − 0.356 ]
σw Stdev W Mark-up Shock InvGamma2(0.1,1) 0.191 [ 0.157 − 0.23 ]
σMEsp Stdev ME Spread InvGamma2(0.05,0.05) 0.0203 [ 0.0115 − 0.0693 ]
σMEfgs

Stdev ME FGS InvGamma2(0.05,0.05) 0.142 [ 0.119 − 0.153 ]

Standard deviations of the shocks are scaled by 100 for the estimation with respect to the model.
1 N stands for Normal, B Beta, Γ Gamma and Inv. Γ Inverse-Gamma1 distribution.
2 Posterior percentiles from 3 chains of 100,000 draws generated using a Random Walk Metropolis algorithm.
Acceptance rate 24%. Burning period: initial 20,000 draws. Statistics computed over 1,000 randomly sampled accepted draws.
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Impulse Responses to Standard Shocks
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Figure 22: Impulse responses to a one standard deviation TFP shock. The shaded areas represent
90 percent posterior credible sets around the posterior median.
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Figure 23: Impulse responses to a one standard deviation government spending shock. The shaded
areas represent 90 percent posterior credible sets around the posterior median.
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Figure 24: Impulse responses to a one standard deviation monetary policy shock. The shaded areas
represent 90 percent posterior credible sets around the posterior median.
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Figure 25: Impulse responses to a one standard deviation time preference shock. The shaded areas
represent 90 percent posterior credible sets around the posterior median.
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Figure 26: Impulse responses to a one standard deviation price mark-up shock. The shaded areas
represent 90 percent posterior credible sets around the posterior median.

GDP

0 10 20 30
−1

−0.5

0

Investment

0 10 20 30
−4

−2

0

2
Consumption

0 10 20 30
−0.4

−0.3

−0.2

−0.1

0

Wages

0 10 20 30
−0.5

0

0.5

1
Inflation

0 10 20 30
−0.2

0

0.2

0.4

0.6
FFR

0 10 20 30
0

0.1

0.2

0.3

0.4

Log Hours

0 10 20 30
−1.5

−1

−0.5

0

0.5
Spread

0 10 20 30
−0.1

0
0.1
0.2
0.3

Financial Gap Share

0 10 20 30
−0.1

−0.05

0

Figure 27: Impulse responses to a one standard deviation wage mark-up shock. The shaded areas
represent 90 percent posterior credible sets around the posterior median.
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Additional Figures
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Compustat Capital Expenditure and Flow of Funds Corporate Capital Expenditure
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Figure 28: Comparison of capital expenditure of Compustat Firms (blue dashed line) and Non-
financial Corporate Sector capital expenditure from the Flow of Funds (black solid line), annualized
and seasonally adjusted, in billion of dollars. Sources: Compustat and Flow of Funds Table F.102.
Sample period 1989:Q1 - 2012:Q4.
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BBB Spreads of Different Maturities
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Figure 29: BBB corporate spreads - selected maturities.

Figure 30: The figure depicts BBB corporate spreads. Selected maturities: 1-5 years, 7-10 years and
all maturities. Expressed in annual percentage points. Sample period: 1989:Q1 - 2008:Q2. Source:
Corporate Yields from Merryll Lynch Master. Nominal Treasury Yields of 2- 7- and 10- years are
used as from FRB H.15 tables

Model TFP growth vs. Fernald TFP growth
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Figure 31: TFP growth estimates. Comparison between model-implied series and Fernald (2012)
series, not adjusted for capital utilization.
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