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1 Variants

1.1 Stochastic queues

We consider a model where entry into the queue is stochastic. When the queue is
of size 1, with probability s ∈ [0, 1] a new agent enters the queue. The baseline
model corresponds to the case s = 1When the queue is of size 2, it remains of size
2 with probability 1. Hence, after the object has either been allocated to one of
the agents or discarded, the transition probabilities between different queue sizes
are given by

1 2
1 1− s s
2 0 1

In a FCFS mechanism, let V (1, 1) be the equilibrium value of agent 1 when the
queue is of size 1 (before entry), V (1, 2) the equilibrium value of agent 1 when the
queue is of size 2 and V (2, 2) the value of agent 2 when the queue is of size 2, with
corresponding strategies q(1, 1), q(1, 2) and q(2, 2). We compute

V (1, 1) = (1− s)[π + (1− π)(1− q(1, 1))V (1, 1)]

+ s[π + (1− π)(1− q(1, 2))][(π + (1− π)q(2, 2))V (1, 1)

+ (1− π)(1− q(2, 2))V (1, 2)]− c,
V (1, 2) = [π + (1− π)(1− q(1, 2)][(π + (1− π)q(2, 2))V (1, 1)

+ (1− π)(1− q(2, 2))V (1, 2)]− c,
V (2, 2) = [π + (1− π)q(1, 2)]V (1, 1)

+ (1− π)(1− q(1, 2))[π + (1− π)(1− q(2, 2))V (2, 2)]− c.
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We consider equilibria where agent 1 adopts the same strategy when the queue
is of size 1 and of size 2. When q(1, 2) = q(1, 1), V (1, 1) = V (1, 2) and we simplify
notation by letting V (1) ≡ V (1, 1) = V (1, 2) and V (2) ≡ V (2, 2). The situation
then becomes similar to the deterministic queue model when the queue is of size 2.
We compute equilibrium payoffs as in Table 1 and find that when q(1) = q(2) = 0,
V̂ (1) = 1 − c

π
, V̂ (2) = 1 − 2c

π(2−π) and when q(1) = q(2) = 1, V̂ (1) = π − c and

V̂ (2) = π − 2c.
In the lottery, we compute the value when the queue is of size 1 and of size 2,

V (1) and V (2) with corresponding strategies q(1) and q(2). We obtain

V (1) = (1− s)[π + (1− π)(1− q(1))V (1)] + s[
π[1 + (1− π)(1− q(2))]

2

+
V (1)[π + (1− π)q(2)][1 + (1− π)(1− q(2)]

2
+ (1− π)2(1− q(2))2V (2)]− c,

V (2) =
π[1 + (1− π)(1− q(2))]

2
+
V (1)[π + (1− π)q(2)][1 + (1− π)(1− q(2)]

2
+ (1− π)2(1− q(2))2V (2)− c.

We first compute equilibrium values when q(1) = q(2) = 0 and obtain

Ṽ (1) =
π2(2− π)(1− s) + π(2−π)s

2
− cπ(2− π)− cs(1− π)2

π(2− π)[1− s
2
(1− s)(1− π)]

Ṽ (2) =
π(2−π)

2
− (1− s) (1−2|pi)(2−π)

2
− c(1 + (1− s)[π(2−π)

2
− (1− π)

π(2− π)[1− s
2
(1− s)(1− π)]

We also compute equilibrium values when q(1) = q(2) = 1 and obtain

Ṽ (1) =
sπ + 2π(1− s)− 2c

2− s
,

Ṽ (2) = π − 2c

2− s
.

In the baseline model when s = 1, V̂ (1) = Ṽ (1) and V̂ (2) = Ṽ (2). Straightfor-
ward computations show that V̂ (1) > Ṽ (1) and V̂ (2) < Ṽ (2) in both equilibria.

1.2 Heterogeneous waiting costs

We suppose that agents are divided into two categories: a fraction λ of agents
with low waiting cost c, and a fraction 1 − λ of agents with high waiting cost c.
We suppose that the waiting cost is observable by the planner – for example, the
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planner can verify whether an agent currently lives in an apartment or not, or the
health status of an agent waiting for a transplant. Agents are now characterized
by two variables: their rank in the waiting list, and their waiting cost. In order
to select an optimal mechanism, the designer faces a trade-off between these two
characteristics, and must choose which weight to assign to seniority and waiting
cost in the offer sequence. We assume that the designer, after observing the waiting
costs of the two agents, (c, c) chooses the probability that the most senior agent
is proposed the object first, p(c, c). Because it may be optimal to let the second
agent choose first when he has a high waiting cost, we do not put any restriction
on p(c, c).

Suppose that each agent knows the waiting cost of the other agent in the queue.
The strategy of each agent assigns to each of the four possible vectors of waiting
costs (c, c) a point in {0, 1}. As each agent in the queue chooses four actions,
the total number of strategies makes it intractable to characterize admissible equi-
librium configurations as a function of the parameters.1 In order to understand
the trade-off between waiting costs and seniority rank, we focus attention on one
specific equilibrium configuration: one where the low waiting cost c is sufficiently
low and the high waiting cost c sufficiently high so that all agents with low waiting
cost are selective, and all agents with high waiting costs accept both objects.

In this equilibrium, we first compute the value of the first agent when his waiting
cost is low.

V1(c, c)− c =
p(c, c) + (1− p(c, c))(1− π) + p(c, c)(1− π)

2− π

+
(1− p(c, c))A(p(c, c), p(c, c))

2− π
− c

π(2− π)
,

V1(c, c)− c = p(c, c)π + [p(c, c)(1− π) + 1− p(c, c)]A(p(c, c), p(c, c))− c,

where

A(p(c, c), p(c, c)) = λV1(c, c) + (1− λ)V1(c, c)

= 1− (λ+ (1− λ)π(2− π))c

π(λ[p(c, c) + (1− p(c, c)(1− π))] + (1− λ)p(c, c)π2(1− π))
.

Notice that the expected continuation value A(p(c, c), p(c, c)) is increasing in both
probabilities p(c, c) and p(c, c). As A < 1, the values V1(c, c) and V1(c, c) are also

1In principle, as each agent in the waiting list has 24 = 16 choices, the total number of strategy
vectors is 16 × 16 = 256. Characterizing equilibrium configurations with such a large strategy
set becomes intractable.
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increasing in the probabilities p(c, c) and p(c, c). We next compute the value of the
first agent when his cost is high.

V1(c, c) = p(c, c)π + (1− p(c, c))π(1− π) + π(1− p(c, c))B(p(c, c), p(c, c))− c,
V1(c, c) = p(c, c)π + (1− p(c, c))B(p(c, c), p(c, c))− c,

where

B(p(c, c), p(c, c)) = λV1(c, c) + (1− λ)V1(c, c)

= π
λ(p(c, c) + (1− p(c, c))(1− π) + (1− λ)p(c, c)− c

λ(1− π(1− p(c, c)) + (1− λ)p(c, c))
.

Notice that the expected continuation value B(p(c, c), p(c, c)) is increasing in p(c, c)
and p(c, c). As B < π, the values V1(c, c) and V1(c, c) are also increasing in the
probabilities p(c, c) and p(c, c). Turning to the second agent we compute his value
when his cost is low as

V2(c, c) =
p(c, c)(1− π) + 1− p(c, c) + p(c, c)

2− π

+
(1− p(c, c))(1− π)A(p(c, c), p(c, c))

2− π
− c

π(2− π)
,

V2(c, c) = p(c, c)A(p(c, c), p(c, c)) + (1− p(c, c))[π + (1− π)A(p(c, c), p(c, c))]− c

It is interesting to note that V2(c, c) is increasing in p(c, c) but non monotonic in
p(c, c). The value V (c, c) is increasing in p(c, c) and p(c, c) but decreasing in p(c, c).
For the second agent with high costs

V2(c, c) = p(c, c)[πB(p(c, c), p(c, c)) + (1− π)π] + (1− p(c, c))π − c,
V2(c, c) = p(c, c)B(p(c, c), p(c, c)) + (1− p(c, c))π − c.

We observe that V2(c, c) is increasing in p(c, c) and p(c, c) but decreasing in p(c, c)
and V2(c, c) is increasing in p(c, c) and non monotonic in p(c, c).

Contrary to the case of homogenous waiting costs, the value of the second agent
is not necessarily increasing in the probability that the first agent is proposed the
object. In order to illustrate this fact, we consider the special case where λ = π = 1

2

and compute the values of the probabilities which maximize the expected value of
the second agent, EV2 = 1

4
V2(c, c) + V2(c, c) + V2(c, c) + V2(c, c).
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In order to maximize EV2 it is sufficient to maximize

E = −7c(5 + 2p(c, c) + p(c, c))

6(2 + 2p(c, c) + 3p(c, c))
− p(c, c) + 2p(c, c)

4

+
p(c, c) + 2p(c, c)

2

1 + p(c, c) + 2p(c, c)− 8c

2 + 2p(c, c) + 4p(c, c)
.

We can check that ∂E
∂p(c,c)

> 0 and ∂E
∂p(c,c)

< 0. In addition, for sufficiently large

values of c and sufficiently low values of c, ∂E
∂p(c,c)

< 0 and ∂E
∂p(c,c)

> 0. Hence, in
order to maximize the expected value of the second agent, the mechanism designer
chooses p(c, c) = p(c, c) = 1 and p(c, c) = p(c, c) = 0. The mechanism should
always give the object to the second agent when he has a high waiting cost and to
the first agent when he has a low waiting cost.

1.3 Last Come First Serve

We consider the Last Come First Serve rule for a waiting list of arbitrary size n.
Consider a pure strategy equilibrium where agent i accepts the low quality object.
We claim that all agents preceding i in the seniority order must accept the object
as well. Because in the LCFS rule, these agents never have an opportunity to
pick the object, they never have to make decisions along the equilibrium path. In
the spirit of a sequential equilibrium, in order to guarantee that information sets
where agents make decisions are reached, we suppose that the designer chooses the
LCFS rule with probability 1 − ε and the uniform lottery with probability ε. Let
ωu(i) > 0 and γu(i) > 0 be the probability that i receives and picks the object
under the uniform rule. Then, for any j < i,

V (j) =
επ

∑j
t=1 ω

u(t)− jc∑j
t=1 γ

u(t)
.

As ε→ 0, V (j)→ −∞ so that agent j always accepts the low value object. Next
we observe that the equilibrium E0 where all agents accept the low value object
exists for all values of c and π. Consider the last agent. If he rejects the low value
object, he moves to rank n−1 next period. But because q(n) = 1, the continuation
value V (n − 1) → −∞ so that agent n has no incentive to reject the low value
object. Other equilibria where the last agent in the queue are selective also exist
for different values of the parameter. In fact, whenever π(1 − π)n−i − ic ≥ 0 for
i ≥ 2, there exists a pure strategy equilibrium where all agents j = i+1, ..n choose
q(j) = 0 and all agents j = 1, .., i choose q(j) = 0. Agents j = i + 1, ..n have a
value
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V (j) = π

j−i∑
t=0

(1− π)n−i−t − jc ≥ (j − i)[π(1− π)n−i − ic] ≥ 0,

so, upon rejecting the low value object, each agent j has a continuation value equal
to V (j−1) ≥ 0. This shows that all agents j = i+1, .., n optimally choose q(j) = 0.
For all agents j = 1, ..i, V (j − 1)→ −∞ so all agents j = 1, .., i optimally choose
q(j) = 1. Finally notice that if π(1−π)n−c ≥ 0, there exists an equilibrium where
all agents choose q(j) = 0, as V (j − 1) ≥ 0 for all j ≥ 2 and V (1) ≥ 0.

1.4 Assignment with prior application

In the baseline model, we suppose that agents are given the opportunity to accept
the object in sequence. This sequential assignment rule is time consuming as some
agents choose to reject the object which is proposed to them. We consider an
alternative assignment rule, where agents apply for the object after observing the
value. The planner then chooses which applicant is assigned the object using a
probabilistic priority mechanism p.

We consider a mechanism where, after learning his value, each agent announces
a(i) ∈ {0, 1} where a(i) = 1 means that the agent applies to the object. A random
order ρ is drawn by the mechanism designer and the first agent in the order ρ who
chooses a(i) = 1 is assigned the object. Note that an agent with high value always
applies to the mechanism and accepts the object in the sequential mechanism. An
agent with low value applies in the mechanism with prior applications if and only
if the expected value of participating is higher than the value of not participating.

The mechanism with prior application generates the same equilibrium values
and continuation values for the two agents as the sequential mechanism. The top
agent with low value chooses to participate if and only if

(1− p)(π + (1− π)q(2))V (1) ≥ V (1)

or

V (1) ≤ 0,

so that agent 1 participates when the value is low if and only if V (1) ≤ 0, as
in the sequential allocation model. The second agent with low value chooses to
participate if and only if

p(π + (1− π)q(1))V (1) ≥ (π + (1− π)q(1))V (1) + (1− π)(1− q(1))V (2)
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or
(1− p)(π + (1− π)q(1))V (1) + (1− π)(1− q(1))V (2) ≤ 0,

as in the sequential allocation model.

1.5 Information about the sequence

In the analysis, we suppose that agents know their position in the waiting list,
but ignore the sequence in which offers are made. We now consider an alternative
model where agents are told the sequence of offers. In the two-agent queue, this
information only affects the decision of the second agent. For this agent, we dis-
tinguish between two states at which decisions must be made: state (2, 1) when
agent 2 knows that she is the first in the sequence of offers, and state (2, 2) where
agent 2 knows that she is the second in the sequence of offers. Notice that we
do not need to distinguish between different continuation values at the two states,
and will instead only compute the expected continuation value V (2) of the second
agent before the offer sequence is drawn. The continuation value in state (2, 1)
is πV (1) + (1 − π)V (2), whereas the continuation value in state (2, 2) is simply
V (2). As V (1) ≥ V (2), the continuation value of agent 2 is higher at state (2, 1)
than at state (2, 2). The equilibrium in which agents 1 and 2 are selective in all
circumstances results in continuation values

V 3(1) = 1− c

π(1− π + pπ)
,

V 3(2) = 1− 2c

π(2− π)
.

As the behavior of the second agent in the two states are identical, the values
are identical to the values in the baseline model when the sequence is not known.
This equilibrium exists as long as V 3(2) − c ≥ 0 or c ≤ π(2−π)

2
. Next consider an

equilibrium where agent 2 is selective in state (2, 1) but not in state (2, 2). The
values are given by

V 2(1) = 1− c

π(1− π + pπ)
− c,

V 2(2) = p[πV 2(1) + π(1− π)] + (1− p)[π + π(1− π)]V 2(1)

+ (1− π)2V 2(2)− c,

=
π(2− π)− 2c

1− (1− p)(1− π)2
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This equilibrium exists if V 2(2) ≤ 0 and πV 2(1)+(1−π)V 2(2) ≥ 0 or π(2−π) < 2c

and π− c
1−π+pπ + (1− π) π(2−π)−2c

1−(1−p)(1−π)2 ≥ 0. Observe that both V 2(1) and V 2(2) are
increasing in p in the range of parameters for which the equilibrium exists. Next,
consider an equilibrium where agent 2 is never selective. This results in the values

V 1(1) = 1− c

pπ
,

V 1(2) = π(1 + p− pπ)− 2c,

as in the baseline case. This equilibrium exists if πV 2(1) + (1 − π)V 2(2) ≤ 0 and

V 1(1) − c ≥ 0 or c ≥ pπ+p(1−π)π(1+p(1−π))
1+2p(1−π) and c ≤ pπ. Finally, in an equilibrium

where no agent is selective, values are given by

V 0(1) = π − c

p
,

V 0(2) = π − 2c.

As in the baseline case, and the equilibrium exists if and only if c ≥ pπ. We now
compare the two regimes where agents are informed and not informed about the
sequence. We check that the utility of both agents are increasing in the degree
of selectivity of the equilibrium, V 3(1) = V 2(1) > V 1(1) > V 0(1) and V 3(2) >
V 2(2) > V 1(2) > V 0(2).

We also need to compare the parameter regions under which different equilibria
exist. Notice that the parameter regions where the selective equilibrium (equilib-
rium 3) exists in the informed case is a subset of the parameter region under which
the selective equilibrium (equilibrium 2) exists in the baseline case. However, the
parameter region under which either equilibrium 2 or 3 exists is a superset of the
region under which equilibrium 2 exists in the baseline case. Similarly, the param-
eter region under which equilibrium 1 exists in the informed case is a subset of
the region under which the equilibrium exists in the baseline case, but the region
under which either equilibrium 1 or 2 exists is a superset of the region under which
equilibrium 1 exists in the baseline case. The parameter region where equilibrium
0 exists is identical in the two regimes. We illustrate these different regions when
π = 1

2
in Figure 3.

Giving information about the sequence makes agent 2 more selective when she
is first in the sequence but less selective when she is second. For agent 1, this always
results in a positive effect on value, as it increases the parameter region for which
agent 1 is selective when choosing first, increasing the opportunity that agent 1
gets to pick the object. The balance between the two effects on agent 2’s expected
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Figure 1: The two agent discrete model with information about the sequence

value is ambiguous. There are parameter regions for which the selective equilibrium
exists in the baseline case but not in the informed regime, making agent 2 worse
off, and parameter regions where equilibrium 2 exists in the informed regime but
not in the baseline case, making agent 2 better off.

1.6 Eviction from the waiting list

We consider the effect of an eviction mechanism, where agents are taken away
from the queue if they refuse an object with positive probability. Let β(1) and
β(2) denote the probability that the first – respectively the second – agent remains
in the queue if they refuse the object. In an equilibrium where both agents are
selective, the equilibrium values are given by
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V 2(1) =
pπ + (1− p)(1− π)π − c

pπ + (1− p)(1− π)π + (1− β(1))[p(1− π) + (1−)(1− π)2]
,

V 2(2) =
pπ(1− π) + [pπ + (1− pi)πβ(2)][V 2(1)− c]− c

1− β(2)(1− π)2
.

Clearly, V 1(1) is increasing in β(1) and V 2(2) is increasing in β(1) and β(2). Evict-
ing the agents from the queue decreases their expected continuation values, making
them less likely to be selective. In the equilibrium where only agent 1 is selective,
the values become

V 1(1) =
pπ − c

pπ + (1− β(1))p(1− π)
,

V 1(2) = pπ(V 1(1)− c) + pπ(1− π) + (1− p)π − c.

The values V 1(1) and V 1(2) are both increasing in β(1). Finally, the values in
the equilibrium where both agents accept both objects are clearly unaffected by
the eviction probabilities. We thus observe that introducing eviction probabilities
reduces the values of the agents in the queue and makes them less likely to be
selective. As agents are less selective, the misallocation probability increases and
the expected waste decreases. Hence, introducing eviction probabilities can only
reduce the welfare of agents currently in the queue. It also accelerates the turnover
in the queue, improving the well being of agents who are waiting to be included in
the queue.
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