Online Appendix

The Simpler the Better? Threshold Effects of Energy Labels on Property Prices and Energy-Efficiency Investments

By Rodolfo Sejas-Portillo, Mirko Moro and Till Stowasser*

Appendix A: Energy Performance Certificates Legislation

The EPC-audit rules are defined in the Energy Performance of Buildings (Certificates and Inspections) (England and Wales) 2007 legislation (HMG, 2007) and came into force in 2007 as part of the UK government's strategy to reduce greenhouse gas emissions to be in line with the European Union (EU) directive on the energy performance of buildings – EU 2002/91/EC (HMG, 2004). The Energy Performance of Buildings (Certificates and Inspections) (England and Wales) (Amendment) Regulations 2011 (HMG, 2011) came into force in April 2012 and made it mandatory to include the energy performance rating in all marketing publications, including printed material and online listings (to be in line with the recast of the EU directive – HMG, 2016). The Energy Performance of Buildings (England and Wales) Regulations 2012 (HMG, 2012) came into force in January 2013 and made the requirement to include the energy-efficiency rating in marketing materials more explicit.

The energy performance audit for residential properties (i.e., dwellings) is performed by following the UK Government's Standard Assessment Procedure (SAP) methodology. The SAP was developed in 1993 by the Building Research Estab-

^{*}Sejas-Portillo: London School of Economics and Political Science (email: r.sejas-portillo@lse.ac.uk); Moro: University of Stirling (email: mirko.moro@stir.ac.uk); Stowasser: University of Stirling (email: till.stowasser@stir.ac.uk).

lishment (BRE), then a UK government-funded research laboratory, and is revised and updated regularly by the now independent BRE.^{A1} The current edition was last revised in 2014 (BRE, 2014). The aim of the SAP is to provide uniform energy-consumption estimates of the energy required to deliver a defined level of comfort and service provision based on standard occupancy and behavior patterns. The SAP audit generates a set of energy-performance indicators that are presented in the EPC, including the total expected energy cost and the energycost rating (SAP score). These indicators are calculated using a range of property factors that affect energy efficiency (e.g., property type, building materials, the efficiency of heating systems, etc.), environmental information (e.g., climatic data), and predefined fuel prices, which are calculated as averages of the previous three years across all regions (BRE, 2014). This means that, for the purposes of the SAP calculations, energy prices are uniform across the UK and across months. The energy cost of various energy requirement categories (e.g., space heating, electricity for lighting, etc.) is calculated by multiplying their energy demand in kWh/year by the standardized fuel cost. The total energy cost for a property is simply the sum of all category costs.

The formula for the SAP score accounts for the total floor area of the property (to make it comparable across different property sizes) and applies a cost deflator to provide comparability across years and audit-methodology revisions. The SAP score is presented on a scale from 1 to 100, where higher values represent lower energy running costs and, thus, higher energy efficiency. While the formula is not linear and slightly penalizes high-energy cost properties (BRE, 2014), the non-linearity kink occurs at SAP score 51, which does not coincide with a ratingband threshold and therefore does not represent a concern for our analysis. The formula for calculating the SAP score (BRE, 2014) involves the calculation of an energy cost factor (ECF):

$$ECF = \frac{Deflator \cdot Total Cost}{(Total Floor Area+45)}$$

^{A1}The BRE was privatized in 1997 and is now owned by the registered charity BRE Trust.

if $ECF \ge 3.5 \Rightarrow SAP = 117 - 121 \cdot \log(ECF)$ if $ECF < 3.5 \Rightarrow SAP = 100 - 13.95 \cdot ECF$

Note that when the ECF is at the kink (3.5), both formulas will result in an SAP score of 51.

The total energy cost, the SAP score, and the rating band are included on the first page of the EPC, an example of which is shown in Figure A1. In its present format,^{A2} the total energy cost is proxied by the estimated costs for three years. The SAP score and the rating band are shown in a graph following the visual format specified in the EU Energy Labelling Framework Directive (EU 92/75/EEC), where energy efficiency is presented as a discrete, color-coded grade from green A to red G that overlaps the continuous SAP score (EUCO: Council of the European Union, 1992).

While UK legislation generally does not reference specific EE rating bands, there are two exceptions: First, *The Energy Efficiency (Private Rented Property) (England and Wales) Regulations 2015* (HMG, 2015) requires properties offered for rent on or after April 2018 (and tenancy renewals on or after April 2020) to have a rating band E or better. This means that owners of properties with rating bands G and F will have to make EE investments if they want to offer them for rent after this date. Second, since August 2022, vulnerable households in receipt of means-tested benefits are eligible for subsidies to improve the EE of their home if it has an energy rating in band D or worse (*Energy Company Obligation (ECO4)* – HMG, 2022). Note that while the 2018 policy should increase the willingness to pay for an already modernized property, the opposite is the case for the 2022 policy, as it ties financial benefits to owning an energy-*inefficient* home. Lastly, while falling short of being implemented as actual legislation or policy, the UK government published the *Energy Performance Certificates for Buildings Action Plan*, a non-binding policy brief in September 2020, in which it

 $^{^{}A2}$ The format of the EPC changed slightly as part of the regulation amendments of 2012, but the unchanged rating graph was maintained as the main source of information.

articulated the "aspiration for as many homes as possible to be EPC band C by the year 2035" (DBEIS, 2020). This policy brief proposed (but did not enact) raising the minimum EE requirement for rental properties to rating band C by the year 2028.

Energy Performanc	e Certif	icate	(EPC)		S A P
17 Any Street, District, Any Town	, B5 5XX				
Dwelling type: Detached ho Date of assessment: 15 August 20 Date of certificate: 13 March 20	011	Туре	of assessment: Ro	919-9628-8430-2 JSAP, existing dv 5 m²	
Jse this document to:					
Compare current ratings of propert Find out how you can save energy					
Estimated energy costs of dw	velling for 3	years		£5,367	,
Over 3 years you could save				£2,865	;
Estimated energy costs o	of this hom	ıe			
	Current cost	s	Potential costs	Potenti	al future savings
_ighting	£375 over 3 y	ears	£207 over 3 years		
leating	£4,443 over 3	years	£2,073 over 3 year	rs y	ou could
lot water	£549 over 3 y	ears	£222 over 3 years		ve £2,865
Totals:	£5,367		£2,502	ov	er 3 years
Energy Efficiency Rating Very energy efficient - lower running costs (22 plus) A (81-31) B (89-30) C (55-68) D (39-54) E (21-38) F (1-20) Not energy efficient - higher running costs	G	Potential	The graph shows to your home. The higher the ratii likely to be. The potential rating undertaking the re The average energe dweiling in England 60).	ng the lower your g shows the effec commendations o gy efficiency rating d and Wales is ba	fuel bills are t of n page 3. j for a nd D (rating
Top actions you can take	to save m	noney a	nd make your l	1	1
Recommended measures			Indicative cost	Typical savings over 3 years	Available with Green Deal
1 Increase loft insulation to 270 mm			£100 - £350	£141	Ø
2 Cavity wall insulation			£500 - £1,500	£537	\bigcirc
3 Draught proofing			£80 - £120	£78	\bigcirc
ee page 3 for a full list of recommenda	ations for this p	roperty.			
To find out more about the recommen www.direct.gov.uk/savingenergy or may allow you to make your home wa	call 0300 123	1234 (stand	dard national rate). Wh		

FIGURE A1. FIRST PAGE OF A SAMPLE ENERGY PERFORMANCE CERTIFICATE

Appendix B: Further Robustness Analysis

To further gauge the reliability of our findings, we conduct a number of additional robustness tests, which are briefly summarised in Section VI.C and which we describe in more detail below. For the sake of brevity, we present all relevant tables and figures at the end of this Appendix B.

B.1. Covariate Balance

Probing the identifying assumption that properties on either side of a threshold are comparable in terms of observable characteristics, Section VI.B formally tests for covariate balance with a stacked-regression approach and visually inspects covariate-balance plots for property characteristics, which our models flag as being suspect of balance failure. We now complement this analysis by (a) providing equivalent covariate-balance plots for area characteristics and (b) reporting results for the individual regressions underlying the stacked-regression test.

Beginning with (a), covariate-balance graphs for all area characteristics are depicted in Figure B1. Each graph plots the proportion of homes that share the respective characteristic (such as being a property located in the North East of England). Closely mirroring the pattern for property characteristics presented in Figure 8, the plots show nonlinear relationships between observables and SAP scores. However, once again, the relationship is generally smooth, and there are no obvious discontinuities at rating-band thresholds that are suspected of being spurious drivers of our results. Yet, under the proverbial microscope, we are able to detect a slight regional imbalance at the E–D threshold, with the proportion of homes sold in the West Midlands ticking down (Panel (e) of Figure B1), which is (mechanically) offset by concurrent upticks in the proportions of properties in London (Panel (g) of Figure B1), the South West of England (Panel (i) of Figure B1) and Wales (Panel (j) of Figure B1).

Moving on to (b), Figure B2 presents confidence intervals for estimates of dis-

continuities in covariate proportions, where statistically significant non-zero values would indicate failure of balance. These estimates come from running 108 separate local linear RDD regressions (18 covariates times six thresholds) using the same MSE-optimal bandwidth selection procedure as in our main analysis while replacing the dependent variable in Specification 1 with each covariate.^{A3} Recall that this approach is conservative for two reasons. First, with 108 individual tests, our models are bound to detect some spurious discontinuities by random chance (see, for example, Lee and Lemieux, 2010). Second, in our case, this problem is exacerbated by the fact that most of our covariates are mutually exclusive, categorical variables, which introduces a high degree of mechanical co-dependence and increases the risk of false positives.^{A4}

With that in mind, results in Figure B2 confirm the isolated imbalances that were detectable when visually inspecting the population plots in Figures 8 and B1.^{A5} Note that the formal balance tests pick up a few additional cases for which covariate imbalance cannot be statistically rejected. However, a close inspection of Figures 8 and B1 reveals that these do not represent genuine discontinuous shifts. Instead, they appear to be an artifact of overly restrictive functional-form assumptions of our local linear model. Noisy data patterns are the likely source for false positives at thresholds G–F (transactions in the South East and North East of England as well as semi-detached houses) and B–A (transactions in the East Midlands), whereas curvature changes in the neighborhood of cutoffs appear to be the driver for thresholds D–C (London) and C–B (properties in the North East of England, detached and semi-detached houses, flats, leasehold properties,

 $^{^{}A3}$ For our categorical variables listed in Table 2, we create binary variables for every individual category (e.g., detached houses) and use these as dependent variables. As a result, our models test for discontinuities in the relative frequencies of each category.

^{A4}For example, property type is represented by four binary indicators for detached houses, semidetached houses, terraced houses, and flats, whose respective shares must sum up to one. If a positive discontinuity were detected for, say, the proportion of detached houses, the proportions of the other three property types would have to be lower by virtue of simple mechanics, which biases our models towards picking up negative discontinuities for these variables.

^{A5}Note that while some of these imbalances may appear sizeable due to the way they are displayed, they are, in fact, relatively small when put into perspective. For example, the positive discontinuities detected for the number of rooms at thresholds E–D and D–C merely measure roughly 0.025 rooms and are barely noticeable in the data plots.

and the number of rooms). Finally, our formal tests pick up three additional nonzero discontinuities for properties in urban areas that do not exist in the population depicted in Figure B1: two negative ones for thresholds F–E and E–D and a positive one for threshold D–C.

All in all, we believe this analysis to draw an innocuous picture. Covariate balance appears to be generally satisfied, and the few exceptions are very small in magnitude and appear unsystematic. Moreover, our main results are robust to the inclusion of covariates, which – while falling short of solving any identification issues outright – provides evidence that our findings are unlikely to be driven by systematic differences in observable characteristics.

B.2. Alternative Definitions of the Dependent Variable

Table B1 tests whether the price discontinuities reported in Table 3 of our main analysis are artifacts of the way we define the dependent variable. In our main specification, we use the log of price per square meter. We consider this to be the most meaningful specification because it accounts for both variation in property size and the right skew in selling prices. Table B1 replicates the analysis in Table 3 using different specifications of the price variable. Columns (1) and (2) report results using price per square meter without the log transformation. Because the distribution of price per square meter is heavily right-skewed, we exclude properties with a price per square meter of over $\pounds 25,000$ to avoid outliers from affecting the results. Columns (3) to (6) present results using the log of price as the dependent variable and only vary with respect to the control vector. Results in Column (3) come from a model without any controls. Column (4) displays estimates from a model that controls for the same covariates and fixed effects as in our main analysis. Finally, to further test the sensitivity of our analysis to differences in property size, Columns (5) and (6) provide estimates with floor area included on its own and together with the set of other covariates and fixed effects, respectively. In all specifications, Table B1 robustly confirms the presence of price discontinuities at the four lowest thresholds.

B.3. Alternative Modes of Inference

Our main price and investment analyses in Sections IV and V already document that our results are robust to alternative bandwidth-selection procedures (MSE optimal versus two-MSE optimal). This section further probes the stability of our results to varying modes of inference. We first test whether our results are an artifact of our choice of kernel. Our main analysis uses triangular kernels, which assign greater weight to observations that are closer to the threshold. An alternative approach is to use uniform kernels, which give equal weight to all observations within the specified bandwidth. Table B2 shows that all the price discontinuities reported in Table 3 and all the investment effects reported in Table 4 continue to be observed when we replace triangular with uniform kernels. The only notable difference is that the investment-probability discontinuities at threshold E–D are less precisely estimated (RBC p-values of 0.083 and 0.091, respectively) when uniform kernels are used. In the next robustness test, we probe the reliability of our results by performing the MSE-optimal bandwidth-selection procedure using the full range of SAP scores for each threshold instead of merely the observations in the previous and current rating bands. Results are presented in Table B3 and confirm the findings of our main analysis. We continue by re-estimating our models with arbitrary bandwidths of 3, 4, and 5 instead of data-driven bandwidths to demonstrate that our results are insensitive to bandwidth misspecification. Estimates are reported in Table B4 for the price analysis and Table B5 for the investment analysis and confirm our main findings across the board. In a final robustness check, we vary our approach to controlling for area fixed effects. In our main analysis, we use ten UK regions and an indicator for urban classification to capture geographic differences. To further validate our findings, we repeat both our price and investment analyses using 105 postcode-area fixed effects, which are much smaller geographical units. Despite a considerably smaller number of comparable properties within each postcode and a loss of precision for the price discontinuity at threshold G–F (p-values of 0.189 and 0.064), our main findings are confirmed by results presented in Table B6.

B.4. Placebo Tests

To further rule out that our results are driven by specification issues, we perform a number of falsification tests that check for price and EE-investment discontinuities at placebo thresholds. In total, we test for discontinuities at 45 pseudo thresholds: the three SAP scores before and after each real cutoff, and - in a nod to the literature documenting left-digit bias - SAP scores that end on zero (10, 20, 30, etc.). Results are collected in Tables B7 and B8. Given the discrete nature of our running variable and the complex curvatures documented in Figures 4 and 7, it is only natural that our models will spuriously pick up some false-positive effects but, as a whole, the documented pattern suggests the absence of systematic discontinuities at our arbitrary placebo thresholds. For prices, 34 of the 45 scrutinized cutoffs return null results. Of the 11 statistically significant results, 7 have a negative, and 4 have a positive sign. The latter are exclusively detected at the two highest rating bands and are therefore likely driven by the volatile functional form in that area, already discussed in our main analysis. Results are similar for EE investments with 29 null results, 11 cases with a ("wrong") positive sign, and 5 cases with a negative sign.

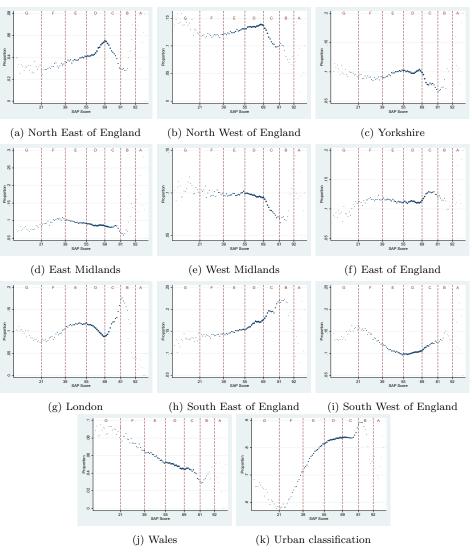


FIGURE B1. COVARIATE BALANCE PLOTS: AREA CHARACTERISTICS

 $\it Notes:~$ These figures plot covariate-balance graphs for all area characteristics by SAP score. Each graph plots the proportion of homes that share the respective characteristic.

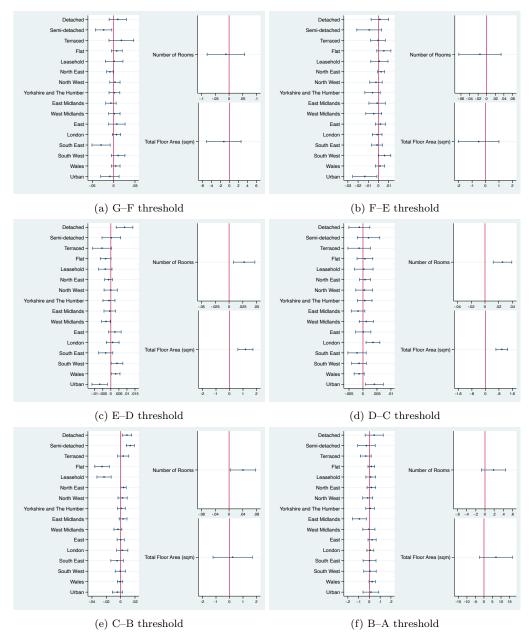


FIGURE B2. COVARIATE BALANCE TESTS: PROPERTY AND AREA CHARACTERISTICS

Notes: These figures plot results for separate local linear RDD regressions at each rating-band threshold where the dependent variable in Specification 1 is replaced with each covariate. Reported are 95% confidence intervals based on standard errors adjusted for clustering at the running variable (the SAP score). The estimated discontinuities for binary variables are shown on the left-hand side of each plot, while the numerical variables are shown on the right-hand side.

	DV = Price pe	er square meter	DV = lo	g(price)	DV = lc	g(price)
	(1)	(2)	(3)	(4)	(5)	(6)
[G-F]			(-)	\ /	(-)	(-/
τ	46.671	45.409	0.018	0.018	0.025	0.022
Robust standard error	(13.132)	(23.624)	(0.003)	(0.006)	(0.003)	(0.006)
Robust, bias-corrected 95% CI	[15.488,84.010]	[8.510,102.219]	[0.010, 0.032]	[0.012, 0.032]	[0.018, 0.035]	[0.016, 0.036]
Robust, bias-corrected p-value	[0.004]	[0.021]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	4.154 4.154	4.773 4.773	4.009 4.009	3.734 3.734	3.762 3.762	4.114 4.114
BW bias	7.743 7.743	7.552 7.552	5.449 5.449	5.256 5.256	6.263 6.263	5.691 5.691
Observations	64,856 298,980	64,820 298,762	64,856 298,980	64,820 298,762	64,856 298,980	64,820 298,762
Effective observations	21,489 41,354	21,478 41,327	21,489 41,354	16,554 31,523	16,561 31,544	21,478 41,327
[F-E]	,	,,,	,			
τ	89.896	25.257	0.022	0.002	0.028	0.004
Robust standard error	(11.279)	(5,706)	(0.005)	(0.001)	(0.004)	(0.001)
Robust, bias-corrected 95% CI	[71.346,131.624]	[17.748, 54.129]	[0.019, 0.038]	[0.001, 0.005]	[0.021, 0.041]	[0.004, 0.008]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.001]	[0.000]	[0.000]
BW estimate	3.955 3.955	3.654 3.654	4.396 4.396	5.716 5.716	4.036 4.036	4.482 4.482
BW bias	6.316 6.316	6.099 6.099	6.235 6.235	8.014 8.014	6.463 6.463	7.292 7.292
Observations	298,980 1,324,545	298,762 1,323,559	298,980 1,324,545	298,762 1,323,559	298,980 1,324,545	298,762 1,323,559
Effective observations	88,806 187,217	88,750 187.078	113,464 245,067	36,238 307,373	113,464 245,067	1 113,392 244,879
[E–D]		,		,=		
τ	55.284	34.567	0.028	0.013	0.020	0.012
Robust standard error	(7.182)	(4.067)	(0.003)	(0.001)	(0.002)	(0.001)
Robust, bias-corrected 95% CI	[47.182,76.374]	[38.075,49.650]	[0.026,0.037]	[0.014,0.019]	[0.017,0.027]	[0.013,0.016]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.719 3.719	3.478 3.478	3.471 3.471	3.538 3.538	3.641 3.641	3.485 3.485
BW bias	5.256 5.256	5.363 5.363	5.068 5.068	5.791 5.791	5.430 5.430	5.598 5.598
Observations	1,324,545 3,411,187	1,323,559 3,408,989	1,324,545 3,411,187	1,323,559 3,408,989	1,324,545 3,411,187	1,323,559 3,408,989
Effective observations	404,441 740,197	404,176 739,721	404,441 740,197	404,176 739,721	404,441 740,197	404,176 739,721
[D-C]						
τ	23.656	6.489	0.016	0.006	0.009	0.004
Robust standard error	(4.838)	(3.090)	(0.001)	(0.000)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[10.627,41.801]	[-0.333,17.447]	[0.015,0.021]	[0.006.0.010]	[0.008.0.014]	[0.004.0.009]
Robust, bias-corrected p-value	[0.001]	[0.059]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.556 3.556	4.067 4.067	3.476 3.476	4.330 4.330	3.710 3.710	3.500 3.500
BW bias	5.757 5.757	7.311 7.311	5.486 5.486	5.418 5.418	5.707 5.707	5.069 5.069
Observations	3,411,187 1,727,916	3,408,989 1,722,293	3,411,187 1,727,916	3,408,989 1,722,293	3,411,187 1,727,916	3,408,989 1,722,293
Effective observations	886,173 963,656	1,172,757 1,123,375	886,173 963,656	1,172,757 1,123,375	886,173 963,656	885,556 962,752
[C-B]	,,	7 . 7	,,	7 . 7		
τ	-13.589	5.406	-0.006	0.003	0.004	0.006
Robust standard error	(7.982)	(6.578)	(0.007)	(0.002)	(0.002)	(0.001)
Robust, bias-corrected 95% CI	[-68.804,-16.814]	[-12.671,21.028]	[0.005,0.018]	[0.002.0.006]	[0.008.0.014]	[0.005, 0.011]
Robust, bias-corrected p-value	[0.001]	[0.627]	[0.000]	[0.000]	[0.218]	[0.000]
BW estimate	3.666 3.666	4.344 4.344	4.454 4.454	5.427 5.427	4.973 4.973	3.984 3.984
BW bias	6.202 6.202	6.746 6.746	6.680 6.680	6.270 6.270	6.343 6.343	6.367 6.367
Observations	1,727,916 128,795	1,722,293 120,498	1,727,916 128,795	1,722,293 120,498	1,727,916 128,795	1,722,293 120,498
Effective observations	183,053 103,708	263,306 107,378	266,682 114,352	358,618 113,292	266,682 114,352	180,236 97,713
[B-A]						
τ	28.128	50.648	0.095	0.052	0.028	0.047
Robust standard error	(1.685)	(12.238)	(0.009)	(0.006)	(0.004)	(0.002)
Robust, bias-corrected 95% CI	[-97.265,1.294]	[-71.728,132.386]	[0.118,0.163]	[0.042,0.077]	[0.010.0.070]	[0.044,0.057]
Robust, bias-corrected p-value	[0.056]	[0.560]	[0.000]	[0.000]	[0.008]	[0.000]
BW estimate	2.945 2.945	3.331 3.331	2.768 2.768	3.315 3.315	2.886 2.886	3.258 3.258
BW bias	5.226 5.226	6.120 6.120	5.315 5.315	6.421 6.421	5.210 5.210	6.119 6.119
Observations	128,795 1,437	120,498 1,365	128,795 1,437	120,498 1,365	128,795 1,437	120,498 1.365
Effective observations	1,457 973	2,367 1,085	1,457 973	2,367 1,085	1,457 973	2,367 1,085
BW selection	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal
Property size		o.r	or		Yes	Yes
Property characteristics		Yes		Yes	100	Yes
Area FE		Yes		Yes		Yes
Date FE		Yes		Yes		Yes

TABLE B1—ROBUSTNESS: ALTERNATIVE DEPENDENT VARIABLES

Notes: This table reports results for our local linear RDD analysis of price discontinuities when using alternative definitions of the dependent variable. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the price discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Columns (1) and (2) present results using price per square meter as the dependent variable. The distribution of price per square meter is heavily right-skewed. To avoid outliers from affecting the results, we exclude properties with a price per square meter of over £25,000. Columns (3) to (6) present results using the log of price as the dependent variable. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

	Price a	malysis	Investmer	nt analysis
	(1)	(2)	(3)	(4)
[G-F]	. ,			
τ	0.020	0.017	-0.003	-0.004
Robust standard error	(0.004)	(0.008)	(0.007)	(0.008)
Robust, bias-corrected 95% CI	[0.013,0.039]	[0.007,0.040]	[-0.022,0.013]	[-0.023,0.013]
Robust, bias-corrected p-value	[0.000]	[0.004]	[0.635]	[0.592]
BW estimate	3.625 3.625	4.068 4.068	3.595 3.595	3.591 3.591
BW bias	6.028 6.028	6.285 6.285	6.783 6.783	6.639 6.639
Observations				
	65,293 299,568	65,257 299,350	43,674 203,983	43,642 203,813
Effective observations	16,631 31,631	21,576 41,439	10,837 20,832	10,830 20,821
[F-E]				
τ	0.028	0.010	-0.008	-0.008
Robust standard error	(0.005)	(0.000)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[0.020, 0.041]	[0.004, 0.018]	[-0.011, -0.006]	[-0.012, -0.007]
Robust, bias-corrected p-value	[0.000]	[0.002]	[0.000]	[0.000]
BW estimate	3.079 3.079	2.858 2.858	4.886 4.886	4.312 4.312
BW bias	5.565 5.565	5.555 5.555	7.198 7.198	8.003 8.003
Observations	299,568 1,325,863	299,350 1,324,875	203,983 822,298	203,813 821,62
Effective observations	88,939 187,435	61,819 134,350	79,049 156,927	78,993 156,792
[E-D]				/
τ	0.022	0.010	-0.003	-0.003
Robust standard error	(0.002)	(0.002)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[0.020,0.028]	[0.009, 0.015]	[-0.004,0.000]	[-0.004,0.000]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.083]	[0.091]
BW estimate	2.745 2.745	3.321 3.321	3.234 3.234	3.262 3.262
BW bias	5.176 5.176	6.358 6.358	5.618 5.618	5.620 5.620
Observations				
	1,325,863 3,413,478	1,324,875 3,411,279	822,298 1,876,936	821,621 1,875,49
Effective observations	279,932 536,018	404,572 740,328	243,573 434,275	243,379 433,95
[D-C]	0.000	0.004	0.001	0.004
au	0.009	0.004	-0.001	-0.001
Robust standard error	(0.001)	(0.000)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[0.008, 0.015]	[0.004,0.008]	[-0.002,-0.001]	[-0.002,-0.001]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.968 3.968	3.130 3.130	5.382 5.382	4.362 4.362
BW bias	6.206 6.206	5.214 5.214	5.290 5.290	5.416 5.416
Observations	3,413,478 1,728,658	3,411,279 1,723,033	1,876,936 896,682	1,875,494 893,50
Effective observations	886,646 964,063	886,028 963,158	762,739 649,329	612,133 580,50
[C-B]				
τ	0.005	0.007	-0.001	-0.001
Robust standard error	(0.003)	(0.003)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[-0.008, 0.004]	[0.002, 0.013]	[-0.002, 0.001]	[-0.002, 0.001]
Robust, bias-corrected p-value	[0.559]	[0.014]	[0.458]	[0.510]
BW estimate	3.278 3.278	3.213 3.213	4.121 4.121	4.110 4.110
BW bias	6.188 6.188	5.279 5.279	6.704 6.704	6.541 6.541
Observations	1,728,658 128,830	1,723,033 120,531	896,682 78,817	893,505 75,117
Effective observations	183,120 103,735	180,302 97,740	140,177 70,564	138,359 67,320
[B-A]			.,	
[D II]	0.006	0.026	-0.018	-0.013
Robust standard error	(0.001)	(0.009)	(0.002)	(0.002)
Robust, bias-corrected 95% CI	[-0.060,0.062]	[-0.025,0.081]	[-0.023,-0.008]	[-0.018,-0.005]
Robust, bias-corrected 95% CI Robust, bias-corrected p-value			[-0.023,-0.008]	[-0.018,-0.005]
· ·	[0.979]	[0.306]	L J	
BW estimate	2.794 2.794	2.836 2.836	3.147 3.147	3.226 3.226
BW bias	5.617 5.617	6.177 6.177	5.356 5.356	5.231 5.231
Observations	128,830 1,437	120,531 1,365	78,817 599	75,117 569
Effective observations	1,457 973	1,358 919	1,077 476	1,007 449
BW selection	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal
Property characteristics		Yes		Yes
Area FE		Yes		Yes
Alea FL		100		100

TABLE B2—ROBUSTNESS: UNIFORM KERNELS

Notes: This table reports results for our local linear RDD analyses of price and EE-investment discontinuities when using uniform kernel weights instead of triangular kernel weights. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Columns (1) and (2) present results for the price analysis using Specifications 1 and 2, respectively. Columns (3) and (4) present results for the EE-investment analysis using Specifications 3 and 4, respectively. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

TABLE B3—ROBUSTNESS: OPTIMAL BANDWIDTHS USING ALL TRANSACTIONS

	Deltar		T	+1
	(1) Price a	analysis (2)	(2)	t analysis (2)
[G-F]	(1)	(2)	(2)	(2)
[G-F]	0.022	0.020	-0.018	-0.018
Robust standard error	(0.003)	(0.007)	(0.000)	(0.001)
Robust, bias-corrected 95% CI	[0.018,0.033]	[0.012,0.039]	[-0.020,-0.016]	[-0.020,-0.016]
Robust, bias-corrected p-value	[0.013,0.035]	[0.002,0.033]	[0.000]	[0.000]
BW estimate	4.422 4.422	4.700 4.700	3.909 3.909	3.701 3.701
BW bias	7.563 7.563	7.129 7.129	5.671 5.671	5.955 5.955
Observations	65,293 6,897,834	65,257 6,880,433	65,293 6,897,834	65,257 6,880,433
Effective observations	21,587 41,466	21,576 41,439	16,631 31,631	16,624 31,610
[F-E]	21,007 41,400	21,570 41,455	10,031 31,031	10,024 31,010
τ [I L]	0.026	0.004	-0.022	-0.022
Robust standard error	(0.004)	(0.002)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[0.020,0.036]	[-0.000,0.009]	[-0.023,-0.021]	[-0.023,-0.021]
Robust, bias-corrected p-value	[0.000]	[0.056]	[0.000]	[0.000]
BW estimate	6.852 6.852	7.214 7.214	4.479 4.479	4.450 4.450
BW bias	11.090 11.090	11.428 11.428	8.556 8.556	8.561 8.561
Observations	364,861 6,598,266	364,607 6,581,083	364,861 6,598,266	364,607 6,581,083
Effective observations	157,304 376,576	176,252 450,619	113,639 245,331	113,567 245,143
[E-D]			0,000 210,001	0,001 210,140
τ [Ε Β]	0.017	0.011	-0.034	-0.035
Robust standard error	(0.003)	(0.001)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[0.014, 0.024]	[0.012, 0.015]	[-0.035, -0.033]	[-0.036, -0.034]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	5.344 5.344	3.673 3.673	5.097 5.097	3.146 3.146
BW bias	8.634 8.634	6.150 6.150	8.052 8.052	5.659 5.659
Observations	1,690,724 5,272,403	1,689,482 5,256,208	1,690,724 5,272,403	1,689,482 5,256,208
Effective observations	615,716 1,192,279	404,572 740,328	615,716 1,192,279	404,572 740,328
[D-C]				
τ	0.008	0.003	-0.047	-0.047
Robust standard error	(0.001)	(0.001)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[0.008, 0.013]	[0.003,0.006]	[-0.048, -0.045]	[-0.048, -0.045]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	4.707 4.707	4.579 4.579	4.248 4.248	4.382 4.382
BW bias	7.650 7.650	8.512 8.512	5.303 5.303	5.334 5.334
Observations	5,104,202 1,858,925	5,100,761 1,844,929	5,104,202 1,858,925	5,100,761 1,844,929
Effective observations				
	1,174,194 1,125,003	1,173,389 1,123,849	1,174,194 1,125,003	1,173,389 1,123,849
[C-B]	1,174,194 1,125,003	1,173,389 1,123,849	1,174,194 1,125,003	
	1,174,194 1,125,003	0.006	-0.050	
[C-B]				1,173,389 1,123,849
$\begin{tabular}{c} $[C-B]$ \\ $$$$$$ $$ $$ $$ $$ $$ Robust standard error $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	0.003	0.006	-0.050	$\begin{array}{r} 1,173,389 \\ 1,123,849 \\ \hline 0.051 \\ (0.000) \\ [-0.056,-0.052] \end{array}$
$\begin{tabular}{l} \hline & [C-B] \\ \hline τ Robust standard error Robust, bias-corrected 95% CI Robust, bias-corrected p-value \end{tabular}$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007, 0.000]\\ [0.079]\end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003, 0.012]\\ [0.002]\end{array}$	-0.050 (0.000) [-0.054,-0.051] [0.000]	1,173,389 1,123,849 -0.051 (0.000) [-0.056,-0.052] [0.000]
$\begin{tabular}{c} [C-B] \\ \hline $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	0.003 (0.002) [-0.007,0.000]	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003, 0.012]\end{array}$	-0.050 (0.000) [-0.054,-0.051]	$\begin{array}{r} 1,173,389 \\ 1,123,849 \\ \hline 0.051 \\ (0.000) \\ [-0.056,-0.052] \end{array}$
$\begin{tabular}{c} [C-B] \\ \hline $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007, 0.000]\\ [0.079]\\ 3.795 3.795\\ 6.555 6.555 \end{array}$	$\begin{array}{c} 0.006\\(0.002)\\[0.003,0.012]\\[0.002]\\4.666[4.666\\8.038[8.038]\end{array}$	$\begin{array}{c} -0.050\\(0.000)\\[-0.054,-0.051]\\[0.000]\\2.705 2.705\\5.765 5.765\end{array}$	$\begin{array}{r} 1,173,389 \\ 1,123,849 \\ \hline 0.051 \\ (0.000) \\ [-0.056,-0.052] \\ [0.000] \\ 2.694 \\ [2.694] \\ 2.694 \\ 5.507 \\ [5.507] \end{array}$
$\begin{tabular}{l} \hline [C-B] \\ \hline $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007, 0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6,832,860 130,267\end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003, 0.012]\\ [0.002]\\ 4.666 [4.666\\ 8.038 [8.038\\ 6,823,794 [121,896\end{array}$	$\begin{array}{c} -0.050 \\ (0.000) \\ [-0.054, -0.051] \\ [0.000] \\ 2.705 \\ 2.705 \\ 2.765 \\ 5.765 \\ 5.765 \\ 5.832, 860 \\ 130, 267 \end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ \hline \\ (0.000) \\ [-0.056,-0.052] \\ [0.000] \\ 2.694 \\ 2.694 \\ 2.507 \\ 5.507 \\ 5.507 \\ 6,823,794 \\ [121,896 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007, 0.000]\\ [0.079]\\ 3.795 3.795\\ 6.555 6.555 \end{array}$	$\begin{array}{c} 0.006\\(0.002)\\[0.003,0.012]\\[0.002]\\4.666[4.666\\8.038[8.038]\end{array}$	$\begin{array}{c} -0.050\\(0.000)\\[-0.054,-0.051]\\[0.000]\\2.705 2.705\\5.765 5.765\end{array}$	$\begin{array}{r} 1,173,389 \\ 1,123,849 \\ \hline 0.051 \\ (0.000) \\ [-0.056,-0.052] \\ [0.000] \\ 2.694 \\ [2.694] \\ 2.694 \\ 5.507 \\ [5.507] \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007, 0.000]\\ [0.079]\\ 3.795]3.795\\ 6.555]6.555\\ 6.832, 860]130, 267\\ 183, 120]103, 735 \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003, 0.012]\\ [0.002]\\ 4.666 [4.666\\ 8.038 [8.038\\ 6.823, 794 121, 896\\ 263, 422 107, 408 \end{array}$	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054, -0.051]\\ [0.000]\\ 2.705 [2.705\\ 5.765]5.765\\ 6.832, 860 [130, 267\\ 109, 435 [87, 896]\end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ -0.051 \\ (0.000) \\ [-0.056,-0.052] \\ [0.000] \\ 2.694 \\ 2.694 \\ 2.694 \\ 5.507 \\ [5.507 \\ 6.823,794 \\]121,896 \\ 107,351 \\ [83,515 \\ \end{array}$
$\begin{tabular}{l} \hline [C-B] \\ \hline τ Robust standard error \\ Robust, bias-corrected 95% CI \\ Robust, bias-corrected p-value \\ BW bias \\ Observations \\ \hline $Effective observations$ \\ \hline $Effective observations$ \\ \hline τ \\ \hline τ \\ \end{tabular}$	0.003 (0.002) [-0.007]0.000] [0.079] 3.795[3.795 6.555[6.555 6,832,860]130,267 183,120]103,735 0.023	0.006 (0.002) [0.003.0.012] [0.002] 4.666[4.666 8.038]8.038 6,823,794[121,896 263,422]107,408 0.037	-0.050 (0.000) [-0.054,-0.051] [0.000] 2.705[2.705 5.765[5.765 6,832,860]130,267 109,435[87,896 -0.074	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ \hline 0.051 \\ (0.000) \\ [-0.056,-0.052] \\ [0.000] \\ 2.694 \\ 2.604 \\ 5.507 \\ 5.507 \\ 6.823,794 \\ 1121,896 \\ 107,351 \\ [83,515 \\ -0.075 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007,0.000]\\ [0.079]\\ 3.795]3.795\\ 6.555](6.555\\ 6.532,60]130,267\\ 183,120]103,735\\ 0.023\\ (0.010) \end{array}$	0.006 (0.002) [0.003.0.112] [0.002] 4.666[4.666 8.038[8.038 6,823,794]121,896 263,422]107,408 0.037 (0.005)	-0.050 (0.000) [-0.054-0.051] [0.000] 2.705[2.705 5.765[5.765 6,832,860]130,267 109,435[87,896 -0.074 (0.002)	$\begin{array}{c} 1,173,389[1,123,849\\ -0.051\\ (0.000)\\ [-0.056,-0.052]\\ [0.000]\\ 2.694[2.694\\ 5.507[5.507\\ 6,823,794]121,896\\ 107,351[83,515\\ \hline -0.075\\ (0.001)\\ \end{array}$
$\begin{tabular}{ c-B \\ $$\tau$}\\ Robust standard error\\ Robust, bias-corrected 95% CI\\ Robust, bias-corrected p-value\\ BW estimate\\ BW bias\\ Observations\\ \hline $$Effective observations$\\ \hline $$Ffective observations$\\ \hline $$$T$\\ $$Robust standard error$\\ Robust standard error$\\ Robust, bias-corrected 95% CI \\ \hline $$$$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.007,0.000]\\ [0.79]\\ 3.795]3.795\\ 6.555](6.555\\ 6.532,860]130,267\\ 183,120]103,735\\ \hline 0.023\\ (0.010)\\ [-0.023,0.036] \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003,0.012]\\ [0.002]\\ 4.666[4.666\\ 8.038[8.038\\ 6.823,794][121,896\\ 263,422]107,408\\ \hline 0.037\\ (0.005)\\ [0.017,0.056] \end{array}$	-0.050 (0.000) [0.054,0.051] [0.000] 2.705[2.705 5.765[5.765 6.832,860]130.267 109,435[87,896 -0.074 (0.002) [-0.079,-0.067]	$\begin{array}{c} 1,173,389[1,123,849\\ -0.051\\ (0.000)\\ [0.066,-0.052]\\ [0.000]\\ 2.694[2.694\\ 5.507[5.507\\ 6,823,794]121,896\\ 107,351[83,515\\ -0.075\\ (0.001)\\ [-0.082,-0.064] \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.07,0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.832,860] [30,267\\ 183,120] [130,735\\ 0.023\\ (0.010)\\ [-0.023,0.036]\\ [0.655] \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003,0.012]\\ [0.002]\\ 4.666[4.666\\ 8.038]8.038\\ 6.823.794]121,896\\ 263.422[107,408\\ \hline 0.037\\ (0.005)\\ [0.017,0.056]\\ [0.000]\\ \end{array}$	-0.050 (0.000) [-0.054,-0.051] [0.000] 2.705[2.705 5.765[5.765 6,832,860]130,267 109,435[87,896 -0.074 (0.002) [-0.079,-0.067] [0.000]	$\begin{array}{c} 1,173,389[1,123,849]\\ -0.051\\ (0.000)\\ [-0.056,-0.052]\\ [0.000]\\ 2.694[2.694\\ 5.507[5.507\\ 6.823,794]121,896\\ 107,351[83,515\\ \hline\\ -0.075\\ (0.001)\\ [-0.082,-0.064]\\ [0.000]\\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.07,0.000]\\ [0.079]\\ 3.795[3.795\\ 6.555[6.555\\ 6.832,860]130,267\\ 183,120]103,735\\ \hline 0.023\\ (0.010)\\ [-0.023,0.036]\\ [0.655]\\ 3.231[3.231\\ \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003,0.012]\\ [0.002]\\ 4.666[4.666\\ 8.038]8.038\\ 6,823,794]121,896\\ 263,422[107,408\\ \hline 0.037\\ (0.005)\\ [0.017,0.056]\\ [0.000]\\ 3.997[3,997\\ \hline \end{array}$	-0.050 (0.000) [-0.054-0.051] [0.000] 2.705[2.705 5.765[5.765 6,832,860]130,267 109,435[87,896 -0.074 (0.002) [-0.079-0.067] [0.000] 4.091[4.091]	$\begin{array}{c} 1,173,389 \\ 1,123,889 \\ 1,123,849 \\ \hline 0.0051 \\ (0.000) \\ [0.056,-0.052] \\ [0.000] \\ 2.694 \\ 2.507 \\ 15.507 \\ 6,823,794 \\ 121,896 \\ 107,351 \\ [83,515 \\ 107,351 \\ [83,515 \\ 107,351 \\ [83,515 \\ 100,001 \\ [0.000] \\ 3.733 \\ [33,373 \\] \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.07,0.000]\\ [0.79]\\ 3.795]3.795\\ 6.555] (6.555\\ 6.532, 860] (30,267\\ 183,120] (103,735\\ 0.023\\ (0.010)\\ [-0.023,0.036]\\ [0.655]\\ [0.655]\\ 3.231] 3.231\\ 5.581] 5.581 \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003.0.112]\\ [0.002]\\ 4.666[4.666\\ 8.038[8.038\\ 6.823,794]121,896\\ 263,422[107,408\\ \end{array}$	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705[2.705\\ 5.765]5.765\\ 5.765[5.765\\ 6.832,860 130,267\\ 109,435[87,896\\ \hline \\ -0.074\\ (0.002)\\ [-0.079,-0.067]\\ [0.000]\\ [0.000]\\ 4.091[4.091\\ 6.402[6.402\\ \hline \end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ \hline \\ -0.051 \\ (0.000) \\ [0.056-0.052] \\ [0.000] \\ 2.694 $
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.070,0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.532,860] 130,267\\ 183,120 [103,735\\ \hline 0.023\\ (0.010)\\ [-0.023,0.036]\\ [0.655]\\ 3.231 [3.231\\ 3.581 [5.581\\ 6.961,690] 1,437\\ \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003,0.012]\\ [0.002]\\ 4.666[4.666\\ 8.038]8.038\\ 6.823,794]121,896\\ 263,422[107,408\\ \hline \\ 0.037\\ (0.005)\\ [0.017,0.056]\\ [0.000]\\ 3.997[3.997\\ 6.499[6,499\\ 6.944,325[1,365\\ \hline \end{array}$	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705[2.705\\ 5.765[5.765\\ 6.832,860]130,267\\ 109,435[87,896\\ \hline \\ -0.074\\ (0.002)\\ [-0.079,-0.067]\\ [0.000]\\ 4.091[4.091\\ 6.402](6.402\\ 6.961,690]1,437\\ \end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ \hline \\ -0.051 \\ (0.000) \\ [0.006] \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 121,896 \\ 107,351 \\ [83,515 \\ 0.075 \\ 10,351 \\ [83,515 \\ 0.001) \\ [0.000] \\ 3.733 \\ 3.733 \\ 3.733 \\ 6.325 \\ [6.325 \\ 6.944,325 \\ 1,365 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.079, 0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.832, 860 [130, 267\\ 183, 120 [103, 735\\ (0.010)\\ [-0.023, 0.036]\\ [0.655]\\ 3.231 [3.231\\ 5.581 [5.581\\ 6.961, 690 [1.437\\ 2.561 [1, 144\\ \end{array}$	$\begin{array}{c} 0.006\\ (0.002)\\ [0.003,0.012]\\ [0.002]\\ 4.666 [4.666]\\ 8.038 [8.038\\ 6.823,794 [121,896\\ 263,422]107,408\\ \hline 0.037\\ (0.005)\\ [0.017,0.056]\\ [0.000]\\ 3.997 [3.997\\ 6.499 [6.499\\ 6.944,325 [1,365\\ 2.367 [1,085\\ \end{array}$	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705 [2.705\\ 5.765 [5.765\\ 5.765 [5.765\\ 6.832,860 [130,267\\ 109,435 [87,896\\ \hline 0.002\\ [-0.079,-0.067]\\ [0.000]\\ 4.091 [4.091\\ 6.402 [6.402\\ 6.961,690 [1.437\\ 4.422 [1,259\\ \hline \end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,899 \\ 1,123,849 \\ \hline \\ 0,000 \\ [0.000] \\ [0.000] \\ 2.694 \\ [2.694 \\ 5.507 \\ [5.507 \\ 6.823,794 \\ 1121,896 \\ 107,351 \\ [83,515 \\ 0.001 \\ [0.082,-0.064] \\ [0.000] \\ 3.733 \\ 3.733 \\ 6.325 \\ [6.325 \\ 6.944,325 \\ 1.365 \\ 2.367 \\ [1,085 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.070,0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.532,860] 130,267\\ 183,120 [103,735\\ \hline 0.023\\ (0.010)\\ [-0.023,0.036]\\ [0.655]\\ 3.231 [3.231\\ 3.581 [5.581\\ 6.961,690] 1,437\\ \end{array}$	0.006 (0.002) [0.003.0.012] [0.002] 4.666[4.666 8.038]8.038 6,823,794]121,896 263,422[107,408 0.037 (0.005) [0.017,0.056] [0.000] 3.997[3.997 6.499]6,499 6,944,325[1,365 2.367[1,085] MSE-Optimal	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705[2.705\\ 5.765[5.765\\ 6.832,860]130,267\\ 109,435[87,896\\ \hline \\ -0.074\\ (0.002)\\ [-0.079,-0.067]\\ [0.000]\\ 4.091[4.091\\ 6.402](6.402\\ 6.961,690]1,437\\ \end{array}$	1,173,389[1,123,849 -0.051 (0.000) [0.066-0.052] [0.000] 2.664[2.694 5.507[5.507 6.823,794[121,896 107,351[83,515 -0.075 (0.001) [-0.082,-0.064] [0.000] 3.733[3.733 6.325[6.325 6.944,3251],365 2.367[1,085]
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.079, 0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.832, 860 [130, 267\\ 183, 120 [103, 735\\ (0.010)\\ [-0.023, 0.036]\\ [0.655]\\ 3.231 [3.231\\ 5.581 [5.581\\ 6.961, 690 [1.437\\ 2.561 [1, 144\\ \end{array}$	0.006 (0.002) [0.003.0.012] [0.002] 4.666[4.666 8.038]8.038 6.823,794]121,896 263,422]107,408 0.037 (0.005) [0.017,0.056] [0.000] 3.997[3.997 6.499[6.499 6.944,325]1,365 2,367[1.085 MSE-Optimal Yes	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705 [2.705\\ 5.765 [5.765\\ 5.765 [5.765\\ 6.832,860 [130,267\\ 109,435 [87,896\\ \hline 0.002\\ [-0.079,-0.067]\\ [0.000]\\ 4.091 [4.091\\ 6.402 [6.402\\ 6.961,690 [1.437\\ 4.422 [1,259\\ \hline \end{array}$	$\begin{array}{c} 1,173,389 \\ 1,123,849 \\ -0.051 \\ (0.000) \\ [0.066,-0.052] \\ [0.000] \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 2.694 \\ 1.695 \\ 10,351 \\ [83,515 \\ 10,351 \\ 10,351 \\ [83,515 \\ 10,351 \\ 10,351 \\ [83,515 \\ 10,351 \\ 10,35$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 0.003\\ (0.002)\\ [-0.079, 0.000]\\ [0.079]\\ 3.795 [3.795\\ 6.555 [6.555\\ 6.832, 860 [130, 267\\ 183, 120 [103, 735\\ (0.010)\\ [-0.023, 0.036]\\ [0.655]\\ 3.231 [3.231\\ 5.581 [5.581\\ 6.961, 690 [1.437\\ 2.561 [1, 144\\ \end{array}$	0.006 (0.002) [0.003.0.012] [0.002] 4.666[4.666 8.038]8.038 6,823,794]121,896 263,422[107,408 0.037 (0.005) [0.017,0.056] [0.000] 3.997[3.997 6.499]6,499 6,944,325[1,365 2.367[1,085] MSE-Optimal	$\begin{array}{c} -0.050\\ (0.000)\\ [-0.054,-0.051]\\ [0.000]\\ 2.705 [2.705\\ 5.765 [5.765\\ 5.765 [5.765\\ 6.832,860 [130,267\\ 109,435 [87,896\\ \hline 0.002\\ [-0.079,-0.067]\\ [0.000]\\ 4.091 [4.091\\ 6.402 [6.402\\ 6.961,690 [1.437\\ 4.422 [1,259\\ \hline \end{array}$	1,173,389[1,123,849 -0.051 (0.000) [0.066-0.052] [0.000] 2.694[2.694 5.507[5.507 6.823,794[121,896 107,351[83,515 -0.075 (0.001) [-0.082,-0.064] [0.000] 3.733[3.733 6.325[6.325 6.944,325]1,365 2.367[1,085 MSE-Optimal

Notes: This table reports results for our local linear RDD analyses of price and EE-investment discontinuities when using transactions over the entire range of SAP scores to compute optimal bandwidths at each threshold. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Columns (1) and (2) present results for the price analysis using Specifications 3 and 4, respectively. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

	(1)	(2)	(3)	(4)	(5)	(6)
[G-F]	0.005	0.000	0.000	0.000	0.000	0.000
	0.025	0.028	0.022	0.022	0.022	0.020
Robust standard error Robust, bias-corrected 95% CI	(0.002)	(0.005)	(0.003)	(0.007)	(0.003)	(0.007)
Robust, bias-corrected 95% CI Robust, bias-corrected p-value	[0.030,0.030]	[0.044,0.047] [0.000]	[0.026,0.030] [0.000]	[0.031,0.048] [0.000]	[0.021,0.030] [0.000]	[0.020,0.043]
BW estimate	[0.000] 3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	[0.000] 5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	65,293 299,568	65,257 299,350	65,293 299,568	65,257 299,350	65,293 299,568	65,257 299,350
Effective observations	16,631 31,631	16,624 31,610	21,587 41,466	21,576 41,439	26,133 52,102	26,121 52,070
[F-E]	10,001 01,001	10,021 01,010	21,001 11,100	21,010 11,100	20,100 02,102	20,121 02,010
τ	0.036	0.009	0.030	0.007	0.027	0.006
Robust standard error	(0.003)	(0.001)	(0.004)	(0.001)	(0.004)	(0.002)
Robust, bias-corrected 95% CI	[0.054, 0.055]	[0.016,0.016]	[0.039,0.057]	[0.012, 0.017]	[0.029, 0.050]	[0.008, 0.015]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	299,568 1,325,863	299,350 1,324,875	299,568 1,325,863	299,350 1,324,875	299,568 1,325,863	299,350 1,324,875
Effective observations	88,939 187,435	88,883 187,296	$113,\!639 245,\!331$	113,567 245,143	$136,\!548 307,\!926$	136,455 307,699
[E-D]						
τ	0.021	0.012	0.019	0.011	0.018	0.009
Robust standard error	(0.002)	(0.001)	(0.002)	(0.001)	(0.003)	(0.002)
Robust, bias-corrected 95% CI	[0.029,0.030]	[0.015,0.016]	[0.019,0.031]	[0.013,0.016]	[0.017,0.027]	[0.012,0.015]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
DW Dias Observations	3.100 3.100 1,325,863 3,413,478	3.100 3.100 1,324,875 3,411,279	4.100 4.100 1,325,863 3,413,478	4.100 4.100 1,324,875 3,411,279	5.100 5.100 1,325,863 3,413,478	5.100 5.100 1,324,875 3,411,279
Effective observations	404.837 740.804	404.572 740.328	514.875 959.199	514.523 958.591	615,716 1,192,279	615,286 1,191,503
[D-C]	404,037 740,004	404,572 740,528	514,675 959,199	514,525 956,591	015,710 1,192,279	015,200 1,191,505
τ	0.009	0.004	0.009	0.004	0.008	0.003
Robust standard error	(0.001)	(0.000)	(0.001)	(0.000)	(0.002)	(0.001)
Robust, bias-corrected 95% CI	[0.008,0.008]	[0.004,0.004]	[0.007,0.012]	[0.004,0.007]	[0.009,0.014]	[0.004,0.007]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	$3,\!413,\!478 1,\!728,\!658$	$3,\!411,\!279 1,\!723,\!033$	$3,\!413,\!478 1,\!728,\!658$	$3,\!411,\!279 1,\!723,\!033$	$3,\!413,\!478 1,\!728,\!658$	3,411,279 1,723,033
Effective observations	886,646 964,063	886,028 963,158	1,174,194 1,125,003	1,173,389 1,123,849	1,453,473 1,256,011	1,452,506 1,254,555
[C-B]						
τ	0.001	0.004	0.004	0.006	0.008	0.006
Robust standard error	(0.002)	(0.002)	(0.003)	(0.002)	(0.004)	(0.002)
Robust, bias-corrected 95% CI	[-0.003,-0.003]	[-0.005,-0.005]	[-0.007,-0.002]	[-0.006,0.006]	[-0.007,-0.002]	[-0.002,0.009]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.952]	[0.000]	[0.164]
BW estimate BW bias	3.100 3.100 3.100 3.100	3.100 3.100 3.100 3.100	4.100 4.100 4.100 4.100	4.100 4.100 4.100 4.100	5.100 5.100 5.100 5.100	5.100 5.100 5.100 5.100
Observations	1,728,658 128,830	1,723,033 120,531	1,728,658 128,830	1,723,033 120,531	1,728,658 128,830	1,723,033 120,531
Effective observations	183,120 103,735	180,302 97,740	266,799 114,383	263,422 107,408	362,544 120,878	358,777 113,323
[B-A]	163,120 103,735	180,302 97,740	200,799 114,363	203,422 107,408	302,344 120,878	338,111 113,323
τ	0.017	0.030	0.038	0.039	0.056	0.044
Robust standard error	(0.010)	(0.006)	(0.014)	(0.005)	(0.019)	(0.006)
Robust standard error Robust, bias-corrected 95% CI	[-0.033,-0.032]	[0.012,0.019]	[-0.034,-0.004]	[0.012,0.034]	[-0.021,0.032]	[0.014,0.040]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.011]	[0.000]	[0.668]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	128,830 1,437	120,531 1,365	128,830 1,437	120,531 1,365	128,830 1,437	120,531 1,365
Effective observations	2,561 1,144	2,367 1,085	4,422 1,259	4,017 1,194	7,952 1,315	7,208 1,248
BW selection	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal
Property characteristics		Yes		Yes		Yes
Area FE		Yes		Yes		Yes
Date FE		Yes		Yes		Yes
·						

TABLE B4—ROBUSTNESS: ALTERNATIVE BANDWIDTHS (PRICE ANALYSIS)

Notes: This table reports results for our local linear RDD analysis of price discontinuities when using alternative bandwidths instead of a data-driven bandwidth. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the price discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Columns (1) and (2) present results for models with a bandwidth of 3. Columns (3) and (4) present results for models with a bandwidth of 4. Columns (5) and (6) present results from models with a bandwidth of 5. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

	(1)	(2)	(3)	(4)	(5)	(6)
[G-F]						
au	0.010	0.010	0.002	0.002	-0.001	-0.001
Robust standard error	(0.004)	(0.005)	(0.006)	(0.006)	(0.006)	(0.006)
Robust, bias-corrected 95% CI	[0.035, 0.036]	[0.036, 0.037]	[0.008, 0.039]	[0.006, 0.041]	[-0.004, 0.027]	[-0.006, 0.027]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.004]	[0.009]	[0.138]	[0.208]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	43,674 203,983	43,642 203,813	43,674 203,983	43,642 203,813	43,674 203,983	43,642 203,813
Effective observations	10,837 20,832	10,830 20,821	14,089 27,329	14,078 27,313	17,116 34,378	17,104 34,358
[F-E]						
au	-0.009	-0.009	-0.008	-0.008	-0.008	-0.008
Robust standard error	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[-0.014, -0.013]	[-0.014, -0.014]	[-0.015,-0.008]	[-0.015, -0.008]	[-0.012, -0.006]	[-0.012, -0.005]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	203,983 822,298	203,813 821,621	203,983 822,298	203,813 821,621	203,983 822,298	203,813 821,621
Effective observations	62,125 119,906	62,081 119,802	79,049 156,927	78,993 156,792	94,844 196,784	94,769 196,623
[E-D]	0.001	0.001	0.000	0.000	0.000	0.000
	-0.004	-0.004	-0.003	-0.003	-0.003	-0.003
Robust standard error	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[-0.007,-0.007]	[-0.007,-0.007]	[-0.008,-0.004]	[-0.008,-0.004]	[-0.006,-0.002]	[-0.006,-0.002]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
	822,298 1,876,936 243,573 434,275	821,621 1,875,494 243,379 433,957	822,298 1,876,936 310,795 559,013	821,621 1,875,494 310,546 558,606	822,298 1,876,936	821,621 1,875,494 372,650 690,286
Effective observations [D–C]	245,575 454,275	245,579 455,957	510,795 559,015	510,540 558,000	372,948 690,799	372,030 090,280
τ [D=C]	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
Robust standard error	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[-0.001,-0.001]	[-0.001,-0.001]	[-0.001,-0.001]	[-0.001,-0.001]	[-0.001,-0.001]	[-0.001,-0.001]
Robust, bias-corrected 95% CI Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	1,876,936 896,682	1,875,494 893,505	1,876,936 896,682	1,875,494 893,505	1,876,936 896,682	1,875,494 893,505
Effective observations	460,628 498,867	460,224 498,277	612,668 581,242	612,133 580,506	762,739 649,329	762,101 648,402
[C-B]	400,020 400,001	400,224 400,211	012,000 001,242	012,100 000,000	102,103 043,023	102,101 040,402
τ	0.000	0.000	-0.001	-0.001	-0.001	-0.001
Robust standard error	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[0.003,0.003]	[0.003,0.003]	[0.000,0.004]	[-0.000,0.003]	[-0.001,0.002]	[-0.001,0.002]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.040]	[0.076]	[0.444]	[0.571]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	896,682 78,817	893,505 75,117	896,682 78,817	893,505 75,117	896,682 78,817	893,505 75,117
Effective observations	97.048 63.693	95.533 60.797	140,177 70,564	138,359 67,320	190,092 74,661	188,048 71,236
[B-A]			.7			
τ	-0.018	-0.016	-0.017	-0.013	-0.016	-0.011
Robust standard error	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)
Robust, bias-corrected 95% CI	[-0.024,-0.023]	[-0.026,-0.025]	[-0.024,-0.020]	[-0.022,-0.015]	[-0.022,-0.014]	[-0.019,-0.011]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
BW bias	3.100 3.100	3.100 3.100	4.100 4.100	4.100 4.100	5.100 5.100	5.100 5.100
Observations	78,817 599	75,117 569	78,817 599	75,117 569	78,817 599	75,117 569
Effective observations	1,077 476	1,007 449	2,059 523	1,917 495	4,156 544	3,881 516
BW selection	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal
Property characteristics		Yes		Yes		Yes
Area FE		Yes		Yes		Yes
Date FE		Yes		Yes		Yes

TABLE B5—ROBUSTNESS: ALTERNATIVE BANDWIDTHS (INVESTMENT ANALYSIS)

Notes: This table reports results for our local linear RDD analysis of discontinuities in EE-investment probabilities when using alternative bandwidths instead of a data-driven bandwidth. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the EE-investment discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Columns (1) and (2) present results for models with a bandwidth of 3. Columns (3) and (4) present results for models with a bandwidth of 5. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

		nalysis		it analysis
	(1)	(2)	(3)	(4)
[G-F]	0.010	0.011	-0.003	-0.003
τ Robust standard error	(0.006)	(0.005)	-0.003 (0.006)	-0.003 (0.006)
Robust, bias-corrected 95% CI	[-0.005,0.024]	[-0.001,0.022]	[-0.016,0.009]	[-0.015,0.009]
Robust, bias-corrected 95% CI Robust, bias-corrected p-value	[-0.005,0.024]	[-0.001,0.022]	[0.613]	[0.624]
BW estimate	6.242 6.242	6.009[6.009	5.708 5.708	5.939[5.939
BW bias	8.381 8.381	8.772 8.772	8.281 8.281	8.907 8.907
Observations	65,293 299,568	65,257 299,350	43,674 203,983	43,642 203,813
Effective observations	30,369 63,716	30,353 63,676	17,116 34,378	17,104 34,358
[F-E]	00,000 00,110	30,353 05,010	11,110 04,010	11,104 04,000
τ [I L]	0.025	0.006	-0.008	-0.008
Robust standard error	(0.003)	(0.002)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[0.022,0.034]	[0.003,0.014]	[-0.011,-0.005]	[-0.011,-0.005]
Robust, bias-corrected p-value	[0.000]	[0.004]	[0.000]	[0.000]
BW estimate	4.500 4.500	4.267 4.267	3.900 3.900	3.996 3.996
BW bias	7.643 7.643	7.060 7.060	6.192 6.192	6.268 6.268
Observations	299,568 1,325,863	299,350 1,324,875	203,983 822,298	203,813 821,621
Effective observations	113,639 245,331	113,567 245,143	62,125 119,906	62.081 119.802
[E-D]	.,		,	/// / ////
τ	0.016	0.011	-0.003	-0.003
Robust standard error	(0.001)	(0.001)	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[0.016,0.021]	[0.010,0.014]	[-0.005,-0.001]	[-0.005,-0.001]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.001]	[0.001]
BW estimate	4.018 4.018	3.757 3.757	4.155 4.155	4.222 4.222
BW bias	6.344 6.344	6.179 6.179	6.636 6.636	6.716 6.716
Observations	1,325,863 3,413,478	1,324,875 3,411,279	822,298 1,876,936	821,621 1,875,494
Effective observations	514,875 959,199	404,572 740,328	310,795 559,013	310,546 558,606
[D-C]				
au	0.006	0.004	-0.001	-0.001
Robust standard error	(0.001)	(0.000)	(0.000)	(0.000)
Robust, bias-corrected 95% CI	[0.009, 0.011]	[0.005, 0.008]	[-0.002, -0.001]	[-0.002, -0.001]
Robust, bias-corrected p-value	[0.000]	[0.000]	[0.000]	[0.000]
BW estimate			0 50010 500	F 0011F 001
	3.835 3.835	3.443 3.443	6.563 6.563	5.624 5.624
BW bias	5.583 5.583	4.928 4.928	5.983 5.983	5.789 5.789
Observations	$\begin{array}{c} 5.583 5.583 \\ 3,\!413,\!478 1,\!728,\!658 \end{array}$	$\substack{4.928 4.928\\3,411,279 1,723,033}$	$\begin{array}{c} 5.983 5.983 \\ 1,876,936 896,682 \end{array}$	5.789 5.789 1,875,494 893,505
Observations Effective observations	5.583 5.583	4.928 4.928	5.983 5.983	5.789 5.789
Observations	$\begin{array}{c} 5.583 \\ 3,413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \end{array}$	4.928 3,411,279 1,723,033 886,028 963,158	5.983 5.983 1,876,936 896,682 908,484 706,590	5.789 5.789 1,875,494 893,505 762,101 648,402
Observations Effective observations [C–B] τ	5.583 5.583 3,413,478 1,728,658 886,646 964,063 0.007	4.928 3,411,279 1,723,033 886,028 963,158 0.006	5.983 5.983 1,876,936 896,682 908,484 706,590 -0.001	5.789 5.789 1,875,494 893,505 762,101 648,402 -0.001
$\begin{tabular}{c} \hline Observations \\ \hline Effective observations \\ \hline \hline [C-B] \\ \hline τ \\ Robust standard error \\ \hline \end{tabular}$	5.583 5.583 3,413,478 1,728,658 886,646 964,063 0.007 (0.001)	4.928 4.928 3,411,279 1,723,033 886,028 963,158 0.006 (0.001)	5.983 5.983 1,876,936 896,682 908,484 706,590 -0.001 (0.001)	5.789 5.789 1,875,494 893,505 762,101 648,402 -0.001 (0.001)
$\begin{tabular}{c} Observations \\ \hline Effective observations \\ \hline [C-B] \\ \hline $$$$$$$$ $$$ $$$ $$ $$ $$ $$ CHOMES THE THE THE THE THE THE THE THE THE THE$	$5.583 \\ 5.583 \\ 5.413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \\ 0.007 \\ (0.001) \\ [0.005,0.014] \\ 0.005,0.014]$	$\begin{array}{c} 4.928 \\ 3,411,279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \end{array}$	5.983[5.983 1,876,936[896,682 908,484[706,590 -0.001 (0.001) [-0.002,0.001]	5.789 5.789 1,875,494 893,505 762,101 648,402 -0.001 (0.001) [-0.002,0.001]
$\begin{array}{c} \mbox{Observations}\\ \hline \mbox{Effective observations}\\ \hline \mbox{[C-B]}\\ \hline \\ \mbox{τ}\\ \mbox{Robust standard error}\\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{Robust, bias-corrected p-value} \end{array}$	$\begin{array}{c} 5.583 \\ 5.583 \\ 3,413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \\ \hline \\ 0.007 \\ (0.001) \\ [0.005,0.014] \\ [0.000] \end{array}$	$\begin{array}{c} 4.928 \\ 3,411,279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \hline \\ 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \end{array}$	5.983 5.983 1,876,936 896,682 908,484 706,590 -0.001 (0.001) [-0.002,0.001] [0.650]	$\begin{array}{c} 5.789 [5.789\\ 1,875,494 [893,505\\ 762,101 [648,402\\ \end{array} \\ \begin{array}{c} -0.001\\ (0.001)\\ [-0.002,0.001]\\ [0.566] \end{array}$
$\begin{array}{c} \mbox{Observations}\\ \hline \mbox{Effective observations}\\ \hline \mbox{[C-B]}\\ \hline \\ \mbox{Robust standard error}\\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{Robust, bias-corrected p-value}\\ \mbox{BW estimate} \end{array}$	$\begin{array}{c} 5.583 \\ 5.583 \\ 3,413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \\ \hline \\ 0.007 \\ (0.001) \\ [0.005,0.014] \\ [0.000] \\ 3.932 \\ 3.932 \\ 3.932 \end{array}$	$\begin{array}{c} 4.928 \\ 4.928 \\ 3,411,279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \hline \\ 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 \\ [3.997 \\]3.997 \end{array}$	$5.983 \\ 5.983 \\ 5.983 \\ 5.983 \\ 5.983 \\ 5.908 \\ 5.908 \\ 5.900 \\ 5.90$	$\begin{array}{c} 5.789 [5.789\\ 1,875,494 [893,505\\ 762,101 [648,402\\ \hline \\ (0.001)\\ [-0.002,0.001]\\ [0.566]\\ 4.650]4.650\\ \end{array}$
$\begin{array}{c} \mbox{Observations} \\ \hline \mbox{[C-B]} \\ \hline \\ \hline \\ \mbox{Robust standard error} \\ \mbox{Robust, bias-corrected 95\% CI} \\ \mbox{Robust, bias-corrected p-value} \\ \mbox{BW estimate} \\ \mbox{BW bias} \end{array}$	$\begin{array}{c} 5.583 \\ 5.583 \\ 3,413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \\ \hline \\ 0.007 \\ (0.001) \\ [0.005,0.014] \\ [0.000] \\ 3.932 \\ 3.932 \\ 3.932 \\ 6.499 \\ 6.499 \\ \end{array}$	$\begin{array}{c} 4.928 \\ 4.928 \\ 3,411,279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \hline \\ 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 \\ 3.997 \\ 3.997 \\ 6.190 \\ [6.190] \\ \end{array}$	$\begin{array}{c} 5.983 [5.983 \\ 1.876,936 [896,682 \\ 908,484 [706,590 \\ \hline \\ 0.001 \\ [0.002,0.001] \\ [0.650] \\ 4.493 [4.493 \\ 6.987 [6.987 \\ \end{array}$	$\begin{array}{c} 5.789 [5.789\\ 1.875, 494 [893, 505\\ 762, 101 [648, 402\\ \hline \end{array}\\ \begin{array}{c} -0.001\\ (0.001)\\ [0.002, 0.001]\\ [0.566]\\ 4.650 [4.650\\ 6.902 [6.902\\ \end{array}\end{array}$
$\begin{array}{c} \mbox{Observations}\\ \hline \mbox{Effective observations}\\ \hline \mbox{[C-B]}\\ \hline \\ \mbox{τ}\\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{Robust, bias-corrected $p-value}\\ \mbox{BW estimate}\\ \mbox{BW bias}\\ \mbox{Observations}\\ \end{array}$	$\begin{array}{c} 5.583 [5.583 \\ 3.413.478] 1.728.658 \\ 886.646 [964.063 \\ \end{array}$	$\begin{array}{c} 4.928 [4.928 \\ 3.411,279], 1723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 [3.997 \\ 6.190 [6.190 \\ 1,723,033] [20,531 \\ \end{array}$	$\begin{array}{c} 5.983 [5.983\\ 1.876,936 [896,682\\ 908,484 [706,590\\ \hline 0.001\\ [0.001)\\ [0.002,0.001]\\ [0.650]\\ 4.493 [4.493\\ 6.987 [6.987\\ 896,682 [78,817\\ \end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline \\ 0.001 \\ (0.001) \\ [0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ \end{array}$
$\begin{array}{c} \mbox{Observations}\\ \hline \mbox{Effective observations}\\ \hline \mbox{[C-B]}\\ \hline \\ \hline \\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{BW estimate}\\ \mbox{BW estimate}\\ \mbox{BW bias}\\ \mbox{Observations}\\ \mbox{Effective observations}\\ \end{array}$	$\begin{array}{c} 5.583 \\ 5.583 \\ 3,413,478 \\ 1,728,658 \\ 886,646 \\ 964,063 \\ \hline \\ 0.007 \\ (0.001) \\ [0.005,0.014] \\ [0.000] \\ 3.932 \\ 3.932 \\ 3.932 \\ 6.499 \\ 6.499 \\ \end{array}$	$\begin{array}{c} 4.928 \\ 4.928 \\ 3,411,279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \hline \\ 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 \\ 3.997 \\ 3.997 \\ 6.190 \\ [6.190] \\ \end{array}$	$\begin{array}{c} 5.983 [5.983 \\ 1.876,936 [896,682 \\ 908,484 [706,590 \\ \hline \\ 0.001 \\ [0.002,0.001] \\ [0.650] \\ 4.493 [4.493 \\ 6.987 [6.987 \\ \end{array}$	$\begin{array}{c} 5.789 [5.789\\ 1.875, 494 [893, 505\\ 762, 101 [648, 402\\ \hline \end{array}\\ \begin{array}{c} -0.001\\ (0.001)\\ [0.002, 0.001]\\ [0.566]\\ 4.650 [4.650\\ 6.902 [6.902\\ \end{array}\end{array}$
$\begin{array}{c} \mbox{Observations}\\ \hline \mbox{Effective observations}\\ \hline \mbox{[C-B]}\\ \hline \\ \mbox{τ}\\ \mbox{Robust, bias-corrected 95\% CI}\\ \mbox{Robust, bias-corrected $p-value}\\ \mbox{BW estimate}\\ \mbox{BW bias}\\ \mbox{Observations}\\ \end{array}$	$\begin{array}{c} 5.583 [5.583\\ 3.413,478] 1,728,658\\ 886,646 [964,063\\ 0.007\\ (0.001)\\ [0.000,011]\\ [0.000]\\ 3.932] 392\\ 6.499 [6.499\\ 1,728,658] 128,830\\ 183,120 [103,735\\ \end{array}$	$\begin{array}{c} 4.928 4.928 \\ 3.411, 279 1,723,033 \\ 886,028 963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 3.997 \\ 6.190 6.190 \\ 1,723,033 120,531 \\ 180,302 97,740 \\ \end{array}$	$\begin{array}{c} 5.983[5.983\\ 1.876,936[896,682\\ 908,484[706,590\\ \hline 0.001\\ [0.001)\\ [0.002,0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177 70,564 \end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline \\ 0.001 \\ [-0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 886.646 [964,063\\ 0.007\\ (0.001)\\ [0.005.0.014]\\ [0.000]\\ 3.932 [3.932\\ 6.499]6.499\\ 1.728,658]128,830\\ 183,120] 103,735\\ \hline\end{array}$	$\begin{array}{c} 4.928 [4.928 \\ 3.411,279] 1.723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 [3.997] \\ 3.997 [3.997 \\ 6.190 [6.190 \\ 1.723,033] 120,531 \\ 180,302 [97,740 \\ \hline 0.037 \\ \end{array}$	$\begin{array}{c} 5.983[5.983\\ 1.876,936[896,682\\ 908,484[706,590\\ \hline 0.001\\ [0.001)\\ [0.002],0.001]\\ [0.650]\\ 4.493[4.493\\ 4.937[6.987\\ 896,682]78,817\\ 140,177[70,564\\ \hline -0.019\\ \end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline \\ 0.001 \\ [0.0001) \\ [0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \hline \\ -0.021 \end{array}$
$\begin{array}{c} \mbox{Observations} \\ \hline \mbox{Effective observations} \\ \hline \mbox{[C-B]} \\ \hline \\ $	$\begin{array}{c} 5.583 [5.583] \\ 5.583 [5.583] \\ 8.86, 646] 964, 063 \\ \hline 0.007 \\ (0.001) \\ [0.005, 0.014] \\ [0.000] \\ 3.932 [3.932 \\ 6.499 [6.499 \\ 1,728, 658] 128, 830 \\ 183, 120 [103, 732 \\ 0.021 \\ (0.008) \end{array}$	$\begin{array}{c} 4.928 \\ 4.928 \\ 4.928 \\ 3.411, 279 \\ 1,723,033 \\ 886,028 \\ 963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ 0.001 \\ [0.001] \\ 3.997 \\ 6.190 \\ 6.190 \\ 6.190 \\ 1,723,033 \\ 120,531 \\ 180,302 \\]97,740 \\ \hline 0.037 \\ (0.007) \end{array}$	$\begin{array}{c} 5.983[5.983]\\ 1.876,936[896,682]\\ 908,484[706,590\\ \hline \\ 0.001\\ [0.001)\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564\\ \hline \\ -0.019\\ (0.001)\\ \end{array}$	$\begin{array}{c} 5.789 [5.789] \\ 1.875.494 [893,505\\ 762,101 [648,402] \\ \hline 0.001\\ [0.001)\\ [0.066]\\ 0.566]\\ 4.650 [4.650\\ 6.902 [6.902\\ 893,505 [75,117\\ 138,359] 67,320\\ \hline -0.021\\ (0.001) \end{array}$
$\begin{array}{c} \mbox{Observations} \\ \hline \mbox{Effective observations} \\ \hline \mbox{[C-B]} \\ \hline \\ \hline \\ \mbox{Robust, bias-corrected 95\% CI} \\ \mbox{Robust, bias-corrected 95\% CI} \\ \mbox{BW estimate} \\ \mbox{BW bias} \\ \mbox{Observations} \\ \hline \\ \hline \mbox{Effective observations} \\ \hline \\ \hline \\ \hline \\ \mbox{Robust, standard error} \\ \mbox{Robust, bias-corrected 95\% CI} \\ \end{array}$	$\begin{array}{c} 5.583 [5.583\\ 3.413,478],1728,658\\ 886,646] 964,063\\ \hline 0.007\\ (0.001)\\ [0.000,011]\\ [0.000]\\ 3.932],892\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 [103,735\\ \hline 0.021\\ (0.008)\\ [0.002,0.057] \end{array}$	$\begin{array}{c} 4.928 [4.928 \\ 3.411, 279], 723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.907 [3.907 \\ 6.190 [6.190 \\ 1.723,033] 120,531 \\ 180,302 [97,740 \\ \hline 0.037 \\ (0.007) \\ [0.008,0.052] \end{array}$	$\begin{array}{r} 5.983[5.983\\ 1.876,936[896,682\\ 908,484[706,590\\ 0.001)\\ [-0.002,0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564\\ -0.019\\ (0.001)\\ [-0.023,-0.013]\end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline \\ 0.001 \\ [0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \hline \\ 0.001 \\ [-0.027, -0.015] \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \end{tabular} \\ \hline & tabul$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 886.646] 964.063\\ \hline 0.007\\ (0.001)\\ [0.005.0.014]\\ [0.000]\\ 3.932] 3.932\\ 6.499] 6.499\\ 1.728,658] 128,830\\ 183,120] 103,735\\ \hline 0.021\\ (0.008)\\ [0.002.0.057]\\ [0.033]\\ \end{array}$	$\begin{array}{c} 4.928 [4.928 \\ 3.411,279] 1.723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 [3.997 \\ 6.190 [6.190 \\ 1.723,033] 120,531 \\ 180,302] 97,740 \\ \hline 0.037 \\ (0.007) \\ [0.008,0.052] \\ [0.006] \\ \end{array}$	$\begin{array}{c} 5.983 [5.983\\ 1.876,936 [896,682\\ 908,484 [706,590\\ \hline 0.001\\ [0.001)\\ [-0.002,0.001]\\ [0.650]\\ 4.493 [4.493\\ 4.93 [4.93\\ 6.987 [6.987\\ 896,682 [78,817\\ 140,177 [70,564\\ \hline -0.019\\ (0.001)\\ [-0.023,-0.013]\\ [0.000] \end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline \\ 0.001 \\ [0.0001) \\ [0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \hline \\ -0.021 \\ (0.001) \\ [-0.027, -0.015] \\ [0.000] \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \end{tabular} \\ \hline & tabul$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1,728,658\\ 886,646] 964,063\\ \hline 0.007\\ (0.001)\\ [0.005,0.014]\\ [0.000]\\ 3.932] 3.932\\ 6.499 [6.499\\ 1,728,658] 128,830\\ 183,120 [103,735\\ \hline 0.021\\ (0.008)\\ [0.002,0.057]\\ [0.033]\\ 3.408] 3.408\\ \end{array}$	$\begin{array}{c} 4.928 4.928 \\ 3.411, 279 1,723,033 \\ 886,028 963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 3.997 \\ 6.190 6.190 \\ 1,723,033 120,531 \\ 180,302 97,74 \\ 180,302 97,74 \\ \hline 0.037 \\ (0.007) \\ [0.008,0.052] \\ [0.006] \\ 4.504 4.504 \\ \end{array}$	$\begin{array}{c} 5.983[5.983]\\ 1.876,936[896,682]\\ 908,484[706,590]\\ \hline 0.001\\ [0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564]\\ \hline 0.019\\ [0.001]\\ [0.0023,-0.013]\\ [0.000]\\ 4.867[4.867]\end{array}$	$\begin{array}{c} 5.789 [5.789]\\ 1.875.494 [893,505\\ 762,101 [648,402]\\ \hline 0.001\\ [0.001)\\ [0.066]\\ 0.566]\\ 4.650 [4.650\\ 6.902 [6.902\\ 893,505 [75,117\\ 138,359 [67,320\\ \hline 0.021\\ (0.001)\\ [-0.027,-0.015]\\ [0.000]\\ 3.871 [3.871\\ \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \end{tabular} \\ \hline & tabul$	$\begin{array}{c} 5.583 [5.583\\ 3.413,478] 1.728,658\\ 8.86,646] 964,063\\ \hline 0.007\\ (0.001)\\ [0.000, 0.014]\\ [0.000]\\ 3.932] 3.92\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 [103,735\\ \hline 0.021\\ (0.008)\\ [0.002, 0.057]\\ [0.033]\\ 3.408] 3.408\\ 6.103] 6.103\end{array}$	$\begin{array}{r} 4.928 4.928 \\ 4.928 4.928 \\ 3.411, 279 1,723,033 \\ 886,028 963,158 \\ \hline \\ 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 3.997 \\ 6.190 [6.190 \\ 1,723,033 120,531 \\ 180,302 97,740 \\ \hline \\ 0.037 \\ (0.007) \\ [0.008,0.052] \\ [0.006] \\ 4.504 4.504 \\ 6.350 6.350 \\ \end{array}$	$\begin{array}{r} 5.983[5.983\\ 1,876,936[896,682\\ 908,484[706,590\\ 0.001]\\ [-0.002,0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564\\ 0.001]\\ [-0.023,-0.013]\\ [0.000]\\ 4.867[4.867\\ 6.074[6.074\\ \end{array}$	$\begin{array}{c} 5.789 5.789\\ 1.875,494 893,505\\ 762,101 648,402\\ \hline 0.001\\ [0.001]\\ [0.566]\\ 4.650 4.650\\ 6.902 6.902\\ 893,505 75,117\\ 138,359 67,320\\ \hline 0.021\\ [0.001)\\ [-0.027,-0.015]\\ [0.000]\\ 3.871 3.871\\ 5.618 5.618\end{array}$
$\begin{array}{l} \label{eq:constraints} \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 8.86,646 [964,063\\ 0.007\\ (0.001)\\ [0.005.014]\\ [0.000]\\ 3.932 [3.932\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 103,735\\ \hline 0.021\\ (0.008)\\ [0.002.0.057]\\ [0.033]\\ 3.408] 3.408\\ 3.408] 3.408\\ 128,830 1.437\\ \end{array}$	$\begin{array}{r} 4.928 [4.928 \\ 4.928 [4.928 \\ 3.411, 279], 1723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0,001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 [3.997 \\ 6.190 [6.190 \\ 1,723,033] 120,531 \\ 180,302 [97,740 \\ \hline 0.037 \\ (0.007) \\ [0.008,0.052] \\ [0.006] \\ 4.504 [4.504 \\ 6.350 [6.350 \\ 120,531] 1,365 \\ \end{array}$	$\begin{array}{r} 5.983[5.983\\ 1.876,936[896,682\\ 908,484[706,590\\ 0.001\\ [0.001]\\ [0.002],0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564\\ \hline \\ 0.001\\ [0.000]\\ 4.867[4.867\\ 0.074]\\ 8.867[4.867\\ 0.074]\\ 78,817[599\\ \end{array}$	$\begin{array}{r} 5.789 5.789 \\ 5.789 5.789 \\ 762, 101 648, 402 \\ \hline 0.001 \\ (0.001) \\ [-0.002, 0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \hline 0.021 \\ (0.001) \\ [-0.027, -0.015] \\ [0.000] \\ 3.871 3.871 \\ 5.618 \\ 75, 117 569 \\ \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \end{tabular} \\ \hline & tabul$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 8.86.646] 964.063\\ \hline 0.007\\ (0.001)\\ [0.005,0.014]\\ [0.000]\\ 3.932] 3.932\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 [103,735\\ \hline 0.021\\ (0.008)\\ [0.002,0.057]\\ [0.033]\\ 3.408] 3.408\\ 6.103 [6.103\\ 128,830] 1.437\\ 2.561] 1.144 \end{array}$	$\begin{array}{r} 4.928 4.928\\ 4.928 4.928\\ 3.411,279 1,723,033\\ 886,028 963,158\\ 0.006\\ (0.001)\\ [0.003,0.011]\\ [0.001]\\ 3.997[3.997\\ 6.190](6.190\\ 1.723,033 120,531\\ 180,302 97,740\\ 0.037\\ (0.007)\\ [0.008,0.052]\\ [0.006]\\ 4.504 4.504\\ 6.350 6.350\\ 120,531 1.365\\ 4.017 1,194\\ \end{array}$	$\begin{array}{r} 5.983[5.983]\\ 1.876,936[896,682]\\ 908,484[706,590]\\ \hline 0.001\\ [0.001]\\ [0.650]\\ 4.493]4.493\\ 6.987[6.987]\\ 896,682[78,817]\\ 140,177[70,564]\\ \hline 0.019\\ [0.000]\\ [0.000]\\ [0.000]\\ [0.000]\\ [0.000]\\ 4.867[4.867]\\ 6.074[6.074]\\ 78,817[599]\\ 2.059[523]\end{array}$	$\begin{array}{r} 5.789 [5.789] \\ 1.875,494 [893,505 \\ 762,101 [648,402 \\ \hline 0.001 \\ [0.001] \\ [0.066] \\ 4.650 [4.650 \\ 6.902 [6.902 \\ 893,505 [75,117 \\ 138,339]67,320 \\ \hline 0.021 \\ [0.000] \\ [0.0027,-0.015] \\ [0.000] \\ [0.000] \\ 3.871 [3.871 \\ 5.618 [5.618 \\ 75,117]569 \\ 1.007 [449 \\ \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \end{tabular} \\ \hline & tabul$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 8.86,646 [964,063\\ 0.007\\ (0.001)\\ [0.005.014]\\ [0.000]\\ 3.932 [3.932\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 103,735\\ \hline 0.021\\ (0.008)\\ [0.002.0.057]\\ [0.033]\\ 3.408] 3.408\\ 3.408] 3.408\\ 128,830 1.437\\ \end{array}$	4.928 4.928 3,411,279 1,723,033 886,028 963,158 0.006 (0.001) [0.003,0.011] [0.001] 3.907[3.997 6.190[6.190 1,723,033]120,531 180,302 97,740 0.037 (0.007) [0.008,0.052] [0.006] 4.504 4.504 6.350[6.350 120,531]1,365 4.017[1,194 MSE-Optimal	$\begin{array}{r} 5.983[5.983\\ 1.876,936[896,682\\ 908,484[706,590\\ 0.001\\ [0.001]\\ [0.002],0.001]\\ [0.650]\\ 4.493[4.493\\ 6.987[6.987\\ 896,682]78,817\\ 140,177[70,564\\ \hline \\ 0.001\\ [0.000]\\ 4.867[4.867\\ 0.074]\\ 8.867[4.867\\ 0.074]\\ 78,817[599\\ \end{array}$	$\begin{array}{r} 5.789 5.789\\ 1.875,494 893,505\\ 762,101 648,402\\ \hline 0.001\\ [0.001]\\ [0.566]\\ 4.650 4.650\\ 6.902 6.902\\ 893,505 75,117\\ 138,359 67,320\\ \hline 0.021\\ [0.001)\\ [-0.027,0.015]\\ [0.000]\\ 3.871 3.871\\ 5.618 5.618\\ 75,117 569\\ 1.007 449\\ \hline MSE-Optimal\\ \end{array}$
$\begin{array}{c} \mbox{Observations} \\ \hline & \mbox{Effective observations} \\ \hline & \mbox{[C-B]} \\ \hline \\ \hline \\ \mbox{Robust, bias-corrected 95\% CI} \\ \mbox{Robust, bias-corrected 95\% CI} \\ \mbox{BW bias} \\ \mbox{Observations} \\ \hline \\ \hline & \mbox{Effective observations} \\ \hline \\ $	$\begin{array}{c} 5.583 [5.583\\ 3.413.478 [1.728,658\\ 886,646 [964,063\\ 0.007\\ (0.001)\\ [0.005.014]\\ [0.000]\\ 3.932 [3.932\\ 6.499 [6.499\\ 1.728,658 [128,830\\ 183,120 [103,735\\ 0.021\\ (0.008)\\ [0.002.0.057]\\ [0.033]\\ 3.408 [3.408]\\ 3.408 [3.408\\ 6.103 [6.103\\ 128,830 [1.437\\ 2.561 [1.144\\ MSE-Optimal\\ \end{array}$	$\begin{array}{c} 4.928 [4.928 \\ 3.411,279] 1.723,033 \\ 886,028 [963,158 \\ \hline 0.006 \\ (0.001) \\ [0.003,0.011] \\ [0.001] \\ 3.997 [3.997 \\ 6.190 [6.190 \\ 1.723,033] 120,531 \\ 180,302 [97,740 \\ \hline 0.037 \\ (0.007) \\ [0.008,0.052] \\ [0.006] \\ 4.504 [4.504 \\ 6.350 [6.350 \\ 120,531] 1,365 \\ 4.017 [1.194 \\ \hline MSE-Optimal \\ Yes \\ \end{array}$	$\begin{array}{c} 5.983 [5.983\\ 1.876,936 [896,682\\ 908,484 [706,590\\ 0.001\\ [0.001]\\ [0.650]\\ 4.493 [4.493\\ 6.987]6.987\\ 896,682]78,817\\ 140,177 [70,564\\ \hline \\ -0.019\\ (0.001)\\ [0.003]\\ -0.013\\ [0.000]\\ 4.867 [4.867\\ 4.867 [4.867\\ 6.074 [6.074\\ 78,817]599\\ 2.059 [523\\ \hline \\ MSE-Optimal\\ \end{array}$	$\begin{array}{c} 5.789 5.789 \\ 1.875, 494 893, 505 \\ 762, 101 648, 402 \\ \hline 0.001 \\ [0.001] \\ [0.566] \\ 4.650 4.650 \\ 6.902 6.902 \\ 893, 505 75, 117 \\ 138, 359 67, 320 \\ \hline 0.021 \\ [0.001] \\ [0.002] \\ -0.021 \\ [0.000] \\ 3.871 3.871 \\ 5.618 5.618 \\ 75, 117 569 \\ 1.007 49 \\ \hline MSE-Optimal \\ Yes \end{array}$
$\begin{array}{c} \label{eq:constraints} \\ \hline & \hline$	$\begin{array}{c} 5.583 [5.583\\ 3.413.478] 1.728.658\\ 8.86.646] 964.063\\ \hline 0.007\\ (0.001)\\ [0.005,0.014]\\ [0.000]\\ 3.932] 3.932\\ 6.499 [6.499\\ 1.728,658] 128,830\\ 183,120 [103,735\\ \hline 0.021\\ (0.008)\\ [0.002,0.057]\\ [0.033]\\ 3.408] 3.408\\ 6.103 [6.103\\ 128,830] 1.437\\ 2.561] 1.144 \end{array}$	4.928 4.928 3,411,279 1,723,033 886,028 963,158 0.006 (0.001) [0.003,0.011] [0.001] 3.907[3.997 6.190[6.190 1,723,033]120,531 180,302 97,740 0.037 (0.007) [0.008,0.052] [0.006] 4.504 4.504 6.350[6.350 120,531]1,365 4.017[1,194 MSE-Optimal	$\begin{array}{r} 5.983[5.983]\\ 1.876,936[896,682]\\ 908,484[706,590]\\ \hline 0.001\\ [0.001]\\ [0.650]\\ 4.493]4.493\\ 6.987[6.987]\\ 896,682[78,817]\\ 140,177[70,564]\\ \hline 0.019\\ [0.000]\\ [0.000]\\ [0.000]\\ [0.000]\\ [0.000]\\ 4.867[4.867]\\ 6.074[6.074]\\ 78,817[599]\\ 2.059[523]\end{array}$	$\begin{array}{r} 5.789 5.789\\ 1.875,494 893,505\\ 762,101 648,402\\ \hline 0.001\\ [0.001]\\ [0.566]\\ 4.650 4.650\\ 6.902 6.902\\ 893,505 75,117\\ 138,359 67,320\\ \hline 0.021\\ [0.001]\\ [0.000]\\ 3.871 3.871\\ 5.618 5.618\\ 75,117 569\\ 1.007 449\\ \hline MSE-Optimal\\ \end{array}$

TABLE B6—ROBUSTNESS: POSTCODE AREA FIXED EFFECTS

Notes: This table reports results for our local linear RDD analyses of price and EE-investment discontinuities when using postcode-area fixed effects (FE) rather than region FE. Each panel contains point and confidence-interval estimates of the parameter τ , which captures the discontinuity associated with being above the respective rating-band threshold. Standard errors, adjusted for clustering at the running variable (the SAP score), are in parentheses. Bias-corrected p-values are reported in brackets. Column (1) presents results for the price analysis when controlling for urban and postcode area fixed effects alone, whereas Column (2) presents results for the price analysis, including the full set of controls. Column (3) presents results for the EE-investment analysis when controlling for urban and postcode area fixed effects alone, whereas Column (2) presents results for the EE-investment analysis, including the full set of controls. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include postcode areas and urban classification; date FE include sale year and sale quarter.

Price Analysis (1)	(Innesnotd = -3 SAF) nalysis Investment Analysis .) (2)	Price A (3	(1 mesnoid = -Z SAF) nalysis Investment Analysis () (4)	(Three Analysis (5)	(Innenoki = -1.5AF) .nalysis Investment Analysis 5) (6)	(Innesnoid = +1.5AP) Price Analysis Investment (7) (8)	I = +1 5AF) Investment Analysis (8)	Price /	(Inresnotd = +2 SAF) Malysis Investment Analysis 9) (10)	Price Analysis (11)	(1 mesnoid = +3 5AF) malysis (Investment Analysis 1) (12)
8000-	0000	0000	0.019	600 0-	800 U-	0100-	0.010	0.005	100.0	2000	0.019
(0.004)	_	(0.005)	(0.003)	(0.008)	(0.005)	(0.010)	(0.003)	(0.008)	(0.005)	(0000)	(0.003)
Robust, bias-corrected 95% CI [-0.017,0.003]	0-]	[-0.013, 0.014]	[0.008, 0.023]	[-0.018, 0.013]	[-0.022, 0.000]	[-0.036, 0.004]	[-0.023, -0.006]	[-0.011, 0.024]	[-0.004, 0.018]	[-0.012, 0.028]	[0.014, 0.029]
Robust, bias-corrected p-value [0.167]		[0.897]	[0:000]	[0.727]	[0.058]	[0.123]	[0.001]	[0.475]	[0.193]	[0.442]	[000'0]
4.410 4.410		4.705 4.705	3.991 3.991	5.776 5.776	5.003 5.003	6.137 6.137	4.859 4.859	8.296 8.296	4.6.42 4.642	3.788 3.788	4.438 4.438
7.726 7.726			7.230 7.230	7.680 7.680	7.627 7.627	9.372 9.372	8.872 8.872	11.313 11.313	6.897 6.897	7.358 7.358	8.598 8.598
48,633/315,974	774 32,812/214,643 78 1.4.148/95.044	53,861 310,746 18 057 24 905	36,232 211,223 9.604117.048	59,373 305,234 24 A60147 323	39,831/207,624 16.067131-194	72,315/292,292	48,312 199,143 15,500/90.688	79,811 284,796 44 0071108 544	53,280 194,175 17 0.48 22 48.0	88,066[276,541 22 8001/0 867	58,756 188,699 18 025 25,698
		control topics	or of y land in	owned at look it a	vavivo sociov	100 00 01100	contain anotor	venional social		and a second	onoion longiov
-0.001	0.002	-0.000	-0.001	-0.002	-0.001	-0.002	0.001	-0.002	0.005	00070	-0.002
		(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	(100.0)
Robust, bias-corrected 95% CI [-0.006,0.003]	[-0.001,0.003]	[-0.005, 0.004]	[-0.007, 0.001]	[-0.007, 0.003]	[-0.005, 0.004]	[-0.008, 0.002]	[110.0,100.0-]	[-0.008, 0.002]	[0.001, 0.012]	[-0.003, 0.005]	[-0.008, -0.000]
		[0.829]	[0.112]	[0.439]	[0.844]	[0.225]	[0.092]	[0.244]	[0.016]	[0.583]	[0.044]
5.020 5.020		5.118 5.118	5.922 $[5.922$	5.317 5.317	5.289 5.289	5.606 5.606	3.558 3.558	4.205 4.205	3.692 3.692	4.125 4.125	2.913 2.913
8.222 8.222				7.341 7.341	7.789 7.789	9.001 9.001	5.340 5.340	7.980 7.980	5.486 5.486	6.415 6.415	5.659 5.659
210,467 1,413,758	I,758 141,732 883,702	237,531 1,386,694	1 160,534 [864,900 70 0101 50 100	267,528 1,356,697	181,439 843,995	340,674 1,283,551	229,842 795,592	385,076 1,239,149	258,428 767,006	433,700 1,190,525	289,693 735,741
104,051 223,233		114,433 249,110		120,350 270,300	Q0'939 T(3'T00	1045,9561,3500	09/302/130/ 09	141,040 230,003	900171-1 R98101	607'012'211'001	95/011 109/60
-0.001	-0.000	0.000	-0.002	-0.000	-0.000	600.0-	0.003	0.000	0.001	-0.002	0.000
(0.002)	(100.0)	(0.002)	(1000)	(0.003)	(1000)	(0.003)	(1000)	(0.003)	(1000)	(0.001)	(0000)
Rohust. bias-corrected 95% CI [-0.005.0.002]	-0-	F0.008.0.001	-0.003.0.000	-0.006.0.005	[-0.002.0.003]	-0.0220.007	[0.002.0.007]	-0.010.0.011	-0.002.0.004	-0.005.0.003	-0.002.0.002
	-	[0.139]	[0.068]	[0.871]	[0.657]	[0:000]	[0.003]	[0.932]	[0.443]	[0.622]	0.728]
17	4	4.083 4.083	5.17415.174	4.886 4.886	4.7944.794	3.42013.420	3.70513.705	3.34613.346	4.62714.627	3.07613.076	2.675 2.675
7.622 7.622		6.171 6.171	8,346 8,346	6.156 6.156	7.85517.855	5.543 5.543	5.928 5.928	6.17716.177	7.9.397.939	6.583[6.583	5.578 5.578
920,303 3,815,851	-0	2	9	1,180,719 3,555,435	735,218 1,961,897	1,493,027 3,243,127	921,747 1,775,368	1,670,182 3,065,972	2	1,860,551 2,875,603	÷
469,684 940,248			316,707 001,985	471,130 884,484	286, 247 520, 360	447,896 790,439	268, 154 458, 480	489,463 846,196	372,490 621,756	535,676 899,384	
0000-		-0.002	0.000	-0.000	0000-	-0.006	100.0	-0.000	0.002	-0.002	0.001
	(0000)	(100.0)	(0000)	(0.002)	(10001)	(100.0)	(0000)	(0.002)	(0000)	(0000)	(00070)
-		[100:0+'600:0+]	-0.000,0.00Z	F00.0,100.0-]	[T00'0'T00'0]	[-0.009,-0.004]	[Z0010110010]	[-0.004,0.008]	0.000,0.003	-0.002,0.005	[100:0'100:0-]
ROUGE, DIAS-COLIECTED P-VALUE [0.319] RW estimate 3 095[3 095	666 F 666 F 3	4 06514 065	062 81062 8	5 30115 30 1	4 7751A 775	3.400[3.400	2 63513 635	3.06813.068	3.9.2013.920	3.55013.550	4 20114 201
6.112/6.112		7.616/7.616	5.542 [5.542	5.871 5.871	5.252 5.252	6.063[6.063	5.736[5.736	5.205 5.205	6.2.39/6.239	5.739 5.739	7.08817.088
2,525,251 2,609,061	1,41	2,82	1.57	3,119,703 2,014,609	1.725,231 1.043,768	3,694,466 1,439,846	2,023,461 $[745,538$	3,952,198 1,182,114	2,157,003/611,996	4,180,648 953,664	2,274,756 494,243
833,737 1,169,215				1,428,189 1,415,425	611,838 648,540	874,040 840,662	453,244 432,539	832,495 713,636	431,772 366,893	769,369 594,887	549,525 355,884
-0.002	-0000	-0.005	0.001	1000	100.0-	0.003	0.000	800 UT	100.0-	0.003	0.002
(0.002)	(0:00)	(0:00)	(0000)	(0.001)	(0000)	(0.001)	(0000)	(0001)	(0.001)	(0.002)	(100.0)
Robust, bias-corrected 95% CI [-0.004.0.002]	0-]	[-0.007,-0.003]	[0.000.0,002]	0.002.0.009	[-0.002,-0.001]	[-0.003.0.005]	[-0.000.0.002]	[-0.013,-0.010]	F0.002.0.001	[-0.005.0.011]	0.001.0.004
	-	[0:000]	[0:000]	0.006]	[0:001]	[0.661]	[00.09]	0.000]	[0.253]	0.518]	00000
3.954 3.954		3.892 3.892	3.295 3.295	4.144 4.144	3.932 3.932	3.806 3.806	4.049 4.049	3.126 3.126	4.810 4.810	3.879 3.879	3.836 3.836
5.191/5.191				7.574 7.574	6.330 6.330	6.297 6.297	6.599 6.599	5.647 5.647	5.774[5.774	6.343 6.343	5.286[5.286
L,542,731[300,833 nee_172[315_004	0/223 737,372/170,650 004 140 570/116 754	051 400170 549	555,756 [132,506 130 000105 677	1,675,712 167,552 911 456 145 061	201/924 101/028	L,738,033 84,309	914,720[53,890 112 Tedleo 015	L, 780, Z25 57, 539	931,033 30,959 or errier or e	L,800,348 37,010	944,739[23,887
017 011 007				100'051 005'110	117/11/010/711	142/211011012751	onninolitoriant	Tetimieterint	710/00/110/00	666 ¹ 70 ¹ 010 ¹ 00	016'17 007'10
-0.006	-0.004	-0.003	0.002	0.010	0.003	-0.002	0.015	0.034	-0.005	-0.104	0.013
			(0.001)	(0.003)	(0.002)	(0.019)	(0.002)	(0.021)	(0.004)	(0.018)	(0.004)
-		9	-0.004,0.006	[0.003, 0.024]	[0.001,0.005]	[-0.057, 0.003]	[-0.001, 0.041]	[-0.012, 0.050]	-0.014, 0.010	[-0.158, -0.091]	[0.005, 0.028]
Robust, bias-corrected p-value [0.676]		0.585	0.682	0.010]	[0.00.4]	0.080]	0.057	0.224	0.739]	0000]	0.003
3.527 3.527	2.325/2.325 e 4 enol4 eno	27172/02172 4 000 1 000	2 332 2.932	4.027 4.027	606.6 606.6 0ae aloae a	3.300[3.300	2.329 2.329	0.087[0.087 e 9.40[e 9.40	161.6161.6	3.054 3.054 2.054 3.054	3.530 3.530 2.749 5.749
011001100110		4.303 4.303	74 55611 120	0.042 0.042	0.009[0.009 7.4 920[60.4	0.108/0.108	071/0/071/0	0.043[0.043	775 A001977	3770/170/0 170/0/170/0	75.4061166
10.756 [2.793		2.65911.784	1.356/744	6.622 1.671	7.562/730	1.7841768	418/266	3.071[641	527224	919 389	3811156
MSE-Optimad	N	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal	MSE-Optimal
Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Van	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

TABLE B7—ROBUSTNESS: PLACEBO THRESHOLDS I

Notes: This table reports results for our local linear RDD analysis of price and EE-investment discontinuities at the following placebo thresholds: the three SAP scores before and after each real cutoff. Even-numbered columns present results for the price analysis using Specification 2. Odd-numbered columns present results for the EE-investment analysis using Specification 4. Bias-corrected p-values are reported in brackets. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

TABLE B8—ROBUSTNESS: PLACEBO THRESHOLDS II

[SAP=10]	(1)	(2)
τ	-0.002	-0.006
Robust standard error	(0.007)	(0.004)
Robust, bias-corrected 95% CI	[-0.013, 0.022]	[-0.023, 0.011]
Robust, bias-corrected p-value	[0.613]	[0.489]
BW estimate	3.657 3.657	3.661 3.661
BW bias	5.676 5.676	6.014 6.014
Observations	17,546 6,928,144	12,121 3,901,640
Effective observations	8,081 13,314	5,540 8,979
[SAP=20]		
τ	-0.002	-0.007
Robust standard error	(0.008)	(0.006)
Robust, bias-corrected 95% CI	[-0.019, 0.014]	[-0.021, 0.002]
Robust, bias-corrected p-value	[0.746]	[0.117]
BW estimate	6.681 6.681	5.632 5.632
BW bias	9.231 9.231	8.314 8.314
Observations	59,373 6,886,317	39,831 3,873,930
Effective observations	28,513 57,954	16,067 31,124
[SAP=30]		
τ	-0.000	-0.003
Robust standard error	(0.002)	(0.003)
Robust, bias-corrected 95% CI	[-0.004, 0.006]	[-0.010, 0.002]
Robust, bias-corrected p-value	[0.741]	[0.157]
BW estimate	8.328 8.328	6.493 6.493
BW bias	15.519 15.519	13.157 13.157
Observations	$155,\!659 6,\!790,\!031$	103,832 3,809,929
Effective observations	83,344 208,948	45,076 100,344
[SAP=40]	0.001	0.000
T Debugt standard source	-0.001	-0.003
Robust standard error	(0.002)	(0.003)
Robust, bias-corrected 95% CI	[-0.007,0.003]	[-0.007,0.005]
Robust, bias-corrected p-value	[0.510]	[0.708]
BW estimate BW bias	6.934 6.934	7.330 7.330
	10.365 10.365	10.756 10.756
Observations	405,931 6,539,759	273,484 3,640,277
Effective observations [SAP=50]	177,779 409,295	134,796 310,857
[SAP=50]	-0.001	-0.000
7 Robust standard error	(0.001)	(0.001)
Robust, bias-corrected 95% CI	[-0.004.0.002]	[-0.003.0.002]
Robust, bias-corrected p-value	[0.404]	[-0.003,0.002]
BW estimate	5.177[5.177	8.147 8.147
BW bias	10.654 10.654	14.193 14.193
Observations	1,074,196 5,871,494	696,426 3,217,335
	401,890 783,438	
Effective observations [SAP=60]	401,090 100,400	363,091 806,607
[541 =00]	0.003	-0.000
Robust standard error	(0.001)	(0.000)
Robust, bias-corrected 95% CI	[0.000,0.006]	[-0.001,0.000]
Robust, bias-corrected p-value	[0.038]	[0.108]
BW estimate	5.307[5.307	4.218 4.218
BW estimate BW bias	8.670 8.670	7.252 7.252
Observations	2,648,073 4,297,617	1,627,682 2,286,07
Effective observations	958,591 1,566,660	458,480 704,755
[SAP=70]		
τ	-0.004	0.001
Robust standard error	(0.001)	(0.000)
Robust, bias-corrected 95% CI	[-0.007,-0.000]	[0.001,0.002]
Robust, bias-corrected p-value	[0.025]	[0.000]
BW estimate	4.809 4.809	3.836 3.836
BW bias	8.293 8.293	6.035 6.035
Observations	5,383,948 1,561,742	3,092,537 821,224
Effective observations	1,169,215 971,368	453,244 432,539
[SAP=80]		
τ	0.003	-0.001
Robust standard error	(0.001)	(0.000)
Robust, bias-corrected 95% CI	[0.001, 0.009]	[-0.002, -0.000]
Robust, bias-corrected p-value	[0.025]	[0.004]
BW estimate	4.300 4.300	4.675 4.675
BW bias	8.165 8.165	7.070 7.070
Observations	6,776,473 169,217	3,812,094 101,667
Effective observations	311,456 145,061	162,067 86,778
[SAP=90]		
τ	-0.009	0.002
Robust standard error	(0.003)	(0.001)
Robust, bias-corrected 95% CI	[-0.017, 0.008]	[-0.005,0.007]
Robust, bias-corrected p-value	[0.457]	[0.735]
BW estimate	2.769 2.769	2.968 2.968
BW bias	5.909 5.909	5.793 5.793
Observations	6,942,967 2,723	3,912,631 1,130
Effective observations	2,659 1,784	1,356 744
Property characteristics	Yes	Yes
Area FE	Yes	Yes
Date FE	Yes	Yes

Notes: This table reports results for our local linear RDD analysis of price and EE-investment discontinuities at the following placebo thresholds: SAP scores that end on zero (10, 20, 30, etc.). Column (1) presents results for the price analysis using Specification 2. Column (2) presents results for the EE-investment analysis using Specification 4. Bias-corrected p-values are reported in brackets. Property characteristics include property type, number of rooms, and tenure; area fixed effects (FE) include regions and urban classification; date FE include sale year and sale quarter.

Appendix C: Costs and Benefits of EE investments

As part of our discussion of agent sophistication in Section VII.A, we explore the EE-investment behavior of sellers in more detail. To this end, Table 9 presents back-of-the-envelope estimates of the costs and benefits of retrofitting for vendors who invest before a sale. Recall that Table 9 is structured as follows: Column (1) reports the actual extent of retrofitting by measuring the average SAP-score increase within the subsample of transactions that saw investments. Columns (2) to (4) contain estimates of the *private* costs and benefits that come with the type of retrofitting documented in Column (1). Finally, Column (5) provides an estimate of the *social* benefits from the same EE improvements in the form of CO_2 emission savings. This appendix provides details on these calculations.

To keep our calculations tractable, we focus on the following subsamples: First, we restrict the analysis to the rating bands for which reliable price discontinuities can be detected: the four lowest thresholds G–F, F–E, E–D, and D–C. Second, instead of estimating costs and benefits over the entire domain of SAP scores, we zoom in on properties whose *initial* SAP score is just to the left of an energyrating band (i.e., those with SAP scores of 20, 38, 54, and 68). In line with the spirit of our RDD analysis, this will reflect the marginal incentives that exist at the rating-band thresholds. For each of these transactions, we calculate the SAP increase due to retrofitting as the difference between the final and the initial SAP score. Threshold-specific sample means of these values are presented in Column (1) of Table 9 and form the basis of our cost-benefit analysis. The average gain in SAP scores decreases as we move to more energy-efficient properties. For example, properties with an initial SAP score of 20 (i.e., just to the left of the G–F threshold) experience an average increase of 29.2 SAP scores. Properties just to the left of the F-E threshold see their SAP score go up by only 16.8 on average, and so on. This relationship is also visualized in Figure 9.

Column (2) of Table 9 contains estimates of the cost necessary to improve a

property's EE by the values reported in Column (1). For this, we consulted relevant websites typically used by homeowners contemplating EE upgrades. As a result, our cost estimates are representative of the information sellers would find online. Some websites, like the UK Green Building Council (ukgbc.org) and The Green Age (www.thegreenage.co.uk), also indicate the potential gain in SAP scores that would arise from specific installations. To give a few examples, replacing an inefficient electric boiler with a more efficient condensing boiler is estimated to cost between $\pounds 4,000$ and $\pounds 5,000$ and would result in an estimated gain of 30 to 40 SAP scores. Approximately 4 SAP points are gained when spending $\pounds 250$ per square meter of window area, and the quoted cost for installing double-glazed windows on an average home is about $\pounds 4,000$ in the UK. Adding insulation to lofts or wall cavities is cheaper and can, depending on the property's size, cost between £350 to £1,000, while triggering an improvement of 5 to 15 SAP scores. The most inexpensive modifications, such as draft-proofing existing doors and windows or replacing CFL with LED bulbs, cost around $\pounds 50$ to $\pounds 100$ and would translate into gains of 1 or 2 SAP scores.

To estimate the gross return of EE investments (reported in Column (3) of Table 9), we take the difference in average market prices between properties with the initial and the post-investment SAP scores. The estimated net return in Column (4) is the difference between Columns (3) and (2). Where this last step involves taking the difference between ranges, the resulting estimate is reported as a range itself, with the lower bound representing the minimum difference and the upper bound representing the maximum difference. Finally, Column (5) of Table 9 reports the estimated CO_2 emission savings that correspond to the gain in SAP scores reported in Column (1). This calculation is made possible by the fact that the estimated annual CO_2 emissions of a property are included in any EPC and, hence, observable to us. To estimate emission savings, we subtract the average CO_2 emissions of properties with the final SAP score from the average emissions of properties with the initial SAP score.