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Figure A.1. : The Staggered Implementation of LEZs

Note: The figure shows the implementation dates and counties of all LEZs until 2019.
The eleven implementation waves considered in this paper are marked in grey.
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Figure A.2. : The Effect of LEZs on Later-Life PM10 Concentrations

Note: The figure presents an event-study that uses the children’s average later-life pollution ex-
posure as the dependent variable. Pollution exposure is the mean quarterly PM10 concentration
in µg/m3 in the children’s second through fifth year of life. The grey shaded area indicates the
pre-treatment period. The coefficient in the year prior to implementation is normalized to zero.
The regression includes county fixed effects, state–quarter fixed effects, LEZ wave–event time
fixed effects, and LEZ wave–treated fixed effects. We include weather and socio-economic con-
trols as well as controls for partial treatments and LEZ stringency. The regression is weighted by
county–quarter cell size. Standard errors are clustered at the county level. Confidence intervals
refer to the 5% level of significance.
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A. Respiratory diseases
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Figure A.3. : Unconditional Quantile Treatment Effects of LEZs

Note: The figure presents coefficients from unconditional quantile regressions (Firpo, Fortin
and Lemieux, 2009; Borgen, Haupt and Wiborg, 2021) at the level of the individual child (Ap-
pendix I for further information). The dependent variable is either the number of prescriptions
for respiratory diseases (Panel A) or for asthma (Panel B) that accumulate over the first five
years of a child’s life. The severity of suffering increases from left to right. All regressions include
birth county and birth state–birth quarter fixed effects. We include weather and socio-economic
controls as well as controls for whether there are partial treatments after the first year of pre-
school childhood and LEZ stringency increases over the five years of pre-school childhood. We
obtained the bars that indicate the 95% confidence interval using 500 bootstrap repetitions and
486,226 observations.
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Figure A.4. : Event-studies for LEZ Effects Excluding the Never Treated

Note: The figure presents event-study coefficients for the effect of LEZs on PM10 pollution
and the medication of respiratory diseases and asthma for a sample that excludes never treated
counties from the control group. The dependent variable is either the average PM10 level in
µg/m3 or the number or the costs of prescriptions that accumulate over the first five years of
a child’s life on average. We reduce the time window that defines our control group to three
years around treatment to avoid that the control groups for the later treated become very small.
The grey shaded areas indicates the pre-treatment periods. The coefficients in the year prior
to implementation are normalized to zero. The regressions include county fixed effects, state–
quarter fixed effects, LEZ wave–event time fixed effects, and LEZ wave–treated fixed effects.
We include weather and socio-economic controls as well as controls for partial treatments and
LEZ stringency. The regressions are weighted by county–quarter cell size. Standard errors are
clustered at the county level. Confidence intervals refer to the 5% level of significance.
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(a) Infectious diseases
mean outcome: 15.132
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(b) Head injuries
mean outcome: 6.812
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(c) Neurodermatitis
mean outcome: 0.370

Pharmaceutical prescriptions per child
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(d) Nausea treatment
mean outcome: 1.15
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(e) Wound and pain care
mean outcome: 1.825
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(f) Caries prophylaxis
mean outcome: 0.305

Figure A.5. : Event-studies for LEZ Effects on Placebo Outcomes

Note: The figure presents event-study coefficients based on the specification in Equation (F.1)
that show how LEZs affect placebo outcomes depending on the time between birth and LEZ
implementation in years. The dependent variable is the number of hospital treatments per 100
children (Panel a through c) and the number of prescriptions per child (Panel d through f)
that accumulate over the first five years of the children’s lives. The gray shaded areas indicate
the pre-treatment period. The coefficients in the year prior to implementation are normalized
to zero. The regressions include county fixed effects, state–quarter fixed effects, LEZ wave–
event time fixed effects, and LEZ wave–treated fixed effects. We include weather and socio-
economic controls as well as controls for partial treatments and LEZ stringency. The regressions
are weighted by county–quarter cell size. Standard errors are clustered at the county level.
Confidence intervals refer to the 5% level of significance.
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Table A.1—: Excluding Varying Shares of Small LEZs from the Sample

(1) (2) (3) (4)

10%
smallest
LEZs

excluded

15%
smallest
LEZs

excluded

20%
smallest
LEZs

excluded

25%
smallest
LEZs

excluded

A. PM10 concentration
Mean PM10 -1.315 -1.373 -1.470 -1.358

s.e. (0.346) (0.349) (0.351) (0.357)
mean 28.239 28.431 28.431 28.485

B. Number of prescriptions
Respiratory diseases -0.487 -0.578 -0.507 -0.648

s.e. (0.218) (0.221) (0.221) (0.233)
mean 14.532 14.54 14.540 14.535

Asthma -0.291 -0.325 -0.296 -0.350
s.e. (0.097) (0.100) (0.100) (0.108)
mean 2.558 2.543 2.543 2.504

C. Costs of prescriptions
Respiratory diseases -15.985 -18.560 -16.507 -18.903

s.e. (6.051) (6.203) (5.991) (6.502)
mean 228.916 228.185 228.185 227.345

Asthma -14.618 -16.071 -14.521 -16.165
s.e. (4.752) (4.872) (4.781) (5.037)
mean 77.573 77.559 77.559 76.110

Sample size 12,950 12,893 12,761 12,695

Note: This table reports coefficients when excluding varying shares of small LEZs from our sam-
ple. In Column 1, we exclude the 10% of the LEZ-counties that exhibit the smallest population
coverage and we sequentially increase the share to 25% in Column 4. The dependent variable in
Panel A is the PM10 concentration; in Panel B it is the number of prescriptions for respiratory
diseases in general or asthma specifically that accumulate over the first five years of a child’s life
on average; and in Panel C it is the respective costs. The dependent variables in Panels B and
C are composition-adjusted for birth county–birth quarter cell size. All regressions include birth
county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects.
We include weather and socio-economic controls as well as controls for partial treatments and
LEZ stringency. The regressions are weighted by birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level.
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Table A.2—: Summary Statistics for Pollution and Health Outcomes

(1) (2) (3) (4) (5)
mean sd min max N

Air pollution
PM10 (µg/m3) 24.4 6.1 9.0 56.7 2,996

Prescriptions for respiratory diseases
Number of prescriptions over five years per child 12.9 2.8 5.0 23.8 2,996
Prescription expenditures over five years per child (€) 197.7 50.9 64.9 635.3 2,996
Share of sufferers per cohort (%) 76.5 7.4 38.3 94.6 2,996

Prescriptions for asthma
Number of prescriptions over five years per child 2.0 0.7 0.3 5.4 2,996
Prescription expenditures over five years per child (€) 62.3 30.4 4.4 489.8 2,996
Share of sufferers per cohort (%) 18.6 5.6 4.0 37.4 2,996

Number of children per cohort 178 190 17 1,593 2,996

Note: The table reports summary statistics for PM10 pollution in µg/m3 and for cumulative
prescriptions over the five years of pre-school childhood linked to a broad group of respiratory
diseases and asthma specifically. The variables are defined for our study period between 2006 to
2012 and our sample of 128 German counties that violated EU-wide limits for PM10. Cumulative
prescriptions over 5 years are calculated based on data until 2017. Health measures are in terms
of the number or the costs of prescriptions per child. Costs of prescriptions are in real values
normalized to the fourth quarter of 2017. The share of sufferers reflects the share of children in
the cohort that require at least one prescription for a respiratory disease or asthma, respectively.
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Table A.3—: Event-study Estimates of LEZ Effects on PM10 Concentrations
and Medication Before and After Policy Implementation

PM10 Respiratory disease Asthma

(1) (2) (3) (4) (5)
(µg/m3) cases costs cases costs

Pre-treatment period

LEZ treatment (θ = −3) -0.368 -0.376 1.986 0.123 2.689
(0.571) (0.541) (14.568) (0.230) (10.174)

LEZ treatment (θ = −2) -0.162 -0.414 -5.132 0.062 -4.383
(0.410) (0.466) (14.156) (0.219) (10.212)

LEZ treatment (θ = −1) -0.416 -0.142 1.455 0.096 -1.052
(0.352) (0.422) (12.207) (0.192) (8.512)

Post-treatment period

LEZ treatment (θ = 1) -1.576 -0.602 -21.538 -0.324 -18.275
(0.424) (0.249) (7.242) (0.116) (5.604)

LEZ treatment (θ = 2) -1.565 -0.644 -20.217 -0.343 -17.039
(0.400) (0.227) (6.410) (0.105) (4.858)

LEZ treatment (θ = 3) -1.633 -0.802 -26.030 -0.441 -21.453
(0.481) (0.234) (7.167) (0.108) (5.357)

LEZ treatment (θ = 4) -1.699 -0.696 -20.041 -0.404 -18.619
(0.546) (0.309) (8.876) (0.124) (6.412)

LEZ treatment (θ = 5) -1.665 -1.062 -22.781 -0.448 -19.837
(0.643) (0.341) (8.105) (0.116) (5.637)

Note: This table reports event-study coefficients underlying Figures 2 and 3. The dependent
variables are the average PM10 level in µg/m3, the number or the costs in Euro of prescriptions
that accumulate over the first five years of a child’s life on average, respectively. The depen-
dent variables are composition-adjusted for birth county–birth quarter cell size. All regressions
include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated
fixed effects. We include weather and socio-economic controls as well as controls for partial
treatments and LEZ stringency. The regressions are weighted by birth county–birth quarter cell
size. Standard errors in parentheses are clustered at the county level. The sample size is 12, 972.
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Table A.4—: Multiple Hypotheses Testing

Respiratory diseases Asthma

Table Col. Year p p(BH) p p(BH)

A. Number of prescriptions

2 1 year 1-5 0.013 0.036 0.001 0.009

2 2 year 1 0.244 0.347 0.731 0.768

2 3 year 2 0.015 0.036 0.010 0.034

2 4 year 3 0.002 0.011 0.000 0.001

2 5 year 4 0.274 0.355 0.008 0.030

2 6 year 5 0.130 0.224 0.020 0.044

B. Costs of prescriptions

2 1 year 1-5 0.003 0.014 0.001 0.009

2 2 year 1 0.246 0.347 0.502 0.574

2 3 year 2 0.001 0.009 0.001 0.009

2 4 year 3 0.004 0.019 0.001 0.009

2 5 year 4 0.015 0.036 0.012 0.036

2 6 year 5 0.420 0.504 0.087 0.160

C. Share of sufferers

3 1 year 1-5 0.828 0.828 0.017 0.038

3 2 year 1 0.163 0.261 0.736 0.768

3 3 year 2 0.827 0.828 0.243 0.347

3 4 year 3 0.262 0.349 0.000 0.001

3 5 year 4 0.318 0.402 0.070 0.134

3 6 year 5 0.619 0.691 0.002 0.011

D. Prescriptions per sufferer

3 1 year 1-5 0.014 0.036 0.335 0.412

3 2 year 1 0.725 0.768 0.478 0.559

3 3 year 2 0.012 0.036 0.066 0.131

3 4 year 3 0.006 0.025 0.064 0.131

3 5 year 4 0.106 0.188 0.160 0.261

3 6 year 5 0.180 0.279 0.257 0.349

This table reports p values for all 48 hypotheses regarding respiratory diseases and asthma tested
in Tables 2 and 3. Columns labeled p indicate unadjusted p-values while columns labeled p(BH)
indicate p-values adjusted for multiple hypotheses testing by disease and regression method
following Benjamini and Hochberg (1995).
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Table A.5—: Unconditional Quantile Regression Estimates of the Effect of
Early-Life LEZ Exposure on Medication throughout Pre-School Childhood

A. Respiratory diseases

Q-5 Q-10 Q-15 Q-20 Q-25 Q-30 Q-35 Q-40

LEZ -0.089 -0.023 -0.022 -0.082 -0.138 -0.206 -0.247 -0.417
treatment (0.089) (0.154) (0.171) (0.179) (0.182) (0.217) (0.219) (0.227)

Q-45 Q-50 Q-55 Q-60 Q-65 Q-70 Q-75 Q-80

LEZ -0.438 -0.545 -0.563 -0.567 -0.563 -0.673 -0.712 -0.792
treatment (0.223) (0.239) (0.263) (0.289) (0.314) (0.355) (0.382) (0.404)

Q-85 Q-90 Q-95 Q-97 Q-98 Q-99

LEZ -1.061 -1.413 -2.133 -2.965 -3.787 -3.950
treatment (0.502) (0.591) (0.867) (1.163) (1.504) (2.119)

B. Asthma

Q-5 Q-10 Q-15 Q-20 Q-25 Q-30 Q-35 Q-40

LEZ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
treatment (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q-45 Q-50 Q-55 Q-60 Q-65 Q-70 Q-75 Q-80

LEZ 0.000 0.000 -0.034 -0.052 -0.052 -0.065 -0.091 -0.124
treatment (0.000) (0.000) (0.033) (0.027) (0.027) (0.038) (0.039) (0.053)

Q-85 Q-90 Q-95 Q-97 Q-98 Q-99

LEZ -0.140 -0.156 -0.320 -0.523 -0.575 -0.714
treatment (0.067) (0.087) (0.137) (0.182) (0.250) (0.346)

Note: This table presents coefficients from unconditional quantile regressions (Firpo, Fortin and
Lemieux, 2009; Borgen, Haupt and Wiborg, 2021) at the level of the individual child (Appendix I
for further information). The dependent variable is either the number of prescriptions for res-
piratory diseases (Panel A) or for asthma (Panel B) that accumulate over the first five years
of a child’s life. The severity of suffering increases with the percentiles. All regressions include
birth-county and birth state–birth quarter fixed effects. We include weather and socio-economic
controls as well as controls for whether partial treatments and LEZ stringency increase at least
once over the course of the five years of pre-school childhood. The regressions are weighted by
birth county–birth quarter cell size. We obtained the bars that indicate the 95% confidence
interval using 500 bootstrap repetitions and 486,226 observations.
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Table A.6—: The Effect of Early-Life Air Quality Improvements from LEZs
on the Medication of Heart Diseases throughout Pre-School Childhood

Heart diseases

(1) (2)
Number of prescriptions Costs of prescriptions

LEZ treatment -0.106 -2.481
s.e. (0.043) (0.837)
mean 1.210 21.768

Note: This table reports estimates for the effect of LEZ implementation during the in utero
period and the first life on the medication for heart diseases. The dependent variable is either
the number of prescriptions for heart diseases per child (Column 1) or their costs in Euro per
child (Column 2) that accumulate over the first five years of a child’s life on average. We consider
pharmaceuticals prescribed for heart diseases such as hypertension, ischaemic heart disease, pul-
monary heart disease, or heart insufficiency. The dependent variables are composition-adjusted
for birth county–birth quarter cell size. All regressions include birth county, birth state–birth
quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. We include weather and
socio-economic controls as well as controls for partial treatment and LEZ stringency. The re-
gressions are weighted by birth county–birth quarter cell size. Standard errors in parentheses
are clustered at the county level. The sample size is 12, 972.

Table A.7—: The Effect of Early-Life Air Quality Improvements from LEZs
on Antibiotic Prescriptions throughout Pre-School Childhood

Antibiotics

(1) (2)
Number of prescriptions Costs of prescriptions

LEZ treatment -0.164 -6.871
s.e. (0.118) (5.178)
mean 5.709 118.027

Note: This table reports estimates for the health effect of LEZ implementation during the in
utero period and the first life. The dependent variable is either the number of prescriptions for
antibiotics per child (Column 1) or their costs in Euro per child (Column 2) that accumulate
over the first five years of a child’s life on average. We consider the group of antibiotics for
systemic use (ATC J01) which are frequently prescribed to children. The dependent variables
are composition-adjusted for birth county–birth quarter cell size. All regressions include birth
county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects.
We include weather and socio-economic controls as well as controls for partial treatments and
LEZ stringency. The regressions are weighted by birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level. The sample size is 12, 972.
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Table A.8—: The Effects of LEZs for Different Treatment Time Windows

(1) (2) (3)

[−2, 2] [−3, 3] [−4, 4]

A. PM10 concentration

Mean PM10 -0.768 -1.164 -1.316
s.e. (0.283) (0.317) (0.349)
mean 28.384 28.421 28.239

B.Number of prescriptions

Respiratory diseases -0.623 -0.601 -0.770
s.e. (0.161) (0.190) (0.223)
mean 14.358 14.511 14.532

Asthma -0.180 -0.323 -0.312
s.e. (0.074) (0.101) (0.085)
mean 2.520 2.534 2.558

C. Costs of prescriptions

Respiratory diseases -12.315 -16.427 -20.245
s.e. (3.968) (4.996) (5.012)
mean 223.64 226.787 228.916

Asthma -6.964 -12.733 -14.951
s.e. (2.877) (3.781) (3.577)
mean 75.093 75.989 77.573

Sample size 8,164 11,564 13,216

Note: This table reports coefficients for shorter treatment time windows. The time window
increases sequentially from two years (Column 1) to four years (Column 3) before and after
LEZ implementation. The dependent variable in Panel A is the PM10 concentration; in Panel
B it is the number of prescriptions for respiratory diseases in general or asthma specifically that
accumulate over the first five years of a child’s life on average; and in Panel C it is the respective
costs. The dependent variables in Panels B and C are composition-adjusted for birth county–
birth quarter cell size. All regressions include birth county, birth state–birth quarter, LEZ
wave–event time, and LEZ wave–treated fixed effects. We include weather and socio-economic
controls as well as controls for partial treatments and LEZ stringency. Because the inclusion of
implementation wave specific controls for LEZ stringency in each of the five years of pre-school
childhood leaves little identifying variation when decreasing the event time window, we slightly
relax our specification for this test. For each implementation wave, we replace the stringency
controls for the individual years with one binary control that is equal to one if a child experiences
an increase in LEZ stringency in any of the five years of pre-school childhood. We acknowledge
that this specification absorbs dynamic effects to a somewhat lesser degree than in our main
analysis. The regressions are weighted by birth county–birth quarter cell size. Standard errors
in parentheses are clustered at the county level.
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Table A.9—: Air Pollution and Health Effects on Neighboring Counties

PM10 Number of prescriptions Costs of prescriptions

(1) (2) (3) (4) (5)
µg/m3 Respiratory

diseases
Asthma Respiratory

diseases
Asthma

LEZ effect on -1.260 -0.499 -0.332 -17.766 -16.248
LEZ-counties (0.337) (0.203) (0.101) (5.988) (4.874)

LEZ effect on -0.226 -0.074 -0.020 -1.080 -1.187
neighboring counties (0.105) (0.045) (0.018) (1.058) (0.823)

Note: This table replicates regressions from Tables 1 and 2. In addition, we present the treat-
ment effect on counties adjacent to those that implement an LEZ. All regressions include birth
county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects.
We include weather and socio-economic controls as well as controls for partial treatments and
LEZ stringency. The regressions are weighted by birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level. The sample size is 12, 972.
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Table A.10—: Balancing Regressions for Socio-economic Control Variables

(1) (2) (3) (4)
Coefficient Standard

error
p p(BH)

Migration patterns

Total net migration -0.593 0.900 0.510 0.656
Net migration among families -1.200 0.781 0.124 0.373
Moving AOK children -0.962 0.735 0.191 0.453

Socio-economic control variables

Population density -5.530 8.145 0.497 0.656
Average age -0.300 0.068 0.000 0.000
Share of women -0.006 0.008 0.438 0.656
Share of foreigners 0.090 0.195 0.642 0.680
Women share in foreigners -0.164 0.235 0.486 0.656
Household income -11.320 11.462 0.323 0.647
Housing transfers -0.637 0.498 0.201 0.453
Employment -0.397 0.240 0.098 0.354
Education -0.490 0.595 0.411 0.656
Gross Value Added (GVA) -0.432 0.838 0.606 0.680
GVA share in primary sector -0.030 0.017 0.085 0.354
GVA share in tertiary sector 1.434 0.652 0.028 0.167
Marriages -0.241 0.105 0.021 0.167
Share of young mothers 0.113 0.318 0.722 0.722
Share of older mothers -0.138 0.231 0.552 0.662

Note: This table presents balancing regressions for 20 socio-economic variables. The coeffi-
cients in Column (1) show the effect of LEZ implementation on the different annually measured
socio-economic outcome variables. Columns (2) and (3) report the respective standard errors
and p-values. In Column (4) we additionally report p-values adjusted following Benjamini and
Hochberg (1995). All regressions include birth county and birth state–birth quarter fixed effects
and we control for LEZ stringency. In line with our main regressions we include weather controls
and pre-treatment controls for socio-economic characteristics interacted with year-quarter fixed
effects. The regressions are weighted by birth county–birth quarter cell size. Standard errors in
parentheses are clustered at the county level. The sample size is 3, 199.
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B. LEZ implementation patterns

We address concerns that LEZs are not introduced randomly but in ar-
eas with deteriorating air quality by limiting our sample to non-attainment
counties (following Wolff, 2014). Here we investigate this issue directly in the
data. In particular, we implement the following analysis. For each county,
we calculate annual average concentrations of PM10 for the years 2006 and
2007, i.e., just before the first LEZ is introduced. We then regress a) an
indicator that a county belongs to the group of counties that implement an
LEZ or b) the year-quarter of the actual LEZ introduction on these two
annual averages as well as on the change in PM10.
As Columns (1) to (3) from Table B.1 demonstrate, higher levels of PM10

in 2006 or 2007 are associated with a higher likelihood of LEZ introduction,
but there is no evidence that counties with rising levels of air pollution are
more likely to introduce an LEZ. Columns (4) to (6) suggestively show that
counties with higher levels of PM10 were not faster to implement LEZs and
there also seems to be no relation between the timing of the introduction
and prior pollution dynamics. This is also in line with the flat pre-trends in
the event study presented in Figure 2.

Table B.1—: LEZ Implementation Patterns

LEZ treatment group Year-quarter of introduction

(1) (2) (3) (4) (5) (6)

PM10 in 2007 0.072 0.023
(0.008) (0.249)

PM10 in 2006 0.048 -0.221
(0.013) (0.283)

Change in PM10 0.007 0.043
2006 to 2007 (0.016) (0.232)

Observations 96 92 90 43 40 40

Note: This table shows estimations at the county level. The dependent variable is an indicator
that either takes on a value of 1 if a county is treated, or the date of LEZ introduction measured
in year-quarters. PM10 in µg/m3 is measured for a given county and year. Estimates for the
constant are omitted. Robust standard errors are in parentheses.
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C. Composition-Adjusted Health Outcomes

For the estimation of Equation (3), health outcomes observed at the level
of the individual child i are aggregated to the cohort level. We define a
cohort by its birth county c as well as its birth year and birth quarter t.
However, additional information at the level of the individual such as the sex
or the precise location of residence within a county at the five-digit zip code
is available. To exploit this information, we conduct auxiliary regressions
that are commonly used in the literature (e.g. Currie et al., 2015). In a first
step, we regress children’s health outcomes on individual-level covariates as
well as birth county–birth quarter fixed effects:

Hict = I ′ictζ + ϕct + ξict(C.1)

where the dependent variable Hict is the accumulated health outcome over
the first five years of life for individual i born in county c and year and quar-
ter t. I ′ict is a vector of individual-level covariates that include gender and
location of residence within a county at the five-digit zip code. Addition-
ally, Equation (C.1) controls for a full set of birth county–birth quarter

indicators ϕct. Their coefficient estimates ϕ̂ct are orthogonal to the covari-
ates at the individual level. In other words, they return the average health
outcomes for a birth county–birth quarter cohort after controlling for sex
and residence. In line with Isen, Rossin-Slater and Walker (2017), we refer
to the predicted cohort means obtained by this approach as composition-
adjusted. We use these composition-adjusted outcomes as dependent vari-
ables in Equation (3).
The use of composition-adjusted group means is asymptotically equiva-

lent to using the individual level data (e.g. Donald and Lang, 2007) if the
sampling variance of the composition-adjusted group estimates is taken into
account. In accordance with other studies (e.g. Albouy, 2009; Angrist and
Lavy, 2009; Currie et al., 2015; Isen, Rossin-Slater and Walker, 2017), we
estimate all regressions by weighted least squares using the number of indi-
viduals in each birth county–birth quarter cell as weights. This is assumed
to be a reasonable approximation of weighting by inverse sampling vari-
ance. Compared to running regressions on the individual level data, the
estimation of models collapsed to the level of variation ensures that tests
are of correct size given serial correlation in the within-group errors (Isen,
Rossin-Slater and Walker, 2017). Additionally, it requires substantially less
computational power.
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D. Data

1. Control Variables

Table D.1 gives an overview of the county-specific control variables used in
the estimations. We observe cohorts over a five-year period and we include
weather controls for all of these years. The 2007 values of socio-economic
demographic controls are transformed to terciles and interacted with binary
year-quarter variables.

Table D.1—: Control variables

Variable Definition Source

Weather Controls

- Precipitation Total precipitation in mm/m3 DWD

- Sunshine Total sunshine duration in hours DWD

- Temperature Mean, minimum and maximum tempera- DWD
ture, 12 separate terms that count the
number of days with temperatures above
0, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33 and
34 degree Celsius

- Wind Avg. wind speed 10m above ground in m/s DWD

- Relative humidity Relative humidity 2m above ground in % DWD

- Pressure Mean vapor pressure in hPa DWD

Socio-economic & Demographic Controls

- Average age Average age of county population BBSR

- Population density Residents per km2 BBSR

- Migration in People moving out of county per 1,000 BBSR
inhabitants

- Migration out People moving into county per 1,000 BBSR
inhabitants

- Moving AOK children Share of AOK-insured children moving out WIdO
of county
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Variable Definition Source

- Women share Female to male population ratio BBSR

- Share of foreigners Percentage of people without German BBSR
citizen-ship

- Women share in foreigners Share of female foreigners among foreigners BBSR

- Employment Employees subject to social insurance con- BBSR
tributions per 100 inhabitants of working
age

- Gross Value Added (GVA) Total gross value added in 1,000 Euro per BBSR
employed person

- GVA share in primary sector Share of gross value added in the primary BBSR
sector in %

- GVA share in tertiary sector Share of gross value added in the tertiary BBSR
sector in %

- Household income Average household income in Euro per BBSR
inhabitant

- Housing transfers Number of households receiving housing BBSR
benefits, per 1,000 households

- Education Share of students graduating with BBSR
higher education entrance qualification

- Marriages Marriages per 1,000 inhabitants 18 years BBSR
and older

- Share of young mothers Births of mothers in the age group 15 to BBSR
under 20 years per 1,000 women in the age
group

- Share of older mothers Births of mothers 40 years and older per BBSR
1,000 women aged 40 to under 45

2. Aggregating Pollution Measurements

We aggregate the pollution data by averaging daily PM10 readings of all
measuring stations in any given county and quarter. We weight each ob-
servation by the number of station readings in that period (c.p. Chay and
Greenstone, 2003a; Isen, Rossin-Slater and Walker, 2017).
For the few counties in our sample that lack a measuring station, we in-

terpolate pollution exposure using Inverse Distance Weighted (IDW) mea-
surements from other counties’ stations. Following Karlsson and Ziebarth
(2018), we consider all stations within a 60 km (37.5 miles) radius of a given
county’s centroid. We then calculate the weighted average using both the
number of station measurements and the inverse distance of the monitors
to the centroid as weights.
To avoid fluctuations in pollution levels linked to frequently inactive sta-

tions, we only consider stations with at least 60 measurements. Moreover,
to avoid bias from interpolating pollution levels from treated to nearby un-
treated counties, we only use stations outside of LEZ counties for the in-
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terpolation. Our results are robust to limiting our sample to counties with
own measuring stations. With a coefficient of −1.763 and a standard error
of 0.562 the effect of LEZ implementation on PM10 exposure during the first
year of life increases only slightly in magnitude compared to the estimate in
Table 1 (Column 1).
It is uncommon that a monitor measures all five key pollutants (PM10,

SO2, CO, O3, NO2). While the pollutants a monitor measures are usually
fixed, the number of monitors varies over time. 21% of the monitors that are
located in one of the counties we study are discontinued during the sample
period, while newly added account for 17% of all monitors. To examine the
potential issue of strategic placement, we implement the following analysis.
We regress quarterly PM10 at a monitor located in a sample county on an
indicator for being added or being discontinued as well as on a county-by-
year-by-quarter fixed effect. Monitors that were discontinued recorded on
average 0.48 µg/m3 less PM10. However, this point estimate is not signifi-
cantly different from 0 (t = 0.60). In contrast, newly introduced monitors
recorded on average 3.72 µg/m3 (t = 4.35) more PM10 than other monitors
in the same county. This speaks against the strategic placement of new
monitors as we would expect PM10 readings below a county’s average.

3. AOK Data

While the AOK population is representative of a large proportion of the
publicly insured across Germany, it is not fully representative. Different
studies demonstrate that the share of individuals insured with AOK is
slightly higher in the southeastern than in the northwestern states and that
the insured exhibit a lower socioeconomic status than the population of all
publicly insured on average (Jaunzeme, Eberhard and Geyer, 2013; Hoff-
mann and Koller, 2015). On the other hand, per capita expenditures on
medical treatments and prescribed pharmaceuticals exhibit a comparable
magnitude across public health insurances.28

Table D.2 compares characteristics of the AOK-population to those of
all publicly insured. AOK is historically the largest public health insurer
and the default provider. Consequently, AOK covers the largest fraction of
the publicly insureds. While we cannot rule out that an extension of our
findings beyond the studied population may be biased, those insured with

28Obtaining a health insurance plan is mandatory in Germany and the mandating of
public health insurance base coverage, premiums, and contractual details by law ensures
that these aspects are equivalent across providers.
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Table D.2—: Comparing the AOK-Population to All Publicly Insured

(1) (2)

AOK
population

Total publicly
insured

population
Proportion by population characteristics
Low socioeconomic status 35.8% 21.9%
Medium socioeconomic status 57.5% 62.6%
High socioeconomic status 6.6% 15.5%
With migrant background 22.9% 14.3%
Active smokers 34.7% 30.9%
Obese individuals 19.9% 16.6%
Moderate/bad self-assessed health condition 37.1% 30.7%
Diagnosed with a cardiovascular disease 39.9% 38.1%

Medical expenditures per person
Hospital treatments 1,122e 1,001e
Pharmaceuticals and medical aids 537e 518e
Doctoral examinations 551e 539e
Note: This table reports summary statistics for the AOK population and all publicly insured.
Population characteristics are from the analysis of Hoffmann and Koller (2015) and are stan-
dardized with regard to the age and gender of the overall population. Statistics on medical
expenditures per insured person are provided by AOK (2018).

AOK comprise a well-balanced sample of individuals from all subgroups
(Jaunzeme, Eberhard and Geyer, 2013) and constitute the best available
base for identifying effects generalizable to a vast majority of the German
population.

4. Prescription Data

The identification process of pharmaceutical substances that are relevant
in the therapy of respiratory diseases and asthma specifically is as follows:

i) Pharmaceuticals for Respiratory Diseases

We use a publication akin to the Red Book called “Gelbe Liste” by ISO
9001:2015 certified Vidal MMI Germany GmbH, which serves as a source
of information for medical and pharmaceutical professionals (Vidal MMI,
n.d.). For more than 120,000 drugs, it links ATC-code classified pharma-
ceutical substances to ICD-10-code classified clinical diagnoses. By linking
ATC to ICD codes, we identify 150 pharmaceutical substances that are pre-
scribed for respiratory diseases. We follow the same procedure to identify
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pharmaceutical substances that are relevant in the therapy of heart diseases
and diseases considered in our placebo analysis. While this approach is com-
prehensive, it suffers from the drawback that it may also cover substances
generically administered for a broad variety of diseases.

ii) Pharmaceuticals for Asthma

Additionally, we define a smaller list of pharmaceuticals that are closely tied
to asthma. To this end, we consult annually updated lists of the substances
prescribed most often for asthma in a given year, that is substances in the
ATC category R03. The lists are prepared by IGES institute for the years
2006 to 2017 (IGES, 2019).29 In our analysis, we consider only prescriptions
of the 20 most often prescribed substances in the year the prescription is
issued. Note, that the top 20 substances cover almost the entire market
of substances prescribed for asthma and COPD, however, they may not
include substances prescribed in rare cases. The pharmaceuticals identified
according to this procedure represent a strict subset of those compiled in
approach i).
Prescription costs are adjusted to allow for intertemporal comparisons as

if the average cost per prescription had not changed. In other words, we take
both inflation but also ATC-specific market price changes, such as expiring
patents, into account. To this end, we calculate ATC-specific price indices
normalized to the fourth quarter of 2017 using available prescription data for
all children in Germany. Based on the generated price indices we adjust the
prescription costs observed in our sample to real values, before aggregating
them to the cohort level.

29IGES’s website and their latest published report Häussler and Höer (2016) provide
additional information regarding the underlying data and aggregation methodologies.
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E. Additional Robustness Checks

1. Exposure at Older Ages

Our analysis makes strong assumptions about the importance of pollution
exposure prior to age one based on the broad evidence that this is a critical
development phase for children (Holt, 1998; Šrám et al., 2005; Gluckman
et al., 2008; Baccarelli and Bollati, 2009; Almond, Currie and Duque, 2018).
To ensure, that this early-life focus is justified in the context of our analysis,
we run additional regressions isolating the pollution exposure effects not in
the in utero period and during the first year of life as in our main analysis
but in the years two through five of the children’s life. Table E.1 in the
Appendix confirms that exposure before age one is associated with a clear
health response while health effects from LEZ exposure in the later years of
life remain consistently statistically insignificant.

2. Accounting for Treatment Differences After the First Year of Life

We aim to compare children who experience different levels of pollution
exposure in utero in their first year of life but the same exposure levels af-
terward. To achieve this, we control for partial treatments after the first
year of life in our main analysis by including binary variables fp

t (see Sec-
tion II.B). An alternative approach that we implement here is to restrict
the pre-treatment observations in our sample to cohorts born exactly four
quarters prior to LEZ implementation. These cohorts benefit from cleaner
air after their first year of life. Thus, they differ only in pollution expo-
sure in the preceding period compared to the children born after policy
implementation. The results in Table E.2 show that our findings are robust
with respect to this sample restriction. Although smaller in magnitude, the
estimated coefficients confirm our main analysis’s findings.
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Table E.1—: The Effect of LEZ Exposure Conditional on Children’s Age

Number of prescriptions Costs of prescriptions

(1) (2) (3) (4)
Respiratory
diseases

Asthma Respiratory
diseases

Asthma

A. Early-life exposure

LEZ treatment -0.508 -0.335 -17.895 -16.390
in utero & year 1 (0.205) (0.101) (6.014) (4.901)

B. Later-life exposure

LEZ treatment 0.030 0.022 -3.339 -3.005
in year 2 (0.208) (0.087) (5.417) (3.855)

LEZ treatment 0.431 -0.032 5.397 -1.698
in year 3 (0.417) (0.179) (12.662) (9.458)

LEZ treatment -0.092 -0.161 -12.399 -12.689
in year 4 (0.301) (0.152) (10.119) (8.705)

Note: This table reports the effect of LEZs conditional on children’s age at the time of exposure.
Panel A presents the isolated effects of exposure in utero and during the first year of life that
we estimate in our main analysis (Table 2). Panel B presents the isolated exposure effects in the
second through fourth year of life. The dependent variable is either the number of prescriptions
per child or their costs in Euro per child. It is accumulated over the first five years of a child’s
life on average and refers to either prescriptions for respiratory diseases in general or asthma
specifically. The dependent variable is composition-adjusted for birth county–birth quarter cell
size. All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and
LEZ wave–treated fixed effects. We include controls for weather and socio-economic controls
as well as controls for partial treatments and LEZ stringency. Controls for partial treatments
are included for all years other than the one of interest, e.g. we include bivariate controls for
the years one, three, four, and five when estimating the exposure effect for the second year.
Just as in our main analysis, we exclude partially treated cohorts in the year of exposure and
interest, e.g. we exclude the three cohorts born in the quarters five through seven before LEZ
implementation when estimating the exposure effect during the second year. The regressions are
weighted by birth county–birth quarter cell size. Standard errors in parentheses are clustered at
the county level. The sample size is 12, 972 in Panel A and B, 13, 188 in Panel C, and 13, 632 in
Panel D.
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Table E.2—: The Effect of LEZs when Limiting Pre-treatment Observations
to Cohorts Born Four Quarters Before Implementation

A. Number of prescriptions B. Costs of prescriptions

(1) (2) (3) (4)
Respiratory
diseases

Asthma Respiratory
diseases

Asthma

LEZ treatment -0.940 -0.309 -18.643 -14.012
s.e. (0.268) (0.100) (7.376) (5.209)
mean 14.059 2.468 214.483 72.202

Note: This table reports coefficients that indicate the health effect of LEZ implementation
during the in utero period and the first life year when we use only cohorts born four quarters
prior to LEZ implementation as pre-treatment observations of the treated. The dependent
variable is either the number of prescriptions per child (Panel A) or their costs in Euro per
child (Panel B) that accumulate over the first five years of a child’s life on average. Moreover,
it refers to either prescriptions for respiratory diseases in general or asthma specifically. The
dependent variable is composition-adjusted for the size of the birth county–birth quarter cell.
All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ
wave–treated fixed effects. We include weather and socio-economic controls as well as controls
for LEZ stringency. Because the inclusion of the implementation wave-specific controls for LEZ
stringency in each of the years one through five leaves little identifying variation when including
only one pre-treatment observation per county, we slightly relax our specification for this test.
For each implementation wave, we replace the stringency controls for the individual years with
one binary control that is equal to one if a child experiences a more stringent LEZ regime until
age five. We acknowledge that this specification absorbs dynamic effects to a somewhat lesser
degree than in our main analysis. The regressions are weighted by the size of the birth county–
birth quarter cell. Standard errors in parentheses are clustered at the county level. The sample
size is 6, 224.
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3. Two-way Fixed Effect DID Estimation

We also estimate the two-way fixed effect equivalent of our stacked difference-
in-differences estimator. The coefficient estimates in Table E.3 show effects
of LEZ-induced improvements in air quality on child health that are robust
only at the 10% level of statistical significance. However, they tend to be
lower in magnitude. For instance, the coefficient for respiratory diseases
is 0.50 in the stacked DID estimation in column (1) of Table 2 while it is
only 0.39 in the two-way fixed effect DID estimation in Table E.3. We ex-
pect that part of this attenuation stems from the weighted aggregation of
heterogeneous treatment effects revealed in Goodman-Bacon (2018). Also
note that the two-way fixed effect setup does not allow to include fixed ef-
fects that absorb implementation wave-specific unobservables in event-time
and time-invariant differences between treatment and control groups within
and across implementation waves. Likewise, the binary controls for partial
treatments and LEZ stringency cannot be included for each implementation
wave separately.

Table E.3—: Two-Way Fixed Effect Estimation of LEZ Effects

A. Number of prescriptions B. Costs of prescriptions

(1) (2) (3) (4)
Respiratory
diseases

Asthma Respiratory
diseases

Asthma

LEZ treatment -0.390 -0.169 -9.175 -7.639
s.e. (0.223) (0.092) (5.337) (3.845)
mean 14.532 2.558 228.916 77.573

Note: This table replicates our main results in Table 2 using two-way fixed effect estimation. The
dependent variable is either the number (Panel A) or the costs in Euro (Panel B) of prescriptions
that accumulate over the first five years of a child’s life on average. It refers to either prescriptions
for respiratory diseases in general or asthma specifically. The dependent variable is composition-
adjusted for the size of the birth county–birth quarter cell. All regressions include birth county
and birth state–birth quarter fixed effects. We include weather and socio-economic controls as
well as controls for partial treatments and LEZ stringency. The regressions are weighted by the
birth county–birth quarter cell size. Standard errors in parentheses are clustered at the county
level. The sample size is 2, 670.
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4. Effects on Other Air Pollutants

We use PM10 as a measure for air pollution because European policymak-
ers are highly focused on it, and LEZs explicitly target PM10. Moreover, the
EU only set legally binding limits for PM2.5 in 2015. By definition, PM10

includes particles below 10 µm such as the finer PM2.5 particles. To evalu-
ate whether LEZs decrease PM2.5 specifically, in a first robustness check, we
resort to satellite-based PM2.5 estimates from van Donkelaar et al. (2019).30

This data is available on a fine resolution grid of 0.01 degrees but only at an
annual level.31 Thus, we lose quarterly observations and the corresponding
fixed effects. Table E.4 shows that we lack the statistical power to identify
statistically significant reductions in mean PM2.5 concentrations from LEZs
based on these data.
Our second robustness check is motivated by the fact that diesel vehicles

emit significant quantities of nitrogen oxides. In fact, road traffic emissions
of nitrogen dioxide (NO2) are caused primarily by diesel vehicles.32 There-
fore, we assess whether LEZs also impact ambient NO2 concentrations using
our data from the German air monitoring network. Table E.4 shows that
LEZs significantly reduce NO2 by about 2.0 µg/m3 (4.8%) on average. This

Table E.4—: The Effect of LEZs on Additional Air Pollutants

(1) (2) (3) (4)

PM2.5 NO2 O3 SO2

LEZ treatment -0.121 -2.362 0.069 0.186
s.e. (0.097) (1.031) (0.450) (0.205)
mean 15.591 42.631 41.238 4.900

Note: This table reports coefficients for the effect of LEZs on four additional air pollutants.
The dependent variable is either the mean concentration of PM2.5, NO2, O3, or SO2 in µg/m3.
All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ
wave–treated fixed effects. We include weather and socio-economic controls as well as controls for
LEZ stringency. The regressions are weighted by birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level. The sample size is 3,981 in Column (1)
and 12,972 in Columns (2) through (4).

30Data from the German air monitoring network for PM2.5 is very limited. We have
about 70% fewer observations for PM2.5 than for PM10.

31van Donkelaar et al. (2019) merge satellite measurements of aerosol optical depth
with a particulate transport model and combine them with data from air monitoring
stations to obtain estimates of PM2.5 for Europe.

32NO2 serves as an indicator for different nitrogen oxides. In Germany, about 72.5%
of NO2 emissions from on-road traffic are from diesel vehicles (UBA, 2017b).
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finding is consistent with the fact that LEZs are de facto bans of old diesel
vehicles. However, it means that we cannot conclusively infer that PM10

exclusively determines the health effects we observe. Similar to other pa-
pers, we attribute our results to effects of air pollution in general (c.p. Chay
and Greenstone, 2003a; Currie and Neidell, 2005; Arceo, Hanna and Oliva,
2016; Knittel, Miller and Sanders, 2016; Deryugina et al., 2019; Colmer
et al., 2020).
We subsequently show that the policy does not affect pollutants other

than PM or NO2. First, we examine whether LEZs have unintended effects
on ozone (O3) concentrations. O3 is negatively correlated with other local
air pollutants, in particular with NO2 which is one of its precursors. Second,
environmental regulation can adversely impact firms’ output and productiv-
ity. Therefore, we might be concerned that LEZs decrease industrial activity
and, thereby, reduce emissions of industrial pollutants, most notably SO2.
Table E.4 does not reveal any statistically significant effects on O3 or SO2

concentrations.33

5. Functional Form

We also test the robustness of our results with respect to the functional
form. The outcome variables in our baseline specifications are in levels.
Using per capita prescriptions as outcome, we implicitly assume that pre-
scriptions per child would have evolved with the same absolute changes in
the absence of treatment. However, if prescriptions per child changed at
the same rate in the absence of any LEZ intervention instead, the parallel
trends assumption would be violated. Although our event-study plots do
not reveal pre-trends that differ in a statistically significant manner, we re-
estimate our main results with logged outcome variables in Table E.5. We
find that the estimated relative effects are smaller in magnitude but com-
parable to the ones derived from Table 2. However, only the coefficients for
the number and costs of prescriptions for asthma (Column 2 and 4) remain
statistically significant at conventional levels.

33Because transport only accounts for about 2% of total SO2 emissions, this robust-
ness check also serves as a placebo test, suggesting that our results in Table 1 are not
determined by confounding factors.
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Table E.5—: The Effect of LEZs on Log-Transformed Medication Outcomes

A. Number of prescriptions B. Costs of prescriptions

(1) (2) (3) (4)
Respiratory
diseases

Asthma Respiratory
diseases

Asthma

LEZ treatment -0.021 -0.107 -0.058 -0.157
s.e. (0.019) (0.046) (0.031) (0.076)

mean 14.532 2.558 228.916 77.573

Note: This table replicates our main results in Table 2 using logged outcome variables. The
dependent variable is either the number (Panel A) or the costs in Euro (Panel B) of prescriptions
that accumulate over the first five years of a child’s life on average. It refers to either prescriptions
for respiratory diseases in general or asthma specifically. The dependent variable is composition-
adjusted for birth county–birth quarter cell size and transformed with the inverse hyperbolic sine
function. Accordingly, the percentage change in the outcome variable is given by (eβ − 1) · 100.
All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ
wave–treated fixed effects. We include weather and socio-economic controls as well as controls
for partial treatments and LEZ stringency. The regressions are weighted by birth county–birth
quarter cell size. Standard errors in parentheses are clustered at the county level. The sample
size is 12, 972.
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F. Stacked DID Design

1. Defining the Control Group

For our stacked analysis we define an event-time window, i.e. the period
in which we observe treatment effects before and after LEZ implementa-
tion, and an exclusion window, i.e. the period in which counties must not
implement an LEZ themselves to be eligible for the control group.
Our event-time window covers the period up to four years prior and five

years subsequent to LEZ implementation. This choice is based on the dates
of the implementations of the LEZs, the availability of data, and the obser-
vation of cumulative benefits over five years. Our exclusion window is set to
the same period. This implies that we only allow our control group to hold
LEZ-counties that do not implement the policy measure at least four years
before or five years after the treatment wave for which they serve as control
units. For instance, the county Mainz serves as a control unit for Mannheim
because it implements its own LEZ more than five years later, in 2013. Like-
wise, Mannheim serves as a control unit for the county Hagen because it
implemented its own LEZ already four years earlier (see Figure A.1).
The selection of this exclusion window results from two considerations.

First, we expect and show that an LEZ’s treatment effect on PM concen-
tration levels off immediately after implementation. In other words, the
policy induces a level shift in pollution, but treated counties are not on a
differential trend after treatment. Otherwise, they would be unsuitable to
serve as control units. Second, we want to have a balanced control group
throughout event time, where control counties are not subject to treatment
themselves during the period in which they are compared to the treated.
To rule out that our choice of the exclusion window determines our results,

we provide estimates for alternative specifications of the exclusion-window
as robustness checks. We also show that our results are almost identical if
we exclude all already-treated from the control group to allow for persistent
dynamics (see Figure F.1).
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Figure F.1. : Excluding Already Treated Counties from the Control Group

Note: This figure presents event-study coefficients that show how LEZs affect PM10 concen-
trations and the medication of respiratory diseases for a sample that excludes already treated
counties from the control group. The dependent variable is either the average PM10 level in
µg/m3 or the number or the costs of prescriptions that accumulate over the first five years of a
child’s life on average. The grey shaded area indicates the pre-treatment period. The coefficient
in the year prior to implementation is normalized to zero. The regression includes county fixed ef-
fects, state–quarter fixed effects, LEZ wave–event time fixed effects, and LEZ wave–treated fixed
effects. We include weather and socio-economic controls as well as controls for partial treatments
and LEZ stringency. The regressions are weighted by county–quarter cell size. Standard errors
are clustered at the county level. Confidence intervals refer to the 5% level of significance.



2. Event-Study Specification

We estimate event-study specifications of our stacked DID model. The
regression equation becomes

Yctj =
∑
τ

θτ (Treatcj ×Dτ
tj)+W ′

ctjδ +X ′
ct̄jπt + λjTreatcj+(F.1)

fp
ctj + f s

ctj + γc + γtj + γst + ηctj

where the parameter of interest is θτ . It either captures the marginal ef-
fect of LEZs on the mean PM10 exposure in early-life or pre-school health
status of children born in year τ prior or post to treatment (see Figure 1).
We set θ0 = 0 so that the year prior to LEZ implementation is the refer-
ence category. The event-study figures presented in this paper plot the θτ
estimates in event time. The main difference between the standard two-
way fixed effect event study and our dynamic estimator in Equation (F.1)
is that we eliminate time-invariant unobservables both within and between
LEZ implementation waves by including λjTreatcj as well as wave-specific
event-time trends that do not appear in calendar time by including γtj.
Just as in our main specification, we include implementation wave specific
controls for partial treatments (fp

ctj) and LEZ stringency (f s
ctj). However,

including wave specific partial treatment controls in each of the years two
through five leads to a high degree of collinearity that prevents us from es-
timating coefficients for the individual pre-treatment period. Therefore, we
slightly relax our event study specification compared to our main specifica-
tion and replace the four partial treatment controls with one binary control
that is equal to one if a child is partially treated in the years two through five
for each implementation wave. The adjustment applies only to regressions
where the dependent variable is the number or the costs of prescriptions
that accumulate over the children’s five years of pre-school childhood. This
is because we do not include partial treatment controls that refer to a period
after the outcome variable is measured and pollution exposure refers to the
first year of the children’s life only. Concerning the prescription outcomes,
we acknowledge that our event-study specification may absorb effects from
partial treatments to a somewhat lesser degree than in our main analysis.
We believe this to be tolerable because the estimated coefficients for the
pre-treatment period indicate that the relaxed specification still suffices to
absorb potential differences linked to partial treatments after the first year
of life.
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G. Instrumental Variable Analysis

Throughout our analysis we report reduced form estimates of the effect of
LEZ implementation on PM10 concentrations and medication of respiratory
diseases. We complement this analysis by providing an instrumental variable
(IV) estimation. In Table G.1 we present coefficients that represent the
effect of a 1 µg/m3-reduction in early exposure to PM10 induced by the
implementation of an LEZ on the number and the costs of prescriptions
for respiratory disease that accumulate over the five years of pre-school
childhood.
In line with our main analysis, we find that the number and the costs of

required prescriptions decreases as children’s pollution exposure in early-life
declines. For instance, a 1 µg/m3-reduction in PM10 exposure in utero and
during the first year of life, decreases the number of prescriptions required
for respiratory diseases in general by 0.46 and for asthma specifically by 0.30
(Panel A). We can compare these effects to the reduced form results from our
main analysis, by dividing the treatment effect of LEZs on the prescription
outcomes in Table 2 by the treatment effect of LEZs on the PM10 level in
Table 1. For instance, for the number of prescriptions for asthma we would
expect that for every 1 µg/m3 decrease in PM10 pollution, the number of
required prescriptions reduces by 0.25 (0.335/1.317) which is close to the
corresponding coefficient 0.30 in G.1. The IV analysis also confirms that
the effects exist at both the intensive and the extensive margin.
The unbiasedness of the IV estimates depends on two crucial assumptions.

First, LEZs need to be a strong instrument for changes in particulate mat-
ter pollution. In Section IV.A we present evidence for a strong first-stage,
showing that PM10 levels decline significantly and persistently in response
to LEZ implementation. Moreover, we include weak-instrument-robust in-
ference in Table G.1. The reported Anderson-Rubin confidence intervals
corroborate that all average effects are positive and significantly different
from zero. Second, for consistency, it must be the case that LEZ introduc-
tion affects health outcomes only via its impact on air pollution. While
we cannot conclusively show the validity of this assumption, we conduct a
number of robustness checks in Section IV.E. We do not find any evidence
that LEZ implementation affects the characteristics of the population or any
health outcomes other than those linked to air pollution. However, we do
find evidence that the policy’s effects are not limited to particulate matter
pollution. In fact, we show that LEZs reduce both PM and NO2 but no
other pollutants. Therefore, we argue that our identification strategy suf-
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fices to provide an upper-bound estimate for the dose-response relationship
between PM10 and child health. Because policy measures are hardly ever
limited to a single pollutant, an upper bound is the best possible approx-
imation. Nevertheless, it is highly relevant for cost-benefit analyses that
provide the basis for policy decisions. Similarly, other studies attribute esti-
mated IV-effects to air pollution more generally rather than to a particular
pollutant (Chay and Greenstone, 2003a; Currie and Neidell, 2005; Arceo,
Hanna and Oliva, 2016; Knittel, Miller and Sanders, 2016; Deryugina et al.,
2019; Sager, 2019; Colmer et al., 2020).
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Table G.1—: The Effect of Early-Life PM10 Exposure on Medication of
Respiratory Diseases throughout Pre-School Childhood

(1) (2)
Respiratory diseases Asthma

A. Number of prescriptions

PM10 mean 0.457 0.301
s.e. (0.224) (0.130)
mean 14.532 2.558
CSAR [0.102 - 1.579] [0.119 - 1.034]
FAR (p-value) 6.124 (0.015) 11.041 (0.001)

B. Costs of prescriptions

PM10 mean 16.111 14.756
s.e. (7.195) (6.248)
mean 228.916 77.573
CSAR [5.527 - 54.909] [5.926 - 49.820]
FAR (p-value) 8.855 (0.004) 11.186 (0.001)

C. Extensive Margin: Share of sufferers

PM10 mean -0.001 0.015
s.e. (0.007) (0.008)
mean 0.801 0.228
CSAR [-0.023 - 0.016] [0.003 - 0.057]
FAR (p-value) 0.047 (0.828) 5.729 (0.018)

D. Intensive Margin: Prescriptions per sufferer

PM10 mean 0.462 0.344
s.e. (0.228) (0.345)
mean 17.908 11.161
CSAR [0.099 - 1.597] [-0.541 - 1.409]
FAR (p-value) 5.982 (0.016) 0.931 (0.337)

Note: This table reports instrumental variable estimates that indicate the health effect of PM10

exposure during the in utero period and the first life year. The dependent variable is either
the number of prescriptions per child (Panel A), their costs in Euro per child (Panel B), the
share of children in the cohort that require at least one prescription (Panel C), or the number of
prescriptions per child with at least one prescription (Panel D). It is accumulated over the first
five years of a child’s life on average. Moreover, it refers to either prescriptions for respiratory
diseases in general or asthma specifically. The dependent variable is composition-adjusted for
the size of the birth county–birth quarter cell. All regressions include birth county, birth state–
birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. We include weather
and socio-economic controls as well as controls for partial treatments and LEZ stringency. The
regressions are weighted by the size of the birth county–birth quarter cell. Standard errors in
parentheses are clustered at the county level. The sample size is 12, 972. The table also reports
weak-instrument-robust inference. The Anderson-Rubin-confidence sets (CSAR) provide robust
confidence intervals with a coverage probability of 95%. The F -distributed Anderson-Rubin-
statistic (FAR) and its p-value test the null hypothesis that the coefficient of the endogenous
variable PM10 in the structural equation is equal to zero.
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H. Comparison to the Literature

To provide context for the magnitude of our findings, we compare our IV
estimates from Appendix Section G to related epidemiological and economic
research that focuses on asthma.
In a meta-study, Khreis et al. (2017) summarize the available epidemio-

logical research on the impact of early life exposure to air pollution on the
prevalence of asthma in children. Overall, the research suggests odds ratios
of 1.025 for associations between PM10 and asthma at any age. Taking the
odds ratio as an approximation of relative risk, we can compare the mag-
nitude of our IV estimates for the share of sufferers to these results. Our
estimate for asthma in Column (2) in Panel B of Appendix Table G.1 im-
plies a substantially larger risk ratio of 1.066 at the mean, which is outside
of the meta-study’s 95% confidence interval. Our result is also greater than
the implied odds ratio from studies limited to children aged up to six, which
suggest an odds ratio of 1.045, but is now contained in the 95% confidence
interval calculated by Khreis et al. (2017).
Bharadwaj et al. (2016) estimate the lasting effect of exposure to the 1952

Great Smog of London on asthma development. In principle, our research
designs are similar as the authors compare children born just before and
just after air quality changes. However, our estimates are based on a slight
improvement in air quality that by no means is comparable to the variation
induced by the extreme impact of the “killer fog” which at least doubled
childhood asthma rates.
Economic studies focus on contemporaneous improvements in child health.

Using the case of Stockholm’s congestion charge, Simeonova et al. (2019)
show that persistently lower PM10 exposure reduces asthma-related hospital
admissions of children below six years of age with an implied elasticity of 3.7.
The elasticities we estimate for the number of prescriptions for asthma (3.3),
expenditures (5.4), and the share of sufferers (1.9) are comparable.34 The
difference could be attributed to the fact that Simeonova et al. (2019) ex-
amine contemporaneous benefits of persistently improved air quality over a
longer time period, while we study longer run health benefits from exposure
to cleaner air in a single year.
Other economic studies consider short-run variations in air pollution ex-

34The calculations are based on the IV estimates for asthma in Column (2) of Appendix
Table G.1. These point estimates are then multiplied with the mean PM10 exposure and
divided by the mean of the outcome to obtain elasticities.
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posure, but mainly focus on PM2.5.
35 Alexander and Schwandt (2019)

study the impact of emissions cheating by car manufacturers on PM2.5 and
child health outcomes. Their estimates imply that a one µg/m3 increase in
PM2.5 increases asthma-related hospital admissions of children aged four and
younger by 0.42 per 1, 000. Evaluated at the reported means, the elasticity
is 3.01. Barwick et al. (2018) study changes in health-related consumption
in China for PM2.5 using data on bank card transactions. They estimate
that a 10 µg/m3 decrease in PM2.5 reduces health spending in children’s
hospitals by 1.13%, implying an elasticity of 0.06.

35Beatty and Shimshack (2014) is a notable exemption. Based on data from young
children in England, they relate respiratory treatments for children to monthly PM10

exposure. The estimated coefficient on PM10 is, however, statistically insignificant but
would imply an elasticity of only 0.1.
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I. Unconditional Quantile Regression

We estimate the effect of LEZs across the unconditional distribution of the
number of prescriptions for respiratory diseases and asthma using the resid-
ualized unconditional quantile regression approach by Borgen, Haupt and
Wiborg (2021). In a first step, we estimate a common auxiliary regression
at the level of the individual child with treatment status as the dependent
variable and which includes birth county, birth state–birth quarter fixed ef-
fects, weather and socio-economic controls as well as controls for whether
there are partial treatments after the first year of pre-school childhood and
LEZ stringency increases over the five years of pre-school childhood. We
retain the residuals from this regression.
In a second step, we regress our health outcome on the residuals obtained

in the first step using the unconditional quantile estimator suggested by
(Firpo, Fortin and Lemieux, 2009). Their approach uses the re-centered
influence function (RIF) defined in Equation (I.1). It is the sum of the
influence function (IF) and the θth quantile of the unconditional distribution
of the health variable H denoted as qθ. The IF indicates the marginal
influence of an observation Hi on the quantile qθ. It is determined by fH , the
empirical density function evaluated at qθ, and by the indicator 1(h ≤ qθ)
which is equal to 1 if Hi is below or equal to qθ. Thus, an observation’s
influence is negative if its health status lies below and positive if it lies
above the health status at the θth quantile.

RIF (Hi, qθ) = qθ + IF (Hi, qθ) = qθ +
θ − 1(Hi ≤ qθ)

fH(qθ)
(I.1)

The expected value of the RIF equals the quantile of the unconditional
distribution.36 By the law of iterated expectations and integration over the
conditional mean, the unconditional quantile qθ can be expressed as

qθ = E[RIF (Hi, qθ)] = E[E[RIF (Hi, qθ)|Xi]] =

∫
E[RIF (Hi, qθ)|Xi]dFX ,

(I.2)

where X is the vector of covariates that in our case only include the residual
from the first step and FX is the marginal distribution function of X. To
obtain the marginal treatment effects on the unconditional quantile qθ, we

36E[RIF (Hi, qθ)] = E[qθ] +
θ−E[1(Hi≤qθ)]

fH(qθ)
= qθ +

θ−θ
fH(qθ)

= qθ
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take the sample quantile q̂θ and retrieve the density f̂H using a Gaussian
kernel method.37 To obtain R̂IF , we substitute both into Equation (I.1).
Second, we apply RIF-OLS regression to obtain the coefficients representing
the marginal ceteris paribus effect of an infinitesimal shift in the distribution
of the covariates X on the unconditional θth quantile of H:

β̂θ = (
N∑
i=1

X ′
iXi)

−1

N∑
i=1

X ′
iR̂IF (Hi, q̂θ)(I.3)

The identifying assumption is that in the absence of treatment, the change
in the health outcome at each quantile would have been the same in the
treatment and the control group. Because estimation times are prohibitively
long when using a stacked design, we limit our quantile regression analysis
to a standard two-way fixed effect estimation knowing that some caveats
may apply. For example, Section IV.E shows that the two-way DID esti-
mator leads to results smaller in magnitude compared to our stacked DID
estimator. Table A.5 in the Appendix features all coefficients and standard
errors which are bootstrapped using 500 repetitions and clustered at the
county level.

37f̂H(q̂θ) = 1
N ·bH ·

∑N
i=1 KH(Hi−q̂θ

bH
), where KH is the kernel function and bH is a

positive scalar bandwidth.
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