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A Proofs

A.A Proof of Proposition 1: Optimal Non-Linear Tax

We first use the mechanism design approach to characterize the optimal tax in terms
of types and then employ the perturbation approach to characterize the optimal tax
as a function of the attribute level. Finally, we show that the results we obtain under
either approach are equivalent.

A.A.1 Equation (2) in Types (Mechanism Design Approach)

For our mechanism design approach, we employ the Revelation Principle for dominant-
strategy implementation (Gibbard, 1973) to solve for a direct mechanism, where the
consumer truthfully reveals information about his perceived valuation.

We start by discussing the dimensionality of mechanisms for internality taxation.
In our model, a consumer decides based on his perceived valuation v̂(v, b) rather than
v. Even though a consumer may or may not know his bias, i.e., be sophisticated or
naive, we can, without loss of generality, neglect that distinction and restrict our anal-
ysis to one-dimensional mechanisms in the perceived valuation v̂. Naive consumers
are unaware of their bias and thus cannot report it, so that a social planner can only
employ a one-dimensional mechanism in v̂ to correct them. Sophisticated consumers
know their bias and can, in principle, report it. Yet, as biases do not influence decision
utility, truth-telling in a two-dimensional mechanism is not incentive-compatible.

The formal argument of the above is as follows. We want to show that two-
dimensional mechanisms, where sophisticated consumers report both their perceived
valuation and their bias, lead to a violation of truth-telling. Without loss of generality,
we assume that there exists at least one realization of perceived valuations v̂1 ∈

[
v̂, v̂
]

for which biases differ, so that some consumers are characterized by (v̂1, b1) and others
by (v̂1, b0), where b1 ̸= b0.
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The policy maker wants to implement a direct two-dimensional mechanism where
the allocation ξ

(
ṽ, b̃
)

and the tax τ
(
ṽ, b̃
)

depend on reported valuations ṽ and biases
b̃. Consumers choose their reports to maximize decision utility:

(ṽ∗(v̂), b̃∗(v̂)) = arg max
ṽ,b̃

ud (ξ
(
ṽ, b̃
)

, τ
(
ṽ, b̃
)
|v̂
)

.

Importantly, this maximization problem depends only on reported biases b̃ and not
on actual biases b. As a consequence, every sophisticated consumer with perceived
valuation v̂ will report the same bias b̃∗(v̂). As biases differ for v̂1, truth-telling is
violated.

Hence, we can apply the Revelation Principle to our setting, where the space of re-
ports for a consumer is given by the space of his perceived valuation v̂. For simplicity,
we refer to v̂ as a consumer’s type in the following. The policy maker confines herself
to designing a direct mechanism (ξ, τ) :

[
v̂, v̂
]
→ Q × R under truth-telling in order

to implement the welfare maximizing outcome. Based on the consumer’s strategical
report ṽ, the allocation rule of the direct mechanism assigns the consumed attribute
level, ξ(ṽ) ∈ Q, and transfer rule the amount of taxes to be paid, τ(ṽ) ∈ R. Because
the consumer has unit demand for the good, participation constraints are not relevant
in our setting.

Under the direct mechanism, the decision utility for report ṽ for a given perceived
valuation v̂ is:

ud(ξ(ṽ), τ(ṽ)|v̂) = m + v̂ · ξ(ṽ)− τ(ṽ)− c(ξ(ṽ)).

Since the consumer may strategically misreport his perceived valuation, truth-telling
must be ensured by implementing an incentive compatible mechanism. This implies
that the tax schedule must satisfy:

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]

. (IC)

Optimal strategic reporting of a consumer implies that the solution v∗ to the prob-
lem max

ṽ
ud(ξ(ṽ), τ(ṽ)|v̂) has to satisfy:

v̂ξ ′(v∗)− τ′(v∗)− ξ ′(v∗)c′(ξ(v∗)) !
= 0. (8)

As incentive compatibility requires that v∗ = v̂, equilibrium decision utility in an
incentive-compatible direct mechanism is given by ûd(v̂) := ud(ξ(v̂), τ(v̂)|v̂), while
equilibrium normative utility is given by ûn(v̂, b) := un(ξ(v̂), τ(v̂)|v) = ûd(v̂)− bξ(v̂).
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Put differently, incentive compatibility implies that, for all v̂ ∈
[
v̂, v̂
]
, the following

equation has to hold:

∂ûd(v̂)
∂v̂ = ξ(v̂) + v̂ξ ′(v̂)− τ′(v̂)− ξ ′(v̂)c′(ξ(v̂))

(8)
= ξ(v̂). (9)

To determine the optimal tax schedule, the policy maker solves an optimization
problem which can be analyzed using an optimal control approach. Note that deter-
mining the equilibrium values of ξ(v̂) and ud(v̂) for all v̂ pins down the equilibrium
value of τ(v̂) for all v̂. Hence, the mechanism design problem of the policy maker is
given by:

max
ξ∈Q

∫

v̂
α(v̂) · E [ûn (v̂, b) |v̂] dF(v̂) + λ

(∫

v̂
τ (v̂) dF(v̂)− B

)
, (10)

subject to the condition from Equation (9), where Q := { f | f :
[
v̂, v̂
]
→ Q} is the func-

tion space containing all functions with domain
[
v̂, v̂
]

and codomain Q. The boundary
conditions of the problem are given by ûd (v̂) = u and ûd (v̂

)
≥ u. The control vari-

able is ξ and the law of motion of the state variable ûd is determined by incentive
compatibility and optimal strategic reporting, as given by Equation (9).

Using the definition of decision utility to replace the tax and rewriting equilib-
rium normative utility in terms of equilibrium decision utility, the Hamiltonian for
the problem stated in Equation (10) for all v̂ ∈

[
v̂, v̂
]

is given by:

H
(

v̂,ξ,ûd
)
=


α(v̂)·

(
ûd(v̂)−E[b|v̂]ξ(v̂)

)

︸ ︷︷ ︸
=E[ûn(v̂,b)|v̂]

+λ
(

m+v̂ξ(v̂)−ûd(v̂)−c(ξ(v̂))
)

︸ ︷︷ ︸
=τ(v̂)


 f (v̂)+µ(v̂)ξ(v̂).

Following the standard solution procedure for such mechanism design problems,
we employ Pontryagin’s Maximum Principle, which yields the following necessary
conditions for the optimal tax.20

FOC on control: ∂H
∂ξ =

[
−E[b|v̂] · α(v̂) + λ

(
v̂ − c′(·)

)]
f (v̂) + µ (v̂) !

= 0, (FOCq)

FOC on state: ∂H
∂ûd = [α(v̂)− λ] f (v̂) !

= −µ′ (v̂) , (FOCu)

Transversality cond.: µ (v̂) · ûd (v̂) = µ
(
v̂
)
· ûd (v̂

)
= 0. (TVC)

20In addition, sufficiency is given if the control region is convex and the Hamiltonian is concave in
(ξ, ûd) for every v̂. Both conditions are satisfied in our setup.
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The consumer’s first-order condition characterizing optimal consumption qd is
given by

∂ud(q, t, v̂)
∂q

∣∣∣∣
q=qd

= v̂ − c′(qd)− t′(qd)
!
= 0 ⇔ c′(qd) = v̂ − t′(qd). (11)

The second order condition is satisfied if c′′(q)+ t′′(q) ≥ 0 for all q ∈ Q. Since the costs
are convex in q by assumption, this condition is satisfied if the optimal tax schedule is
convex in q as well. We find that convex optimal tax schedules are optimal for many
behavioral biases (see discussion after Proposition 4). More generally, this condition
also holds if the optimal tax schedule is concave. In that case, the cost function may
not be “too concave” in the sense that c′′(q) + t′′(q) ≥ 0 holds.

In our setting, we abstract from participation constraints. Hence, we can w.l.o.g.
assume that û (v̂) = u > 0 and û

(
v̂
)
≥ u, so that the transversality condition im-

mediately implies µ (v̂) = 0 and µ
(
v̂
)
= 0. Integrating Equation (FOCu) and using

µ
(
v̂
)
= 0, we obtain

∫ v̂

v̂
−µ′(n)dn = −µ

(
v̂
)
− [−µ (v̂)] = µ (v̂) !

=
∫ v̂

v̂
[α(m)− λ] f (m)dm. (12)

Using the Equations (11) and (12), we rearrange Equation (FOCq), to obtain the result:

λ
(
v̂ − c′(·)

) !
= −µ (v̂)

f (v̂)
+ E[b|v̂] · α(v̂)

(11)⇔ t′(q) = − µ
(
v̂q
)

λ f (v̂q)
+ E[b|v̂q] ·

α(v̂q)

λ

(12)⇔ t′(q) =

∫ v̂
v̂q
[1 − ĝ(m)] f (m)dm

f (v̂q)
+ E[b|v̂q] · ĝ(v̂q).

The average marginal social welfare weight for consumers in the upper part of the
distribution (in comparison to v̂) is defined as:

Ĝ(v̂) :=

∫ v̂
v̂ ĝ(m)dF(m)

1 − F(v̂)
= E[g(θ)|θ ≥ v̂]. (13)

Using this we get

t′(qv̂) = ĝ(v̂)E [b|v̂] +
∫ v̂

v̂ [1 − ĝ(n)] f (n)dn
f (v̂)

= ĝ(v̂)E [b|v̂] +
∫ v̂

v̂ f (n)dn −
∫ v̂

v̂ ĝ(n) f (n)dn
f (v̂)
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(13)
= ĝ(v̂)E [b|v̂] + [1 − F(v̂)]− Ĝ(v̂) [1 − F(v̂)]

f (v̂)

= ĝ(v̂)E [b|v̂] + [1 − F(v̂)]
[
1 − Ĝ(v̂)

]

f (v̂)

A.A.2 Equation (3) in Attribute Level q (Perturbation Approach)

The perturbation approach uses insights from a local perturbation of the tax sched-
ule to derive the optimal tax. In particular, it examines a change in the slope of the
consumer’s budget set in a small band (q, q + dq) from 1 − c′(q)− t′(q) to 1 − c′(q)−
t′(q) − dτ. Such a change has four effects on welfare. The mechanical effect repre-
sents an increase in collected tax money, since all consumers with consumption levels
higher than q + dq are affected by the increased tax rate. This effect is captured by

dτdq [1 − H(q)] .

The consumer welfare effect captures the social value of the decrease in consump-
tion of the numeraire due to the local tax perturbation:

−dτdq [1 − H(q)] G(q).

Since we abstract from income effects, there is no change of the consumption of q for
these consumers. This is different for the consumers inside the small band (q, q + dq).
Here, relative prices are changed and thus consumers change their consumption of
the attribute level by

δq =
dq

d (c′ + t′)
dτ = −e

q
c′ + t′

dτ. (14)

where the elasticity is defined as

e := − dq
d (t′ + c′)

t′ + c′

q
. (15)

We define the elasticity at the net price t′ + c′, since the slope of the consumer’s budget
constraint is determined by t′ + c′.

The fiscal externality captures the decrease in collected taxes

δqt′(q)h(q)dq,
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while the bias correction effect

−g(q)δqE [b|q] h(q)dq

captures the change in welfare due to the induced change in consumer utility, which
is caused by the potential correction of an internality.

In optimum, a local perturbation of the tax may not change social welfare. Hence,
the four effects have to sum to zero, so that

0 = dτdq [1 − H(q)] [1 − G(q)] + δq
[
t′(q)− E [b|q] g(q)

]
h(q)dq

⇔ t′(q) = g(q)E [b|q]− dτ [1 − H(q)] [1 − G(q)]
δqh(q)

(14)
= g(q)E [b|q]− dτ [1 − H(q)] [1 − G(q)]

−e(q) q
t′(q)+c′(q)dτh(q)

= g(q)E [b|q] + 1 − G(q)
e(q)a(q)

(
t′(q) + c′(q)

)
.

A.A.3 Equivalence of Equations (2) and (3)

We first linearize the budget constraint of the consumer in the tax so that, using the
virtual income R, it can be rewritten as z = R − c(q)− τq. Then, the decision utility is
given by u = v̂q + R − c(q)− τq.

The goal is now to write the change of consumption q in type v̂ using elasticity e,
which is the elasticity of q with respect to net-price τ + c′. The first-order condition of
the consumer with respect to consumption gives

0 !
= v̂ − τ − c′(q). (16)

Applying the implicit function theorem twice to (16) yields

dq
dv̂

= − 1
−c′′(q)

=
1

c′′(q)
dq

d (τ + c′)
= − −1

−c′′(q)
= − 1

c′′(q)

⇒ dq
dv̂

= − dq
d (τ + c′)

. (17)

We use the above results and the definition of the elasticity from (15):

e = − dq
d (τ + c′)

τ + c′

q
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(17)
=

dq
dv̂

τ + c′

q

⇔ dq
dv̂

=
qe

τ + c′
. (18)

For density h(q) the following must hold

h(qv̂)dqv̂ = f (v̂)dv̂

⇔ h(qv̂)
dq(v̂)

dv̂
= f (v̂)

(18)⇔ h(qv̂)
qe

t′ + c′
= f (v̂). (19)

The average marginal social welfare weight for consumers in the upper part of the
distribution (in comparison to q) can be rewritten using a change of variables (Ch.o.V.):

Ĝ(v̂) :=

∫ v̂
v̂ ĝ(m)dF(m)

1 − F(v̂)
Ch.o.V
=

∫ q
qv̂

g(m)dH(qm)

1 − H(qv̂)
=: G(qv̂). (20)

The thinness of the top tail (individuals with consumption above q in relation to
those at q) is given by

a(q) :=
h(q)q

1 − H(q)
. (21)

Using the above results we get

t′(qv̂) = ĝ(v̂)E [b|v̂] + [1 − F(v̂)]
[
1 − Ĝ(v̂)

]

f (v̂)
(19),C.o.V.

= g(q)E [b|q] + [1 − H(q)] [1 − G(q)]

h(q) qe(q)
t′(q)+c′(q)

= g(q)E [b|q] + (t′(q) + c′(q)) [1 − H(q)] [1 − G(q)]
h(q)qe(q)

⇔ t′(q)
(21)
= g(q)E [b|q] + 1 − G(q)

a(q)e(q)
(
t′(q) + c′(q)

)
.

A.B Derivation of the Optimal Linear Tax

The policy maker’s problem of setting the optimal linear tax can be written as

max
t∈R

∫

v

∫

b
α(v, b)un(qd, t, v)dFb(b|v)dFv(v)+λ

(∫

v

∫

b
t · qddFb(b|v)dFv(v)− B

)
=: V(t).
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We evaluate the derivative with respect to the linear tax t:

∂V(t)
∂t

=
∫

v

∫

b
α(v,b)

[
−qd+

(
v−t−c′(·)

)∂qd

∂t

]
dFb(b|v)dFv(v)+λ

∫

v

∫

b

[
qd+t·∂qd

∂t

]
dFb(b|v)dFv(v)

=
∫

v

∫

b

[
α(v,b)

(
v−c′(·)

)∂qd

∂t
−(α(v,b)−λ)(qd+t

∂qd

∂t
)

]
dFb(b|v)dFv(v).

The individually optimal consumption is again characterized by Equation (11), i.e.,
c′(·) = v̂ − t′(q) = (v + b)− t, where the last equality holds since t is linear. Thus,

∂V
∂t

=
∫

v

∫

b

[
α(v, b)(t − b)

∂qd

∂t
− (α(v, b)− λ)(qd + t

∂qd

∂t
)

]
dFb(b|v)dFv(v)

=
∫

v

∫

b

[
(λt − α(v, b)b)

∂qd

∂t
− (α(v, b)− λ)qd

]
dFb(b|v)dFv(v).

Using that t is constant, we can rewrite the equation as follows:

∂V
∂t

= λt
∂q̄d

∂t
−
∫

v

∫

b

[
α(v, b)b

∂qd

∂t
+ (α(v, b)− λ)qd

]
dFb(b|v)dFv(v),

where the change in average demand q̄d in response to a tax increase is given by ∂q̄d

∂t =∫
v

∫
b

[
∂qd

∂t

]
dFb(b|v)dFv(v). The optimal tax t∗ is given by ∂V

∂t |t=t∗
!
= 0, which gives:

∂V
∂t

= t
∂q̄d

∂t
−
∫

v

∫

b

[
ĝ(v, b)b

∂qd

∂t
− (1 − ĝ(v, b))qd

]
dFb(b|v)dFv(v) = 0

Abstracting from redistributive motives (ĝ(v, b) = 1 for all (v, b)) implies

t∗ =
∫

v

∫

b
b
[

∂qd

∂t
/

∂q̄d

∂t

]
dFb(b|v)dFv(v), (22)

where ∂qd

∂t / ∂q̄d

∂t denotes the relative responsiveness of a consumer type (v, b), i.e., the
change in demand for that consumer type in response to a tax increase, relative to
change in total demand.

If c′′′(·) = 0, the optimal linear tax simplifies to t∗ = E[b]. To see this, differentiate
Equation (11) with respect to t, which yields ∂qd

∂t = − 1
c′′(qd)

. This term is constant if

c′′′(·) = 0, so that ∂qd/∂t = ∂q̄d/∂t. Hence, the optimal linear tax is t∗ = E[b].

8



A.C Proof of Proposition 2: Condition for Implementability

Definition 2 (Internality Tax Implementability). The allocation function ξ :
[
v̂, v̂
]
→

Q is internality-tax implementable if there exists a tax function τ :
[
v̂, v̂
]
→ R such that{

(ξ(v̂), τ(v̂))|v̂ ∈
[
v̂, v̂
]}

satisfy incentive compatibility according to

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]

.

Implementability hinges on two necessary conditions, which concern the consumer
preferences or directly stem from them. First, the consumer’s utility function must
satisfy a single-crossing condition. Second, ξ must be monotonic in v̂. Since, in our
setting, the single-crossing condition is satisfied via ∂

(
ud

q/ud
t

)
/∂v̂ < 0, a necessary

condition for implementability is that the allocation is non-decreasing in perceived
types, i.e., ∂ξ/∂v̂ ≥ 0 (Proof: See Appendix A.C.1).

Implementability of an incentive compatible mechanism additionally hinges on
conditions, which stem from the policy maker’s preferences. In our setting, these involve
(paternalistic) corrective and redistributive motives. In a setting without corrective
motives, a sufficient condition for this requirement involves the hazard rate of F, that
is, f (v̂)/(1 − F(v̂)), which is a measure of the thinness of the tail of the distribution.
For our setting, Proposition 2 shows that the condition is more restrictive involving
terms that stem from the corrective motive (Proof: See Appendix A.C.2).

A.C.1 Proof: Single-Crossing and Monotonicity

Incentive compatibility requires

v̂ = arg max
ṽ

ud (ξ(ṽ), τ(ṽ), v̂) ∀ṽ ∈ V̂

The first-order condition implies

∂ud (ξ(ṽ), τ(ṽ), v̂)
∂ṽ

∣∣∣∣
ṽ=v̂

=:
∂ud (ṽ, v̂)

∂ṽ

∣∣∣∣
ṽ=v̂

= 0

⇔ ∂ud (ṽ, v̂)
∂ξ

· ∂ξ(ṽ)
∂ṽ

+
∂ud (ṽ, v̂)

∂τ
· ∂τ(ṽ)

∂ṽ
= 0

⇔ ∂τ(ṽ)
∂ṽ

= − ∂ud (ṽ, v̂) /∂ξ

∂ud (ṽ, v̂) /∂τ
· ∂ξ(ṽ)

∂ṽ
. (23)

Differentiating the first-order condition with respect to v̂ yields

∂2ud (ṽ, v̂)
∂ṽ2

∣∣∣∣
ṽ=v̂

+
∂2ud (ṽ, v̂)

∂ṽ∂v̂

∣∣∣∣
ṽ=v̂

= 0. (24)
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The second-order condition implies that

∂2ud (ṽ, v̂)
∂ṽ2

∣∣∣∣
ṽ=v̂

≤ 0. (25)

Equations (25) and (24) imply

∂ud (ṽ, v̂)
∂ṽ∂v̂

∣∣∣∣
ṽ=v̂

≥ 0

⇔
∂
(

∂ud(ṽ,v̂)
∂ξ

)

∂v̂
· ∂ξ(ṽ)

∂ṽ
+

∂
(

∂ud(ṽ,v̂)
∂τ

)

∂v̂
· ∂τ(ṽ)

∂ṽ
≥ 0

(23)⇔
∂
(

∂ud

∂ξ

)

∂v̂
· ∂ξ(ṽ)

∂ṽ
−

∂
(

∂ud

∂τ

)

∂v̂
· ∂ud/∂ξ

∂ud/∂τ
· ∂ξ(ṽ)

∂ṽ
≥ 0

⇔
∂
(

∂ud
∂ξ

)

∂v̂ ∂ud/∂τ − ∂
(

∂ud
∂τ

)

∂v̂ · ∂ud/∂ξ

∂ud/∂τ
· ∂ξ(ṽ)

∂ṽ
≥ 0

⇔
∂
(

∂ud
∂ξ

)

∂v̂ ∂ud/∂τ − ∂
(

∂ud
∂τ

)

∂v̂ · ∂ud/∂ξ

(∂ud/∂τ)
2 · ∂ud

∂τ
· ∂ξ(ṽ)

∂ṽ
≥ 0

⇔
∂
(

∂ud/∂ξ
∂ud/∂τ

)

∂v̂
· ∂ud

∂τ
· ∂ξ(ṽ)

∂ṽ
≥ 0,

where the second-but-last step follows from the quotient rule. Since we know that

∂ud

∂τ < 0 and via single crossing
∂

(
∂ud/∂ξ

∂ud/∂τ

)

∂v̂ =
∂
(

v̂−c′−t′
−1

)

∂v̂ = −1 < 0, it follows that we
need monotonicity of the form ∂ξ(ṽ)

∂ṽ ≥ 0.

A.C.2 Proof: Internality Tax Implementability

Inserting the optimal smooth tax from Proposition 1, the consumer’s first-order con-
dition can be rewritten as

c′[ξ(v̂)] !
= v̂ − ĝ(v̂)E[b|v̂]− (1 − Ĝ(v̂)) 1−F(v̂)

f (v̂)︸ ︷︷ ︸
=:ϕ(v̂)

. (26)

An incentive compatible mechanism must guarantee that ξ is non-decreasing in v̂ (see
Appendix A.C.1). Since c is convex, ξ is non-decreasing in v̂ if and only if the left-
hand side of Equation (26) is non-decreasing in v̂. Accordingly, the right-hand side of
Equation (26) must be non-decreasing in v̂ as well, which implies

1 − ∂ĝ(v̂)
∂v̂ E[b|v̂]− ∂E[b|v̂]

∂v̂ ĝ(v̂)− ∂[(1−Ĝ(v̂))·({1−F(v̂)}/ f (v̂))]
∂v̂ ≥ 0. (27)
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A.D Proof of Proposition 3: Bunching

In this section, we show that a failure of Internality Tax implementability leads to
bunching and discuss how bunching at the top or at the bottom is equivalent to a
ban for high or low attribute levels. To determine the optimal policy when bunching
occurs, we apply the approach by Guesnerie and Laffont (1984) to conduct “ironing”
using optimal control theory.

Before we present the formal method of ironing, we illustrate the intuition of this
procedure and explain why it implies different forms of standards (uniform, maxi-
mum, and minimum). For the ease of exposition we abstract from redistributive mo-
tives (g = 1 = G). Suppose the smooth tax derived in Proposition 1 implies that
the allocation rule ξ is decreasing in the interval [v̂h, v̂l ], where v̂h denotes the level of
perceived valuation that leads to a higher ξ, while v̂l leads to a lower ξ (v̂h < v̂l , but
ξ(v̂h) > ξ(v̂l)). The goal of ironing is to determine over which interval [a, b] of the
type space bunching will take place.

Recall that an allocation rule that decreases in v̂ implies a fundamental misalign-
ment of preferences violating the condition in Proposition 2: the policy maker would
like to allocate a lower allocation level to a consumer with a higher perceived valua-
tion. However, incentive compatibility requires a non-decreasing allocation rule (see
Appendix A.C.1): a consumer will not reveal a higher perceived valuation, if he ob-
tains a lower attribute level than a consumer with a lower perceived valuation.

To ensure incentive compatibility, the policy maker resorts to bunching and assigns
the same product attribute ξ∗ = ξ̂ to a subset of consumers. Suppose to the contrary
that the implemented allocation rule ξ were partly increasing in the interval [v̂h, v̂l ].
Then, the welfare of types that underconsume compared to ξ can be increased by
increasing the allocation, while the welfare of types that overconsume can be increased
by decreasing the allocation. This is true up to the point where the consumption of all
types v̂ ∈ [a, b] is equal to ξ̂.

The standard ξ̂ is set such that it minimizes the loss in welfare compared to the
solution candidate ξ. Intuitively, the standard ξ̂ lies in between the extremes of ξ l and
ξh so that some consumers overconsume compared to candidate ξ and some under-
consume. If all consumers underconsume, i.e., ξ̂ = ξ l , then increasing the standard
marginally would raise the welfare of all consumers that still underconsume after the
increase, while it would only decrease the welfare of the consumers who overconsume
after the increase, that is, for types with an ideal consumption ξ = ξ l . An analogous
statement holds for the case when all consumers overconsume, i.e., ξ̂ = ξh.

The exact procedure of determining the types that over- or underconsume com-
pared to ξ is described below for the general case of interior bunching, which sub-
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(b) Bunching at the bottom: Banning low attribute levels

Figure 1: Ironing yields the optimal bunching regions

sumes all cases relevant to our scenario (uniform, minimum and maximum stan-
dards). Figure 1 b) visualizes the specific case of minimum standards, i.e., bunching
at the bottom.

We now present the formal method of ironing. Bunching occurs if ξ (or equiva-
lently, the term ϕ(v̂) as defined in Equation (26)) is decreasing over an interval [v̂h, v̂l ] ⊆
[v̂, v̂]. Let ξ denote the non-ironed “solution candidate” and let ξ∗ denote the correct
solution involving ironing. Since we cannot guarantee that the allocation is strictly
increasing, write

ν(v̂) := ∂ξ
∂v̂ ≥ 0. (28)

We now have a control problem with an inequality constraint on the control ν. The
Hamiltonian H(v̂, ξ, ν, δ) of the general optimization problem without implicitly as-
suming that the incentive constraints hold, can be written as

H(·) =


α(v̂) ·

(
ûd(v̂)− E[b|v̂]ξ(v̂)

)

︸ ︷︷ ︸
=E[ûn(v̂,b)|v̂]

+λ
(

m + v̂ξ(v̂)− ûd(v̂)− c(ξ(v̂))
)

︸ ︷︷ ︸
=τ(v̂)


 f (v̂) + δ(v̂)ν(v̂),

where δ denotes the multiplier for the constraint given by Inequality (28). The first-
order condition on the state ξ yields

−δ′(v̂)
λ

!
=
[
v̂ − ĝ(v̂)E[b|v̂]− c′(ξ∗(v̂))

]
f (v̂). (29)
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Without redistributive motives (Ĝ ≡ 1), the term ϕ(v̂) as defined in Equation (26) is
given by ϕ(v̂) = v̂− ĝ(v̂)E[b|v̂]. For the ease of exposition, we discuss the case without
redistributive motives. Thus, Equation (29) can be rewritten as

−δ′(v̂)
λ

!
=
[
ϕ(v̂)− c′(ξ∗(v̂))

]
f (v̂). (30)

For simplicity, let us assume there is one unique interval [a, b] of bunching.21 Then, in-
tegrating (30) between a and b, and using the transversality conditions δ(a) = δ(b) =
0, which hold since the monotonicity constraint is non-binding at the boundaries,
yields

∫ b

a

[
ϕ(θ)− c′(ξ∗(θ))

]
f (θ)dθ

!
=

1
λ

∫ b

a
−δ′(θ) f (θ)dθ =

−δ(b) + δ(a)
λ

= 0, (31)

which implies that the average difference between the ϕ and the marginal costs (i.e.,
the average distortion of the "virtual surplus") is zero over the bunching interval.22

Equation (31) together with the fact that ξ∗(a) = ξ∗(b) = ξ(a) = ξ(b) characterizes
the allocation ξ∗(v̂) = ξ̂ given to types v̂ ∈ [a, b] in the optimal mechanism.

We now use the above characterization of the bunching region to determine its
boundaries a and b and the allocation ξ̂. The procedure is illustrated in Figure 1. We
first consider a case where the bunching region is in the middle of the range of v̂.
If a > v̂ and b < v̂, then there exists v̂l := arg min

v̂
ξ(v̂) s.t. v̂ ∈ [a, b] and v̂h :=

arg max
v̂

ξ(v̂) s.t. v̂ ∈ [a, b]. Denote ξh := ξ(v̂h) and ξ l := ξ(v̂l). Let κl denote the

inverse function of the increasing part of ξ defined on [v̂b, v̂h] with v̂b := min
v̂

v̂ s.t.

ξ(v̂) = ξ l . Analogously, κh denotes the inverse function of the increasing part of ξ

defined on [v̂l , v̂t] with v̂t := max
v̂

v̂ s.t. ξ(v̂) = ξh. For ξ̃ ∈ [ξh, ξ l ], define

∆(ξ̃) :=
∫ κh(ξ̃)

κl(ξ̃)

[
ϕ(θ)− c′(ξ̃)

]
f (θ)dθ. (32)

Since ξh > ξ(v̂), ∀v̂ ∈ (v̂h, v̂t), it holds that ∆(ξh) < 0. Analogously, since ξ l <

ξ(v̂), ∀v̂ ∈ (v̂b, v̂l), it holds that ∆(ξ l) > 0. Therefore, by the intermediate value
theorem, there must exists some ξ̂, such that ∆(ξ̂) = 0 as required by Equation (31).
Thus, a = κl(ξ̂) and b = κh(ξ̂). As a consequence, all individuals with v̂ ∈ [a, b] will
be assigned the same level of the product attribute ξ̂.

21The extension to a setting with several bunching regions is only subject to minor caveats. See Gues-
nerie and Laffont (1984) for details.

22Note that in a mechanism which optimally does not involve bunching, the difference between ϕ and
the marginal costs is zero at each point as can be seen in Equation (26).
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If a = v̂ (analogous reasoning applies for b = v̂), bunching occurs at the bottom
of the type distribution (see Panel b of Figure 1). In that case, we need to define and
evaluate

∆(ξ̃) :=
∫ κh(ξ̃)

v̂

[
ϕ(θ)− c′(ξ̃)

]
f (θ)dθ. (33)

As a consequence, all individuals with v̂ ∈ [v̂, b] will be assigned the same level of the
product attribute ξ̂. As bunching occurs at the bottom, this outcome corresponds to a
minimum standard, i.e., a ban of all realizations of the product attribute below ξ̂. The
rationale is equivalent for bunching at the top.

A.E Proof of Equation (5): First-Order Approximation

As a consequence of the Regression Conditional Expectation Function Theorem (e.g.,
Angrist and Pischke, 2009), the Minimum Mean Squared Error (MMSE) linear approx-
imation of the conditional expectation E [b|v̂] is given by:

Ê [b|v̂] = E(b|v̂ = µv̂) +
cov(b, v̂)

σ2
v̂

· [v̂ − µv̂] . (34)

Using that cov(b, v̂) = cov(b, v) + σ2
b , σ2

v̂ = σ2
v + σ2

b + 2 cov(b, v), and cov(b, v) = ρσvσb,
we obtain after rearranging:

Ê [b|v̂] = E [b|µv̂] +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂ − µv̂] . (35)

The existence of the conditional expectation as a function of v̂ is guaranteed by the
Factorization Lemma and the Radon-Nikodym theorem.

In the bivariate normal case, (v, b) is jointly normal distributed with:

(v, b) ∼ N

([
µv

µb

]
,

[
σ2

v ρσvσb

ρσvσb σ2
b

])
. (36)

Hence, the perceived valuation v̂ = v + b has the following normal distribution

v̂ ∼ N
(
µv + µb, σ2

v + σ2
b + 2ρσvσb

)
=:
(
µv̂, σ2

v̂
)

. (37)

The conditional expectation E[b|v̂] of the bias can be calculated as

E [b|v̂] = cov(b, v̂)
σ2

v̂
· v̂ +

[
µb −

cov(b, v̂)
σ2

v̂
· µv̂

]
= µb +

cov(b, v̂)
σ2

v̂
· [v̂ − µv̂] , (38)
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with cov(b, v̂) = cov(b, v) + σ2
b . Rearranging gives that

E [b|v̂] = µb +
ρ + (σb/σv)

(σb/σv) + (σv/σb) + 2ρ
· [v̂ − µv̂] . (39)

Hence, the approximation error R(v̂) equals zero for all v̂ if v and b follow a bivariate
normal distribution.

A.F Proof of Proposition 6: Prices Vs. Quantities

The proof proceeds in two steps. In a first step, we explore the welfare gains from non-
linear taxation relative to linear taxes and to standards. The corresponding results are
summarized in Proposition 8. In a second step, we then use these results to compare
linear taxes with standards. We analyze a setting in which the local bias heterogeneity
A is constant.

Proposition 8 (Welfare Gain from Non-Linear Taxation). The expected welfare gain of the
optimal non-linear tax relative to the optimal linear tax and the optimal standard is weakly
positive. It depends on the local bias heterogeneity A as follows:

a) The expected welfare gain over the optimal linear tax is zero when A = 0 and increases
in the absolute value of A;

b) The expected welfare gain over the optimal standard is zero when A ≥ 1 and decreases
in A.

We now provide the proof of Proposition 8. We analyze the impact of a change in
the local bias heterogeneity A on expected welfare under the optimal non-linear tax,
the optimal linear tax, and the optimal standard. To separate the impact of changes in
A from changes in the population of consumers, we hold the distribution of v̂ as well
as the first moments of v and b constant. In addition, we consider a scenario in which
redistribution does not matter, i.e., ĝ(v̂) = 1.

To evaluate welfare implications of a change in A, we need to evaluate the deriva-
tive with respect to A of the expected equilibrium normative utility (net of taxes) for
consumers with v̂ (see also the Hamiltonian of the policy maker’s problem):

∫

v̂
ûn(A)dF(v̂) =

∫

v̂
E[v|v̂](A)qM(A)− c

(
qM(A)

)
dF(v̂), (40)

where qM denotes the allocation under the non-linear, price (linear tax) or standard
(consumption ban) mechanism, qM(A) ∈ {ξ(A), qP(A), qS}, and ûn(A, qM) denotes
the equilibrium normative utility in the respective mechanism.
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We first consider the welfare implications of a change in A under the optimal non-
linear tax. We have that:

∂ûn(A, ξ)

∂A
=

∂E[v|v̂]
∂A

ξ +
∂ξ

∂A
{E[v|v̂]− c′(ξ)︸ ︷︷ ︸

=0

}.

By an envelope theorem argument, the second summand is zero since E[v|v̂] = v̂ −
E[b|v̂] = c′(ξ) due to optimal consumer behavior (see Equation (11)).

The optimal standard qS can be calculated by solving the following utility maxi-
mization problem: max

q∈R

∫
v un(q, v)dFv(v). Inserting un(q, v) = m + vx − c(q) and solv-

ing for the maximum yields the following implicit solution: c′(qS) = E [v]. Hence, qS

does not depend on A and we obtain:

∂ûn(A, qS)

∂A
=

∂E[v|v̂]
∂A

qS.

As shown in Section A.B, the optimal linear tax is given by the following expres-
sion: t∗(A) =

∫
v̂ E(b|v̂)(A)

[
∂qd

∂t / ∂q̄d

∂t

]
dF(v̂). From the first order condition of con-

sumer maximization, we know that c′(qd) = v̂ − t∗(A) = E[v|v̂] + E[b|v̂] − t∗(A).
Using this equation, we obtain:

∂ûn(A, qP)

∂A
=

∂E[v|v̂]
∂A

qP +
∂qP

∂A
{E[v|v̂]− c′(qP)} =

∂E[v|v̂]
∂A

qP +
∂qP

∂A
{E[b|v̂]− t∗(A)}.

The second summand vanishes when taking the integral over all types, which can be
seen as follows:

∫

v̂

∂qP

∂A
{E[b|v̂]− t∗(A)}dF(v̂) =

∂t∗(A)

∂A

∫

v̂

∂qP

∂t∗
{E[b|v̂]− t∗(A)}dF(v̂)

=
∂t∗(A)

∂A

(∫

v̂

∂qP

∂t∗
E[b|v̂]dF(v̂)− t∗(A)

∫

v̂

∂qP

∂t∗
dF(v̂)

)
= 0,

where the last equality follows from the definition of t∗(A) and the fact that ∂q̄d

∂t∗ =∫
v̂

∂qP

∂t∗ dF(v̂). Hence, we obtain:

∂ûn(A, qP)

∂A
=

∂E[v|v̂]
∂A

qP.

We now evaluate how a change in A changes the relative advantage of non-linear
taxation relative to a standard in terms of expected welfare:

∂∆un
NL,S

∂A
=
∫

∂E[v|v̂]
∂A

(
ξ − qS

)
dF(v̂),
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where ∆un
NL,S :=

∫
ûn(A, ξ)− ûn(A, qS)dF(v̂). Using ∂E[v|v̂]

∂A = (µv̂ − v̂), we obtain:

∂∆un
NL,S

∂A
=
∫
(µv̂ − v̂)

[
ξ(v̂)− qS

]
dF(v̂)

= µv̂

∫
ξ(v̂)dF(v̂)−

∫
v̂ξ(v̂)dF(v̂)− qS

[
µv̂ −

∫
v̂dF(v̂)

]

= E[v̂] · E [ξ(v̂)]− E [v̂ · ξ(v̂)]− 0

= E[v̂] · E [ξ(v̂)]− E[v̂] · E [ξ(v̂)]− cov (v̂, ξ(v̂)) ≤ 0,

where the last inequality holds since ξ is increasing in v̂ for an incentive compatible
mechanism, so that cov (v̂, ξ(v̂)) is positive.

The relative advantage in terms of expected welfare of non-linear taxation relative
to the optimal linear tax is given by:

∂∆un
NL,P

∂A
=
∫

∂E[v|v̂]
∂A

(
ξ(v̂)− qP(v̂)

)
dFv̂.

We approximate ξ − qP by a first-order Taylor approximation in the marginal tax rate
t′ around t′ = t∗, which yields:

ξ − qP ≈ dqP

dt

∣∣∣∣
t′=t∗

[
t′(v̂)− t∗

]
,

where t′(v̂) = E[b|v̂] is the optimal non-linear tax rate from Proposition 1 and t∗ is the
optimal linear tax rate from Equation (22).

Using that E[b|v̂] = E[b|µv̂] + A(v̂ − µv̂), rearranging, and using W(v̂) := dq(v̂)/dt
dq̄/dt

with dq̄
dt :=

∫
v̂

dq(v̂)
dt dF(v̂) to denote the relative responsiveness of a consumer type v̂

we obtain:

ξ − qP ≈ dqP

dt

∣∣∣∣
t′=t∗

A
(

v̂ −
∫

v̂W(v̂)dF(v̂)
)

.

Denoting vP =
∫

v̂W(v̂)dF(v̂), we have:

∂∆ue
NL,P

∂A
= A

∫
(µv̂ − v̂)(v̂ − vP)

dqP

dt

∣∣∣∣
t′=t∗

dF(v̂)

= A
∫
(µv̂v̂ − µv̂vP − v̂2 + v̂vP)

dqP

dt

∣∣∣∣
t′=t∗

dF(v̂)

= A
(
(µv̂ + vP)

∫
v̂

dqP

dt

∣∣∣∣
t′=t∗

dF(v̂)− (µv̂vP)
∫ dqP

dt

∣∣∣∣
t′=t∗

dF(v̂)−
∫

v̂2 dqP

dt

∣∣∣∣
t′=t∗

dF(v̂)
)

= A
dq̄P

dt

(
(µv̂ + vP)

∫
v̂W(v̂)dF(v̂)− µv̂vP −

∫
v̂2W(v̂)dF(v̂)

)
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= A
dq̄P

dt

(
(vP)2 −

∫
v̂2W(v̂)dF(v̂)

)

= A
dq̄P

dt︸ ︷︷ ︸
≤0 if A≥0

((∫
v̂W(v̂)dF(v̂)

)2

−
∫

v̂2W(v̂)dF(v̂)

)

︸ ︷︷ ︸
≤0

≥ 0,

where dq̄P

dt =
∫ dqP

dt

∣∣
t′=t∗dF(v̂). The fact that the third factor is non-positive follows

from Jensen’s inequality because d(v̂) = W(v̂) f (v̂) satisfies the properties of a density
function, with d(v̂) ≥ 0 ∀ v̂ and

∫
d(v̂)dv̂ =

∫
W(v̂)dF(v̂) = 1.

Comparison of Linear Price Instruments with Standards

In Proposition 8, we have shown that a linear price instrument is welfare-optimal for
A = 0, a standard is optimal for A = 1, and the advantage of a standard compared to
a linear price instrument increases in A. Hence, the existence of Â from Proposition 6
is guaranteed by applying the intermediate value theorem.

To complete the proof of Proposition 6, we need to show that the welfare advan-
tage of a price instrument over a quantity instrument becomes more pronounced as A
decreases below zero. For that purpose, it is sufficient to show that the difference in the
expected equilibrium normative utility between the linear tax and the quantity regu-
lation, ∂∆un

P,S/∂A =
∫

ûn(A, qP)− ûn(A, qS)dF(v̂), decreases in A. Let v̄ be the v̂ such
that qP (v̂) = qS. We approximate the demand function by a first-order Taylor approx-
imation at v̄, which yields qP (v̂) ≈ qP (v̄) + ∂qP

∂v̂

∣∣
v̄ (v̂ − v̄) . As the first-order conditions

of utility maximization imply v̂− t∗ = c′
(
qP (v̂)

)
for linear taxation and c′

(
qS) = E [v]

for quantity regulation, we have that v̄ = E [v] + t∗, where t∗ =
∫

v̂ E [b|v̂]W (v̂) dF (v̂).
We can now show that the welfare difference between prices and quantities decreases
in A, since

∂∆un
P,S

∂A
=
∫

v̂

∂E [v|v̂]
∂A

[
qP (v̂)− qS

]
dF (v̂)

=
∫

v̂
(µv̂ − v̂)

[
qP (v̂)− qS

]
dF (v̂)

= −∂qP

∂v̂
∣∣
v̂=v̄

∫

v̂
(µv̂ − v̂) (v̂ − v̄) dF (v̂)

= −∂qP

∂v̂
∣∣
v̂=v̄

∫

v̂
(µv̂ − v̂) [(v − E [v]) (b − t∗)] dF (v̂)

= −∂qP

∂v̂
∣∣
v̂=v̄︸ ︷︷ ︸

<0

[
E
[
v̂2]− µ2

v̂
]

︸ ︷︷ ︸
>0

< 0,
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where the evaluation of the second factor in the last line follows from Jensen’s inequal-
ity.

A.G Proof of Proposition 7: Minimum and Maximum Standards

The proof proceeds as follows. From Proposition 3, we know that ∂E[v|v̂]/∂v̂ < 0 for
some v̂ implies that a policy maker will use bunching as part of the optimal policy.
Furthermore, we know from Appendix A.D that bans are part of the optimal policy
mix if bunching occurs at the top or the bottom of the perceived valuation distribution.
We use a second-order Taylor approximation to approximate E[v|v̂] as a function of v̂
and v̂2. This allows to derive the conditions under which mixed policies optimally
involve bans for high or low levels of the product attribute in terms of higher-order
moments of the (joint) distributions of the random variables v, b, and v̂.

The second-order Taylor approximation of E [v|v̂] is:

Ê [v|v̂] = c0 + c1v̂ + c2v̂2. (41)

Bunching occurs whenever ∂E [v|v̂] /∂v̂ = c1 + 2c2v̂ ≤ 0 for some v̂. For the purpose of
this proof, we are interested in bunching at the top and at the bottom. With v̂ ∈ [0, ∞),
we have:

1. Bunching at the Top if c1 > 0 and c2 < 0.

2. Bunching at the Bottom if c1 < 0 and c2 > 0.

Otherwise, bunching takes place over the entire support of v̂ (c1 < 0, c2 ≤ 0) or not at
all (c1 > 0, c2 ≥ 0). We proceed by first calculating c1 and c2. In a subsequent step, we
derive sufficient conditions for bunching at the top and at the bottom.

The Frisch-Waugh-Lovell Theorem demonstrates that cr for r ∈ {1, 2}, as defined
by Equation (41), can be calculated as

cr =
cov (ϵr, ϵ̂r)

var (ϵ̂r)
, (42)

where ϵ̂r is the “residual” of v̂r after regressing it on all covariates except v̂r, and ϵr is
the “residual” of v after regressing it on all covariates except v̂r.

We first calculate c1. Regressing v̂ on v̂2 and a constant yields:

v̂ = d1 + d2v̂2 + ϵ̂1

= E
[
v̂|v̂2 = 0

]
+

cov
(
v̂, v̂2)

var (v̂2)
v̂2 + ϵ̂1.
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The residual ϵ̂1 is then given by:

ϵ̂1 = v̂ −
{

E
[
v̂|v̂2 = 0

]
+

cov
(
v̂, v̂2)

var (v̂2)
v̂2

}
.

Regressing v on v̂2 and a constant yields:

v = e0 + e1v̂2 + ϵ1

= E
[
v|v̂2 = 0

]
+

cov
(
v, v̂2)

var (v̂2)
v̂2 + ϵ1

The residual ϵ1 is then given by:

ϵ1 = v −
{

E
[
v|v̂2 = 0

]
+

cov
(
v, v̂2)

var (v̂2)
v̂2

}
.

Therefore, by Equation (42), the coefficient c1 is given by:

c1 =
cov (ϵ1, ϵ̂1)

var (ϵ̂1)

=

cov
(

v −
{

E
[
v|v̂2 = 0

]
+

cov(v,v̂2)
var(v̂2)

v̂2
}

, v̂ −
{

E
[
v̂|v̂2 = 0

]
+

cov(v̂,v̂2)
var(v̂2)

v̂2
})

var (ϵ̂1)

=

cov
(

v, v̂ − cov(v̂,v̂2)
var(v̂2)

v̂2
)

var (ϵ̂1)
+

cov
(
− cov(v,v̂2)

var(v̂2)
v̂2, v̂ − cov(v̂,v̂2)

var(v̂2)
v̂2
)

var (ϵ̂1)

=

cov
(

v, v̂ − cov(v̂,v̂2)
var(v̂2)

v̂2
)

var (ϵ̂1)
−

cov(v̂,v̂2)
var(v̂2)

cov
(
v, v̂2)

var (ϵ̂1)
+

cov(v̂,v̂2)cov(v,v̂2)
[var(v̂2)]

2 cov
(
v̂2, v̂2)

var (ϵ̂1)

=

cov
(

v, v̂ − cov(v̂,v̂2)
var(v̂2)

v̂2
)

var (ϵ̂1)
. (43)

Next, we calculate c2. Regressing v̂2 on v̂ and a constant yields:

v̂2 = d0 + d1v̂ + ϵ̂2

= E
[
v̂2|v̂ = 0

]
+

cov
(
v̂2, v̂

)

var (v̂)
v̂ + ϵ̂2.
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The residual ϵ̂2 is then given by:

ϵ̂2 = v̂2 −
{

E
[
v̂2|v̂ = 0

]
+

cov
(
v̂2, v̂

)

var (v̂)
v̂

}
.

Regressing v on v̂ and a constant yields:

v = d0 + d1v̂ + ϵ2

= E [v|v̂ = 0] +
cov (v, v̂)
var (v̂)

v̂ + ϵ2.

The residual ϵ2 is then given by:

ϵ2 = v −
{

E [v|v̂ = 0] +
cov (v, v̂)
var (v̂)

v̂
}

.

Therefore, by Equation (42), the coefficient c2 is given by:

c2 =
cov (ϵ2, ϵ̂2)

var (ϵ̂2)

=

cov
(

v −
{

E [v|v̂ = 0] + cov(v,v̂)
var(v̂) v̂

}
, v̂2 −

{
E
[
v̂2|v̂ = 0

]
+

cov(v̂2,v̂)
var(v̂) v̂

})

var (ϵ̂2)

=
cov

(
v, v̂2)− cov(v,v̂)

var(v̂) cov
(
v̂2, v̂

)

var (ϵ̂2)
+

cov
(
− cov(v,v̂)

var(v̂) v̂, v̂2 − cov(v̂2,v̂)
var(v̂) v̂

)

var (ϵ̂2)

=
cov

(
v, v̂2)− cov(v,v̂)

var(v̂)

[
cov

(
v̂2, v

)
+ cov

(
v̂2, b

)]

var (ϵ̂2)
+

− cov(v,v̂)
var(v̂) cov

(
v̂, v̂2)+ cov (v, v̂)

cov(v̂2,v̂)
var(v̂)

var (ϵ̂2)

=
cov

(
v, v̂2)− cov(v,v̂)

var(v̂)

[
cov

(
v̂2, v

)
+ cov

(
v̂2, b

)]

var (ϵ̂2)
(44)

=
cov

(
v, v̂2) cov (b, v̂)− cov (v, v̂) cov

(
v̂2, b

)

var (v̂) var (ϵ̂2)

=
cov

(
v̂, v̂2) cov (b, v̂)− cov (v̂, v̂) cov

(
v̂2, b

)

var (v̂) var (ϵ̂2)

(∗)
=

[
2µv̂σ2

v̂ + sk(v̂)σ3
v̂
]

cov (b, v̂)− σ2
v̂ cov

(
v̂2, b

)

var (v̂) var (ϵ̂2)

=
σ2

v̂

=:K︷ ︸︸ ︷{
[2µv̂ + sk(v̂)σv̂] cov (b, v̂)− cov

(
v̂2, b

)}

var (v̂) var (ϵ̂2)
,
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where the denominator is always positive and (∗) follows from the fact that, for every
random variable Y, we have:23

cov
(
Y, Y2) = [sk(Y)σY + 2µY] σ2

Y. (45)

We now analyze the term K:

K BG1969
= [2µv̂ + sk(v̂)σv̂] cov (b, v̂)−

[
2µv̂cov (v̂, b) + E

[
(v̂ − µv̂)

2 (b − µb)
]]

= sk(v̂)σv̂cov (b, v̂)− E
[
(v̂ − µv̂)

2 (b − µb)
]

= E

[(
v̂ − µv̂

σv̂

)3
]

σv̂E [(v̂ − µv̂) (b − µb)]− E
[
(v̂ − µv̂)

2 (b − µb)
]

=
E
[
(v̂ − µv̂)

3
]

E [(v̂ − µv̂) (b − µb)]

σ2
v̂

− E
[
(v̂ − µv̂)

2 (b − µb)
]

=
E
[
(v̂ − µv̂)

3
]

E [(v̂ − µv̂) (b − µb)]

σ2
v̂

− E
[
(v̂ − µv̂)

2 (b − µb)
]

= σ2
v̂ σb





E
[
(v̂ − µv̂)

3
]

E [(v̂ − µv̂) (b − µb)]

σ4
v̂ σb

−
E
[
(v̂ − µv̂)

2 (b − µb)
]

σ2
v̂ σb





= σ2
v̂ σb {sk (v̂) ρ (v̂, b)− cosk (v̂, b)} ,

where BG1969 refers to Bohrnstedt and Goldberger (1969). Hence, a sufficient (and
necessary) condition for c2 < 0 is:

c2 < 0 ⇐⇒ ρ (v̂, b) sk (v̂) < cosk (v̂, b) (46)

and a sufficient (and necessary) condition for c2 > 0 is:

c2 > 0 ⇐⇒ ρ (v̂, b) sk (v̂) > cosk (v̂, b) . (47)
23This can be seen as follows:

cov
(

Y, Y2
)
= E

(
Y3
)
− µY2 µY = E

(
Y3
)
− µY

[
E
(

Y2
)
− µ2

Y + µ2
Y

]
= E

(
Y3
)
− µYσ2

Y − µ3
Y

=

[
E
(
Y3)− µ3

Y − 3µYσ2
Y + 3µYσ2

Y
]

σ3
Y

σ3
Y

− µYσ2
Y = sk(Y)σ3

Y + 3µYσ2
Y − µYσ2

Y = sk(Y)σ3
Y + 2µYσ2

Y .
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Sufficient Conditions for Bunching at the Top

To obtain sufficient conditions for Bunching at the Top, we need to find sufficient
conditions for c1 > 0, given that c2 < 0. Using the results for c1 from Equation (43),
we obtain:

c1 > 0

⇔
cov

(
v, v̂ − cov(v̂,v̂2)

var(v̂2)
v̂2
)

var (ϵ̂1)
> 0

⇔ cov (v, v̂)︸ ︷︷ ︸
(1)

− cov
(
v, v̂2)

︸ ︷︷ ︸
(2)

cov
(
v̂, v̂2)

var (v̂2)︸ ︷︷ ︸
(3)

> 0. (48)

Term (1) of Inequality (48) is positive by assumption because we restrict ourselves to
settings where partial bans become relevant (note that A < 1 from Proposition 5 is
equivalent to cov(v, v̂) > 0). A sufficient condition for Term (3) to be positive is that
the skewness is positive, which follows from:

cov
(
v̂, v̂2) > 0 ⇔ 2µv̂σ2

v̂ + sk(v̂)σ3
v̂ > 0

⇔ sk(v̂) > −2µv̂

σv̂

⇐ sk(v̂) > 0 .

Next, we show that Inequality (48) holds under the assumptions made so far. When
cov

(
v, v̂2) ≤ 0, the inequality holds because Term (1) and Term (3) are positive. When

cov
(
v, v̂2) > 0, we can derive an upper bound for Term (2) by rearranging Equation

(44):

c2 < 0 ⇐⇒ cov
(
v, v̂2) < cov (v, v̂)

cov
(
v̂2, v̂

)

var (v̂)
. (49)

Then, Inequality (48) holds if it holds after substituting the upper bound from Inequal-
ity (49) for Term (2):

cov (v, v̂)− cov (v, v̂)
cov

(
v̂2, v̂

)

var (v̂)
cov

(
v̂, v̂2)

var (v̂2)
> 0

⇔cov (v, v̂)
(

1 − ρ2
v̂2,v̂

)
> 0,

where ρ2
v̂2,v̂ ∈ (−1, 1) is the square of the correlation between v̂2 and v̂. As we consider

settings with cov(v, v̂) > 0, this inequality holds.
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To close the proof, note that sk(v̂) > 0 in combination with Equation (46) implies
that:

cosk (v̂, b)
sk (v̂)

> ρ (v̂, b) .

Hence, this condition and the condition that sk(v̂) > 0 are sufficient for Bunching at
the Top if v̂ ∈ [0, ∞) and cov(v, v̂) > 0.

Sufficient Conditions for Bunching at the Bottom

To obtain sufficient conditions for Bunching at the Bottom, we need to find sufficient
conditions for c1 < 0, given that c2 > 0. Using the results for c1 from Equation (48),
we obtain:

c1 < 0 ⇐⇒ cov (v, v̂)− cov
(
v, v̂2) cov

(
v̂, v̂2)

var (v̂2)
< 0. (50)

Using Equation (45), we obtain that

cov
(
v̂, v̂2) = [sk(v̂)σv̂ + 2µv̂] σ2

v̂ .

Furthermore,

cov
(
v, v̂2) = E

[
(v − µv)

(
v̂2 − µv̂2

)]

= E
(
vv̂2)− µv̂2 µv − µvE

(
v̂2)+ µvµv̂2

=

[
E
(
vv̂2)− µvE

(
v̂2)− 2E (vv̂) µv̂ + 2µ2

v̂µv + 2E (vv̂) µv̂ − 2µ2
v̂µv
]

σ2
v̂ σv

σ2
v̂ σv

(∗)
= cosk(v̂, v)σ2

v̂ σv + 2E (vv̂) µv̂ − 2µ2
v̂µv

= cosk(v̂, v)σ2
v̂ σv + 2µv̂ [E (vv̂)− µv̂µv + µv̂µv − µv̂µv]

= cosk(v̂, v)σ2
v̂ σv + 2µv̂cov (v, v̂)

= [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv,

where in (∗) we use that cosk(v̂, v) = E
(
vv̂2)− 2E (vv̂) µv̂ − 2E

(
v̂2) µv + 2µ2

v̂µv. Hence,
we can rewrite Inequality (50) as follows

cov (v, v̂)− cov
(
v, v̂2) cov

(
v̂, v̂2)

var (v̂2)
< 0

⇔ cov (v, v̂)− [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv
[sk(v̂)σv̂ + 2µv̂] σ2

v̂
var (v̂2)

< 0
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⇔ [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)] σv̂σv
[sk(v̂)σv̂ + 2µv̂] σ2

v̂
var (v̂2)

> cov (v, v̂)

⇔ [cosk(v̂, v)σv̂ + 2µv̂ρ (v, v̂)]
[sk(v̂)σv̂ + 2µv̂] σ2

v̂
var (v̂2)

(∗)
> ρ (v, v̂)

⇔
[

cosk(v̂, v)
ρ (v, v̂)

σv̂ + 2µv̂

]
[sk(v̂)σv̂ + 2µv̂] σ2

v̂
var (v̂2)

> 1

⇔
[

cosk(v̂, v)
ρ (v, v̂)

σv̂ + 2µv̂

]
[sk(v̂)σv̂ + 2µv̂] >

var
(
v̂2)

σ2
v̂

⇔
[

cosk(v̂, v)
ρ (v, v̂)

σv̂ + 2µv̂

]
[sk(v̂)σv̂ + 2µv̂]−

σ2
v̂2

σ2
v̂
> 0

⇔
[

cosk(v̂, v)
ρ (v, v̂)

σv̂ + 2µv̂ +
σv̂2

σv̂

]

︸ ︷︷ ︸
(1)

[
sk(v̂)σv̂ + 2µv̂ −

σv̂2

σv̂

]

︸ ︷︷ ︸
(2)

+ σv̂2

[
cosk(v̂, v)

ρ (v, v̂)
− sk(v̂)

]

︸ ︷︷ ︸
(3)

> 0,

where in (∗) we use that cov (v, v̂) > 0. The last inequality holds if (1) < 0, (2) < 0,
and (3) > 0. Note that (3) > 0 follows from c2 > 0. Furthermore, (1) < 0 if:

cosk(v̂, v)
ρ (v, v̂)

< −2
µv̂

σv̂
− σv̂2

σ2
v̂
=: k, (51)

where k < 0. From (3) > 0 and (1) < 0 it also follows that (2) < 0, which can be seen
as follows:

sk(v̂)
(3)>0
<

cosk(v̂, v)
ρ (v, v̂)

(1)<0
< −2

µv̂

σv̂
− σv̂2

σ2
v̂
< −2

µv̂

σv̂
+

σv̂2

σ2
v̂

. (52)

To close the proof, note that sk(v̂) < 0 in combination with Equation (47) implies that:

cosk (v̂, b)
sk (v̂)

> ρ (v̂, b) .

Hence, this condition and the condition that sk(v̂) <
cosk(v̂, v)

ρ (v, v̂)
< k < 0 are sufficient

for Bunching at the Bottom if v̂ ∈ [0, ∞) and cov(v, v̂) > 0.
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B Optimal Non-Linear Taxation in the Light Bulb Market

We first explain how we approximate the cost function for energy efficiency and con-
sumers’ normative valuations v. In a subsequent step, we present the aggregate wel-
fare effects of the optimal linear and non-linear subsidy on energy efficiency, relative
to no taxation.

Our supply data stems from a price comparison service, geizhals.de, which reports
the cheapest price of a product offered on an online website. We focus on light bulbs
that are typically purchased by households. In particular, we consider bulbs with
an energy intensity of 25 to 75 Watt-equivalents and a warm light color of around
2700 Kelvin. To reduce the impact of branding effects, we focus on bulbs produced
by one of the two large manufacturers, Osram and Philips, that offer bulbs both in
the European Union and the United States. As in Allcott and Taubinsky (2015a), we
express all prices in 2012 US dollars (USD) and collect product prices during that year.
Some LED and CFL bulbs enter the market after 2012: in these cases, we extrapolate
their 2012 price based on their aggregate annual price trends, which imply a 20% and
10% price decrease per annum for LED and CFL bulbs, respectively. For every bulb,
we determine the operating and replacement cost (ORC) to consume 8.000 hours of
light over eight years, which corresponds to three hours per day, assuming electricity
prices of 0.1 USD per kWh (Allcott and Taubinsky, 2015a).

Based on this data, we determine the purchase price premiums and ORC savings
relative to the most electricity-intensive bulb. In the following, we use ORC savings
as the measure of attribute level q, i.e., of energy efficiency. Figure 2 plots the price
premiums against ORC savings, which corresponds to the cost function c(q) in our
model. The least energy inefficient, yet cheapest, bulbs are incandescent bulbs, fol-
lowed by halogen, CFL and LED bulbs. The cost curve is convex, which reflects that
a one unit increase in ORC savings becomes increasingly more expensive as the level
of energy efficiency increases. In 2012, the most energy efficient LED bulbs sold at a
price premium of around 30 USD and yielded cost savings of about 50 USD over the
course of eight years, compared to the most energy inefficient incandescent bulbs.

We use the elicitation of time preferences by Allcott and Taubinsky (2015a) to de-
termine individual-specific discount factors. We assume that all other factors that in-
fluence normative valuations do not vary by participant and thus merely constitute a
scaling factor. This assumption allows us to calibrate valuations to match the supply
function from Figure 2. In particular, we set valuations to v = s · D(δ), where s is a
scaling factor that ensures that consumers demand every product variety offered on
the market. To illustrate, consider a consumer with a discount rate of δ = 20% and
annual operating cost of 1/8 USD for eight years, which results in ORC savings of 1
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Figure 2: Energy Efficiency Cost Function in the Light Bulb Market
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Note: Price premiums, as well as operating and replacement cost savings are determined relative to the
most electricity intensive bulb. Operating and replacement cost assume eight years of total usage (8.000
hours) and an electricity price of 0.1 USD per kWh, as in Allcott and Taubinsky (2015a). The solid line
plots predictions from a local linear regression (bandwidth: 9), while the dashed line plots predictions
from a regression on quadratic terms.

USD. For that consumer, the normative valuation of 1 USD in ORC savings is then
D(δ) = (1 + 1/(1 + δ) + · · ·+ 1/(1 + δ)7) · (1/8) = 0.58 USD. We consider this ap-
proach as a useful approximation of individuals’ normative preferences v that isolates
one source of heterogeneity in v and is consistent with observable market behavior.24

We assume a quadratic cost function and estimate it based on the data from Fig-
ure 2. We derive consumers’ choices in five scenarios: the absence of a corrective tax,
the presence of the optimal linear tax, the optimal non-linear tax a) under full infor-
mation, b) under a first-order approximation of the conditional bias, and c) under a
second-order approximation of the conditional bias. The aggregate welfare effects are
presented in Table 1.

24We set the scaling factor to 0.6, which ensures that the largest perceived valuations are equal to the
highest gradient of the cost function from Figure 2. In addition, we impose some consistency restrictions
on the data. Starting with a sample of 633 individuals with non-censored valuations in the treatment
groups, we drop all observations with missing values on biases and discount rates (23 observations). We
also drop observations where the elicitation of time preferences does not yield a discount factor between
0 and 1 (50 observations) and where biases or perceived valuations are above below the 1 or above the
99 percentile (14 observations). In addition, we drop all observations where perceived valuations would
be negative (57 observations), which leaves us with 489 observations for our numerical example.
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Table 1: Welfare Implications of Taxation
Mean welfare, Mean welfare gain over Mean welfare gain
in USD/bulb status quo, in EUR/bulb relative to linear tax, in %

Status quo (no tax) 3.79 0.00 −
Linear tax 3.91 0.12 0
Non-linear tax (first-order approx.) 3.96 0.16 36
Non-linear tax (second-order approx.) 3.97 0.17 44
Non-linear tax (full information) 3.98 0.19 57

Welfare effects under a first-order approximation, (wrongly) setting ρ = 0
Non-linear tax (first-order approx, ρ = 0) 3.95 0.16 31

Note: Mean welfare is calculated under the optimal linear and non-linear tax schedules using the joint
distribution of perceived valuations and biases, as well as the cost function estimated in Section 5 and
Appendix Section B. “Non-linear tax (first-order approx, ρ = 0)” implements the optimal non-linear tax
based on the first-order approximation to the expected bias, (wrongly) setting ρ = 0.
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Figure 3: Distribution of bias and normative valuations
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Notes for Figure a) and b): Densities estimated via kernel density estimation (Epanechikov kernel, band-
width: 0.03 and 0.1, respectively).
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