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Appendix A Prices, Holding Periods, and Returns as Func-
tion of Buyer Type

Some results in this Appendix are obtained by setting κ = 0. It is important to note that our
qualitative implications extend to small κ > 0, because of the continuity of of the bidding function
b in the model parameters.

Purchase prices. The purchase price of a type-e buyer in state ω is necessarily included in the
range [bNω (xDω (0)), bNω (e)], as xDω (0) is the bidder type targeted by the reserve price of a type-0 owner
in distress meaning that the item will never sell for less than bNω (xDω (0)), the lowest possible reserve
price. When the seller is of type z and has distress status ζ ∈ {D,N}, the average price paid by
the buyer equals:

Pω(e, z, ζ) := E[max{bNω (ẽ(2)), bNω (xζω(z))}|ẽ(2), xζω(z) < e], (A1)

which is the expected maximum of the second-highest type’s valuation and the reserve price, condi-
tional on the bidder being able to buy. Keeping the type and status of the seller fixed, the expected
purchase price increases with the type of the buyer. Moreover, because higher-type buyers bid more
aggressively, they are able to purchase from higher-type sellers who set a higher reserve price. This
implies that:

Corollary A1 The average purchase price is strictly increasing in buyer type at any purchase date.

Holding periods. How long will a buyer hold the artwork? Higher-type owners are less likely
to consign their artwork. Moreover, when they do, they set reserve prices that are at least as high
as those that lower-type owners with the same distress status would choose. A buyer’s ex-ante
expected holding period is therefore increasing in his type e.

Corollary A2 The expected holding period is weakly increasing in buyer type at any purchase date.

We can be more precise about how the ex-ante expected holding period depends on buyer type
in a stationary economy, allowing us to drop the subscripts ω. Noting that eN then denotes the
threshold type below which a non-distressed owner will consign to auction, we can state the following
results:

Corollary A3 In a stationary economy, if κ = 0, the expected holding period for a type-e buyer
can be explicitly computed as follows:

T (e) := 1− (1− d)F (xD(e))n
(1− F (xD(e))n)(1− (1− d)F (xN(e))n) ,

which is increasing in e for e < eN and maximum for e > eN .
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Resale prices. At which price will a buyer sell the artwork? To analyze this, let us first denote
by sσω(e) the price of a type-e owner who is successfully selling when his distress status equals σ
and when the macroeconomic state is ω. This price falls in the range [bNω (xσω(e)), bNω (1)], with the
average value increasing in owner type e:

sσω(e) := E[max{bNω (ẽ(2)), bNω (xσω(e))}|ẽ(1) > xσω(e)] > bσω(e), (A2)

where the inequality follows from the fact that the owner would choose not to auction the artwork
if sσω(e) < bσω(e). Because xDω (e) < xNω (e), we can state the following results:

Corollary A4 The average (resp. dispersion) of the hammer prices realized by a seller in status
σ is increasing (resp. decreasing) in the seller’s type e. The hammer prices realized by a distressed
seller have a lower average and a larger dispersion than those realized by a non-distressed seller of
the same type.

Of course, at the time of purchase, an individual does not know with certainty what will be his
distress status at the time of resale. In a stationary economy, we can denote by S(e, τ) the expected
sale price, conditional on selling after τ periods, for a type-e buyer. This value is decreasing in
τ for buyers with e < eN because the probability of a distressed sale grows with time. Next, we
denote by S(e) the unconditional ex-ante expected resale price. Crucially, S(e) is not necessarily
monotonically increasing in e for e < eN , even though a non-distressed owner sets a reserve price
that is strictly increasing in his type. This is because a higher reserve has two opposite effects. On
the one hand, it increases the expected revenues in the event of a successful sale. On the other
hand, it increases the probability of a buy-in, and thus the holding period—and therefore also the
probability that the owner will eventually sell in distress for a low price.

Corollary A5 In a stationary economy, if κ = 0:
(i) Conditional on selling τ periods after purchase, the probability of selling in distress is in-

creasing in τ for e < eN and equal to 1 for e > eN . Therefore, the expected sale price S(e, τ) is
decreasing in τ for e < eN and equal to sD(e) for e > eN .

(ii) The expected sale price for a type-e buyer equals:

S(e) := sD(e)d+ sN(e)(1− d)(1− F (xN(e))n)
1− (1− d)F (xN(e))n ,

which is increasing in e for e close to 0 and minimum for e > eN .

Returns. We are now ready to analyze the financial returns realized by art buyers. Let us define
the (gross total) return on a resale as the ratio of the sale price to the purchase price, and let
ω again be the state at the sale date. Observe that collectors only sell in distress—and hence at
low prices—whereas they purchase at relatively high prices. Compared to such high-type owners,
flippers and investors pay less on average and moreover can expect higher resale revenues as some
resales occur when not in distress. More generally, we have:
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Corollary A6 If κ is small, then for any given purchase and sale date, and for any state ω at the
time of sale, the average return is lower for owners of type e ∈ [eNω , eDω ] than for owners of type
e < eNω . The average return will moreover be decreasing in e over e ∈ [eNω , eDω ].
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Appendix B Proofs

Proof of Proposition 1
Let us define ρNω (e) := ρωe and ρDω (e) := c. Furthermore, let πN := d and πD := (1−κ), meaning

that πσ is the probability that an owner with status σ ∈ {D,N} at time t will have status D at
time t+ 1. Then we obtain the following equations for e ∈ [0, 1] and σ ∈ {D,N}:

Rω(x) = (1− γ)E[max{bNω (ẽ(2)), bNω (x)}|ẽ(1) ≥ x, ω] Pr[ẽ(1) ≥ x|ω]− γBIrPr[ẽ(1) < x|ω]

= nω(1− γ)
(∫ 1

x
(nω − 1)bNω (z)f(z)F (z)nω−2(1− F (z))dz + bNω (x)F (x)nω−1(1− F (x))

)
− γBIb

N
ω (x)F (x)nω , (B1)

V σ
ω (e) = max{bσω(e), max

x∈[0,1]
Rω(x) + bσω(e)F (x)nω}, (B2)

bσω(e) = ρσω(e) + δ
∑
ω′∈Ω

pω(ω′)
(
πσV D

ω′ (e) + (1− πσ)V N
ω′ (e)

)
. (B3)

Let B be the space of bounded, continuous, and non-decreasing functions g : [0, 1] → R,
with the sup norm η : B → R, i.e., η(g) := supe∈[0,1] |g(e)|. A state/status-contingent function
b : Ω× {D,N} × [0, 1]→ R is a point in the product space B := Πω∈Ω×{N,D}B with the sup norm
||b|| := maxω η(gω). Fix some time t and a state/status-contingent fuction b ∈ B, and consider a
time-t owner of type e in status σ who believes that in any future period τ > t: (i) bidders’ bids
will follow bNωτ ; (ii) his continuation payoff from not selling in period τ and status σ′ is bσ′

ωτ (e). Given
these beliefs, denote by Rωτ (x)[b] and V σ′

ωτ (e)[b] the expected resale revenues from auctioning using
a reserve price bNωτ (x) and the expected continuation payoff from owning the artwork at some future
time τ > t in status σ′ given a type e, respectively. The expected utility for such an owner if he
does not sell in t is then equal to:

(Tωtb)(e) := ρσ(e) + δ
∑
ω′∈Ω

pωt(ω′)
(
πσV D

ω′ (e)[b] + (1− πσ)V N
ω′ (e)[b]

)
, σ ∈ {D,N}. (B4)

Let T be the operator associating to any b ∈ B the state/status-contingent function {Tωb}ω∈Ω2 .
Clearly an STM equilibrium is a fixed point of the operator T . In what follows, we will use the
contraction mapping fixed-point theorem to prove existence and uniqueness of an STM equilibrium.
Namely we will prove that there exists a µ ∈ (0, 1) such that for any b, b′ ∈ B, ||T b−T b′|| ≤ µ||b−b′||.

Let us introduce some notation. For any g, g′ ∈ B, if g(e) ≤ g′(e) for all e ∈ [0, 1], we write
g ≤ g′. For any status-contingent function g = {gD, gN} ∈ B2 and n ∈ N, let us define the function
Rg,n(x) as the expected cashflow for an owner who auctions the artwork with a reserve price equal
to gN(x) and who believes that there are n bidders who are bidding following the function gN .
Formally:

Rg,n(x) := (1− γ)E[max{gN(ẽ(2)), gN(x)}|ẽ(1) ≥ x] Pr(ẽ(1) ≥ x)− Pr(ẽ(1) < x)γBIgN(x)

= n(1− γ)
(∫ 1

x
(n− 1)gN(z)f(z)F (z)n−2(1− F (z))dz + gN(x)F (x)n−1(1− F (x)))

)
− γBIg

N(x)F n(x). (B5)
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Let Qσ
g,n(e, x) denote such an owner’s expected continuation payoff if he values the asset at gσ(e)

and decides to auction it with reserve price gN(x). Formally:

Qσ
g,n(e, x) := Rg,n(x) + F (x)ngσ(e). (B6)

Let K be the operator that associates to a function g ∈ B2 the function Kg : [0, 1] → R as
follows:

Kσg(e) := max{gσ(e), max
x∈[0,1]

Qσ
g,n(e, x)}, σ ∈ {D,N}. (B7)

The proof includes two lemmas.

Lemma B1 For any couple g, g′ in B2 and σ ∈ {D,N}, it results that η(Kσg −Kσg′) ≤ η(g − g′)
and {KDg,KNg} ∈ B2.

Proof. Take any σ ∈ {D,N}. We first show that Kσ satisfies the following two conditions:
a. Monotonicity: for any two functions g, g′ ∈ B, g ≤ g′ implies (Kσg)(e) ≤ (Kσg′)(e) for all

e ∈ [0, 1].
b. Scaling: for any g ∈ B and constant a ≥ 0:

η(Kσ(g + a)−Kσg) ≤ a,

where (g + a)(e) := g(e) + a.
Fix σ ∈ {D,N}. Let us consider monotonicity. Take any g, g′ ∈ B such that g ≤ g′ and

suppose that there exists an e such that (Kσg)(e) > (Kσg′)(e). Because g(e) ≤ g′(e), it cannot
be that (Kσg)(e) = gσ(e) and (Kσg′)(e) = g′σ(e). Nor can it be that (Kσg′)(e) 6= g′σ(e) and
(Kσg)(e) = gσ(e), because in this case g′σ(e) ≥ gσ(e) = (Kσg)(e) > (Kσg′)(e) would contradict the
relation (Kσg′)(e) ≥ g′σ(e) implied by Eq. (B7). Hence it must be that (Kgσ)(e) 6= gσ(e), implying
that (Kσg)(e) = maxx∈[0,1]Q

σ
g,n(e, x). Let x̂ be such that (Kσg)(e) = Qσ

g,n(e, x̂) and let r := gN(x̂).
Observe that:

gσ(e) < Qσ
g,n(e, x̂) = (1−γ)E[max{gN(ẽ(2)), r}|gN(ẽ(1)) ≥ r] Pr(gN(ẽ(1)) ≥ r)+Pr(gN(ẽ(1)) < r)(gσ(e)−γBIr),

where the equality comes from Eqs. (B1), (B6), and (B7), whereas the inequality comes from the
fact that (Kσg)(e) 6= gσ(e). This implies that:

(1− γ)E[max{gN(ẽ(2)), r}|gN(ẽ(1)) ≥ r] > (gσ(e)− γBIr). (B8)

Let x′ be such that g′N(x′) = r. Because g′ ≥ g, we have that:

Pr(gN(ẽ(1)) ≥ r) ≤ Pr(g′N(ẽ(1)) ≥ r) (B9)
Pr(gN(ẽ(1)) < r) ≥ Pr(g′N(ẽ(1)) < r). (B10)

Inequalities (B8), (B9), and (B10) imply the first inequality below, whereas the second and third
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inequalities follow from g ≤ g′:

(Kσg)(e) =
Qσ
g,n(e, x̂) ≤ (1− γ)E[max{gN(ẽ(2)), r}|gN(ẽ(1)) ≥ r] Pr(g′N(ẽ(1)) ≥ r) + Pr(g′N(ẽ(1)) < r)(gσ(e)− γBIr)

≤ (1− γ)E[max{gN(ẽ(2)), r}|gN(ẽ(1)) ≥ r] Pr(g′N(ẽ(1)) ≥ r) + Pr(g′N(ẽ(1)) < r)(g′σ(e)− γBIr)
≤ (1− γ)E[max{g′N(ẽ(2)), r}|g′N(ẽ(1)) ≥ r] Pr(g′N(ẽ(1)) ≥ r) + Pr(g′N(ẽ(1)) < r)(g′σ(e)− γBIr)
= Qσ

g′(e, x′) ≤ (Kσg′)(e).

Hence a contradiction that (Kσg)(e) > (Kσg′)(e).
Let us now consider scaling. Let g, g′ ∈ B such that for any e ∈ [0, 1], g′(e) = g(e) + a, where a

is a positive constant. For any quadruple e1 ≥ e2, e and x in [0, 1], let Qσ
g,n(e, x)(e1, e2) be the value

of Qσ
g,n(e, x) when the highest bidder type is e1 and the second-highest bidder type is e2. Namely:

Qσ
g,n(e, x)(e1, e2) =


−γBIgN(x) + gσ(e) if e1 < x

(1− γ)gN(x) if e2 ≤ x < e1

(1− γ)gN(e2) if x < e2.

Note that g′(e) = g(e) + a implies that:

Qσ
g′,n(e, x)(e1, e2) =

{
Qσ
g,n(e, x)(e1, e2) + (1− γBI)a if e1 < x

Qσ
g,n(e, x)(e1, e2) + (1− γ)a if x ≤ e1.

(B11)

Because Qσ
g,n(e, x) = E[Qσ

g,n(e, x)(ẽ(1), ẽ(2))], it follows from Eq. (B11) that for any e and x,
Qσ
g′,n(e, x) = Qσ

g,n(e, x) + a(1 − γBI Pr(ẽ(1) < x) − γ Pr(ẽ(1) ≥ x)) ≤ Qσ
g,n(e, x) + a, and hence

η(Qσ
g,n(e, x)−Qσ

g′,n(e, x)) ≤ a for any e and x. As a consequence:

η( max
x∈[0,1]

Qσ
g,n(e, x)− max

x∈[0,1]
Qσ
g′,n(e, x)) ≤ a. (B12)

Considering that η(g − g′) = a and the definition of Kσg in (B7), we can conclude that η(Kσg′ −
Kσg) ≤ a.

We can now prove the first statement of the lemma. Note that for any g, g′ ∈ B, we have
g ≤ g′ + η(g − g′). Monotonicity and scaling of Kσ imply:

Kσg ≤ Kσ(g′ + η(g − g′)) ≤ Kσg′ + η(g − g′).

Because g′ ≤ g + η(g − g′), we also have that:

Kσg′ ≤ Kσg + η(g − g′).

Combining these two inequalities, we find that for any e ∈ [0, 1], |Kσg(e) − Kσg′(e)| ≤ η(g − g′),
or η(g − g′) ≥ supe |Kσg(e)−Kσg′(e)| = η(Kσg −Kσg′), as was to be shown. To prove the second
statement, we need to show that if g ∈ B2, then Kσg is finite-valued, continuous, and non-decreasing
in e. Note first that Qσ

g,n(e, x) is finite-valued for any e, x ∈ [0, 1]. It is also continuous in both
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x and e and increasing in e, and therefore maxxQσ
g,n(e, x) is also continuous and increasing in e.

Hence maxxQσ
g,n(e, x) ∈ B. Because Kσg is the maximum of two functions in B, it must be in B.

Lemma B2 For any couple b, b′ in B, it results that η(Tωb− Tωb′) ≤ δ||(b− b′)||.

Proof. Note first that V σ
ω [b] = Kσbω. Hence Lemma B1 implies that η(V σ

ω [b]−V σ
ω [b′]) ≤ η(bσω−b′

σ
ω).

Thus:

η(Tωb− Tωb′) = sup
e
|Tωb(e)− Tωb′(e)|

≤ δ sup
e,σ

∑
ω′∈Ω

pω(ω′)(πσ|V D
ω′ (e)[b]− V D

ω′ (e)[b′]|+ (1− πσ)|V N
ω′ (e)[b]− V N

ω′ (e)[b′]|)

≤ max
σ

δ
∑
ω′∈Ω

pω(ω′)(πση(bσω′ − b′σω′) + (1− πσ)η(bσω′ − b′σω′)) = max
σ

δ
∑
ω′∈Ω

pω(ω′)η(bω′ − b′ω′)

≤ max
σ

δ
∑
ω′∈Ω

pω(ω′)max
ω′′

η(bσω′′ − b′σω′′) = δ||b− b′||,

because ∑ω′∈Ω pω(ω′) = 1.

Because ||T b− T b′|| = maxω∈Ω η(Tωb− Tωb′), Lemma B2 implies that ||T b− T b′|| ≤ δ||b− b′||.
Thus T is a contraction mapping because δ < 1. Note that Tωb ∈ B, because it is a positive linear
combination of functions in B. Hence, T b ∈ B. Therefore T is a contraction mapping from B into
B and has a unique fixed point.

Take {bDω (e), bNω (e)}. We already know from the first part of the proof that bσω(e) and V σ
ω (e)

are not decreasing in e. To show that bσω(e) is weakly convex in e, it is sufficient to show that
the operator T maps weakly convex functions into weakly convex functions. Let g ∈ B be a
weakly convex function. We first show that the operator K maps g to a weakly convex function.
Let xσ(e, g) := arg maxx∈[0,1]Q

σ
g,n(e, x) and Q

σ

g,n(e) := maxx∈[0,1]Q
σ
g,n(e, x). Using (B6), the first-

order condition implies that R′g,n(xσ(e, g)) + nf(xσ(e, g))F (xσ(e, g))n−1g(e) = 0. Hence Q′g,n(e) =
F (xσ(e, g))ng′(e), which is increasing in e because xσ(e, g) is increasing in e and g(e) is weakly
convex. Hence, Qg,n is weakly convex. From Eq. (B7) we have that Kσg(e) = max{gσ(e), Qσ

g,n(e)},
which is weakly convex because it is the maximum of two weakly convex functions. Let g ∈ B be
weakly convex. The operator (B4) can then be rewritten as:

(Tωtg)(e) := ρσωt(e) + δ
∑
ω′∈Ω

pωt(ω′)
(
πσKDgω′(e)[g] + (1− πσ)KNgω′(e)[g]

)
, (B13)

which is the sum of weakly convex functions in e and therefore weakly convex itself.
Next, we show that the equilibrium function b is continuous in κ. The proof of continuity in

the other parameters follows the same logic and is omitted. Observe first that the mapping T
is continuous in κ. Namely, let |κ − κ′| < ε and let Tκ and Tκ′ be the T in (B4) for recovery
probability values κ and κ′, respectively. Observe that 0 ≤ V σ

ω (e) < maxω ρω/(1 − δ) because an
owner can, first, always secure a non-negative payoff from auctioning with a zero reserve price,
and, second, cannot value the artwork at more than the value of holding the asset forever and
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enjoying the maximum possible emotional dividend. Let M := maxω ρω
1−δ . Now take any state/status-

contingent bidding function b. From (B4) we have that |(T σκ )bσ(e) − (T σκ′ )bσ(e)| < εM . Thus, for
any state/status-contingent function b ∈ B, we have that:

||Tκ[b]− Tκ′ [b]|| ≤ εM.

Let bκ and bκ′ be the fixed point of Tκ and Tκ′ , respectively. We want to show that limκ′→k bκ′ = bκ.
If not, then there is a Z > 0 such that, for any ε > 0, there exist κ, κ′ such that |κ − κ′| < ε and
||bκ′ − bκ|| ≥ Z. Now, note that because T is a contraction there is a µ < 1 such that for any
state/status-contingent function b ∈ B, one has that ||Tκ[b]− Tκ[b′]|| ≤ µ||b− b′||. Thus:

||Tκ[bκ′ ]− Tκ[bκ]|| = ||Tκ[bκ′ ]− bκ|| ≤ µ||bκ′ − bκ||.

Also ||Tκ[bκ′ ]− bκ′|| = ||Tκ[bκ′ ]− Tκ′ [bκ′ ]|| < εM . Applying the triangular inequality we have:

||bκ′ − bκ|| ≤ ||Tκ[bκ′ ]− bκ||+ ||Tκ[bκ′ ]− bκ′ || ≤ µ||bκ′ − bκ||+ εM,

which implies that ||bκ′ − bκ|| ≤ ε
1−µM . But if one takes 0 < ε < Z(1−µ)/M , then ||bκ′ − bκ|| < Z.

Hence a contradiction. �

Proof of Lemma 1
Let us consider the equilibrium behavior of an owner of type e ∈ [0, 1] in status σ when the state

is ω. The owner needs to make two decisions: whether to consign the artwork to auction or not, and
the reserve price level when auctioning. Let Rω(x) be the net expected revenue when auctioning
in state ω with a reserve price of bω(x), i.e., using (B5), Rω(x) := Rbω ,nω(x). Let Qσ

ω(e, x) be the
owner’s expected continuation payoff in state ω when auctioning with a reserve price of bNω (x):

Qσ
ω(e, x) := Rω(x) + F (x)nωbσω(e).

Because the owner’s expected payoff from holding the artwork is bσω(e), he will prefer consigning the
artwork if and only if there is an x ∈ [0, 1] such that Qσ

ω(e, x) > bσω(e), or equivalently:

Qω(x) := Rω(x)
1− F (x)nω ≥ bσω(e). (B14)

Let Q̂ω := maxx∈[0,1]Qω(x). Note that Q̂ω ≤ (1−γ)bNω (1). Let eσω be as defined in (7). Now consider
an owner of type e ≥ eσω. Because bσω(e) is increasing, it must be that bσω(e) ≥ bσω(eσω) = Q̂ω ≥ Qω(x)
for any x, implying that there exists no x satisfying inequality (B14), and hence the owner will not
sell. Let us now consider e < eσω. It is sufficient to show that there exists an x satisfying inequality
(B14), which is true for x = eσω, because bσω(e) ≤ bσω(eσω) ≤ Q̂ω. Thus, an owner prefers auctioning
the artwork if and only if e ≤ eσω.
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(i) The first inequality follows from the fact that Q̂ω cannot exceed the maximum possible net
revenues from reselling (1 − γ)bNω (1) < bNω (1). The second inequality follows from the fact that
bDω (e) ≤ bNω (e), where the inequality is strict for e > 0.

(ii) Suppose that for some status σ ∈ {D,N}, one has that eσω < 0 for all ω. This implies that no
owner with status σ would ever sell. Consider a type-0 individual. No matter his status, he derives
a per-period dividend of at most 0. Therefore, if he never sells, he would value the artwork at 0 or
less. However, by auctioning with a reserve price of 0, he can secure Rω(0) > 0. Thus he must sell
in some state and some distress status. Clearly, if he sells in state ω when his status is N , then he
will also sell when in distress in state ω. It cannot be optimal to never sell when not in distress, as
the owner can guarantee a higher payoff by selling in some state before having to pay the distress
cost c.

(iii) No matter an individual’s e, for κ = 0 recovery is impossible, so once hit by a liquidity shock
an owner must sell in some state, otherwise his continuation payoff would not exceed c ≤ 0, while
he can guarantee Rω(0) > 0 by auctioning. The result then follows from the continuity of b with
respect to κ. �

Proof of Proposition 2
The consignment strategy directly follows from Lemma 1. Hence let us consider the choice of

the optimal reserve price. In state ω, an owner of type e < eσω and status σ will set a reserve price
equal to rσω(e) = bNω (xσω(e)), where xσω(e) maximizes Qσ

ω(e, x). Without loss of generality, we can set
xσω(e) ∈ [0, 1]. Differentiating with respect to x and then e, we get:

∂Qσω(e, x)
∂x

= nωF (x)nω−1
(
bNω
′(x)(1− F (x))(1− γ)− f(x)(bNω (x)(1− γ + γBI)− bσω(e))

)
−γBIbNω

′(x)F (x)nω , (B15)

∂2Qσω(e, x)
∂e∂x

= nωF (x)nω−1f(x)bσω ′(e) > 0.

Because for e < 0, f(e) = 0, the first expression implies that xσω(e) ∈ [0, 1]. The second expression
implies that Qσ

ω(e, x) is a quasi-concave function in x. From this we deduce that xσω(e) ∈ [0, 1].
Furthermore, whenever xσω(e) ∈ (0, 1), it must be that ∂Qσ

ω(e, x)/∂x|x=xσω(e) = 0. Because the right-
hand side of (B15) is continuously increasing in e and larger for σ = N than for σ = D, we have that
xσω(e)—and hence the optimal reserve price—is continuously increasing in e and larger for σ = N

than for σ = D. �

Proof of Proposition 3
The proof follows directly from the argument following the Proposition. �
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Proof of Corollary A1
The proof follows directly from the fact that in any given state ω the bidding function is strictly

increasing in the bidder type e. �

Proof of Corollary A2
For any given state ω and distress status σ, the reserve type x is weakly increasing in the owner

type e. Because d and κ do not depend on the owner’s type, an increase in the owner’s type
decreases the chance of a successful auction, and hence increases the expected holding period. �

Proof of Corollary A3
Consider a stationary economy with κ = 0, in which an individual of type e buys at time 0. Let

ON(e, τ + 1) denote the probability for this individual of being a non-distressed at time τ + 1. It is
equal to ON(e, τ), times the probability of not selling at τ , times the probability of not being hit by
a liquidity shock at the beginning of τ + 1. Similarly let OD(e, τ + 1) denote the buyer’s probability
of being a distressed owner at τ + 1. It equals the probability of being a distressed owner at τ ,
times the probability of not selling at τ , plus the probability of being a non-distressed owner at τ ,
times the probability of not selling at τ , times the probability of a liquidity shock at the start of
τ + 1. We thus have:{

ON(e, τ + 1) = ON(e, τ)F (xN(e))n(1− d)
OD(e, τ + 1) = OD(e, τ)F (xD(e))n +ON(e, τ)F (xN(e))nd, (B16)

Considering that OD(e, 1) = d and ON(e, 1) = (1− d) and solving the difference equation, we get: ON(e, τ) = (1− d)τF (xN(e))n(τ−1)

OD(e, τ) = dF (xD(e))nτ−(1−d)τF (xN (e))nτ
F (xD(e))n−(1−d)F (xN (e))n .

(B17)

The unconditional probability that a type-e buyer sells after τ periods then depends on the
probability of being a non-distressed owner at τ and that of being a distressed owner at τ , and on
the probabilities of finding a buyer in each case. Formally:

π(e, τ) := ON(e, τ)(1− F (xN(e))n) +OD(e, τ)(1− F (xD(e))n). (B18)

Replacing Eq. (B17) in π(e, τ), one has the probability that a type-e buyer sells after τ periods.
The expression for T (e) is given by ∑τ≥1 τπ(e, τ). Note that because κ = 0, one has that xD(e) =
xD(0) for all e. Hence, T (e) is increasing in xN(e), which is increasing in e for e < eN and maximum
for e ≥ eN . �
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Proof of Corollary A4
Consider a seller of type e and status σ when the state is ω. The average hammer price is the

sσω(e) given by equation (A2), and thus it is an increasing function of the seller’s reserve type xσω(e).
Then the statement about the average hammer price follows immediately from the fact that a non-
distressed seller’s reserve price is increasing in the seller’s type and larger than the reserve price of
a distressed seller of the same type (Proposition 2). The statement about dispersion follows from
Proposition 2 and from the fact that the selling price is continuously distributed on the interval
[bNω (xσω(e)), bNω (1)]. �

Proof of Corollary A5
(i) Let πD(e, τ) denote the probability of selling in distress conditional on selling after τ periods,
which is equal to:

πD(e, τ) = OD(e, τ)(1− F (xD(e))n)
OD(e, τ)(1− F (xD(e))n) +ON(e, τ)(1− F (xN(e))n) .

where ON(.) and OD(.) are given by expression (B17). Because a non-distressed owner of type
e > eN does not sell, one has that (1 − F (xN(e))n) = 0 and πD(τ, e) = 1. Consider an owner of
type e ≤ eN . We want to show that πD(e, τ) < πD(e, τ + 1), which is equivalent to:

OD(e, τ + 1)
OD(e, τ) >

ON(e, τ + 1)
ON(e, τ) .

Because of Eq. (B16), we can rewrite this inequality as:

dF (xN(e))nON(e, τ) > ((1− d)F (xN(e))n − F (xD(e))n)OD(e, τ). (B19)

We prove this by induction. Note that ON(e, 1) = 1 − d and OD(e, 1) = d, implying that the
inequality is satisfied for τ = 1. Now suppose that Eq. (B19) is satisfied for τ , then we can verify
that it is satisfied for τ + 1, which would mean that dF (xN(e))nON(e, τ + 1) > (1− d)F (xN(e))n−
F (xD(e))nOD(e, τ + 1). Indeed, replacing in this inequality ON(e, τ + 1) and OD(e, τ + 1) by the
expressions given in (B16) and simplifying, we get back to (B19).

The statement regarding S(e, τ) follows from S(e, τ) = sD(e)πD(e, τ)+(1−πD(e, τ))sN(e), with
sN(e) > sD(e) for e ≤ eN , and from the fact that πD(e, τ) is increasing in τ for e < en and equals 1
for e ≥ eN .

(ii) The expression for S(e) results from ∑
τ≥1 S(e, τ)π(e, τ). Observe that for e > eN we have

that xN(e) = 1, implying that S(e) = sD(e), which is smaller than sN(e′) for any e′ < eN . To prove
quasi-concavity, observe that S(e) can be rewritten as follows:

S(e) =
dsD(e) + 1−d

1−γ (R(xN(e)) + γBIb(xN(e))F (xN(e))n)
1− (1− d)F (xN(e))n ,
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where R(x) is given by Eq. (B1). Recall that for e ∈ (0, eN) we have that xN(e) maximizes
R(x) + F (x)nbN(e). From the envelope theorem, we then have that:

∂R(xN(e))/∂e = −bN(e)x′(e)nf(xN(e))F (x(e))n−1.

Differentiating S(e) and considering this expression for ∂R(x(e))/∂e, we have that S ′(e) > 0 if and
only if:

bN(e) < (1− γ)S(e) + γBI

(
bN(xN(e)) + b′(xN(e))F (xN(e))

nf(xN(e))

)
.

Observe that S ′(0) > 0, because an individual who does not enjoy the artwork will never bid more
than the present value of the net expected selling price. This is strictly less than δ(1 − γ)S(0),
which is smaller than the r.h.s. �

Proof of Corollary A6
We prove the corollary for κ = 0. The result follows from the continuity of b with respect

to κ. Take e ≥ eNω and e′ < eNω . Note that the average purchase price is greater for a type-e
owner than for a type-e′ owner (Corollary A1). Let us consider the average selling price. If a
type-e owner sells when the state is ω, it must be that he sells in distress and hence he sets a
reserve type xDω (e). For k = 0, one has that xDω (e) = xDω (0) ≤ xNω (e′) and sDω (e) = sDω (0) ≤ sNω (e′).
Consider now a type-e′ owner. If he sells when the state is ω, he could either be in distress or
not. Let θ ∈ (0, 1) be the probability he sells in distress, then on average his selling price is
sDω (e) + (1− θ)sNω (e′) = sDω (0) + (1− θ)sNω (e′) > sDω (0) > sDω (e). �

Proof of Corollary 1
We prove the corollary for a stationary economy with κ = 0. The result follows by continuity

of b with respect to κ. It is sufficient to note that purchase prices and average holding periods are
higher for a type e > eN than for a type e ≤ eN , and that the expected selling price is higher for a
type e ≤ eN than for a type e > eN . �

Proof of Corollary 2
Observe that the volatility of returns in an economy with business cycles is not lower that in a

stationary economy. Hence it is sufficient to prove the statement for a stationary economy. Because
γBI > 0, it must be that optimal reserve types xσ(e) < 1 for all status σ and types e. Thus
x := maxσ,e xσ(e) < 1 and M := Var[max{bN(x), bN(ẽ(2))}] > 0. Consider a type-e individual who
bought at time t for some price pt and let t′ > t be the time at which he sells and pt′ the selling
price. Then for any e and for any t′, the selling price is distributed in a support that includes the
interval [bN(x), bN(1)] and so Var[p̃t′ ] ≥ M . Thus, the variance of return is bounded away from 0
independently of the length of the holding period. �
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Proof of Corollary 3
Note that in a stationary economy non-distressed sellers set reserve prices guaranteeing them a

positive net return. Because the transaction cost γ is typically substantial, sales from non-distressed
sellers generate positive and relatively large gross returns. Such non-distressed sellers are flippers
and investors. Distressed sales are associated with the lowest reserve prices if κ is small. Moreover,
distressed sellers also include collectors, who paid a high price and hence are most likely to realize
a strictly negative gross return. �

Proof of Corollary 4
We prove the corollary for a stationary economy with κ = 0. The result follows by continuity

of b with respect to κ. Note that, if κ = 0, all distressed owners set the same reserve price. Owners
of type e > eN only auction when in distress; for them there is no relation between the time since
purchase and the probability of a buy-in. Owners of type e < eN auction in every period. The
probability that such an owner in distress is increasing in the time since purchase. Given that the
reserve type of a distressed owner is lower than the reserve type of a non-distressed owner, a buy-in
is less likely when the owner is in distress. �

Proof of Proposition 4
We prove the results for ε = 0, which means that p1 − p2 = γBI = κ = 0. The results extend

to the case of ε > 0 but small by continuity of the function b with respect to the parameters of the
model (Proposition 1).

(i) Let pω = Pr(ωt+1 = 1|ωt = ω). Let us consider the mapping T : B × Ω→ B × Ω. Let g ∈ B
be such that g1(e) < g2(e), and let p1 ≥ p2 and n2 ≥ n1. Then T1g(e) < T2g(e), implying that
under Assumption 1 bσ2 (e) > bσ1 (e). The argument is analogous to the one used in Proposition 1 to
prove the convexity of bσω(e) and is omitted. Because bN2 (e) > bN1 (e) and n2 ≥ n1, both an owner’s
expected revenues in case of a sale and the owner’s valuation of holding are larger in expansion
than in recession, and as a consequence V σ

2 (e) > V σ
1 (e). Observe that for κ = 0 one has that for

any e ∈ [0, 1] and any ω, V D
ω (e) = V D

ω (0). Therefore:

bNω (e) = ρωe+ δ
(
pω(dV D

1 (0) + (1− d)V N
1 (e)) + (1− pω)(dV D

2 (0) + (1− d)V N
2 (e))

)
.

Hence bN2 (e) ≥ bN1 (e) + (ρ2 − ρ1)e, because V2 > V1 and p1 ≥ p2.

(ii) Define A := ρ1+δ(1−p)(1−d)(ρ2−ρ1)
1−δ(1−d) > 0 and B := pV D1 (0)+(1−p)V D2 (0)

1−δ(1−d) δd. We then have the following
lemma.

Lemma B3 Under Assumptions 1.(i)–1.(iv) with ε = 0, we have:
(i) For e ≥ eN2 , bN1 (e) = Ae+B.

(ii) eN2 = 1− γA+B+ρ2−ρ1
A+ρ2−ρ1

< 1− γ.
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(iii) 1− γ A+B
A+B−b1(0) < eN1 < 1− γA+B

A
< eN2 .

Proof. Note first that for p1 = p2 and e ≥ 0 , we have that:

bN2 (e) = bN1 (e) + (ρ2 − ρ1)e. (B20)

(i) A non-distressed individual of type e ≥ max{eN1 , eN2 } does not sell, which implies that
V N
ω (e) = bNω (e). Hence:

bN2 (e) = ρ2e+ δ(p(dV D
1 (0) + (1− d)bN1 (e)) + (1− p)(dV D

2 (0) + (1− d)bN2 (e)).

Taken together with (B20), this means that b1(e) = Ae+B.
(ii) Recall that eN2 solves b2(eN2 ) = Q̂2. For γBI = 0, one has that:

Q̂ω = max
x∈[0,1]

Rω(x)
1− F nω(x)

= max
x∈[0,1]

(1− γ)E[max{bNω (e(2)), bNω (x)}|e(1) ≥ x]

= (1− γ)bNω (1),

and so using (B20):

Q̂2 = (1− γ)bN2 (1)
= (1− γ)(bN1 (1) + ρ2 − ρ1).

Now, using (B20) and (i), one has that bN2 (eN2 ) = bN1 (eN2 ) + (ρ2 − ρ1)eN2 = AeN2 + B + (ρ2 − ρ1)eN2
and that Q̂2 = (1 − γ)(A + B + ρ2 − ρ1). The expression for eN2 comes from the solution of
AeN2 +B + (ρ2 − ρ1)eN2 = (1− γ)(A+B + ρ2 − ρ1).

(iii) Observe that because bN1 (e) is convex, it satisfies:

bN1 (0) + (bN1 (1)− bN1 (0))e ≥ bN1 (e) ≥ Ae+B

for all e ∈ [0, 1]. The threshold eN1 solves bN1 (e) = (1−γ)bN1 (1) and hence it must be included between
the solutions of the two equations bN1 (0)+(bN1 (1)−bN1 (0))e = (1−γ)bN1 (1) and Ae+B = (1−γ)bN1 (1).
The result follows from bN1 (1) = A+B.

(iii) Let us show that, under Assumptions 1.(i)–1.(v), one has that rN2 (e) > rN1 (e). Let Zω(r) :=
F ((bNω )−1(r)) and zω := Z ′ω. Then the first-order condition for the choice of the optimal reserve
price by a non-distressed owner of type e in state ω is equivalent to:

(1− γ)(1− Zω(r))− zω(r)((1− γ)r − bNω (e)) = 0,

or equivalently:
1− Zω(r)
zω(r) − (1− γ)r − bNω (e)

1− γ = 0.
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Because this expression is increasing in bNω (e), to show that rN2 (e) > rN1 (e), it is sufficient to show
that 1−Z2(r)

z2(r) is increasing in ∆ := ρ2 − ρ1. Let y = bN2
−1(r), i.e., bN1 (y) + ∆y = r. Then:

∂
[

1−Z2(r)
z2(r)

]
∂∆ =

−∂y
∂r

∂y
∂∆ (f(y)2 + (1− F (y)f ′(y))− (1− F (y))f(y) ∂2y

∂r∂∆
z(r)2 > 0, (B21)

where the inequality follows from ∂y
∂r

= 1/(b′1(y) + ∆) > 0, ∂y
∂∆ = −y/(b′1(y) + ∆) < 0, ∂2y

∂r∂∆ =
−1/(b′1(y) + ∆)2 < 0 and f(y)2 + (1− F (y))f ′(y) > 0 because of Assumption 1.(iv).

Let us now show that, under Assumptions 1.(i)–1.(iii), one has that xN2 (e) < xN1 (e). Note that
expression (B15) provides the first-order condition for x2

ω(e). For γBI = 0, this is equivalent to:

bN
′
ω(x)(1− γ)(1− F (x))− f(x)(bNω (x)(1− γ)− bNω (e))

∣∣∣
x=xNω (e)

= 0. (B22)

To show that xN2 (e) < xN1 (e), it is sufficient to prove that:

bN
′
2(x)(1− γ)(1− F (x))− f(x)(bN2 (x)(1− γ)− bN2 (e))

∣∣∣
x=xN1 (e)

< 0.

Using (B22) for ω = 1, and the fact that for x > 0 one has that bN2 (x) = bN1 (x) + (ρ2 − ρ1)x, the
previous inequality is equivalent to:

(ρ2 − ρ1)(1− γ)(1− F (x1(e)))− f(x1(e))((1− γ)(ρ2 − ρ1)x1(e)− bN2 (e) + bN1 (e)) < 0. (B23)

Observe that p1 = p2 implies bN1 (0) = bN2 (0). Thus the l.h.s. of (B23) computed for e = 0 equals:

(ρ2 − ρ1)((1− γ)(1− F (xN1 (e)))− f(xN1 (e))(1− γ)xN1 (e)),

which is strictly smaller than:

(ρ2 − ρ1)((1− γ)(1− F (xN1 (e)))− f(xN1 (e))((1− γ)xN1 (e)− e)),

which is equal to the l.h.s. of (B23) computed for e ∈ [0, 1], because in this case bN2 (e) = bN1 (e) +
(ρ2 − ρ1)e. Hence it is sufficient to show that the latter expression is negative. Using again (B22)
for ω = 1, this is equivalent to showing that:

(1− γ)(bN1 (xN1 (e))− bN1
′(xN1 (e))xN1 (e)) + bN1

′(xN1 (e))e− bN1 (e) < 0. (B24)

Note that bN1 (xN1 (e))−bN ′1(xN1 (e))xN1 (e) ≥ bN1 (xN1 (e))−AxN1 (e) > bN1 (xN1 (e))−AxN1 (e)−B ≥ 0, where
the first and last inequality follow from the fact that bN1 (e) is weakly convex and that bN1 (e) = Ae+B
for e > eN2 , whereas the second inequality follows from the fact that B > 0. Thus, the l.h.s. of
(B24) is strictly decreasing in γ, and so it is sufficient to show that it is not positive for γ = 0.
We thus need that bN1 (xN1 (e))− bN1 (e) ≥ b′N1 (xN1 (e))(xN1 (e)− e), which is true because b1 is weakly
convex and xN1 (e) > e. �
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Proof of Corollary 5
The result follows immediately from Proposition 4 and the discussion in the text. �

Proof of Corollary 6
Consider the distribution of time periods since purchase for owners who consign their artworks for

the first time. For initial consignments in recessions, this distribution is composed of dispersed time
periods for distressed owners and the shortest possible time periods for flippers. The distribution in
expansions is obtained by adding the consignments of non-distressed investors. Because such non-
distressed investors try to sell at the earliest expansion, their time period since purchase cannot
exceed the time elapsed since the previous expansion and so it is bounded from above. �

Proof of Corollary 7
Sales in recessions after a short holding period result either from distressed owners or from non-

distressed flippers, whereas sales after an intermediate holding period mostly result from distressed
sellers. Thus, when looking at sales in recessions, the average returns for short holding periods are
above those for intermediate holding periods. In expansions, sales after short holding periods come
from distressed owners, non-distressed flippers, and non-distressed investors. Intermediate holding
periods are realized mostly by distressed owners and non-distressed investors. Because investors’
returns are on average between those of distressed owners and those of flippers, the difference
between the average returns for short holding periods and the average returns for intermediate
holding period should be lower for sales in expansions than for sales in recessions. �

Proof of Corollary 8
Let us focus on consignments of artworks at some time t by owners who have held for a relatively

long period. It is likely that all these consignments come from distressed owners who, for κ small,
all choose a reserve type close to xDωt(0). Let µLt denote the fraction of buy-ins and ηLt the fraction
of transactions occurring at the reserve price among these auctions. Observe that:

µLt ' F (xDωt(0))nωt ,
ηLt ' nωtF (xDωt(0))nωt−1(1− F (xDωt(0))),

ILt ' At +Bt

1− µLt
,

Mt ' At + Ct,
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where

At =
∫ 1

xDωt (0)
nωt(nωt − 1)f(z)F (z)nωt−2(1− F (z))bωt(z)dz,

Bt = bt(xD(0))ηLt ,
Ct = E[bωt(ẽ

(2)
t )|ẽ(2)

t < xDωt(0)](ηLt + µLt ).

Therefore:
Mt ' ILt (1− µLt ) + Ct −Bt.

One can expect Bt and Ct to be comparable, and hence Mt ' ILt (1− µLt ). �

Proof of Corollary 9
The first statement follows directly from the discussion preceding the corollary. The second

statement follows from the fact that if in state ω the buy-in rate is very low, almost all transactions
are observed. Because some might occur at the reserve price, the bias Iω −Mω remains positive
but will be small. For a very high buy-in rate, in most of the auctions the highest bid is below the
reserve price, and hence the few observed transactions occur at prices substantially larger than the
average second-highest bid in the economy. Thus the bias Iω−Mω is positive and large. We can use
the argument of Corollary 8 for a more formal proof. For any given ω ∈ {1, 2} we can approximate
Mω by (1− µLω)ILω . Thus if µL1 is substantially larger than µL2 , then IL2 /IL1 < M2/M1. �

Proof of Corollary 10
The result follows directly from the negative correlation between holding periods and returns

and the discussion in the text.
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Appendix C Stationary Owner Type Distribution
The aim of this Appendix is to show that a stationary owner type distribution exists. Consider

a stationary economy for a single artwork for which emotional dividends are i.i.d. according to a
c.d.f. F . Assume that κ = 0. Observe that because xD(e) = xD(0), and eventually all owners are
hit by a liquidity shock, only buyers of type e ≥ xD(0) can purchase in the long run. Let Γ be the
set of distribution functions over the interval [xD(0), 1]. If a stationary owner type distribution G∗
exists, it belongs to Γ. Thus, without loss of generality we can focus on Gt ∈ Γ in what follows.
Let P : [xD(0), 1] → Γ be the transition function of the Markov process describing how the owner
type changes between t and t+ 1. Formally, for any measurable subset A of [xD(0), 1], let P(e, A)
denote the probability that at the end of time t+1 the owner of the artwork is an individual of type
e′ ∈ A, conditionally on the the fact that at the end of time t the owner is of type e ∈ [xD(0), 1].
For a distribution G ∈ Γ, let T be the adjoint operator associated with P :

[TG](A) =
∫
P(z, A)G(dz).

We interpret [TG](A) as the probability that time-t+ 1 owner’s type lies in the set A, if the time-t
owner’s type is drawn from a probability distribution G. A distribution G∗ is an invariant measure
of T if [TG∗] = G∗.

Definition C1 The economy has a stationary equilibrium if the Markov equilibrium adjoint oper-
ator T has an invariant measure G∗ and any G0 ∈ Γ converges to G∗.

Consider now a market of many artworks, for which bidder types are i.i.d. according to the same
c.d.f. F . If the economy has a stationary equilibrium, then one can interpret G∗ as the long-term
cross-sectional distribution of owners’ types for these artworks.

Proposition C1 If κ = 0, then a stationary economy has a unique stationary equilibrium.

Proof. We use some properties of strong convergence of Markov processes that can be found
in chapters 8 and 11 of Stokey and Lucas (1989) (henceforth SL). In particular, we will use the
definition of “Condition M” (page 348 of SL) and “Theorem 11.12” (page 350 of SL). Let S be a
measurable space, let Γ be the space of probability measures on S with the total variation norm,
let P be a transition function on S, let T be the adjoint operator associated with P , let Pm denote
the m-th iteration of the transition function P , and let Ac denote the complement of A in S for a
set A ∈ S.

Condition M There exists ε > 0 and an integer m ≥ 1 such that for any measurable set A ∈ S,
either Pm(e, A) ≥ ε, all e ∈ S, or Pm(e, Ac) ≥ ε, all e ∈ S.

Theorem 11.12 If P satisfies Condition M for some m ≥ 1 and ε > 0, then there exists a
unique G∗ ∈ Γ such that:

||TmkG0 −G∗|| ≤ (1− ε)||G0 −G∗||,

all G0 ∈ Γ, k = 1, 2, . . .
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So if P satisfies Condition M, then the mapping T is a contraction, and hence has a unique
invariant measure to which converge all initial distributions of owner types G0 ∈ Γ.

Let us apply Theorem 11.12 to our economy, where S = [xD(0), 1]. To prove the proposition, it
is sufficient to show that the P defined by our Markov equilibrium satisfies Condition M. Observe
that because in every period t the owner is in distress with at least probability d, the probability
that the next period owner’s type is in a set A ⊆ S satisfies:

P(e, A) ≥ d
∫
A
nf(e′)F (e′)n−1de′ > dαU(A)

where α := mine∈S nf(e)F (e)n−1 > 0, and U(A) is the measure of the set A according to the
uniform distribution on [xD(0), 1]. Note that for any A, either U(A) ≥ 1/2 or U(Ac) ≥ 1/2. Then
either P(e, A) ≥ dαU(A) ≥ dα/2 or P(e, Ac) ≥ dαU(Ac) ≥ dα/2, for all e. Thus condition M is
satisfied for ε = dα/2 and m = 1.
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Appendix D Long-Lived Agents with Known Preferences
In this Appendix we present a stylized model in which owners are long-lived and know each

other well. The purpose is to show that there exists an equilibrium that is intuitive, and in which
holding periods and returns are negatively correlated, just like in our baseline model.

Consider an economy where two long-lived individuals, 1 and 2, meet repeatedly over time at
auctions for a given artwork. As in our main model, ownership of the artwork in any given period
t provides individual i with an emotional dividend ei if the individual is not in distress, and of c
if he is in distress. In every period t, a non-distressed individual is hit by a liquidity shock with
exogenous probability d, whereas a distressed individual recovers with probability κ. With an abuse
of notation we let σ now indicate the distress status profile for both individuals. The set of status
profiles is Σ := {NN,DN,ND,DD}. (For example, σt = DN indicates that at time t individual
1 is in distress and individual 2 is not.) Let ei(σ) equal ei if individual i is not in distress and c

if he is in distress. We assume full information: in every period t, individuals know each other’s
emotional dividend and distress status. Without loss of generality, we can assume that c ≤ 0, and
e1 ≤ e2. In any t, we will call the individual owning the asset the “owner” and the other individual
the “bidder”. In this simple setting, the state of the economy at any time t is a triplet indicating
who is the current owner of the artwork, the status of individual 1, and the status of individual 2.

Because this is a relatively standard repeated-game setting, the Folk theorem applies and for δ
close enough to 1 there is a continuum of equilibria. Rather than characterizing these equilibria, we
focus on Markov equilibria that hold no matter the discount factor δ > 0, in which in any period t
consignment, reserve price, and bidding strategies only depend on the state of the economy.

Observe first that because there is complete information about each individual’s taste and status,
individuals know each other’s equilibrium value function of becoming an owner. Thus, conditional
on auctioning the artwork, the owner will set a reserve price equal to the other individual’s val-
uation. This has three implications. First, the value function of being a bidder is nil, because a
bidder purchases at a price that equals his valuation as an owner. Second, buy-ins do not occur
in equilibrium, and hence γBI is irrelevant. Third, a Markov equilibrium can be represented by
a partition of Σ into three sets {Σ0,Σ1,Σ2}. When σt ∈ Σ0, then the owner does not sell no
matter whether he is individual 1 or 2. When σt ∈ Σ1 the artwork is auctioned only if the owner is
individual 1, whereas when σt ∈ Σ2 the artwork is auctioned only if the owner is individual 2. The
equilibrium also specifies the transaction price p(σ) for all σ /∈ Σ0.

For any σ ∈ Σ, let Vi(σ) and Bi(σ) denote the equilibrium value function for individual i when
he is the owner or the bidder, respectively. Denote by E [Vi(σ̃)|σ] and E [Bi(σ̃)|σ] individual i’s
expected owner and bidder value functions in t + 1 conditional on the status profile in t being σ.
We then have:

Lemma D1 If {Σ0,Σ1,Σ2} is a Markov equilibrium, then we have the following results:
(i) If σ ∈ Σi, then the reserve price and the transaction price are both equal to V−i(σ).
(ii) Bi(σ) = 0 for all i = 1, 2 and all σ ∈ Σ.
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(iii) A status σ ∈ Σi, i = 1, 2, if and only if:

V−i(σ) = e−i(σ) + δE [V−i(σ̃)|σ] , (D1)
Vi(σ) = (1− γ)V−i(σ) > 0, (D2)

ei(σ) + δE [Vi(σ̃)|σ] ≤ (1− γ)V−i(σ). (D3)

(iv) A status σ ∈ Σ0 if and only if for all i = 1, 2:

ei(σ) + δE [Vi(σ̃)|σ] ≥ (1− γ)V−i(σ), or (D4)

Vi(σ) < 0. (D5)

Proof. Without loss of generality, let σt be the status profile at time t, and the owner be
individual i. Let ri(σt) denote the owner’s reserve price if he chooses to sell.

Decision to buy. Because there is no competition among bidders in this simple economy, if
individual −i chooses to bid when the artwork is for sale he will acquire it for the reserve price
ri(σt). Alternatively, he could wait for the next period. Thus, faced with the opportunity to
purchase the artwork for ri(σt), individual −i would bid only if:

e−i(σt)− ri(σt) + δE[V−i(σ̃t+1)|σt] ≥ δE[B−i(σ̃t+1)|σt]. (D6)

In other words, individual −i purchases if the emotional dividend net of the purchase price plus
the discounted expected continuation payoff of being the owner in the next period exceeds the
discounted expected continuation payoff of being the bidder in the next period.

Reserve price. Knowing bidder −i’s optimal decision to bid, conditional on choosing to sell the
artwork, owner i’s optimal reserve price in state ωt equals:

ri(σt) = e−i(σt) + δE[V−i(s̃t+1)−B−i(s̃t+1)|σt]. (D7)

This makes sure that the auction is successful and that the proceeds are maximized.

Decision to sell. Consider now the decision to sell for owner i. In state σt, the owner will sell
only if:

(1− γ)ri(σt) + δE[Bi(σ̃t+1)|σt] ≥ ei(σt) + δE[Vi(σ̃t+1)|σt]. (D8)

This means that owner i will sell only if the auction proceeds net of fees plus the discounted expected
continuation payoff of being a bidder in the next period exceed the current emotional dividend plus
the discounted expected continuation payoff of being an owner in the next period. From Eqs. (D7)
and (D8) we have that σt ∈ Σi (i.e., owner i sells in status profile σt) if and only if:

(1− γ)e−i(σt)− ei(σt) ≥ δE[Vi(σ̃t+1)−Bi(σ̃t+1)− (1− γ)(V−i(σ̃t+1)−B−i(σ̃t+1)|σt]. (D9)
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We thus have that for σt /∈ Σi (i.e., when owner i does not sell) owner and bidder equilibrium
continuation payoffs are:

Vi(σt) = ei(σt) + δE[Vi(σ̃t+1)|σt], (D10)
B−i(σt) = δE[B−i(σ̃t+1)|σt]. (D11)

If σt ∈ Σi (i.e., when owner i sells), then we have:

Vi(σt) = (1− γ)(e−i(σt) + δE[V−i(σ̃t+1)−B−i(σ̃t+1)|σt]) + δE[Bi(σ̃t+1)|σt] (D12)
B−i(σt) = e−i(σt) + δE[V−i(σ̃t+1)|σt]− ri(σt) = δE[B−i(σ̃t+1)|σt] (D13)

Observe that because an auctioning owner sets a reserve price such that the bidder is indifferent
between buying and not, we have that there is no positive utility from being a bidder: Bi(σ) = 0
for each individual i and status profile σ, which is result (ii). Replacing the bidder’s continuation
payoffs by 0, we obtain: result (i) from Eqs. (D7) and (D10); Eqs. (D1) and (D2) from equalities
(D10) and (D12), respectively; conditions (D3) and (D4) from inequality (D9). Finally, to see that
no trade is possible when both individuals have negative continuation values (condition (D5)), it
is sufficient to focus on the case where Vi(σ) < V−i(σ) < 0. In this case, the owner of the artwork
would have to—and be happy to—sell for a negative price. But this is impossible in an auction.

The specific Markov equilibrium of this economy will depend on the value of the exogenous
parameters e1, e2, c, d, k, γ and δ. In what follows, we study the equilibrium for parameter values
(or value ranges) e1 = 0.25, 0.25 ≤ e2 < 1, −1 < c < 0, 0 < d, k < 0.25, γ = 0.15, and δ = 1/1.1.
To guide our analysis, we start from some reasonable claims for which we then verify that they
are satisfied in equilibrium. First, we claim that a non-distressed owner will not sell to a bidder in
distress. Second, because e1 ≤ e2 implies that a non-distressed owner 2 does not value the artwork
less than a non-distressed owner 1 and because there are transaction costs, we claim that in status
profile NN owner 2 does not sell.

We can identify four scenarios as candidates for a Markov equilibrium that satisfies these claims.
Let us start with a symmetric setting where e2 is equal to e1. It is then reasonable to focus on a
symmetric Markov equilibrium where a trade occurs only if the owner is in distress and the bidder
is not. Formally:

Scenario 1 (symmetric): {Σ0,Σ1,Σ2} = {{NN,DD}, {DN}, {ND}}.
For e2 sufficiently larger than e1 it become sensible for owner 1 to sell to bidder 2 whenever the
latter is not in distress. Moreover, a distressed owner 1 may sell to a distressed bidder 2. Thus, we
have the following two scenarios:

Scenario 2: {Σ0,Σ1,Σ2} = {{DD}, {NN,DN}, {ND}}.
Scenario 3: {Σ0,Σ1,Σ2} = {{∅}, {NN,DN,DD}, {ND}}.

Finally if the distress cost c is close to 0, the probability of recovery from distress k is large and
e2 is substantially larger than e1, then it is not optimal for owner 2 to sell even when in distress.
Furthermore, in this case it becomes optimal for owner 1 not to sell when the status profile is DD.
He prefers to pay the small distress cost and to wait for the recovery of individual 2, so as to sell
at a higher price. In this case we have:
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Scenario 4: {Σ0,Σ1,Σ2} = {{ND,DD}, {NN,DN}, {∅}}.
To each one of the above scenarios corresponds a system of eight equations where the unknowns are
the owners’ value functions in the four possible status profiles. After solving for the value functions,
one needs to check whether they satisfy the inequalities in Lemma D1.

We illustrate this method with Scenario 2. Suppose that {{DD}, {NN,DN}, {ND}} forms a
Markov equilibrium and apply the conditions of Lemma D1. Consider, for example, status profile
σ = NN . Because NN ∈ Σ1, if the owner is individual 1, he will sell to individual 2 for a reserve
price of V2(NN) and will receive net proceeds of V1(NN) = (1− γ)V2(NN). This must exceed the
value of keeping the artwork, i.e., enjoying the emotional dividend and being the owner in the next
period, which equals e1 + δE[V1(s̃)|NN ], or the first line of system (D14). Similarly, for owner 2,
V2(NN) = e2 + δE[V2(σ̃)|NN ]. This must exceed (1 − γ)V1(NN), which gives us the second line
of system (D14). Applying an analogous approach to the other status profiles, we get the following
system of equalities and inequalities:

V1(NN) = (1− γ)V2(NN) ≥ e1 + δE[V1(σ̃)|NN ]
V2(NN) = e2 + δE[V2(σ̃)|NN ] ≥ (1− γ)V1(NN)
V1(ND) = e1 + δE[V1(σ̃)|ND] ≥ (1− γ)V2(ND)
V2(ND) = (1− γ)V2(ND) ≥ c+ δE[V2(σ̃)|ND]
V1(DN) = (1− γ)V2(DN) ≥ c+ δE[V1(σ̃)|DN ]
V2(DN) = e2 + δE[V2(σ̃)|DN ] ≥ (1− γ)V1(DN)
V1(DD) = c+ δE[V1(σ̃)|DD] ≥ (1− γ)V2(DD)
V2(DD) = c+ δE[V2(σ̃)|DD] ≥ (1− γ)V1(DD),

(D14)

where E[Vi(σ̃)|σ] is obtained using the following transition probability matrix from σt ∈ Σ to
σt+1 ∈ Σ. 

(1− d)2 d(1− d) d(1− d) d2

(1− d)κ (1− d)(1− κ) dk d(1− κ)
(1− d)κ dκ (1− d)(1− κ) d(1− κ)

κ2 κ(1− κ) κ(1− κ) (1− κ)2


One can first solve the system of eight equalities to obtain the values for Vi(σ).1 Then, one needs
to check that these values satisfy the eight inequalities in the system.

The figure below illustrates the regions of parameter values for which scenarios 1, 2, and 3
emerge as a Markov equilibrium. Scenario 4 only emerges for c sufficiently small and κ sufficiently
large. The left panel is obtained by setting d = 0.05, κ = 0.01, δ = 1/1.1, γ = 0.15, e1 = 0.25
and varying (e2, c) ∈ [e1, 1] × [−1, 0]. Each region is labeled with numbers that correspond to the
scenario that emerges as a Markov equilibrium for parameters (c, e2) in that region. As expected,
Scenario 1 occurs only if e2 is sufficiently close to e1 = 0.25, whereas Scenario 4 does not emerge
for this range of the parameters. For the other values of e2 and c in the considered range, Scenarios
2 and 3 emerge as Markov equilibria. In the right panel, we set e1 = 0.25, e2 = 0.5, c = −0.1,
δ = 1/1.1, γ = 0.15, and vary (d, k) ∈ [0, 0.25] × [0, 0.25]. The asymmetry in emotional dividends

1While this system has a closed-form solution, we spare the reader its long algebraic expression, as it would not
add much to the understanding of the equilibrium.
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renders scenario 1 incompatible with equilibrium, and neither in this case Scenario 4 emerges. For
most other values of d and k in the considered range, Scenario 2 emerges. Also Scenario 3 can be
an equilibrium for some specific values.
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Figure D1: The shaded area is the region of parameters for which the equilibrium corresponding to
scenario 2 emerges. Panel (a): Markov equilibria for different values of e2 and c, for e1 = 0.25, d = 0.05,
κ = 0.01, δ = 1/1.1, and γ = 0.15. Panel (b): Markov equilibria for different values of d and κ, for
e1 = 0.25, e2 = 0.5, c = −0.1, δ = 1/1.1, and γ = 0.15.

Scenario 4 is clearly the less interesting for our analysis. Individual 2 never sells, so no repeated
sale shall be observed in this scenario. This scenario only emerges if the probability k of recovery is
sufficiently large or the probability of default is low. Scenario 3, which emerges as an equilibrium
for a relatively small set of parameter values, involves distressed investor 1 selling to distressed
investor 2. Whereas a transaction of this type is in principle possible, it would be unlikely to occur
if one extends the analysis to more than two bidders. In this case the probability of all individuals
simultaneously being in distress is small, and a distressed owner would prefer to sell to a non-
distressed buyer. Scenario 1 is an equilibrium only if individuals have sufficiently similar tastes.
Thus, the most sensible scenario is Scenario 2, which is also the one that emerges for the widest
range of parameter values.

We can now show that, within the framework of this simple model, two fundamental predictions
of the baseline model in our paper survive the introduction of long-lived bidders who repeatedly
interact with each other:

Lemma D2 (i) In all four scenarios, the average holding period is weakly larger for the individual
with the largest emotional dividend.

(ii) In Scenarios 1 and 2, the average return is smaller for the individual with the largest emo-
tional dividend.
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Proof. Recall that individual 2’s emotional dividend is larger than individual 1’s.
(i) In Scenario 1, individual 1 buys in status profile ND and sells in status profile DN , while no

trade occurs otherwise. Because the transition probability matrix is symmetric, the average holding
period is the same for owner 1 and 2. In Scenario 2, individual 1 buys in status ND but sells in
status profiles DN and NN . Therefore, individual 2 is expected to hold the artwork for a longer
period than individual 1. The difference in average holding periods is even stronger in Scenario
3: individual 1 buys in status ND but sells in status profiles DN , NN , and DD. In Scenario 4,
individual 1 sells in status profiles NN and DN , and hence has a finite expected holding period.
Individual 2 never sells, so his holding period is infinitely long.

(ii) Consider that the return of individual 1 is the opposite of the return of individual 2. It is
sufficient to show that the average return for individual 1 is positive. In Scenario 1, individual 1’s
total return is p(DN)/p(ND) − 1 = V2(DN)/V1(ND) − 1 ≥ 0, because the equilibrium behavior
is symmetric but e2 ≥ e1. In Scenario 2, there are two possible returns. If individual 1 sells in
state NN , then the holding period return is p(NN)/p(ND)− 1 > p(DN)/p(ND)− 1, which is the
return when the sale is in state DN . Considering that p(DN)/p(ND) = V2(DN)/V1(ND), it is
sufficient to show that V2(DN) − V1(ND) > 0. Considering that V2(DN) = e2 + δE[V2|DN ] and
V1(DN) = e1 + δE[V2|DN ], we have that:

V2(DN)− V1(ND) = e2 − e1 + δ(γk(1− d)V2(NN) + (1− k)d(V2(DD)− V1(DD))
1− δ((1− k)(1− d)− (1− γ)dk) > 0.
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Appendix E A Calibration Exercise
Given that our model is stylized, it is useful to examine whether it can (simultaneously) account

for the magnitudes of the price and volume changes that we see over business cycles in the data.1
We therefore conduct a simple calibration exercise using a market consisting of 1,500 hypothetical
artworks. We let a period equal a calendar year, since we see virtually zero resale attempts within
twelve months of the purchase in the data. We set p1 and p2 equal to 0.50 and 0.25, respectively.
These numbers reflect the transition probabilities in the time series of macroeconomic cycles from
1900 to 2015.2 Motivated by available evidence on auction house commissions, we set our transaction
cost parameters γ = 15% and γBI = 2%.3 No direct evidence exists on how many bidders enter
the auction for any individual work. However, anecdotal reports from auction rooms suggest that
turnout is highly procyclical, and that there are often only a handful of (potential) bidders for
each individual item. We set the number of bidders equal to five in recessions and let this number
double in expansions, i.e., n1 = 5 and n2 = 10. Furthermore, we normalize ρ2 to 1, and calibrate
ρ2 to 0.75 to match the substantial destruction of private wealth that is typical of recessions.4 We
choose d = 5% to reflect that the types of liquidity shocks relevant in the art market—death, debt,
divorce—are infrequent but not too rare. Finally, we set κ = 0 and c = −0.1, and use a discount
rate of 10%.5

We calibrate the two parameters that control the beta distribution of types to match a level of
both consignment and transaction volume that is one third lower in recessions,6 which is roughly
the average total drop over the first two years of each of the recessions in our sample period. Such
a (consignment) volume decrease is matched by a beta distribution with parameters α = 0.4 and
µ = 7. With a heavily positively skewed distribution of types—which reflect variation in both tastes
and wealth—the model can thus account for the sizeable shifts in auction volume that we observe
in the data.

The next question is then what is the associated predicted change in price levels—an endogenous
moment not targeted by our procedure? We find that average transaction prices are about 15%

1Even more fundamentally, note that the predictions of our model on the cyclicality of prices and volume (Propo-
sition 4) were derived under a number of assumptions on the (relative) values of certain parameters (Assumption 1).
It is therefore useful to check whether a model calibrated to realistic values for these parameters produces the same
results as the ones in Corollary 5.

2We classify a year as recessionary if it includes three or more months that fall into an NBER recession period. Of
course, unlike in our model, we observe secular economic growth over time, and also variation in growth rates between
different recessions or expansions. We will here focus on what happens on average when the economy transitions
from an expansion into a recession (or vice versa).

3Sotheby’s (2017) reported reported “auction commission margins”, i.e., total commission revenues as a percentage
of sales, of between 14.3% and 17.1% for the years 2012–2016. The fraction of the reserve price that potential sellers
have to pay to the auction house in case of a buy-in varies across auctions and consignors, but is never more than a
few percentage points.

4Based on data from the Panel Study of Income Dynamics, Pfeffer, Danziger, and Schoeni (2013) report a decrease
in net worth of 27% between 2007 and 2011 for households at the 95th percentile of the net worth distribution.

5The results are robust to the introduction of a positive but small κ, and also to small changes in the other
parameters. We can, however, not match the cyclicality in the market if we set the discount rate close to zero.

6We let our artworks trade over 116 years, using the actual history of macroeconomic states over the period
1900–2015. Artworks are randomly allocated to types at the start of 1900. We measure changes in volume and prices
over the period 1976–2015 in our calibration.
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lower in recessions than in expansions. This is about half the average drop that we observe at the
start of recessions in the data. Taken altogether, the calibration clarifies that our model—despite
the simplifying assumptions—can generate economically significant procyclicality in consignment
volume, transaction volume, and prices.7

7 The average holding period (computed over purchase and sale sample periods matching our data set) equals 10
years in our calibrated model, which is close to what we observe empirically. The average buy-in rate is higher in
our calibration than in the data, which suggests that there may be an implicit cost of a failure to meet the reserve
price that is outside our model (e.g., Beggs and Graddy (2008)).
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Appendix F Additional Empirical Results on Business Cy-
cles

Cyclicality in distribution of time periods since purchase. One implication of our model
is that, when computing the periods since purchase for consignments in expansions, we should see
a higher fraction of short to intermediate period lengths, because we also have investors trying to
sell then (Corollary 5). Do we see such a pattern in our data? Figure F1 shows the empirical
distribution of time intervals since purchase for resale attempts during the 2008–2009 recession and
compares it to the distribution for auctions in 2007 and 2010–2015. Our analysis is complicated by
the relatively small number of observations in the recession subsample, and by the fact that in any
year the observed distribution of periods since purchase will be a complex function of the whole
history of market conditions (and data coverage). Yet, the findings are suggestive of state-dependent
behavior on the part of art owners such as modeled in this paper.

Figure F1: This figure shows the distribution of time periods since purchase in our database of resale
attempts. We split the sample by the state of the economy in the year of the resale attempt. For holding
periods of 10–20 and 20+ years, we compute the average frequency for one-year period lengths.

Cyclicality in relation between holding periods and returns. Finally, our model predicted
that the negative relation between realized holding periods and returns should be less strong—at
least over short to intermediate holding periods—for resales in expansions (Corollary 7). Table F1
repeats regression model (2) of Table 1 relating performance to realized holding periods separately
on the subsamples of resales in recession and in expansion. The recession model shows a coefficient
on the shortest holding period category that is large—and much larger than that on the next
holding period variables. (The coefficient on the dummy for holding periods of 1–3 years has a
p-value of 0.13. Note that the number of observations is small in this subsample.) By contrast, in
the expansion subsample, we see coefficients of similar magnitudes up to holding periods of 7 years,
after which (market-adjusted) returns start to decline.
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Dependent variable Total (market-adjusted) return
Model (1) (2)
Resale state Recession Expansion
1–3 years since purchase 0.196 0.135

0.129 0.088
3–5 years since purchase 0.068 0.154**

0.126 0.066
5–7 years since purchase 0.032 0.143**

0.140 0.061
7–10 years since purchase -0.029 0.103*

0.122 0.057
10–20 years since purchase 0.079 0.066

0.098 0.050
20+ years since purchase [left out] [left out]
N 540 1,757

Table F1: This table shows the results of a set of ordinary least squares regressions relating total market-
adjusted returns on successful artwork resales (as measured by the residuals of a repeat-sales regression)
to the holding period in years. We split the sample by the state of the economy in the year of resale. Both
specifications include a constant. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01
level, respectively.
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