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Appendix A Proofs and Additional Results

A.1 Proof of Lemma 1

First, consider the application stage. Given queue length λ, a firm’s number of

applicants nA in our benchmark model follows a geometric distribution with support

N0 and mean λ, i.e. P [nA = n |λ] = 1
1+λ

(
λ

1+λ

)n
for n = 0, 1, 2, . . . . If σ = 1 (firms

can interview all candidates), then we have

φ(µ, λ) = 1−
∞∑
n=0

P [nA = n |λ]
(

1− µ

λ

)n
=

µ

1 + µ
,

where the first equality uses the fact that the probability that an applicant is high-

type is µ/λ and is independent across applicants.

Next, consider the screening stage. A firm’s potential number of interviews,

nC , follows a geometric distribution with support N1 and mean (1− σ)−1. That

is, P[nC ≥ n |σ] = σn−1 for n = 1, 2, . . . . Since interviewing might be constrained

by the number of applications, the firm’s actual number of interviews is nI =

min{nA, nC} ∈ N0, distributed according to P [nI ≥ n |λ, σ] = P [nA ≥ n |λ]σn−1 =(
λ

1+λ

)n
σn−1. An interview reveals a high-type worker with probability µ/λ, inde-

pendently across applicants. The firm therefore interviews at least one high-type
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worker with probability

φ(µ, λ) = 1−
∞∑
n=0

P [nI = n|λ, σ]
(

1− µ

λ

)n
=
∞∑
n=1

P [nI ≥ n|λ, σ]
µ

λ

(
1− µ

λ

)n−1

,

where the second equality follows from summation by parts. Substituting P [nI ≥ n |λ, σ] =(
λ

1+λ

)n
σn−1 yields equation (2).

A.2 Marginal Contributions

Adding more low-type workers to a submarket only increases λ, while adding more

high-type workers increases both µ and λ. Thus, the marginal contribution of low-

type and high-type workers at a firm of type y with queues (µ, λ) are Sλ(µ, λ, y) and

Sµ(µ, λ, y)+Sλ(µ, λ, y), respectively. Because of constant returns to scale, the firm’s

marginal contribution is the difference between total surplus and the sum of the

marginal contributions of its applicants, i.e. S(µ, λ, y)−µSµ(µ, λ, y)−λSλ(µ, λ, y).36

Using S(µ, λ, y) from (3), f 1 ≡ f(x1, y) and ∆f = f(x2, y)− f(x1, y), we get

T1(µ, λ, y) = m′(λ)f 1 + φλ(µ, λ)∆f, (26)

T2(µ, λ, y) = m′(λ)f 1 + (φµ(µ, λ) + φλ(µ, λ)) ∆f, (27)

R(µ, λ, y) = (m(λ)− λm′(λ)) f 1 + (φ(µ, λ)− µφµ(µ, λ)− λφλ(µ, λ)) ∆f, (28)

where T1, T2 and R are the marginal contribution to surplus of low-type workers,

high-type workers, and firms, respectively.

A.3 Concavity of Surplus Function S(µ, λ, y)

Let κ(y) be a measure of output dispersion, defined as the relative gain in output

for a firm of type y from hiring a high- rather than a low-type worker, i.e.

κ(y) ≡ f(x2, y)− f(x1, y)

f(x1, y)
> 0. (29)

The following lemma then presents the planner’s second-order condition (SOC).37

36Alternatively, increase the number of firms by a factor 1 + ∆s. The additional surplus is then
(1 + ∆s)S(µ/(1 + ∆s), λ/(1 + ∆s), y)− S(µ, λ, y), which yields the same result when ∆s→ 0.

37We omit the arguments of the derivatives of φ(µ, λ) and m(λ) for simplicity.



Lemma 4. Surplus S(µ, λ, y) is strictly concave at a point (µ, λ) with 0 < µ < λ if

1

κ(y)
>
φλλ − φ2

µλ/φµµ

−m′′
. (30)

Proof. The Hessian H(µ, λ, y) of S (µ, λ, y) equals

H(µ, λ, y) =

(
φµµ∆f φµλ∆f

φµλ∆f m′′f 1 + φλλ∆f

)
.

When σ > 0, we have φµµ < 0. So, the Hessian is negative definite if and only

if its determinant is positive, i.e. ∆f
[
m′′φµµf

1 +
(
φµµφλλ − φ2

µλ

)
∆f
]
> 0. Using

∆f > 0 and the definition of κ(y), we obtain condition (30).

The right-hand side of (30) is a rescaled version of the determinant of the

Hessian matrix of φ(µ, λ). It is zero if σ = 1, which means that the SOC always

holds in that case.38 It is positive for 0 < σ < 1 and converges to infinity when

σ → 0. That is, the SOC never holds when meetings are bilateral, as is well-known

from Eeckhout and Kircher (2010); in what follows, we will therefore focus on the

case σ > 0, but our results extend to the bilateral case by continuity.

If the planner creates a submarket with queues (µ, λ), then (30) must hold,

otherwise splitting the submarket increases total surplus.

A.4 Proof of Lemma 2

We prove this result and discuss it extensively in Cai et al. (2022). Here, we state

the single-crossing condition and briefly argue why it leads to Lemma 2. To do so,

we define H(µ, λ) as the right-hand side of (30), i.e.

H(µ, λ) ≡
φλλ − φ2

µλ/φµµ

−m′′
. (31)

Cai et al. (2022) then show that Lemma 2 holds whenever a meeting technology

satisfies Property A0, A1, A2 and the following A3.

38Cai et al. (2017) describe a broader class of meeting technologies for which φ(µ, λ) is jointly
concave in (µ, λ) such that (30) is always satisfied. However, as they show, such technologies
feature (weakly) positive meeting externalities, making them unsuitable for our paper.



A3. (single-crossing condition) At any point (ζ, λ) where H(λζ, λ) > 0, we have

∂H(λζ, λ)/∂λ > 0 and

−∂φµ(λζ, λ)/∂ζ

∂φµ(λζ, λ)/∂λ
< −∂H(λζ, λ)/∂ζ

∂H(λζ, λ)/∂λ
. (32)

Note that Property A0 states that ∂φµ(λζ, λ)/∂ζ < 0, while Property A2 states

that ∂φµ(λζ, λ)/∂λ < 0, making the left-hand side of (32) strictly negative. When

φ(µ, λ) is given by (2), direct computation reveals that both H(λζ, λ) and the

right-hand side of (32) are strictly positive. Thus, Property A3 is trivially satisfied

in this case.

Let R(µ, λ, y) and T2(µ, λ, y) denote the marginal contributions to surplus of

firms and high-type workers, respectively, as derived in Appendix A.2. The idea

of the proof of Cai et al. (2022) is then as follows. Suppose that the marginal

contribution to surplus of firms equals R∗. Property A3 then implies that, in the

λ-ζ plane, the level curve R(λζ, λ, y) = R∗ crosses the level curve H(λζ, λ) = 1/κ(y)

at most once and from the left, as illustrated in Figure 1 of Cai et al. (2022). If the

intersection exists, denote it by (λ∗, ζ∗). Along the level curve R(λζ, λ, y) = R∗,

the SOC (30) is then satisfied for ζ > ζ∗ and violated for ζ < ζ∗. The only feasible

submarket when ζ < ζ∗ is therefore the corner solution ζ = 0. Furthermore, along

the level curve R(λζ, λ, y) = R∗, the marginal contribution to surplus by high-

type workers, T2(λζ, λ, y) is monotonically decreasing in ζ for ζ ≥ ζ∗. Since the

marginal contribution of high-type workers must be the same among all submarkets

containing such workers, there can exist only one submarket with ζ ≥ ζ∗. Hence,

there exist at most two submarkets: one with ζ = 0 and the other with ζ ≥ ζ∗.

Cai et al. (2022) then show that there exists only one pair of (γ,∆) which satisfies

the FOC for the maximization problem in (4). Hence, the planner’s solution is

unique.

A.5 Proof of Proposition 2

Consider first the degenerate case x = x1 = x2. Surplus in a submarket equals

m(λ)f(x, y), so the marginal contribution of a worker is m′(λ)f(x, y), which must

be the same across different submarkets. That is, the optimal queue length λ(y)

satisfies m′(λ(y))f(x, y) = W , where W is a constant such that
∫ y
y
λ(y) = L.

When x2 is sufficiently close to x1 = x, then the marginal contributions of low-



and high-type workers will be close to W , which implies that to solve the planner’s

problem, it is without loss of generality to limit the queue length of each firm to

λ ≡ 2λ(y), where λ(y) is the optimal queue length of the firm with the highest

type in the degenerate case. That is, to solve the planner’s problem in (5), we can

restrict (µ(y), λ(y)) to be in the convex set ∆ ≡ {(µ, λ) | 0 ≤ µ ≤ λ ≤ λ}.
In this set ∆, the right-hand side of the firm’s SOC (30) is bounded due to

continuity. Hence, (30) will hold for all (µ, λ) in ∆ when κ(y), or equivalently

x2 − x1, is sufficiently small. That is, for each firm type y, the surplus function

S(µ, λ, y) is strictly concave on the set ∆, which implies that in the planner’s

problem in (5), we can replace S̃(µ, λ, y) with S(µ, λ, y) because two submarkets

in ∆ are strictly suboptimal. Thus the planner solves a standard (strictly) concave

maximization problem; the optimal solution (µ(y), λ(y)) is unique and continuous.

Furthermore, when µ(y) and λ(y) satisfy 0 < µ(y) < λ(y) for some firm type y,

they are jointly determined by the FOCs (16) and (17).

As x2 → x1 = x, the FOCs (16) and (17) converge to m′(λ∗(y))f(x, y) (which

is constant across firms with λ∗(y) > 0) and φµ(λ∗(y)ζ∗(y), λ∗(y))fx(x, y) (which

is constant across firms with ζ∗(y) ∈ (0, 1)). Without loss of generality, assume

that all firms are active: λ∗(y) > 0 (otherwise, λ∗(y) = 0 for firms with small y,

in which case we can exclude them from consideration). By the implicit function

theorem, ζ∗(y) is differentiable whenever it is interior. Since ζ∗(y) is continuous,

PAM holds if whenever ζ∗(y) is interior, i.e. d
dy
h(ζ∗(y), λ∗(y)) ≥ 0. Assume that

ζ∗(y) is interior for some firm type y. Differentiating the two FOCs with respect

to y yields

0 = m′′(λ(y))λ′(y)f(x, y) +m′(λ(y))fy(x, y)

0 =

(
∂φµ
∂ζ(y)

ζ ′(y) +
∂φµ
∂λ(y)

λ′(y)

)
fx(x, y) + φµfxy(x, y),

where we suppress the arguments of φµ(λ(y)ζ(y), λ(y)) and the superscripts of

(ζ∗(y), λ∗(y)). Combining these two equations yields ζ ′(y) and λ′(y), which then

implies that ζ ′(y) ≥ 0 if and only if ρ(x, y) ≥ ac(ζ(y), λ(y)) and d
dy
h(ζ(y), λ(y)) ≥ 0

if and only if ρ(x, y) ≥ am(ζ(y), λ(y)).

Next, we show the necessity of (23) and (24). We only consider the case of PAC;

the other cases (PAM, NAC and NAM) follow the same logic. Suppose that (23)



does not hold for i = c, so that there exist x0, y0, ζ0, and λ0 such that ρ(x0, y0) <

ac(ζ0, λ0). We can then construct a counterexample in which worker/firm hetero-

geneity is small and NAC holds at the planner’s solution. In particular, by conti-

nuity, we can assume that 0 < ζ0 < 1 (note the strict inequality), and that there

exists a small ε0 such that the above inequality holds for all x ∈ [x0, x0 + ε0],

y ∈ [y0 − ε0, y0 + ε0], ζ ∈ [ζ0 − ε0, ζ0 + ε0], and λ ∈ [(1 − ε0)λ0, (1 + ε0)λ0]. Fix ε0

from now on and set x1 = x0, Lz = λ0ζ0, L(1 − z) = λ0(1 − ζ0), y = y0 − ε1, and

y = y0 + ε1 for some ε1 ≤ ε0. Next, we reduce firm heterogeneity by letting ε1 → 0.

When ε1 is sufficiently small, λ(y) ∈ [(1−ε0)λ0, (1+ε0)λ0] and ζ(y) ∈ [ζ0−ε0, ζ0+ε0]

for all y. Thus, NAC holds at the planner’s solution.

A.6 Proof of Lemma 3

We first consider ac(ζ, λ). Since φ(µ, λ) is given by equation (2) and ac(ζ, λ) is

defined by equation (21), direct calculation yields

ac(ζ, λ) =
1 + λ

2λ

(
1 +

1

1 + (1− σ)λ
− 2

1 + σζλ+ (1− σ)λ

)
. (33)

Note that ac(ζ, λ) is strictly increasing in ζ. Thus, we have maxζ a
c(ζ, λ) = ac(1, λ)

and minζ a
c(ζ, λ) = ac(0, λ). Moreover, (33) reveals that ac(0, λ)+ac(1, λ) = 1 and

dac(1,λ)
λ

= − σ(1−σ)
2(1+(1−σ)λ)2

< 0. Therefore, ac(1, λ) approaches its supremum when λ→
0 and ac(0, λ) approaches its infimum when λ→ 0. Hence, we have supζ,λ a

c(ζ, λ) =

limλ→0 a
c(1, λ) = (1+σ)/2 and infζ,λ a

c(ζ, λ) = 1−supζ,λ a
c(ζ, λ) = (1−σ)/2, where

neither the infimum nor the supremum can be reached because we require λ > 0.

Furthermore,

∂ac(ζ, λ)

∂σ
=

1 + λ

2

(
1

(1 + λ(1− σ))2
− 2(1− ζ)

(1 + λ(1− σ) + λσζ)2

)
.

Hence, ac(ζ, λ) is strictly increasing in σ if and only if λζσ
1+λ(1−σ)

>
√

2(1− ζ)− 1.

Next, we consider am(µ, λ). Analogous to above, direct computation yields

am(ζ, λ) =
1

2

(
1 +

σ(2ζ − 1)

1 + (1− σ)λ

)
. (34)

Note that am(ζ, λ) is strictly increasing in ζ. For a given λ, am(ζ, λ) therefore



reaches its minimum at ζ = 0 and its maximum at ζ = 1. Because am(0, λ) =

ac(0, λ) and am(1, λ) = am(1, λ), we have am = ac and am = ac. The above equation

implies that am(ζ, λ) is strictly increasing in σ if and only if ζ > 1/2. When ζ = 1/2,

am(1/2, λ) = 1/2, independent of λ.

Finally, note that

ac(ζ, λ)− am(ζ, λ) =
ζ(1− ζ)σ2λ

(1 + (1− σ)λ)(1 + σζλ+ (1− σ)λ)
≥ 0.

Thus, when σ > 0, ac(ζ, λ) = am(ζ, λ) if and only if ζ = 0 or ζ = 1.

A.7 Proof of Proposition 3

To prove PAM/PAC, we establish two results (in Secion A.7.3 and A.7.4, respec-

tively). First, we show that if there exists a firm type ym that is present in

two submarkets, then ζ(y) must jump up around type ym under the assumption

ρ ≥ (1 + σ)/2 (note that ρ > 1/2 is actually sufficient; see Lemma 7).

Second, we show that if firm types have a unique optimal queue within some

interval, then both ζ(y) and h(ζ(y), λ(y)) are increasing in y within this interval

when ρ ≥ (1 + σ)/2.

These two results jointly imply that PAC/PAM holds at the planner’s solution.

Note that if there exist no firm types with two submarkets, then the second result

above implies that PAC/PAM holds. Suppose that there exists a single firm type

ym which has two submarkets where ζ(ym) is 0 and ζ1 > 0 (in Figures 1a and 1b,

ym = 0.6 and ζ1 = 0.2). Then when y < ym or y > ym, firms of type y have a unique

optimal queue. The second result above implies that both ζ(y) and h(ζ(y), λ(y))

are increasing when y < ym and when y > ym. Recall that Q(y) is the set of

queues that firms of type y face at the planner’s solution. Since Q(y) solves the

maximization problem in (8), it is an upper hemi-continuous correspondence by the

Theorem of the Maximum. The first result above then implies limy ↑ ym ζ(y) = 0

and limy ↓ ym ζ(y) = ζ1. Therefore, the resulting optimal queues must look like the

one in Figure 1a. Hence, PAC/PAM holds.

Finally, note that there exists at most one firm type that is present in two

submarkets when ρ ≥ (1 + σ)/2. As before, suppose that firms of type ym have

two submarkets. Then, ζ(ym) is 0 and ζ1 > 0. Then the first result above implies

that firms with type y slightly above ym have a unique submarket whose ζ(y) is



close to ζ1 and firms with types slightly below ym have a unique submarket whose

ζ(y) is close to 0. Therefore, firm types that have two submarkets are isolated from

each other so that we can list them as y1
m < · · · < yKm . Assume that K ≥ 2, and

that ζ(yim) is either 0 or ζ i1 for i = 1, . . . , K. Then firms of type y ∈ (yim, y
i+1
m )

have a unique optimal queue, and by the first result above, limy ↓ yim ζ(y) = ζ i1 and

limy ↑ yi+1
m
ζ(y) = 0, which contradicts with the second result above. Hence there

exists at most one firm type that is present in two submarkets.

After presenting two helpful lemmas in Section A.7.1 and A.7.2, we prove the

two main results in Section A.7.3 and A.7.4. Finally, we show that the planner’s

solution is unique in Section A.7.5.

A.7.1 The Elasticity of Complementarity Revisited.

Note that ρ(x, y) is the ratio of the percentage change in fy(x, y) (the marginal

output by firms) and the percentage change in f(x, y) caused by increasing the

worker type to x+ ∆x. That is, for sufficiently small ∆x > 0, we have

fy(x+ ∆x, y)

fy(x, y)
≈ 1 + ρ(x, y)

fx(x, y)

f(x, y)
∆x ≈

(
f(x+ ∆x, y)

f(x, y)

)ρ(x,y)

.

In general, when x is discrete and ρ(x, y) is not necessarily constant, the elasticity

of fy with respect to f is bounded by ρ and ρ, as summarized by the following

lemma.

Lemma 5. For given y, fy(x, y)/f(x, y)ρ is increasing in x, and fy(x, y)/f(x, y)ρ

is decreasing in x. That is,(
f(x2, y)

f(x1, y)

)ρ
≤ fy(x2, y)

fy(x1, y)
≤
(
f(x2, y)

f(x1, y)

)ρ
, (35)

where the first (resp. second) inequality holds as equality if and only if ρ (resp. ρ)

is equal to ρ(x, y) for all x ∈ [x1, x2].

Proof. Given ρ0, the derivative of log fy(x, y)−ρ0 log f(x, y) with respect to x equals

∂

∂x
(log fy − ρ0 log f) =

fxy
fy
− ρ0

fx
f

=
fxyf − ρ0fxfy

ffy
,

where we suppress the arguments of f(x, y) and its partial derivatives for simplicity.



The right-hand side is weakly positive (resp. negative) if ρ0 = ρ (resp. ρ0 = ρ),

which means that log fy(x2, y) − ρ log f(x2, y) ≥ log fy(x1, y) − ρ log f(x1, y), and

log fy(x2, y)−ρ log f(x2, y) ≥ log fy(x1, y)−ρ log f(x1, y), which jointly imply (35).

A.7.2 A Technical Lemma

The first two parts of the following lemma are trivial, whereas the third part is

non-trivial and critical for our results.

Lemma 6. (i) If ρ > 1, then 1
κ
((1 + κ)ρ− 1) is strictly increasing for κ > 0; (ii) if

ρ ∈ (0, 1), then 1
κ
((1+κ)ρ−1) is strictly decreasing for κ > 0; and (iii) if ρ ∈ (0, 1),

then
(

1
κ

+ 1−ρ
2

)
((1 + κ)ρ − 1) is strictly increasing for κ > 0.

Proof. For (i) and (ii), define g(κ) = (1 + κ)ρ, which is strictly concave if ρ ∈ (0, 1)

and strictly convex if ρ > 1. Observe that ((1 +κ)ρ− 1)/κ = (g(κ)− g(0))/(κ− 0),

which is strictly increasing in κ if g(κ) is strictly convex, and strictly decreasing in

κ if g(κ) is strictly concave.

For (iii), direct computation gives

d

dκ

[(
1

κ
+

1− ρ
2

)
((1 + κ)ρ − 1)

]
=

2(1 + κ)1−ρ − 2− κ(1− ρ)(2− κρ)

2κ2(1 + κ)1−ρ .

The numerator on the right-hand side equals zero for κ = 0. Moreover, its derivative

is d
dκ

[2(1+κ)1−ρ−2−κ(1−ρ)(2−κρ)] = 2(1−ρ)[(1+κ)−ρ− (1−κρ)] > 0, because

convexity of (1 + κ)−ρ implies (1 + κ)−ρ − (1− κρ) > 0. Hence, the numerator on

the right-hand side is strictly positive for κ > 0, which proves (iii).

A.7.3 Local Analysis: Around a Firm Type with Two Submarkets

We now present a lemma which guarantees that the planner’s choice is well behaved

around a multiplicity point ym. Note that the sufficient condition for PAC/PAM

(ρ ≥ (1 + σ)/2) is more than we need here (ρ ≥ 1/2) for the first case.

Lemma 7. Suppose that at the planner’s solution, firms of type ym have two sub-

markets with queues (0, λ0) and (λ1ζ1, λ1) and ζ1 > 0. If ρ > 1/2, then there exists

a small interval of firm types containing ym such that within this interval, if y > ym

then firms of type y have a single submarket whose queue is close to (λ1ζ1, λ1), and



if y < ym then firms of type y have a single submarket whose queue is close to

(0, λ0).

When ρ ≤ (1 − σ)/2, then the conclusion is reversed: Within the interval, if

y > ym then firms of type y have a single submarket whose queue is close to (0, λ0),

and if y < ym then firms of type y have a single submarket whose queue is close to

(λ1ζ1, λ1).

Proof. Suppose that the queues in the two submarkets for firms of type ym are

(ζ0, λ0) and (λ1ζ1, λ1), where 0 = ζ0 < ζ1. Since the marginal contribution to

surplus by firms of type ym must be the same for the two submarkets, by (28) we

have

m(λ0)− λ0m
′(λ0) = m(λ1)− λ1m

′(λ1) +

(
φ(ζ1λ1, λ1)− λ1

dφ(ζ1λ1, λ1)

dλ

)
∆f

f 1
,

(36)

where ∆f = f(x2, ym) − f(x1, ym) and f 1 = f(x1, ym). The left-hand side is the

firm’s marginal contribution to surplus with a queue (0, λ0), divided by f(x1, ym),

and the right-hand side is the corresponding value with a queue (λ1ζ1, λ1).

If ζ1 ∈ (0, 1), then low-type workers are present in both queues and their

marginal contribution to surplus must be the same. Equation (26) then yields

m′(λ0) = m′(λ1) + φλ(ζ1λ1, λ1)
∆f

f 1
if ζ1 ∈ (0, 1). (37)

Low-type workers are not present in the shorter queue if ζ1 = 1. In this special

case, optimality requires that the left-hand side of (37) is larger than the right-hand

side.

Recall that Q(y) is the set of queues that firms of type y face at the planner’s

solution. By the Theorem of the Maximum, Q(y) is an upper hemi-continuous

correspondence. That is, for firm types y close to ym, the element(s) in Q(y) must

be close to either (0, λ0) or (λ1ζ1, λ1).

By the envelope theorem, if a firm with type y close to ym is constrained to

choose only (µ, λ) close to (λ1ζ1, λ1), then its return is approximately (first-order)

Π(ζ1, λ1, ym) + Πy(ζ1, λ1, ym)∆y where ∆y = y − ym. Similarly, if the firm is con-

strained to choose ζ = 0, then its maximum expected profit is approximately



Π(0, λ0, ym) + Πy(0, λ0, ym)∆y. Recall that Π(ζ1, λ1, ym) = Π(0, λ0, ym). When

Πy(ζ1, λ1, ym) > Πy(0, λ0, ym), then a firm type y > ym strictly prefers to choose ζ

around ζ1 instead of around zero, and a firm type y < ym strictly prefers to choose ζ

around zero instead of around ζ1. As mentioned before, by continuity, it is without

loss of generality to constrain the firm to choose between zero and all ζ close to ζ1.

Note that by the envelope theorem, the condition Πy(0, λ0, ym) < Πy(ζ1, λ1, ym)

can be written as

m(λ0) < m(λ1) + φ(ζ1λ1, λ1)
∆fy
f 1
y

, (38)

where ∆fy = f(x2, ym)− f(x1, ym) and f 1
y = fy(x1, ym). Similarly, Πy(0, λ0, ym) >

Πy(ζ1, λ1, ym) when the reverse inequality holds in (38).

First consider the case in which ζ1 < 1, such that (37) holds with equality.

From (36) and (37), we can solve for κ(ym) and λ0 in terms of ζ1 and λ1. This

yields

κ(ym) =
4σ(1 + λ1 − λ1σ(1− ζ1))2

(1 + λ1)(λ1 − σ − λ1σ(1− ζ1) + 1)2
, (39)

λ0 =
λ1(λ1 + σ(−λ1 + (λ1 + 2)ζ1 − 1) + 1)

1− σ − λ1(1− σ − σζ1)
. (40)

Assume ρ > 1/2. Rewrite (38) as

1 +
m(λ0)−m(λ1)

φ(ζ1λ1, λ1)
<
fy(x2, ym)

fy(x1, ym)
. (41)

Since ρ > 1/2, fy(x2, ym)/fy(x1, ym) > (1 + κ(ym))1/2 by (35). Note that

(1 + κ(ym))−
(

1 +
m(λ0)−m(λ1)

φ(ζ1λ1, λ1)

)2

=
4λ1σ

3(1− ζ1)(1 + λ1(1− σ(1− ζ1)))

(1 + λ1)2(1− σ + λ1(1− σ(1− ζ1)))2
> 0,

hence (41) holds.



On the other hand, if ρ ≤ (1− σ)/2, then we have

∆fy
f 1
y

− m(λ0)−m(λ1)

φ(ζ1λ1, λ1)
< (1 + κ(ym))ρ − 1− m(λ0)−m(λ1)

φ(ζ1λ1, λ1)

<
1− σ

2
κ(ym)−m(λ0)−m(λ1)

φ(ζ1λ1, λ1)
= −2σ2λ1(1− σ(1− ζ1))(1 + λ1(1− σ(1− ζ1)))

(1 + λ1) (1− σ + λ1(1− σ(1− ζ1)))2 ≤ 0,

where the first inequality follows from fy(x2, ym)/fy(x1, ym) < (1+κ(ym))ρ (see (35)),

the second inequality follows from (1 + κ)ρ < 1 + ρκ ≤ 1 + 1−σ
2
κ, and the equality

follows from equations (39) and (40). Hence, (38) holds with >.

Next, consider the case ζ1 = 1, where (36) holds with equality and (37) holds

with >. From (36) we can solve

f(x2, ym)

f(x1, ym)
= κ(ym) + 1 =

(λ0/(1 + λ0))2

(λ1/(1 + λ1))2
(42)

The sorting condition (38) becomes λ0/(1+λ0)
λ1/(1+λ1)

< fy(x2,ym)

fy(x1,ym)
, which, by (42), is equiv-

alent to
√

f(x2,ym)
f(x1,ym)

< fy(x2,ym)

fy(x1,ym)
. If ρ > 1/2, then the above inequality holds by

Lemma 5; if ρ < 1/2, then similarly, the above inequality holds with > .

A.7.4 Local Analysis: An Interval of Firm Types That Have Unique

Queues and Both Types of Workers

We now consider an interval of firm types that have unique queues (Q(y) contains

a single element) and attract both types of workers (ζ(y) ∈ (0, 1)). The FOCs (16)

and (17) jointly determine λ(y) and ζ(y). Differentiating (17) with respect to y

yields

− 1

φµ

(
∂φµ
∂ζ

ζ ′(y) +
∂φµ
∂λ

λ′(y)

)
=

∆fy
∆f

, (43)

which states that the percentage decrease in φµ must equal the percentage increase

in ∆f.



Similarly, differentiating (16) with respect to y yields

ζ ′(y)(W2 −W1) = m′f 1
y +m′′λ′(y)f 1 + (ζ(y)φµ + φλ)∆fy

+

[
ζ ′(y)φµ + ζ

∂φµ
∂ζ

ζ ′(y) + ζ
∂φµ
∂λ

λ′(y) +
∂φλ
∂ζ

ζ ′(y) +
∂φλ
∂λ

λ′(y)

]
∆f,

where we have suppressed the arguments µ(y) and λ(y) from the functions m and φ.

By (17), we can substitute φµ∆f for W2−W1 on the left-hand side. The resulting

equation and equation (43) are two linear equations in ζ ′(y) and λ′(y). A simple but

tedious calculation then yields the percentage change of m′(λ) across firm types,

−m
′′(λ(y))

m′(λ(y))
λ′(y) =

f 1
y

f 1

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

. (44)

When the meeting technology exhibits no congestion externalities (i.e. σ = 1),

the second factor on the right-hand side reduces to 1. That is, when we move

towards more productive jobs, the percentage decrease in m′(λ) (as a result of a

longer queue) is independent of ζ and simply equals the percentage increase in

f(x1, y). When there are congestion externalities between heterogeneous workers,

however, the optimal queue involves a trade-off between quantity and quality, and

more of one affects the marginal contribution of the other. The second factor on

the right-hand side of (44) represents this complex interplay between quality and

quantity.

Dividing both sides of (43) by the corresponding side of (44) then gives the

relative change in φµ and m′(λ) across firm types,

1
φµ

(
∂φµ
∂ζ
ζ ′(y) + ∂φµ

∂λ
λ′(y)

)
m′′

m′
λ′(y)

=
f 1∆fy
f 1
y∆f

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

. (45)

The left-hand side reflects the relative change in φµ and m′(λ) across firm types.

Recall that ac(ζ, λ), as defined by equation (21), measures the relative change in

φµ and m′(λ), while fixing ζ. Thus if the right-hand side of (45) is larger than

ac(ζ(y), λ(y)), then it must be the case that ζ ′(y) ≥ 0. Similarly, if the right-hand

side of (45) is larger than am(ζ(y), λ(y)), as defined by equation (22), then it must



be the case that d
dy
h(ζ(y), λ(y)) ≥ 0. We can summarize this in the following

Lemma.

Lemma 8. Assume that at the planner’s solution, there exists an interval of firm

types that have unique queues and attract both types of workers (ζ(y) ∈ (0, 1)). If

type y is in this interval, then ζ ′(y) ≥ 0 (resp. d
dy
h(ζ(y), λ(y)) ≥ 0) if and only if

f 1∆fy
f 1
y∆f

≥ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

, (46)

where i = c (resp. i = m), and we suppress the arguments of φ(ζ(y)λ(y), λ(y)),

m(λ(y)) and ai(ζ(y), λ(y)).

Proof. Rearranging equation (45) gives

− 1

φµ

∂φµ
∂ζ

ζ ′(y) =
f 1
y

f 1

f 1∆fy
f 1
y∆f

−
1
φµ

∂φµ
∂λ

m′′

m′

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

 (47)

where we used equation (44) to substitute out λ′(y). Since φ(µ, λ) is strictly con-

cave, ∂φµ
∂ζ

= λφµµ < 0, which implies that ζ ′(y) ≥ 0 if and only if the term in the

parenthesis on the right-hand side is positive, i.e. (46) holds with i = c.

By definition, PAM is equivalent to ∂h
∂ζ
ζ ′(y) + ∂h

∂λ
λ′(y) ≥ 0. Combining (44)

and (47) then shows that PAM is obtained if and only if (46) holds with i = m.

We now show that the necessary condition (23) implies that PAC/PAM holds

locally at all interior points, so it is also sufficient. The same conclusion also applies

to the case of NAC/NAM.

Recall κ(y) ≡ ∆f/f 1. Throughout we will then use the following inequalities

which result from rewriting (35):

(1 + κ(y))ρ − 1

κ(y)
≤ f 1∆fy

f 1
y∆f

≤ (1 + κ(y))ρ − 1

κ(y)
. (48)

First, consider PAC/PAM. Assume the necessary condition (23) holds, i.e. ρ ≥
ai. Since ai ≥ 0, this implies that ∆fy ≥ 0 (i.e. f is supermodular) such that the



left-hand side of (46) is positive. We now prove a stronger version of (46), i.e.

f 1∆fy
f 1
y∆f

≥ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

,

where ai(ζ, λ) is replaced by its supremum ai. This is justified because if the

second factor on the right-hand side is negative then we have nothing to prove;

if it is positive, then we have a stronger version of the original inequality. Firms’

SOC implies that the denominator of this factor is positive. Rearranging terms

therefore gives

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

[
ai

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)]
≥ ai. (49)

Since φ(µ, λ) is given by (2) and ai = (1 + σ)/2 by Lemma 3, the above condition

can be rewritten as

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(1− σ)(2 + (1− σ)λ)(1 + λ)2

4(1 + λ(1− σ))(1 + λ(1− σ) + λσζ)
≥ 1 + σ

2
.

Consider now two subcases, determined by the value of ρ. If ρ ≥ 1, then the

first term on the left-hand side is greater than 1 by (48); hence the above condition

holds. Next, consider the case ρ ∈ (0, 1). Note that

(1− σ)(2 + (1− σ)λ)(1 + λ)2

4(1 + λ(1− σ))(1 + λ(1− σ) + λσζ)
≥ (1− σ)(2 + (1− σ)λ)(1 + λ)

4(1 + λ(1− σ))
≥ 1− σ

2

where the first inequality is because the denominator reaches its maximum at ζ = 1,

and the second one is because 1 + λ ≥ 1 + (1 − σ)λ. Thus a sufficient condition

for (49) is

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

1− σ
2
≥ 1 + σ

2
.



Note that

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

1− σ
2
≥ (1 + κ(y))ρ − 1

κ(y)
+ ((1 + κ(y))ρ − 1) (1− ρ) ≥ ρ ≥ 1 + σ

2
,

where the first inequality holds by (48) and the assumption ρ ≥ (1 + σ)/2, the

second inequality holds because the second term reaches its minimum value ρ at

κ(y) = 0, by part (iii) of Lemma 6. Therefore, (49) holds when ρ ≥ ai.

Next, consider NAC/NAM. If ∆fy ≤ 0, then the left-hand side of (46) is nega-

tive. The denominator on the right-hand side is positive because of the SOC, and

the numerator is positive because

φµ
φµλ
φµµ
− φλ =

1− σ
2σ(1 + λ(1− σ) + λσζ)

≥ 0.

Thus, it follows immediately that (46) holds with ≤ .

In contrast, if ∆fy ≥ 0, then we have

f 1∆fy
f 1
y∆f

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)
≤ 1− σ

2

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)
= − λ(1 + λ)2(1− σ)2

4(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)
≤ 0.

which then implies

1 ≤
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

.

Therefore, we have

f 1∆fy
f 1
y∆f

≤ ρ ≤ ai ≤ ai ≤ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

,

where the three inequalities follow from (48), part ii) of Lemma 6, and our as-

sumption ρ ≤ ai, respectively, and the last inequality follows from the result above.

Hence, we have proved the case of NAC/NAM.



A.7.5 Uniqueness of the Planner’s Solution

Suppose that the solution to the planner’s problem is not unique: there exist two

allocations (µ(y), λ(y)) and (µ̃(y), λ̃(y)) that solve (5). Consider a new allocation

which has queue schedule (γµ(y) + (1− γ)µ̃(y), γλ(y) + (1− γ)λ̃(y)) for some γ ∈
(0, 1), which must yield the same maximum surplus as the original two allocations.

Hence for each firm type y, we have γŜ(µ(y), λ(y), y) + (1 − γ)Ŝ(µ̃(y), λ̃(y), y) =

Ŝ(γµ(y) + (1− γ)µ̃(y), γλ(y) + (1− γ)λ̃(y), y).

Since the two allocations (µ(y), λ(y)) and (µ̃(y), λ̃(y)) are different, there exist at

least two firm types y1 and y2 such that (µ(y), λ(y)) 6= (µ̃(y), λ̃(y)). Consider firms

of type y1. Recall that Ŝ(µ, λ, y1) is linear in (µ, λ) on the line segment between

(µ(y1), λ(y1)) and (µ̃(y1), λ̃(y1)). Given the average queue lengths (µ(y), λ(y)) and

(µ̃(y), λ̃(y)), the planner must create two submarkets (0, λa(y1)) and (µb(y1), λb(y1))

in either case. The same is true for firms of type y2. Therefore, in each of the two

allocations (µ(y), λ(y)) and (µ̃(y), λ̃(y)), there are two firm types each of which has

two submarkets, which contradicts with PAC/PAM. We have thus proved that the

planner’s solution must be unique.

A.8 Proof of Proposition 4

When σ = 1, φ(µ, λ) is independent of λ: φλ(µ, λ) = 0; hence φ(µ, λ) = m(µ).

Therefore, S(µ, λ, y) in (3) reduces to m (λ) f (x1, y) + m (µ) [f (x2, y)− f (x1, y)],

which is strictly concave in (µ, λ). Thus, Ŝ(µ, λ, y) = S(µ, λ, y), and the plan-

ner’s problem in (5) is strictly concave, which implies a unique optimal solution

(µ(y), λ(y)) that is continuous in y, and is determined by the FOCs (16) and (17)

and the complementary slackness conditions. Given that the surplus function is

separable in µ and λ (see (50) and (51)), below we derive the FOCs with respect

to µ and λ, which are equivalent but simpler than the corresponding version with

ζ = µ/λ and λ given by (16) and (17).

Our proof below consists of three steps: 1) we assume that no firms attract

x2 workers only and show that this assumption is valid if and only if the fraction

of x2 workers z is smaller than some threshold ẑ. Furthermore, we derive some

characterizations of the planner’s solution under this assumption. 2) We show that

for PAC/PAM to occur, this assumption is necessary when ρ ∈ (0, 1). 3) We derive

the conditions for PAC/PAM, and by utilizing the characterizations derived in step



1, show that they hold if and only if z is sufficiently small.

Step 1: Assume that at the planner’s solution, there exist no firms that attract

x2 workers only: if λ(y) > 0, then µ(y) < λ(y)). Then the FOC with respect to λ

is given by,

m′(λ(y))f(x1, y) = W1, (50)

whereW1 is determined by the budget constraint:
∫ y
y
λ(y) = L. As long as the above

assumption holds, then λ(y) and W1 are independent of z, since the FOC (50) and

the corresponding budget constraint do not depend on z.

If µ(y) > 0, then the FOC with respect to µ is

m′(µ(y)) [f(x2, y)− f(x1, y)] = W2 −W1. (51)

where W2−W1 and hence W2 are determined by the budget constraint:
∫ y
y
µ(y) =

Lz. Therefore, for a given y if f(x2, y) − f(x1, y) > W2 −W1, then µ(y) > 0 and

is strictly decreasing in W2 −W1. Thus, W2 −W1 is strictly decreasing in z for a

given λ.

Given λ(y) and W1, as long as W2−W1 > maxy∈[y,y] m
′(λ(y))[f(x2, y)−f(x1, y)],

where the right-hand side is (51) evaluated at µ(y) = λ(y) (the knife-edge case),

then no firms will attract only x2 workers. Since W2 −W1 is strictly decreasing in

z, there exists a threshold ẑ such that the above assumption holds if and only if

z < ẑ.

Step 2: Suppose that the above assumption fails and there exists some firm type

y1 with 0 < µ(y1) = λ(y1). The FOCs for firms of type y1 are: m′(µ(y1))f(x2, y1) =

W2 and m′(µ(y1))f(x1, y1) ≤ W1, which implies that

f(x2, y1)− f(x1, y1)

f(x1, y1)
≥ W2 −W1

W1

But, since (µ(y), λ(y)) is continuous in y, there must exist some firm type y2 with

0 < µ(y2) < λ(y2). For firms of type y2, both (50) and (51) must hold, which



implies that

W2 −W1

W1

=
m′(µ(y2))

m′(λ(y2))

f(x2, y2)− f(x1, y2)

f(x1, y2)
>
f(x2, y2)− f(x1, y2)

f(x1, y2)

Combining the above two equations implies that f(x2, y1)/f(x1, y1) > f(x2, y2)/f(x1, y2).

Since we assume ρ < 1, f(x, y) is strictly log-submodular: f(x2, y)/f(x1, y) is

strictly decreasing in y. Thus y1 < y2 and PAC/PAM fails at the planner’s solu-

tion.

Step 3: Assume z < ẑ or equivalently that there exist no firms that attract x2

workers only. By differentiating (50) and (51) with respect to y (or equivalently

equation (46) in Lemma 8 in Appendix A.7), PAC/PAM holds at the planner’s

solution if and only if for each y,

(1 + κ(y))ρ − 1

κ(y)
≥ ai(ζ(y), λ(y)) (52)

where, as before, i = c for the case of PAC and i = m for the case of PAM. Note

that when σ = 1, am(ζ, λ) = ζ and ac(ζ, λ) = ζ(1 + λ)/(1 + ζλ) > ζ. Since ρ < 1,

the left-hand side above is strictly decreasing in κ(y) and at κ(y) = 0, it equals ρ.

Thus, (52) implies that when PAC/PAM holds, ρ > ζ(y) for all y.

Recall that when z < ẑ, both λ(y) and W1 are independent of z. For i = c and

m, define ζ
i
(y) as the value of ζ(y) such that (52) holds with equality. Since both

ac(ζ, λ) and am(ζ, λ) are decreasing in ζ, PAC/PAM holds if and only if for each y,

ζ(y) ≤ ζ
i
(y). As before, as long as W2 −W1 ≥ maxy∈[y,y] m

′(λ(y)ζ
i
(y))[f(x2, y) −

f(x1, y)] (the knife-edge case), then ζ(y) ≤ ζ
i
(y) for all y and PAC/PAM holds.

Thus following the same logic as before, there exists a threshold zi such that ζ(y) ≤
ζ
i
(y) for all y if and only if z ≤ zi. Since ac(ζ, λ) > am(ζ, λ), ζ

m
(y) > ζ

c
(y) and

thus zm > zc.

A.9 Proof of Proposition 5

First, we consider the unconditional probability that an applicant generates a pos-

itive signal x̃2. The probability of this event equals P(x̃2) = µ
λ

+ λ−µ
λ

(1 − τ), and

the queue length of such applicants is λ̃ = λP(x̃2) = µ + (λ − µ)(1 − τ). Given

a positive signal (x̃2), the probability that an applicant is of high type (x2) is

P(x2 | x̃2) = P(x2)P(x̃2 |x2)/P(x̃2) = µ/λ̃, where the first equality is simply Bayes’



rule.

Next, we consider the probability that the firm interviews at least one high-type

worker, φ(µ, λ). For this, we can ignore the existence of applicants with negative

signals; they are low-type workers for sure and do not affect the meeting process

between firms and workers with positive signals. By equation (2), the probability

that a firm interviews someone from the queue µ of high-type applicants, given a

queue λ̃ of applicants with positive signals, is φ(µ, λ) = µ/(1 + σµ + (1 − σ)λ̃),

which yields the desired result after substitution of λ̃.

A.10 Market Equilibrium

Here we formally establish that the market equilibrium where firms post wage

menus implements the planner’s solution.

Beliefs. A firm of type y posting a wage menu w has to form beliefs about its

queues (µ(w, y), λ(w, y)). Following the standard approach in the literature, we

restrict these beliefs in the spirit of subgame perfection through what is known

as the market utility condition. To state this condition, consider a worker of type

xi. Define Vi(w, µ, λ, y) as his expected payoff in a submarket (w, y) with queues

(µ, λ), and his market utility Ui as the maximum expected payoff that he can obtain

in equilibrium, either by visiting one of the submarkets or by remaining inactive.

Firms’ beliefs (µ(w, y), λ(w, y)) must then satisfy equation (12).

For common meeting technologies, including our benchmark as we will show

in Lemma 9 below, (12) admits a unique solution (µ, λ), which is then the firm’s

belief. For other technologies, there can be multiple solutions to (12). The standard

assumption is then that firms are optimistic and expect the solution that maximizes

their expected payoff π (w, µ, λ, y). Explicit expressions for π and Vi are provided

in Section 3.3.

Strategies. Let G(w | y) denote the (conditional) probability that a firm of type

y offers a wage menu w̃ ≤ w, where w̃ = (w̃1, w̃2), w = (w1, w2), w̃1 ≤ w1 and

w̃2 ≤ w2. Given market utilities (U1, U2), firm optimality means that every w in

the support of G(w | y) must maximize π (w, µ, λ, y) subject to (12).

Similarly, let Hi(w, y) denote the probability that workers of type xi apply to a

firm with w̃ ≤ w and ỹ ≤ y. The following accounting identities then link workers’



strategies H1(w, y) and H2(w, y) to the queues in different submarkets.

H1(w, y) =
1

L(1− z)

∫
ỹ≤y

∫
w̃≤w

[λ(w̃, ỹ)− µ(w̃, ỹ)] dG(w̃ | ỹ) dJ(ỹ). (53)

H2(w, y) =
1

Lz

∫
ỹ≤y

∫
w̃≤w

µ(w̃, ỹ) dG(w̃ | ỹ) dJ(ỹ), (54)

Optimality requires that workers must obtain exactly Ui at any firm to which they

apply with positive probability, and weakly less at other firms i.e. (12) must hold.

Further, note that no firm will post a wage menu w ≥ w ≡ (f(x1, y), f(x2, y)).

Thus, Hi(w, y) is the probability that workers of type xi apply, which must equal

1 if Ui > 0, as the payoff from not sending an application is zero. This condition

can be interpreted as “market clearing”: in equilibrium, demand for each type of

applicant must equal supply, which determines the “market prices” U1 and U2.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 4. A (directed search) equilibrium is a triple (G, {H1, H2} , {U1, U2})
satisfying

(i) Firm Optimality. Given (U1, U2), every wage menu w in the support of

G (· | y) maximizes π (w, µ(w, y), λ(w, y), y) for each firm type y, where the

queue lengths (µ(w, y), λ(w, y)) are determined by (12).

(ii) Worker Optimality. Given (U1, U2), the application strategy of high-type and

low-type workers satisfies (54) and (53), respectively, where the queue lengths

(µ(w, y), λ(w, y)) are determined by (12). Further, Hi(w, y) = 1 if Ui > 0.

Uniqueness of Queues. In a submarket (w, y), the queues (µ, λ) are determined

by (12). Since this is a system of non-linear equations, it is not immediate that

there is a unique solution. Lemma 9 guarantees uniqueness.

Lemma 9. Suppose that φ is given by (2). Given market utilities U1 and U2, there

exists exactly one solution (µ, λ) to the market utility condition (12) for any wage

menu w.

Proof. Given U1/w1 and U2/w2, consider then the level curves ψ2(λζ, λ) = U2/w2



and ψ1(λζ, λ) = U1/w1 in the λ-ζ space. Note that

ψ1(λζ, λ) =
1 + (1− σ)λ

(1 + λ)(1 + (1− σ + σζ)λ)
and ψ2(λζ, λ) =

1

1 + (1− σ + σζ)λ
,

both of which are strictly decreasing in ζ. We now show that the two curves

intersect at most once so that there exists exactly one solution (µ, λ). At any

intersection point, the difference between the slopes of the two level curves is

−∂ψ1(λζ, λ)/∂λ

∂ψ1(λζ, λ)/∂ζ
+
∂ψ2(λζ, λ)/∂λ

∂ψ2(λζ, λ)/∂ζ
=

1 + (1− σ + σζ)λ

λ(λ+ 1)(1 + (1− σ)λ)
> 0.

Hence, by a standard single-crossing argument, the two level curves cross each other

at most once. Note that we can also derive the solution (µ, λ) explicitly. However,

with this approach we need to discuss the conditions under which we have a corner

solution (µ = 0 or µ = λ) or an interior solution (0 < µ < λ).

Productivity versus Profitability. We now show that it is without loss of

generality to only consider wage menus satisfying (9). To do so, Lemma 10 es-

tablishes two results.39 First, the maximum profit in (13) can always be obtained

with a wage menu that satisfies (9). Second, a wage menu that violates (9) al-

ways yields a strictly lower profit. To understand the latter result, suppose that

a firm posts a wage menu where low-type workers yield a higher profit ex post,

i.e. f(x2, y) − w2 < f(x1, y) − w1, and attracts a queue (µ, λ) with 0 < µ < λ.

Workers must obtain their market utility, so the expected transfer from the firm to

the workers equals µU2 + (λ − µ)U1. However, giving priority to low- rather than

high-type workers reduces surplus relative to S(µ, λ, y) in (3). Hence, the firm’s

expected profit is strictly smaller than the maximum profit in (13).

Lemma 10. A solution (µ, λ) (interior or corner) to an individual firm’s prob-

lem (13) can be implemented with the wage menu (w1, w2) = (U1/ψ1(µ, λ), U2/ψ2(µ, λ)),

which satisfies (9). Further, any wage menu violating (9) yields a strictly lower

payoff than (w1, w2).

Proof. We first show that given a solution (µ, λ) (interior or corner) to the firm’s

problem (13), the corresponding wage menu (w1, w2) = (U1/ψ1(µ, λ), U2/ψ2(µ, λ))

39A similar result appears in Shimer (2005) for urn-ball meetings. Lemma 10 generalizes his
result to arbitrary meeting technologies.



satisfies (9). This proof is based on Shimer (2005), but extends his result to arbi-

trary φ(µ, λ). Because φ(µ, λ) is concave in µ, we have

ψ1 (µ, λ) ≤ φµ(µ, λ) ≤ ψ2 (µ, λ) , (55)

where ψ1 and ψ2 are defined by equation (11). Consequently, the wages must satisfy

w1 =
U1

ψ1 (µ, λ)
≥ U1

φµ(µ, λ)
and w2 =

U2

ψ2 (µ, λ)
≤ U2

φµ(µ, λ)
. (56)

Moreover, the FOC of (13) with respect to µ implies φµ(µ, λ)(f(x2, y)−f(x1, y)) =

U2 − U1. Combining this FOC with (56) implies w2 − w1 ≤ U2−U1

φµ(µ,λ)
= f(x2, y) −

f(x1, y). The strict inequality in f(x2, y)−w2 > f(x1, y)−w1 then follows because

the two inequalities in (55) cannot hold simultaneously; that would imply that

φ(µ, λ) is linear for µ ∈ [0, λ], in which case the firm’s problem never has an

interior solution.

Next, we show that posting a wage menu that violates (9) is always strictly sub-

optimal. Suppose that low-type workers are strictly preferred. The firms’ expected

profit in this case is

π (w, µ, λ, y) = φ(λ− µ, λ) [f(x1, y)− w1] + [m(λ)− φ(λ− µ, λ)] [f(x2, y)− w2] ,

where φ(λ−µ, λ) is the probability that firms interview at least one low-type worker.

The matching probabilities in (11) become ψ1(µ, λ) = φ(λ−µ,λ)
λ−µ and ψ2(µ, λ) =

(m(λ) − φ(λ − µ, λ))/µ. The firms’ expected profit can then be rewritten as

m (λ) f 1 + (m(λ) − φ (λ− µ, λ))∆f − λU1 − µ (U2 − U1). Note that the expected

costs are the same as the case where high-type workers are preferred; both equal

λU1 +µ (U2 − U1). However, surplus is strictly smaller than that in (13). The case

where firms randomize between low-type and high-type workers follows the same

logic.

If the solution is interior (0 < µ < λ), then the wage menu that firms need

to post to attract the optimal queue is unique. In a corner solution (µ = 0 or

µ = λ), the wage menu is not unique, but Lemma 10 describes the maximum

wages satisfying (9).40

40For example, if µ = λ, then the optimal w2 is uniquely given by U2/ψ2(λ, λ), but the optimal



Observability of Firm Productivity. By Lemma 10, all firms will post wage

contracts such that high-type workers are more profitable. Given the wage contract,

the market utility condition then determines the queue length and composition.

Since workers only care about their hiring probability and the wage, this then

means that all our results carry through if they do not observe firm types.

A.11 Invariant Technologies with N Worker Types

Invariant technologies, such as urn-ball or geometric, exhibit perfect screening in

the sense that the presence of low types does not make it harder (or easier) for

a firm to identify a high-type applicant. That is, φλ (µ, λ) = 0 for all µ and λ,

or equivalently, φ(µ, λ) = φ(µ, µ) ≡ m(µ), where m(µ) is always assumed to be

strictly concave (see Cai et al., 2017). Furthermore, ? show that for invariant

meeting technologies m(·) has the following representation.

m(λ) =

∫
[0,∞)

(
1− e−λs

)
dL̃(s). (57)

where L̃(s) is a probability measure on [0,∞) (the positive real half-line) with∫
[0,∞)

s dL̃(s) ≤ 1. For the urn-ball meeting technology, L̃(s) is degenerate at

s = 1; for the geometric meeting technology, L̃(s) = 1−e−s (the standard geometric

distribution).

To analyze this case, we first introduce two elasticities:

ε0(µ) =
µm′(µ)

m(µ)
and ε1(µ) =

µm′′(µ)

m′(µ)
. (58)

The following lemma then presents ac(ζ, λ) and am(ζ, λ) for invariant technologies

in terms of ε0(·) and ε1(·).

Lemma 11. When the meeting technology is invariant, we have

ac(ζ, λ) =
ε1(λζ)

ε1(λ)
and am(ζ, λ) =

ε1(λζ)

ε1(λ)

ε0(λ)

ε0(λζ)
, (59)

with extrema ac = am = 0 and ac, am ≥ 1.

w1 can take any value between zero and w1 = U1/ψ1(λ, λ).



Proof. The desired expression for ac follows readily from equations (21) and (58).

To derive the expression for am, note that φ(µ, λ) = m(µ) implies that φµ(µ, λ) =

m′(µ) and h(ζ, λ) = m(ζλ)/m(λ). Therefore, the last factor in (22) can be rewritten

as

1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ
= 1− λm′′(ζλ)

ζm′′(ζλ)

ζm′(ζλ)m(λ)−m(ζλ)m′(λ)
m(λ)2

λm′(ζλ)/m(λ)
=

m(ζλ)m′(λ)

ζm′(ζλ)m(λ)
=

ε0(λ)

ε0(ζλ)
.

Note that ac(1, λ) = am(1, λ) = 1 which implies that ac, am ≥ 1.

Next, consider ac and am. Since m(µ) is strictly concave and strictly increas-

ing, ε0(µ) is strictly positive, and ε1(µ) is strictly negative when µ > 0. Hence,

ac(ζ, λ) and am(ζ, λ) are always nonnegative. Since m(·) is given by equation (57),

µm′′(µ) = −
∫

[0,∞)
µs2e−µs dL̃(s), which converges to zero as µ→ 0. Since m′(0) >

0, we have limµ→0 ε1(µ) = limµ→0 µm
′′(µ)/m′(µ) = 0. Similarly, limµ→0 ε0(µ) =

limµ→0 µm
′(µ)/m(µ) = limµ→0 1 + µm′′(µ)/m′(µ) = 1. Thus, limζ→0 a

c(ζ, λ) =

limζ→0 ε1(λζ)/ε1(λ) = 0, and limζ→0 a
m(ζ, λ) = limζ→0 ε1(λζ)/ε1(λ)·ε0(λ)/ε0(λζ) =

0. Hence, ac = am = 0.

Recall that the contact quality-quantity elasticity ac(ζ, λ) measures the relative

percentage changes of φµ(λζ, λ) and m′(λ) while holding ζ constant. For invari-

ant technologies, φµ(λζ, λ) = m′(λζ); thus, ac(ζ, λ) is simply ε1(λζ)/ε1(λ). Next,

note that am(ζ, λ) measures the same relative percentage changes while holding

m(λζ)/m(λ) constant. The latter requires the percentage changes of m(λζ) and

m(λ) to be equal, that is, the percentage change of λζ equals ε0(λ)/ε0(λζ) times

the percentage change of λ; thus, am(ζ, λ) = am(ζ, λ)ε0(λ)/ε0(λζ).

For invariant technologies we consider N ≥ 2 worker types, i.e. x1 < x2 < · · · <
xN . To do so, define µi as the queue length of workers with type xi or higher, for

i = 1, 2, . . . , N . That is, the queue length of workers of type xi is µi − µi+1, with

the convention that µN+1 = 0, and the total queue length is µ1.

Consider then a firm of type y that faces a queue (µ1, µ2, . . . , µN). With prob-

ability m(µ1), the firm meets at least one worker, which generates a surplus of at

least f(x1, y); with probability m(µ2) the firm meets at least one worker with a

type higher than or equal to x2, which generates an additional surplus of at least

f(x2, y)− f(x1, y), and so on. Using the convention f(x0, y) = 0, expected surplus



therefore equals

S(µ1, . . . , µN , y) =
N∑
i=1

m(µi)[f(xi, y)− f(xi−1, y)], (60)

which generalizes equation (3) and is strictly concave in (µ1, . . . , µN).

Similar to equation (13), the firms’ problem can be written as

max
µ1,...,µN

S(µ1, . . . , µN , y)− (µ1U1 + µ2(U2 − U1) + · · ·+ µN(UN − U1))

where Ui is the market utility of workers of type xi. The above problem is strictly

concave, which implies that the optimal queue is unique and is denoted by (µ1(y), . . . , µN(y)).

Assuming an interior solution to simplify exposition, µi(y) is determined by the

FOC m′(µi(y))[f(xi, y)− f(xi−1, y)] = Ui − Ui−1, where Ui is the market utility of

workers of type xi, with the convention U0 = 0. Defining ζi(y) = µi(y)/µ1(y) and

λ(y) = µ1(y), differentiation of this FOC along the equilibrium path yields

−m
′′(ζi(y)λ(y))

m′(ζi(y)λ(y))
(ζ ′i(y)λ(y) + ζi(y)λ′(y)) =

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
,

which replicates (43) for the case of invariant technologies. Setting i = 1 and using

the fact that ζ1(y) = 1, the above equation implies

−m
′′(λ(y))

m′(λ(y))
λ′(y) =

fy(x1, y)

f(x1, y)
,

which replicates (44). Combing the above two equations yields

m′′(ζi(y)λ(y))
m′(ζi(y)λ(y))

(ζ ′i(y)λ(y) + ζi(y)λ′(y))

m′′(λ(y))
m′(λ(y))

λ′(y)
=
fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)

f(x1, y)

fy(x1, y)
,

which replicates (45). Similar to Lemma 8, combining the above equations yields

the condition for PAC/PAM,

f 1

f 1
y

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
≥ ai (ζi(y), λ(y)) . (61)



where i = c for PAC and i = m for PAM. The case of NAC/NAM corresponds to

the reverse inequality (≤ instead of ≥).

Proposition 6. Suppose the meeting technology is invariant. The equilibrium then

exhibits PAC (resp. PAM) for any distribution of agents’ types if and only if ρ ≥ ac

(resp. ρ ≥ am). In contrast, the equilibrium exhibits NAC/NAM for any distribution

of agents’ types if and only if f (x, y) is submodular.

Proof. The necessary conditions directly follows from Proposition 2, as its proof is

valid for any non-bilateral technology (i.e. φ is strictly concave in µ). Equivalently,

we can let xi → x1 in equation (61). Hence, we only need to prove sufficiency.

Consider first the case of NAC/NAM. If f(x, y) is submodular, then fy(xi, y) ≤
fy(xi−1, y), which implies that NAC/NAM holds.

Consider next the case of PAC/PAM. Note that ρ ≥ ai by assumption. Further,

ai ≥ 1, by Lemma 11. Therefore,

f 1

f 1
y

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
≥ f(xi−1, y)

fy(xi−1, y)

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
≥ (1 + κi(y))ρ − 1

κi(y)
≥ ρ ≥ ai,

where the first inequality holds due to the log-supermodularity of f(x, y), which

implies that f(x1, y)/fy(x1, y) ≥ f(xi−1, y)/fy(xi−1, y), the second inequality is

because of (35), and the third inequality follows from part i) of Lemma 6.

A.12 Endogenous Screening

In our baseline model, the screening intensity σ is exogenous. However, firms can

generally influence the number of applicants that they interview. We therefore

analyze an extension in which firms can choose (and post) their recruiting intensity

σ ∈ [0, 1] at a linear cost cσ where c ≥ 0.41 That is, they solve

max
σ, µ, λ

λ

1 + λ
f 1 +

µ

1 + σµ+ (1− σ)λ
∆f − λU1 − µ∆U − cσ. (62)

41Posting contracts that include σ in addition to wages is necessary for constrained efficiency
in this environment. More restrictive contract spaces and more general cost functions are left for
future research. Wolthoff (2018) endogenizes σ in a similar way as us, but with a cost function
that is sufficiently convex (in an otherwise quite different model). In the random search model of
Birinci et al. (2023), firms have the option to learn all their applicants’ types after paying a fixed
cost.



Since the second term above is convex in σ and cσ is linear, this profit function is

convex in σ. The maximum is therefore reached at a corner, i.e. when σ = 0 or 1.

To determine firms’ choice, we compare the profits from the two options.

Profits with No Screening. Consider a firm of type y choosing σ = 0. This

firm’s optimal queue then consists of either low-type workers or high-type workers,

but not both. Suppose the firm attracts workers of type xi. Equation (62) then

reduces to maxλi m(λi)f(xi, y)− λiUi. Because m(λ) is strictly concave, the FOC

of this problem is both necessary and sufficient. Assuming that f(xi, y) > Ui, the

optimal queue length is λi =
√
f(xi, y)/Ui − 1, which yields an expected payoff of

πi(y) =
(√

f(xi, y)−
√
Ui

)2

. (63)

Naturally, the firm chooses the type of workers it wishes to attract based on whether

π1(y) or π2(y) is higher, which requires comparing
√
f(x2, y) −

√
f(x1, y) with

√
U2 −

√
U1. If the former is strictly increasing in y, i.e. f is strictly square-root

supermodular, then there exists a unique yEK such that π2(y) > π1(y) if y > yEK

and vice versa. This result is a special case of Eeckhout and Kircher (2010).

Profits with Perfect Screening. When the firm chooses σ = 1, (62) reduces

to

π(y) ≡ max
0≤µ≤λ

λ

1 + λ
f 1 +

µ

1 + µ
∆f − λU1 − µ∆U. (64)

This problem is strictly concave in (µ, λ), so that the FOCs are both necessary

and sufficient. The only complexity lies in the constraint 0 ≤ µ ≤ λ, which, as we

illustrate in Figure 5, implies that there are four possibilities with respect to the

optimal applicant pool:

(i) No applicants. If f(x1, y) ≤ U1 and f(x2, y) ≤ U2, then the firm will not

attract any applicants, such that π(y) = 0.

(ii) Only low-type applicants. If f(x1, y) > U1 and f(x2, y)− f(x1, y) ≤ U2 − U1,

the firm will attract low-type workers, but not high-type workers as their

marginal product is less than their marginal cost; in this case, π(y) = π1(y).

(iii) Only high-type applicants. If f(x2, y) > U2 and f(x2, y)/f(x1, y) ≥ U2/U1,

the firm will attract only high-type workers since their relative productivity
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Figure 5: Optimal applicant pool for a firm, conditional on σ = 1.

is higher than their relative cost; in this case, π(y) = π2(y).

(iv) Both types of applicants. If f(x2, y)−f(x1, y) > U2−U1 and f(x2, y)/f(x1, y) <

U2/U1, then the firm strictly prefers a mix of both types of workers in their ap-

plication pool. By the FOCs, the optimal queue is given by µ =
√

∆f/∆U−1

and λ =
√
f 1/U1 − 1. In this case, π(y) is given by

π(y) =
(√

f 1 −
√
U1

)2

+
(√

∆f −
√

∆U
)2

. (65)

Clearly, a necessary condition for σ = 1 to yield higher profits than σ = 0 is

that the firm attracts both types of applicants. In what follows, we will therefore

focus on this case, which occurs when

∆f > ∆U and
f(x2, y)

f(x1, y)
<
U2

U1

. (66)

As the red dashed line in Figure 5 shows, the region described by (66) is divided

into two parts by the curve π1(y) = π2(y), or equivalently√
f 2 −

√
f 1 =

√
U2 −

√
U1. (67)

We therefore have to distinguish between two cases when calculating the differ-



ence in profits between σ = 0 and σ = 1 in this region, i.e. ∆π(y) ≡ π(y) −
max{π1(y), π2(y)}. The following lemma formalizes this.

Lemma 12. If a firm is indifferent between attracting low- and high-type workers

conditional on σ = 0, i.e. π1(y) = π2(y) or equivalently (67) holds, then this firm

attracts both types of workers conditional on σ = 1, i.e. (66) also holds. In the

region characterized by (66), the difference in profits between σ = 1 and σ = 0

equals

∆π(y) =


(√

∆f −
√

∆U
)2

if π1(y) ≥ π2(y),

2
(√

f 2U2 −
√
f 1U1 −

√
∆f∆U

)
if π1(y) ≤ π2(y).

(68a)

(68b)

Proof. Equation (67) can be rewritten as
√
f 2/f 1 − 1 =

√
U1/f 1(

√
U2/U1 − 1).

Since U1/f
1 < 1, it follows that

√
U2/U1 − 1 >

√
f 2/f 1 − 1, and thus U2/U1 >

f 2/f 1. Similarly, (67) can also be rewritten as (f 2 − f 1)/(
√
f 2 +

√
f 1) = (U2 −

U1)/(
√
U2 +

√
U1). Because f 1 > U1 and f 2 > U2, we have ∆f > ∆U. Hence, (66)

holds. Equation (68) then follows from substituting the relevant version of (63)

into ∆π(y) = π(y)−max{π1(y), π2(y)}.

Choice of Screening Intensity. The characterization of ∆π(y) completes the

analysis of the firm’s choice problem given by (62): the firm’s optimal σ is 1 if

∆π(y) > c, 0 if ∆π(y) < c, and indeterminate in the knife-edge case ∆π(y) = c.

If the optimal σ is 1, then the optimal (µ, λ) must be interior, and given by µ =√
∆f/∆U − 1 and λ =

√
f 1/U1 − 1. When the optimal σ is 0, then the firm

will attract either only low-type or only high-type workers, depending on whether√
f 2 −

√
f 1 is larger than

√
U2 −

√
U1, as discussed after (63).

Sorting. In the special case c = 0, where all firms choose σ = 1, the necessary and

sufficient condition for PAC/PAM (resp. NAC/NAM ) is that f(x, y) needs to be

log-supermodular (resp. submodular). Proposition 7 below addresses the question

whether the same conditions are sufficient for any screening cost c. For NAC/NAM,

the answer is (almost) true: strict submodularity is sufficient for NAC/NAM for

any distribution of agents’ types and any screening cost c.

However, a sufficient condition for PAC/PAM for any distribution of agents’

types and any screening cost c does not exist: For any log-supermodular f(x, y),



we can find counterexamples where PAC/PAM fails in equilibrium. The sufficient

condition (69) in Proposition 7 for PAC/PAM is for a given distribution of agent

types so that κ(y), the lower bound of the output dispersion parameter, is fixed.42 It

requires that either production complementarity measured by ρ, the lower bound

of the production complementarities, or output dispersion measured by κ(y) is

sufficiently large. Note that condition (69) is quite sharp: in the proof of Proposi-

tion 7, we show that with CES production we can construct counterexamples where

PAC/PAM fails in equilibrium whenever ρ < Ω(κ(y)).

Proposition 7. In our environment with endogenous screening, the following holds:

(i) Equilibrium exhibits NAC/NAM for any distribution of agents’ types and any

cost c if (resp. only if) f(x, y) is strictly (resp. weakly) submodular.

(ii) Given any log-supermodular function f , we can find a distribution of agents’

types and a screening cost c such that PAC/PAM fails in equilibrium. How-

ever, given a distribution of agents’ types, PAC/PAM holds in equilibrium

(for any screening cost c) if

ρ ≥ Ω
(
κ(y)

)
, (69)

where κ(·) is defined by (29), y is the lowest firm type, and Ω(κ) ≡ 1/2 +

ln(
√
κ+
√

1 + κ)/ ln(1+κ), which is strictly decreasing with limκ→0 Ω(κ) =∞
and limκ→∞Ω(κ) = 1.

Proof. We first consider the case of NAC/NAM and then prove the case of PAC/PAM.

The Analysis of NAC/NAM. As mentioned in Appendix A.12, necessity of

submodularity of f(x, y) for NAC/NAM follows from the special case c = 0 (see

Proposition 3). Next, we show that strict submodularity of f(x, y) is sufficient for

NAC/NAM. From the discussion after equation (63), it follows that when f(x, y)

is strictly submodular, and thus strictly square-root submodular, there exists a

unique yEK which solves (67). Furthermore, π2(y) > π1(y) for firms with y < yEK ,

and vice versa.

Since f is strictly submodular, both f 2 − f 1 and f 2/f 1 are strictly decreasing

in y. The first part of Lemma 12 states that yEK must belong to the region charac-

terized by (66). There exists at most one y′ < yEK such that f(x2, y
′)/f(x1, y

′) =

42Since f is assumed to be log-supermodular, κ(y) is smallest at y = y.



U2/U1 (otherwise set y′ = y), and at most one y′′ > yEK such that f(x2, y
′′) −

f(x1, y
′′) = U2 − U1 (otherwise set y′′ = y). The region characterized by (66) is

thus y ∈ (y′, y′′). The following Lemma establishes that ∆π(y) is single-peaked at

y = yEK .

Lemma 13. Suppose that f(x, y) is strictly submodular. In the region characterized

by (66), ∆π(y) is strictly increasing in y for y ≤ yEK and strictly decreasing in y

for y ≥ yEK.

Proof. For submodular f , π2(y) > π1(y) if y < yEK , and vice versa. As we remarked

before, the region characterized by (66) is (y′, y′′), which contains yEK . Hence,

∆π′(y) =



(
1−
√

∆U√
∆f

)
∆fy if y > yEK ,

−

(√
∆U

∆f
−

√
U2

f2

)
f2
y +

(√
∆U

∆f
−

√
U1

f1

)
f1
y if y < yEK .

(70a)

(70b)

To establish the sign of (70a), note that ∆fy = f 2
y − f 1

y < 0 when f is strictly

submodular; hence, ∆π′(y) < 0 for y > yEK . To establish the sign of (70b), note

that f 2/f 1 < U2/U1 is equivalent to ∆U/∆f > U1/f
1 or ∆U/∆f > U2/f

2. The

coefficient of f 2
y in (70b) is therefore negative. Since f is submodular, f 2

y ≤ f 1
y , and

we have

∆π′(y) ≥ −f 1
y

(√
∆U

∆f
−

√
U2

f 2

)
+f 1

y

(√
∆U

∆f
−

√
U1

f 1

)
= f 1

y (
√
U2/f 2−

√
U1/f 1),

where the right-hand side is strictly positive because U2/U1 > f 2/f 1. Hence,

∆π′(y) > 0 for y < yEK , i.e. ∆π(y) is strictly increasing in y for y ≤ yEK .

This result implies that firms with type yEK have the strongest incentive to

screen. If all firms choose σ = 1 in equilibrium, then sufficiency follows from

Proposition 3; if all firms choose σ = 0 in equilibrium, then sufficiency follows

from Proposition 3 or Eeckhout and Kircher (2010). In the remaining case, where

the equilibrium features both firms choosing σ = 1 and firms choosing σ = 0, we

must have ∆π(yEK) > c (otherwise all firms will choose σ = 0). There exist then

two firm types ys and ys with y′ ≤ ys < yEK < ys ≤ y′′, where firms of type ys

and ys are indifferent between choosing σ = 0 and 1, i.e. ∆π(ys) = ∆π(ys) = c.



Firms with y < ys will choose σ = 0 and attract only high-type workers; firms with

y ∈ (ys, ys) will choose σ = 1 and attract both types of workers; finally, firms with

y > ys will choose σ = 0 and attract only low-type workers. Since all firm types

y between ys and ys choose σ = 1, submodularity implies that NAC/NAM holds

within this interval. Combining the above results implies that NAC/NAM holds

globally.

Note that we can not weaken the requirement of strict submodularity to mere

submodularity for the sufficient condition. To see this, set f(x, y) = x + y and

initially set c large enough so that all firms choose σ = 0. Then for y ≥ yEK ,

∆π(y) is a constant by equation (68a). If we set c = ∆π(yEK), all firms with

y ≥ yEK are indifferent between choosing σ = 0 with low-type applicants and

σ = 1 with both types of applicants. This indeterminacy violates NAC/NAM.

The Analysis of PAC/PAM. First, with a slight abuse of notation, given x1

and x2, we define ρ(x1, x2, y) as the solution to

fy(x2, y)

fy(x1, y)
=

(
f(x2, y)

f(x1, y)

)ρ(x1,x2,y)

. (71)

By Lemma 5, ρ(x1, x2, y) ∈ [ρ, ρ]. Note that ρ(x1, x2, y) is the discrete version of

ρ(x, y) defined in (1). We have ρ(x1, x2, y)→ ρ(x, y) when x1, x2 → x.

Second, to simplify exposition, we introduce a transformation Ω(·) of κ (y), the

output dispersion parameter defined by equation (29). Define

Ω(κ) ≡ 1

2
+

ln(
√
κ+
√

1 + κ)

ln(1 + κ)
.

Lemma 14. Ω(κ) is strictly decreasing with limκ→0 Ω(κ) =∞ and limκ→∞Ω(κ) =

1.

Proof. By L’Hospital’s Rule, limκ→0 Ω(κ) = limκ→0
1
2
+ 1√

κ+
√

1+κ

(
1

2
√
κ

+ 1
2
√

1+κ

)
(1+

κ) = ∞. In contrast, when κ → ∞, we have κ ≈ 1 + κ and limκ→∞Ω(κ) =

limκ→∞
1
2

+ ln(
√
κ+
√
κ)

ln(κ)
= 1.

Next, we prove that Ω(κ) is strictly decreasing. By direct computation,

Ω′(κ) =
ln(1 + κ)− 2

√
κ

1+κ
ln(
√
κ+
√

1 + κ)

4
√
κ(1 + κ) ln(1 + κ)

.



The derivative of the numerator above is − ln(
√
κ +
√

1 + κ)
√

1+κ
κ

(1 + κ)−2 < 0.

At κ = 0, the numerator is zero, which implies that it is strictly negative and hence

Ω′(κ) < 0 when κ > 0.

We now provide a claim which is stronger than the statements in Proposition 7.

Claim. Consider a log-supermodular function f . Given a distribution of agents’

types, PAC/PAM holds in equilibrium as long as, for each y,

ρ(x1, x2, y) ≥ Ω(κ(y)). (72)

In contrast, given x1, x2 and J(y), if for some y∗ ∈ (y, y), we have

ρ(x1, x2, y
∗) < Ω(κ(y∗)), (73)

then we can find (L, z) and c such that PAC/PAM fails in equilibrium.

Since Ω(·) is strictly decreasing and with log-supermodular f , κ(y) is increasing

in y), the right-hand side of (72) reaches its maximum at y = y. Also since

ρ(x1, x2, y) ≥ ρ, the sufficient condition (69) in Proposition 7 then implies (72).

On the other hand, given any log-supermodular function, whenever x1, x2 → x,

then κ(y) → 0 and Ω(κ(y)) → ∞, and (73) holds for all y∗ ∈ [y, y], which, by the

above claim, implies that we can find (L, z) and c such that PAC/PAM fails in

equilibrium.

Note that for a CES production function, (72) reduces to ρ ≥ Ω(κ(y)) and and

(73) reduces to ρ < Ω(κ(y)). Thus, although the sufficient condition (69) is slightly

weaker than (72), it is still sharp in the special case of CES production functions.

Similar to the analysis of NAC/NAM, since f(x, y) is log-supermodular, and

therefore strictly square-root supermodular, there exists a unique yEK which solves

(67). The first part of Lemma 12 states that yEK must belong to the region

characterized by (66). Furthermore, f 2 − f 1 is strictly increasing so that there

exists at most one y′ < yEK such that f 2 − f 1 = U2 − U1 (otherwise set y′ =

y). Since we only assume weak log-supermodularity, f 2/f 1 is weakly increasing.

Set y′′ = min{y |f 2/f 1 ≥ U2/U1} (if this set is empty, then set y′′ = y). The

region characterized by (66) is then y ∈ (y′, y′′). The following Lemma establishes



that under the sufficient condition (72), ∆π(y) is single-peaked at y = yEK , so

PAC/PAM follows from the same logic that was used for the case of NAC/NAM.

Lemma 15. Suppose that f(x, y) is log-supermodular. In the region characterized

by (66), ∆π(y) is strictly increasing in y for y ≤ yEK, and if condition (72) holds

for each y ∈ (y, y), then it is strictly decreasing in y for y ≥ yEK.

Proof. If y ∈ (y′, yEK ], then ∆π(y) is given by (68a) and its derivative is given

by (70a), so it is strictly increasing in y since ∆fy > 0. If y ∈ [yEK , y′′), then ∆π(y)

is given by (68b) and its derivative is now given by (70b) and can be rewritten as

∆π′(y) = f 1
y

√
∆U

κ(y)f 1

[
−(1 + κ(y))ρ(y)

(
1−

√
κ(y)

1 + κ(y)

√
U2

∆U

)
+ 1−

√
κ(y)

∆U/U1

]
,

where, to simplify notation, we shorten ρ(x1, x2, y) as ρ(y), and we used the iden-

tities f 2/f 1 = 1 + κ(y) and f 2
y /f

1
y = (1 + κ(y))ρ(y).

Furthermore, define

δ(y) ≡

√
κ(y)

∆U/U1

, (74)

which implies
√
U2/∆U =

√
(κ(y) + δ(y)2)/κ(y), and ∆π′(y) can be rewritten as

∆π′(y) = f 1
y

√
∆U

κ(y)f 1

[
(1 + κ(y))ρ(y)

(√
κ(y) + δ(y)2

1 + κ(y)
− 1

)
+ 1− δ(y)

]

= f 1
y

√
∆U

κ(y)f 1

[
(1 + κ(y))ρ(y)− 1

2

√
κ(y) + δ(y)2 −

(
(1 + κ(y))ρ(y) − 1 + δ(y)

)]
= f 1

y

√
∆U

κ(y)f 1

(1 + κ(y))2ρ(y)−1 (κ(y) + δ(y)2)−
(
(1 + κ(y))ρ(y) − 1 + δ(y)

)2

(1 + κ(y))ρ(y)− 1
2

√
κ(y) + δ(y)2 + ((1 + κ(y))ρ(y) − 1 + δ(y))

.

Thus, ∆π′(y) has the same sign as the numerator of the last factor in the last line.

Single out the numerator and define

S(δ, κ, ρ) = (1 + κ)2ρ−1
(
κ+ δ2

)
− ((1 + κ)ρ − 1 + δ)2 , (75)

which is a quadratic function of δ with a strictly positive second-order coeffi-



cient since we assume ρ ≥ 1 (log-supermodularity). Note that S(1, κ, ρ) = 0

and ∂S(δ,κ,ρ)
∂δ

∣∣
δ=1

= 2(1 + κ)ρ((1 + κ)ρ−1 − 1) ≥ 0. Therefore, if S(0, κ, ρ) ≤ 0,

then S(δ, κ, ρ) < 0 for all δ ∈ (0, 1). Note that S(0, κ, ρ) = κ (1 + κ)2ρ−1 −
((1 + κ)ρ − 1)2 , Thus S(0, κ, ρ) ≤ 0 if and only if

√
κ

1+κ
(1 + κ)ρ ≤ (1 + κ)ρ − 1, or

equivalently ρ ≥ Ω(κ).

If for each y ∈ (y, y), we have ρ(y) ≥ Ω(κ(y)), then by the above argument,

S(δ(y), κ(y), ρ(y)) < 0 and hence ∆π′(y) < 0 for y ∈ [yEK , y′′).

Similar to the case of NAC/NAM, we only need to consider the case where the

equilibrium features both firms choosing σ = 1 and firms choosing σ = 0. Then

there exist two firm types ys and ys that are indifferent between choosing σ = 0

and 1, where y′ ≤ ys < yEK < ys ≤ y′′. Firms with y < ys will choose σ = 0 and

attract only low-type workers; firms with y ∈ (ys, ys) will choose σ = 1 and attract

both types of workers; finally, firms with y > ys will choose σ = 0 and attract

only high-type workers. Since all firms of y between ys and ys choose σ = 1, log-

supermodularity implies that PAC/PAM holds within this interval. Combining the

above results then implies that PAC/PAM holds globally.

Now consider the second part of the claim. Before we move to the detailed

proof, we first give a brief sketch. If (73) holds, then we can find (L, z) and a large

c such that all firms choose σ = 0 in equilibrium, and ∆π(y) reaches its maximum

at some point ỹ > yEK (note that the maximum is between 0 and c here). Now

decrease c gradually till firms near ỹ find it optimal to choose σ = 1 and screen

ex-post while firms with types slightly above yEK will continue choosing σ = 0 and

accordingly attract high-type applicants only. PAC/PAM then fails in this case.

Below, we prove this claim formally.

We first prove the following. Given a log-supermodular function f(x, y) and a

distribution of agents’ types, a necessary condition for PAC/PAM to hold for all

c is that ∆π′+(yEK) ≤ 0 when c is sufficiently large (for example, c ≥ f(x2, y)) so

that all firms choose σ = 0, where ∆π′+(yEK) is the right derivative of ∆π(y) at

point yEK .

Suppose otherwise that ∆π′+(yEK) is strictly positive; the maximum value of

∆π(y) must then be reached at some point ỹ > yEK , since ∆π(y) is always strictly

increasing when y ∈ (y′, yEK) (see Lemma 15 ). Now define c̃ = ∆π(ỹ) and

gradually decrease it from f(x2, y) to values around c̃. What is the impact of this



change on the sorting pattern? As long as c ≥ c̃, no firm is willing to invest in

screening, so the equilibrium allocation remains the same. When c is slightly below

c̃, then firms with types sufficiently close to ỹ will choose σ = 1. Note that the

equilibrium market utilities U1 and U2 will change slightly, so that yEK also changes

only slightly. As before, firms with types slightly above yEK will therefore choose

σ = 0 and hire high-type workers only, while firms with types sufficiently close to

ỹ will attract both types of workers. Hence, PAC/PAM fails to hold when c is

slightly below c̃.

Below, we complete the proof by showing that for any log-supermodular function

f(x, y) and (x1, x2, J(y)), if (73) holds for some y∗ ∈ (y, y), then we can choose

(L, z) such that ∆π′+(yEK) > 0 when c is sufficiently large that all firms choose

σ = 0.

Step 1: Since ρ(y∗) < Ω(κ(y∗)), we have S (0, κ(y∗), ρ(y∗)) > 0, where S is

defined in equation (75). Thus, by continuity, we can find a δ∗ small enough such

that S(δ∗, κ(y∗), ρ(y∗)) > 0. Next, we construct (U∗1 , U
∗
2 ) from the following two

equations,√
f(x2, y∗)−

√
f(x1, y∗) =

√
U∗2 −

√
U∗1

δ∗ =

√
(f(x2, y∗)− f(x1, y∗))/f(x1, y∗)

(U∗2 − U∗1 )/U∗1
.

These equations are reminiscent of (67) and (74), respectively. The main difference

is that there we considered the market utilities as known and solved for yEK and

δ(y); here we treat y∗ and δ∗ as known and solve for market utilities instead.

Step 2: Given (U∗1 , U
∗
2 ), y∗ is then the firm type that corresponds to yEK de-

fined before. Since f is log-supermodular and hence strictly square-root super-

modular, firms with types y > y∗ will attract only high-type applicants, and firms

with types y < y∗ will attract only low-type applicants. The firms’ problem is

maxλ m(λ)f(x1, y) − λU∗1 for y ≤ y∗, and maxλ m(λ)f(x2, y) − λU∗2 for y ≥ y∗.

Denote the solution by λ(y) for all y.

Step 3: Set L(1 − z) =
∫ y∗
y
λ(y)dJ(y) and Lz =

∫ y
y∗
λ(y)dJ(y). Then, by

construction, (U∗1 , U
∗
2 ) are indeed the market utilities, y∗ = yEK for the equilibrium

where all firms choose σ = 0, and ∆π′+(yEK) > 0 because S(δ∗, κ(y∗), ρ(y∗)) > 0

and y∗ = yEK .
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