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A Computational Methods

Here we describe the procedure used to find an equilibrium path of the heterogeneous agent model
along a perfect foresight transition for the zero-lower-bound episode considered in Section 4.3. The
algorithm used to compute the results for a one-time change in the real interest rate is closely

related to what we present here.

Writing the firm’s first order condition recursively. For the numerical analysis it is conve-

nient to rewrite equation (7) in the main text recursively. Define
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then equation (7) in the main text becomes
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Equations (17) and (18) in the main text can be written recursively
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Initial guess. We assume that the economy has returned to steady state after T' = 250 periods
and look for equilibrium values for endogenous variables between dates ¢t = 0 to 7. In this explana-
tion of our methods we use variables without subscripts to represent sequences from 0 to T'. Let X
denote a path for all endogenous aggregate variables from date 0 to date T. These variables include

aggregate quantities and prices
X = {Cta Lta Nta Y;fa Dtaity Wt77rt7rt7p;k/Pt7 Sthta PtA7PtB}?:0'

The dimension of X is given by 14 variables for each date and 251 dates. We require an initial

guess X", In most cases we found it sufficient to guess that the economy remains in steady state.

Solving the household’s problem. The household’s decision problem depends on X through
r, W, 7, and D. For a given X’ we solve the household’s problem using the endogenous grid
point method (Carroll, 2006). We approximate the household consumption function ¢(b, z) with a
shape-preserving cubic spline with 200 unequally-spaced knot points for each value of z with more
knots placed at low asset levels where the consumption function exhibits more curvature. Given
the consumption function we calculate labor supply from the household’s intratemporal optimality

condition and savings from the budget constraint.

Simulating the population of households. We simulate the population of households in order
to compute aggregate consumption and aggregate labor supply. We use a non-stochastic simulation
method. We approximate the distribution of wealth with a histogram with 1000 unequally-spaced
bins for each value of z again placing more bins at low asset levels. We then update the distribution
of wealth according to the household savings policies and the exogenous transitions across z. When
households choose levels of savings between the center of two bins, we allocate these households
to the adjacent bins in a way that preserves total savings. See Young (2010) for a description of

non-stochastic simulation in this manner.

Checking the equilibrium conditions. An equilibrium value of X must satisfy equations (4),
(5), (9), (10), (11), (13), (15), (16) in the main text as well as equations (3), (4), and (5) and
the monetary policy rule i; = max|0, 7 + ¢ * m; + €], where ¢ is the exogenous deviation from the
Taylor rule that takes a negative value under our “extended” policy. Call these 12 equations the

“analytical” equilibrium conditions. The remaining two equilibrium conditions that pin down X
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are that C' and L are consistent with household optimization and the dynamics of the distribution
of wealth given the prices. Call these the “computational” equilibrium conditions.

To check whether a given X represents an equilibrium of the model is straightforward. We can
easily verify whether the analytical equilibrium conditions hold at X. In addition, we can solve the
household problem and simulate the population of households to verify that aggregated choices for
consumption and labor supply of the heterogeneous households match with the values of C' and L

that appear in X.

Updating X’ The difficult part of the solution method arises when X? is not an equilibrium. In
this case we need to find a new guess X*! that moves us towards an equilibrium. To do this, we
construct an auxiliary model by replacing the computational equilibrium conditions with additional
analytical equilibrium conditions that approximate the behavior of the population of heterogeneous

households but are easier to analyze. Specifically we use the equations

Gy = B(L+ 1) Cy (6)

Cy Wy = U?L? (7)

where n' and n? are treated as parameters of the auxiliary model. For a given X*, we have computed
C and L from the computational equilibrium conditions. We then calibrate n! and 7? from (6) and
(7). We then solve for a new value of X from the 12 analytical equilibrium conditions and (6) and
(7). This is a problem of solving for 14 unknowns at each date from 14 non-linear equations at each
date for a total of 3514 unknowns and 3514 non-linear equations. We solve this system using the
method described by Juillard (1996) for computing perfect foresight transition paths for non-linear
models. This method is a variant of Newton’s method that exploits the sparsity of the Jacobian
matrix. Call this solution X”. We then form X! by updating partially from X towards X%. We

iterate until X7 satisfies the equilibrium conditions within a tolerance of 5 x 1076,
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