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Appendix A: Sample contract – original and English translation (SAA 10,602, F. 1309) 

Heden den 2e November 1772 compareerde 
voor mij Daniel van den Brink Openbaar 
Notaris binnen Amsterdam de heer Raphael 
de Abraham Mendes da Costa, voor en in de 
naam van zijn Compagnie luidende 
Abraham de Raphael Mendes da Costa & 
Co, Kooplieden binnen deeze stadt  
 

Today, November 2, 1772, appeared 
before me, Daniel van den Brink, Public 
Notary in the City of Amsterdam, Mr. 
Raphael de Abraham Mendes da Costa, 
for and in the name of his company called 
Abraham de Raphael Mendes da Costa & 
Co, merchants in this town (hereafter: “the 
party present”). 
 

en bekende bij deeze wel en deugdelijk 
schuldig te wezen aan de Heer Ananias 
Willink, meede Coopman alhier de somma 
van 24.000 guldens bankgeld spruytende uyt 
hoofden en ter saake van sodanige somma 
als de selve den 22e Oktober laatstleden aan 
syn comp[arants] voorn[oemde] Compagnie 
heeft afgeschreven, […] en welke somma 
van f. 24.000 Bankgeld hij Comparant in de 
naam van zijn voorn[oemde] compagnie 
aanneemt  
 

And declared to be indebted to Mr. 
Ananias Willink, also merchant in this city 
for the sum of 24,000 guilders banco, 
originating from and relating to a 
withdrawal of such sum on October 22 
last in favor of the present party’s said 
company, and the present party accepting 
that sum of 24,000 guilders banco in the 
name of said company. 
 

en belooft aan voorn[oemde] Heer Ananias 
Willink of zijn Co[mpagnies] rechthebbende 
kosten schadeloos alhier weeder te zullen 
restitueren en voldoen binnen de tijdt van 
ses maanden te reekenen van den 6 Oktober 
deeses jaars met den Interest van dien 
tegens vier percent ’t jaar en bij prolongatie 
gelijke interest  
 

And promises to said Mr. Ananias 
Willink, or his company’s legal 
representative, to return this sum 
(including any costs incurred), within the 
time of six months, counting from October 
6 this year, with the interest of 4% annual, 
and in case of prolongation the same 
interest. 
 

en zulks tot de volle en effectueele 
betaalinge toe tog de interessen te betaalen 
ieder 6 maanden des zo zal bij opeischinge 
of aflossinge den een den ander ses weeken 
voor de vervaltijd waarschouwent  
 

And [promises] to pay the full and 
effective payment of the interest every six 
months 
In case that the contract is not prolonged 
he will be notified 6 weeks in advance. 
 

tot nakominge deezes verbind hij comparant 
zijn en zijn gemelde Compagnons persoon 
en goederen als na rechten en specialijk 

To honor this agreement, the present party 
pledges his own body and goods and 
especially 1500 Pounds Sterling capital in 
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sodanige vijftienhonderd ponden sterling 
capitaal actien in de d’Oost Indische 
Compagnie van Engeland als tot London 
voor reekening van zijn comparants 
gemelde compagnie als pand ter minnen op 
de naam en reekening van gemelde H[eer] 
Ananias Willink zijn getransporteerd […] 
 

the stocks of the English East India 
Company, which have been transferred in 
London from the account of the present 
party’s company to the account of said 
Mr. Ananias Willink as collateral.  
[…] 
 

en zulks meede een somma van f. 1500 
indien deselve actien mogten komen te 
daalen op 180% en zo vervolgens van 10 tot 
10 % om bij aflossinge en voldoeninge van 
gemelde capitaale somma gerescontreerd en 
geluiqideerd te werden, zullende de 
interessen van zodaanige restitutie kon te 
resteeren van dien dag af dat dezelve 
restitutie geschied is  
 

And he also [promises] to transfer an 
amount of 1500 guilders banco if the price 
of said stock were to fall below 180% and 
similarly with every additional fall of 
10%. Interest payments associated with 
these sums of money will be calculated 
until the moment the money is effectively 
transferred. 
 

en hy comparant belooft meede in de naam 
van zyn gemelde Compagnie te zullen goed 
doen de provisie en onkosten die by ’t 
transporteren van dezelve Actien aan zijn 
compagnie zullen komen te vallen welk 
transport by aflossinge zal met ten 
geschieden door de correspondenten van 
zijn comparants gemelde Compagnie.  
 

And he, the party present, promises in the 
name of his said Company to pay for the 
fees and other costs associated with 
transferring the stock to his Company the 
moment the loan is repaid, which will be 
arranged by the correspondents of the 
present party’s said company 
 

Voorts verklaarde hy Comparant dezelve 
Heer Anianas Willink specialijk te 
authoriseeren en consititueeren ommeindien 
zijn comparants gemelde compagnie in 
gebreken mogt komen te blijven de 
voorsz[egde] capitaale somma van f. 24000 
bankgeld en interessen promptelijk te 
betaalen en voldoen ofte […] en meede zo 
wanneer bij vermindering der waarde van 
voornoemde Actien zijn comparants 
gemelde Compagnie op de eerste 
aanzegginge ’t surplus niet kwam te voldoen 
dezelve actien door een makelaar alhier ofte 
tot London te mogen verkopen omme daar 
uit te vinden ’t geene syn Ed[eles] uit kragte 
deezes zal zijn Competeerende ’t geene hy 
Comparant in de naam van zyn voornoemde 
Compagnie belooft voor goed vast en van 
waarde te houden en zoo wanneer dezelve 
minder mogten renderen zoo belooft hij 
comparant ’t mindere aan zijn Ed[elste] 
zullen opleggen en voldoen waar tegens 
gemelde Heer Ananias Willink als meerdere 

Furthermore, the present party declares 
that, in case the present party’s company 
defaults on the obligation to repay said 
sum of 24,000 guilders banco and 
associated interest payments in a timely 
fashion, or when he fails (due to the fall in 
value of said stocks) to provide additional 
surplus after a first instigation, he 
authorizes Mr. Ananias Willink especially 
to have the said stock sold through an 
official broker, either here or in London, 
and to retrieve from the proceeds the 
amount of money he is entitled according 
to this agreement with the present party’s 
company.  
In case the sale yields less than the full 
amount, the present party promises to 
make up the difference. In case it yields 
more, Mr. Ananias Willink will remit the 
resulting surplus.  
The party present declares that he has 
received a counter-deed in reference to 
said stock. 
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aan zijn comparants gemelde Compagnie 
zal goed doen en hij Comparant bekende 
van syn Ed[ele] wegens voorsz[egde] actien 
een renvers[aal] te hebben ontvangen 
 

 

Actum Amsterdam, 2 November 1772 Signed in Amsterdam, November 2, 1772 
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Appendix B: Additional figures and tables 

Figure B. 1: Kernel densities haircuts before Christmas 1772 
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Raw vs corrected for year dummies and borrower fixed effects 
 
Figure B. 2: The timing of collateralized loans extended by Denis Adries Roest, 1770-1772 
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This figure illustrates the importance of timing in determining matches between lenders and borrowers with the 
example of lender Denis Adrien Roest. Loan contracts were signed for 6 (or 12) months and were often silently 
renewed with another 6 (or 12) months. Roest extended his loans either in the beginning of May/November or 
June/December. When loans were repaid after a multiple of 6 months, funds became available for new 
borrowers. The vertical axis indicates borrowing by different borrowers; the width of the bars indicates the size 
of the collateral behind a loan (in face value). The horizontal axis plots time and indicates when loans were 
originally extended and renewed. 
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Figure B. 3: Lender and borrower network – 1770-75 

 
 
Figure B. 4: Distribution of EIC returns 
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Figure B.5: Debt and cash positions Consortium before Christmas 1772 
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Panel A: , ,log( / )i t i tdebt transaction   Panel B: , ,log( / )i t i tbalance transactions   
These two figures calculate half-yearly averages of log debt and cash positions for the consortium compared to 
the mean and 95th/5th percentile of the sample.   
 
Figure B. 6: Haircuts before and after Christmas 1772 
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Haircuts before and after Christmas 1772, differentiated by exposed and non-exposed lenders 
 

Figure B. 7: Interest rates before and after Christmas 1772 
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Figure B.8: Haircuts as a function of debt, before and after Christmas 1772 
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Table B. 1: Descriptive statistics, EIC stock returns over 6 month periods (overlapping) 

Sample Prior to distress Distress period Full 

 1723-1772* 1770-73** 1723-1794 
Mean 0.0051 -0.034 0.0028 

Median 0.0068 -0.019 0.0053 

 0.089 0.108 0.089 

Skewness 0.248 -0.49 -0.07 

Maximum loss -0.256 -0.358 -0.358 
% of observations with 
loss>0.2 

0.011 0.075 0.022 

* first half  ** first week of 1773 
 
Table B.2: Haircuts and time varying borrower risks (dependent variable: haircuts) 
 (1) (2) (3) (4) (5) (6) 
 Full sample Pre-1773 

,log( /i tdebt   0.011***  0.009** 0.011**  0.011***

, )i ttransactions  (0.004)  (0.004) (0.004)  (0.004) 

,log( /i tbalance   -0.022*** -0.018**  -0.009 -0.016 

, )i ttransactions   (0.007) (0.007)  (0.013) (0.012) 

Non-EIC -0.048*** -0.051*** -0.049*** -0.050*** -0.053*** -0.051***

 (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) 
Lender type dummies Y Y Y Y Y Y 
Borrower fixed effects Y Y Y Y Y Y 
Adj. R2 0.565 0.560 0.573 0.541 0.522 0.542 
N 317 317 317 272 272 272 

This table presents estimates of the impact of two borower risk measures on haircuts, for the sample as a whole 
(cols 1-3) and for the period before the Seppenwolde default (cols 4-6).  debti,t: : total margin loan position 
borrower i at time t. balancei,t (transactionsi,t): average daily balance (transaction volume) of  borrower i in the 
Amsterdam Bank of Exchange during the 52 weeks prior to time i. All estimates include borrower fixed effects 
and lender type dummies. Robust standard errors (clustered at the lender level) are presented in parentheses, * p 
< 0.10, ** p < 0.05, *** p < 0.01. 
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Table B. 3: Lender attrition 
 (1) (2) (3) (4) 
 Probit, 1   remains in sample 
Exposed 0.075 0.079 0.142 0.123
 (0.054) (0.052) (0.087) (0.096)
     
Total lending before   6.230 5.488 5.894
1773 (£000)  (3.612)* (3.615) (3.613)
     
Fraction total lending    -0.086 -0.064
to consortium   (0.099) (0.113)
Lender type dummies N N N Y 
N 177 174 174 149 
Pseudo-R2 0.012 0.041 0.045 0.062

Estimates of a probit model predicting whether lenders will remain in the sample. The table presents marginal 
effects, e.g. in Col (1) a lender is 7.5% more likely to stay in the sample if it was exposed to the consortium. 
Robust standard errors are presented in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
Table B. 4: Total lending 
 Including Van Seppenwolde Excluding Van Seppenwolde 
 (1) (2) (3) (4) (5) (6)
 Pooled 

OLS 
Pooled 
OLS 

FE Pooled 
OLS 

Pooled 
OLS 

FE 

Exposed 1.911 2.144  1.433 1.783  
 (0.935)** (1.166)*  (0.923) (1.212)  

Post 1772 0.326 0.175 -0.115 0.742 0.764 0.135 
 (0.487) (0.610) (1.700) (0.402)* (0.517) (2.234) 

Exposed *  -1.186 -1.465 -3.487 -0.749 -1.232 -1.634 
Post 1772 (0.913) (1.163) (3.279) (0.988) (1.081) (2.406) 

non-EIC 3.337 3.499 2.727 2.243 1.832 1.762 
 (1.346)** (1.700)** (3.609) (0.895)** (0.954)* (3.240) 

Constant 2.190 3.050 3.643 1.884 4.147 2.948 
 (0.462)*** (1.405)** (0.992)*** (0.335)*** (1.518)*** (0.763)***
Year 
dummies 

Y Y Y Y Y Y 

Lender type 
dummies 

N Y  N Y  

Lender FE N N Y N N Y 
N 202 175 202 128 113 128 
N (if 
balanced) 

  50   30 

R2 0.040 0.080 0.880 0.050 0.150 0.955 
# lenders 177 152 177 113 99 113 
Regression estimates for total lending at the lender level on the collateral of all English securities. Total 
lending is calculated before and after Christmas 1772; in £000s of face value of collateral. Exposed lenders 
are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between 
the post-1772 and the exposed dummies captures the diff-in-diff effect. Lender type dummies are as in Table 
3. Lender fixed effects refer to fixed effects on the family level. Robust standard errors (clustered at the 
lender level) are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table B. 5: Haircuts and time since event (dependent variable: haircuts) 

 (1) (2) (3) (4) (5) 

 OLS OLS FE FE FE 
Exposed -0.005 -0.003  -0.000  
 (0.005) (0.005)  (0.006)  
      
Exposed * Post 1772 0.097 0.086 0.086 0.054 0.095 
 (0.030)*** (0.033)**

* 
(0.046)* (0.030)* (0.047)**

      
Time since event -0.001 0.023 0.008 -0.065 -0.005 
 (0.058) (0.059) (0.066) (0.058) (0.070) 
      
Exposed * time since  -0.051 -0.041 -0.051 -0.031 -0.048 
event (0.044) (0.044) (0.045) (0.042) (0.048) 
      
non-EIC -0.058 -0.055 -0.047 -0.053 -0.048 
 (0.006)*** (0.007)**

* 
(0.012)**

* 
(0.008)*** (0.015)**

* 
      
Constant 0.218 0.244 0.243 0.212 0.205 
 (0.007)*** (0.018)**

* 
(0.026)**

* 
(0.012)*** (0.036)**

* 
Year dummies Y Y Y Y Y
Lender FE N N Y N Y 
Borrower FE N N N Y Y 

Lender type dummies N Y  Y  
Borrower type dummies N Y Y   

N 418 387 418 387 418 
N (if balanced panel)   166 77 33 
R2 0.342 0.444 0.637 0.664 0.802 
# groups (lenders) 177 152 177 152 177 
# groups (borrowers) 72 70 72 70 72 
Regression estimates for all English securities. Observations refer to new contracts and are weighted by the face 
value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a 
loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The 
interaction between the Exposed and the Post 1772 dummies captures the diff-in-diff effect. Time since event is 
measured in years. The interaction between the Exposed and Time since event dummies captures the reversion of 
the treatment effect. For example, in Column 3 the immediate treatment effect on haircuts is .08 and decreases 
by .04 every year. Lender and borrower type dummies are as in Table 3. Lender and borrower fixed effects are 
at the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * p < 
0.10, ** p < 0.05, *** p < 0.01. 
 
  
 
 
 
 



11 
 

 
 
 
 
Table B. 6: Extensive and intensive margin (dependent variable: haircuts) 
 (1) (2) (3) 
 Pooled OLS Pooled OLS Pooled OLS 
Exposed -0.003 -0.003 -0.003 
 (0.005) (0.004) (0.006) 

Exposed * Post 1772 0.066 0.052 0.077 
 (0.023)*** (0.028)* (0.039)** 

non-EIC -0.056 -0.056 -0.056 
 (0.006)*** (0.007)*** (0.006)*** 

Absolute position with 
consortium (£ 000s) 

 -0.000  
 (0.000)  

Absolute position with 
consortium * Post 1772 

 0.002  
 (0.003)  

Relative position with 
consortium (fraction) 

  -0.001 
  (0.011) 

Relative position with 
consortium * Post 1772 

  -0.026 
  (0.038) 

Constant 0.245 0.247 0.246 
 (0.017)*** (0.016)*** (0.017)*** 
Year dummies Y Y Y 
Lender type dummies Y Y Y 
Borrower type dummies Y Y Y 
N 387 387 384 
R2 0.440 0.443 0.442 
Regression estimates for all English securities. Observations refer to new contracts and are weighted by the face 
value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a 
loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The 
interaction between the Exposed and the Post 1772 dummies captures the extensive margin of adjustment. The 
absolute position with the consortium measures the total amount of the collateral the consortium had pledged 
with a specific lender around Christmas 1772 (in (£ 000s face value). The relative position with the consortium 
divides this measure by the total amount of collateral that was pledged with a specific lender before Christmas 
1772. The interactions with the post-1772 dummy capture the intensive margin of adjustment. We do not 
measure this with a triple interaction because the position with the consortium for non-exposed lenders is always 
0. Standard errors for the absolute and relative position measures are 5.26 and 0.39 respectively. Robust 
standard errors (clustered at the lender level) are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table B. 7: Haircuts, excluding January 1773  
 (1) (2) (3) (4) (5) 
 Pooled 

OLS 
Pooled 
OLS 

FE FE FE 

Exposed -0.005 -0.002  -0.001  
 (0.005) (0.005)  (0.006)  
      
Exposed * Post 1772 0.068 0.058 0.050 0.039 0.062 
 (0.022)*** (0.023)** (0.035) (0.024) (0.036)* 
      
non-EIC -0.059 -0.055 -0.047 -0.053 -0.047 
 (0.006)*** (0.007)*** (0.012)*** (0.008)*** (0.015)*** 
      
Constant 0.218 0.246 0.245 0.210 0.190 
 (0.006)*** (0.016)*** (0.024)*** (0.012)*** (0.037)*** 
Year dummies Yes Yes Yes Yes Yes 
Lender FE No No Yes No Yes 
Borrower FE No No No Yes Yes 

Lender observables No Yes  Yes  
Borrower 
observables 

No Yes Yes   

N 412 381 412 381 412 
N (if balanced panel)   160 73 32 
R2 0.302 0.422 0.625 0.636 0.788 
# lenders 177 152 177 152 177 
# borrowers 69 67 69 67 69 
Regression estimates for all English securities. Observations refer to new contracts and are weighted by the face 
value of the collateral. Observations for January 1773 are excluded. Haircuts are calculated as the fraction of the 
collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate 
collateral after the events of Christmas 1772. The interaction between the Exposed and the Post 1772 dummies 
captures the diff-in-diff effect. Lender and borrower observables are as in Table 3. Lender and borrower fixed 
effects are at the family/firm level. Robust standard errors (clustered at the lender level) are reported in 
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table B. 8: Bertrand et al. analysis on haircuts – collapsing data into pre- and post-1772 
 (1) (2) (3) (4) 
Exposed -0.020  -0.005  
 (0.010)*  (0.006)  
     
Exposed * Post 1772 0.080 0.052 0.085 0.080 
 (0.025)*** (0.023)** (0.016)*** (0.019)*** 
     
Post 1772 -0.027 0.007 -0.025 -0.012 
 (0.020) (0.019) (0.014)* (0.017) 
     
Non-EIC -0.042 -0.037 -0.057 -0.039 
 (0.013)*** (0.022)* (0.008)*** (0.017)** 
Lender type dummies Y  Y  
Lender fixed effects N Y N Y 
Weighted N N Y Y 
N 175 202 175 202 
R2 0.157 0.848 0.439 0.845 
In this table, we collapse our data into two periods only: pre- and post-1772, as suggested by Bertrand, Duflo, 
and Mullainathan (2004). That means that we have at most two observations per lender. In cols 1 and 2 we 
assign each lender-period observation the same weight. In cols 3 and 4 we weight observations by the total 
lending activity of lender in that period (measured by the total face value of accepted collateral). Standard errors 
are reported in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Appendix C:  Concentration of lending 

To test if random matching of lenders and borrowers can explain the nature of lending in our 

sample, we calculate the Herfindahl index for every lender during the pre-crisis period: 

 

where  is the share of lending by lender  to an individual borrower . If lenders repeatedly 

lent to the same borrower, to the exclusion of other investors, we would expect a high 

Herfindahl index. The left panel of Figure C. 1 presents the actual distribution of these 

Herfindahl indices for all lenders in ours sample. Many lenders only entered into a single 

transaction; these are highlighted for the observations where the Herfindahl index equals 1.43 

The distribution is discontinuous, with zero weight between 0.68 and 1. This is the result of 

the way a Herfindahl index is constructed and the fact that most lenders only do a few 

transactions.  

To compare the actual distribution with one arising by chance, we randomly pick a 

lender from our set of actual lenders. We determine how many new loan contracts he or she 

entered into before Christmas 1772, and then randomly draw a corresponding number of 

counterparties (taking into account that some borrowers are more active than others). Finally, 

we calculate the resulting Herfindahl index, and repeat the exercise 10,000 times. As the 

figure demonstrates, the two distributions are nearly identical. Both the Pearson Chi2 and the 

log likelihood test for the equality of distributions fail to reject.44  

We use the Herfindahl indices to test whether the (possible) destruction of existing 

credit networks after the Seppenwolde bankruptcy might explain our empirical findings. The 

idea is that lenders who lost their network would have been forced to lend to new borrowers. 

Since these individuals were relatively unknown, they would have initially charged higher 

haircuts. We start from the assumption that lenders that are heavily invested in a particular 

client relationship will have more concentrated portfolios. We then estimate the following 

equation 

where  includes time effects and both borrower and lender characteristics.  is a random 

error.  captures whether lenders increased haircuts more if they engaged in more 

                                                 
43 The y-axes are aligned to reflect equal fractions. Grey bars reflect lenders who entered into at least 2 
transactions. The white bars indicated lenders who only lent out once. 
44 P-values 0.43 and 0.505. 



15 
 

relationship lending before Christmas 1772 (a higher Herfindahl index). Table C.1 (Col 1) 

shows that this is not the case; if anything a higher degree of concentration before Christmas 

1772 (more relationship lending) leads to lower haircuts. This effect is not statistically 

significant though.  

In Col 2 we include a triple interaction effect between the Herfindahl index, the post-

1772 dummy and the exposed dummy. This captures whether exposed lenders who had a 

more concentrated lending portfolio changed haircuts more aggressively after Christmas 

1772. The idea is that exposed lenders with a relatively concentrated loan portfolio would 

have faced a larger disruption of their network. The triple interaction effect is insignificant 

and negative, suggesting that, if anything, exposed lenders with a more concentrated loan 

portfolio charged lower haircuts after the Seppenwolde default. 

 

Figure C. 1: Herfindahl indices – actual vs simulated 
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For each lender we calculate the Herfindahl index of its lending before Christmas 1772. In addition, 
we construct a random distribution of Herfindahl indices. We randomly pick a lender from our set of 
lenders; we determine how many (x) new loan contracts it entered into before Christmas 1772; we 
randomly draw x counterparties (taking into account that some borrowers are more active than 
others); and we calculate the resulting Herfindahl index. We do this 10,000 times. The y-axes are 
aligned to reflect equal fractions. Grey bars reflect lenders who entered into at least 2 transactions. 
The white bars indicated lenders who only lent out once. 

Tests on the equality of the distributions: 
 Test statistic pvalue 

Pearson's Chi2 83.8 0.435 

Log likelihood ratio     37.9 0.505 
Obs. (Unique values) 178 (84)  
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Table C. 1: Haircuts and concentration lending before Christmas 1772 
 (1) (2) 
Exposed -0.002 0.022 
 (0.005) (0.012)* 

Exposed * Post 1772 0.056 0.075 
 (0.028)** (0.056) 

non-EIC -0.056 -0.055 
 (0.006)*** (0.006)*** 

Herfindahl (pre-event)  0.006 0.028 
 (0.008) (0.014)** 

Herfindahl (pre-event) * Post 1772 -0.030 -0.011 
 (0.036) (0.070) 

Herfindahl (pre-event) * Exposed  -0.037 
  (0.017)** 

Herfindahl (pre-event) * Exposed * Post 
1772 

 -0.022 

  (0.088) 

Constant 0.244 0.228 
 (0.017)*** (0.018)*** 
Year dummies Y Y 
Lender & borrower type dummies Y Y 
N 384 384 
R2 0.443 0.452 
# lenders 149 149 
Pooled OLS estimates for all English securities. Observations refer to new contracts and are 
weighted by the face value of the collateral. Haircuts are calculated as the fraction of the 
collateral value that is not financed with a loan. Exposed lenders are those who were forced to 
liquidate collateral after the events of Christmas 1772. The interaction between the Exposed 
and the Post 1772 dummies captures the diff-in-diff effect. The Herfindahl index (0-1) 
measures the concentration of a lender’s portfolio before Christmas 1772. The double 
interaction between Herfindahl and Post 1772 captures whether all lenders with higher 
degrees of concentration charged higher haircuts after Christmas 1772. The triple interaction 
between Herfindahl, the Exposed and Post 1772 captures whether exposed lenders with a 
higher degree of concentration adjusted haircuts more. Lender and borrower type dummies are 
as in Table 3. Robust standard errors (clustered at the lender level) are reported in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix D: Direct exposure to EIC price movements 
 

It is possible that individuals who lent to the consortium overall had strong exposure to EIC 

stock through other portfolio holdings. Then, changes in haircuts could reflect managing this 

risk, rather than the shock of the default. 

To investigate this issue we estimate the following equation 

where  includes time effects and both borrower and lender characteristics.  is a random 

error. This equation tests whether exposed lenders in general charge higher haircuts when 

EIC prices are lower.  Results are presented in Table 12. 

Col 1 includes the interaction between the exposed dummy and the EIC stock price. 

The economic size of the coefficient is small and statistically insignificant. The average EIC 

price during 1770-1772 was 212%; in 1773-1775, it was 155%. The price decline 

corresponds an increase in haircuts by 1.9% (0.57*0.033). This is less than a third of the 

impact of the interaction effect with the post-1772 dummy (Table 6, Col 2). Col 2 includes 

both interaction effects to perform a horserace: what has more explanatory power, the post-

1772 dummy or changes in the price of EIC stock? The estimates show that the interaction 

effect with the post-1772 dummy is much stronger; it increased haircuts by 6.8%. The 

coefficient on the interaction between exposed and the EIC price is now wrongly signed. 

Overall, these results show that EIC stock prices have no additional predicative power above 

and beyond the post-event dummy. 
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Table D.1: EIC factor (dependent variable: haircuts) 
 (1) (2) 
 Pooled OLS Pooled OLS 
Exposed 0.004 -0.010 
 (0.007) (0.008) 

Exposed * EIC price -0.033 0.047 
 (0.030) (0.038) 

EIC price 0.049 -0.015 
 (0.029)* (0.035) 

Exposed * Post 1772  0.068 
  (0.035)* 

Constant 0.245 0.252 
 (0.022)*** (0.023)*** 
Year dummies Y Y 
Lender type dummies Y Y 
N 288 288 
R2 0.320 0.332 
# lenders  127 127 
Pooled OLS regression estimates for EIC stock only. Observations refer to new contracts and are weighted by 
the face value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed 
with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 
1772. EIC prices are in fractions of the face value. Average price before Christmas 1772 2.12, after Christmas 
1772 1.55. The estimates in Col 1 indicate that such a price fall causes haircuts demanded by exposed to 
increase by 0.019 (0.57*0.033). The interaction between the Exposed and the Post 1772 dummies in Col 2 
captures the benchmark diff-in-diff effect. Lender type dummies are as in Table 3. Robust standard errors 
(clustered at the lender level) are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix E: Further robustness checks 
 
Disaggregation of haircut components 

The change in the haircut we document can be disaggregated into two parts – the difference 

between the price at which a contract is signed and the pre-agreed level when a margin call is 

triggered, and the difference between the trigger level and the value of the loan. In Table E. 1, 

we analyse the shift in the haircut for its two components separately. 

In Panel A, we examine the difference between market price and the trigger level for a 

margin call. The lenders who were exposed to the default increased the trigger level 

substantially, by 4-5 percent – very close to the change in the overall collateral requirements. 

In Panel B, we analyze the distance to loss, the difference between the margin trigger and the 

value of the loan. Here, there are only relatively small and mostly insignificant effects – 

lenders adjusted the risk profile of their lending by demanding margin earlier, and keeping 

the value of the loan overall lower relative to the market value at the time of signing.  
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Table E. 1: Disaggregation of haircut components 
 (1) (2) (3) (4) (5) 
 Pooled 

OLS 
Pooled 
OLS 

FE FE FE 

Panel (A): Distance to margin call  

Exposed -0.009 -0.005  -0.006  
 (0.007) (0.006)  (0.006)  

Exposed * Post 1772 0.063 0.042 0.039 0.028 0.046 
 (0.023)*** (0.024)* (0.036) (0.028) (0.043) 

non-EIC -0.036 -0.029 -0.029 -0.027 -0.031 
 (0.006)*** (0.006)*** (0.009)*** (0.007)*** (0.011)*** 

Constant 0.131 0.167 0.167 0.116 0.069 
 (0.006)*** (0.014)*** (0.020)*** (0.009)*** (0.026)*** 
R2 0.130 0.294 0.589 0.521 0.760 

Panel (B): distance to loss  

Exposed 0.004 0.002  0.007  
 (0.006) (0.005)  (0.006)  

Exposed * Post 1772 0.012 0.022 0.025 0.010 0.027 
 (0.012) (0.012)* (0.018) (0.015) (0.018) 

non-EIC -0.024 -0.027 -0.020 -0.027 -0.019 
 (0.007)*** (0.006)*** (0.008)** (0.007)*** (0.010)* 

Constant 0.087 0.081 0.088 0.095 0.098 
 (0.005)*** (0.017)*** (0.021)*** (0.008)*** (0.026)*** 
R2 0.307 0.395 0.637 0.615 0.786 
Year dummies Yes Yes Yes Yes Yes 
Lender FE No No Yes No Yes 
Borrower FE No No No Yes Yes 

Lender type dummies No Yes  Yes  
Borrower type 
dummies 

No Yes Yes   

N 405 374 405 374 405 
N (if balanced panel)   154 76 33 
# lenders 176 151 176 151 176 
# borrowers 67 65 67 65 67 
Regression estimates for all English securities. Haircut = distance to margin call + distance to loss. Observations 
refer to new contracts and are weighted by the face value of the collateral. Exposed lenders are those who were 
forced to liquidate collateral after the events of Christmas 1772. The interaction between the Exposed and the 
Post 1772 dummies captures the diff-in-diff effect. Lender and borrower type dummies are as in Table 3. Lender 
and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender level) are 
reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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East India Stock only 

In the baseline results, we use lending against all assets in our database – East India stock, 

3% annuities, and Bank of England stock. While we control for compositional change, it is 

interesting to examine how much of a shift we can find by focusing on EIC stock exclusively 

(the asset against which the Seppenwolde syndicate predominantly borrowed). 

In Table E. 2, Panel A, we show that lending requirements in EIC stock changes in 

very much the same fashion as in the universe of all assets. In the pooled estimation (Col 2), 

the coefficient suggests a rise in collateral requirements by 6.8 percent. The fixed effect 

estimates look very similar to the benchmark numbers in Table 6. However, estimates 

become (borderline) insignificant. This is because with fixed effects, the effective number of 

observations that can be used to identify the interaction effect is constrained to those that are 

in the sample before and after 1772. In addition, we lose observations by constraining the 

sample to EIC transactions.  

In Panel B, we analyze lending against non-EIC assets only. Due to the limited 

number of observations, the fixed effect specifications cannot be estimated. The pooled OLS 

estimates are very similar to those for loan contracts collateralized with EIC stock. For 

example, the estimate of the interaction effect in Col 2 is 6.6% (versus 6.8% in Panel A). 

Overall, there is no reason to think that the estimated effects in our baseline specification only 

reflect changes in haircuts in one type of asset. 
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Table E. 2: Haircuts – different types of collateral 
 (1) (2) (3) (4) (5) 
 Pooled 

OLS 
Pooled 
OLS 

FE FE FE 

Panel A: EIC only      

Exposed -0.002 0.000  -0.001  
 (0.008) (0.008)  (0.008)  

Exposed * Post 1772 0.072 0.068 0.074 0.034 0.056 
 (0.025)*** (0.028)** (0.045) (0.026) (0.044) 

Constant 0.222 0.240 0.228 0.210 0.180 
 (0.006)*** (0.016)*** (0.027)*** (0.014)*** (0.046)*** 
N 314 288 314 288 314 
N (if balanced panel)   134 65 29 
# lenders 176 151 176 151 176 
# borrowers 67 65 67 65 67 
R2 0.132 0.296 0.561 0.601 0.787 

Panel B: BoE, SSC and 3% Annuities 

Exposed -0.007 -0.005    
 (0.008) (0.007)    

Exposed * Post 1772 0.102 0.066    
 (0.016)*** (0.027)**    

Constant 0.158 0.226    
 (0.007)*** (0.019)***    
N 104 99    
# lenders 70 64  
# borrowers 27 26    
R2 0.072 0.284    
Year dummies Yes Yes Yes Yes Yes 
Lender FE No No Yes No Yes 
Borrower FE No No No Yes Yes 

Lender type dummies No Yes  Yes  
Borrower type 
dummies 

No Yes Yes   

Regression estimates for EIC and BoE, SSC and 3% Annuities separately. Observations refer to new contracts 
and are weighted by the face value of the collateral. Haircuts are calculated as the fraction of the collateral value 
that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the 
events of Christmas 1772. The interaction between the Exposed and the Post 1772 dummies captures the diff-in-
diff effect. Lender and borrower type dummies are as in Table 3. Lender and borrower fixed effects are at the 
family/firm level. Due to a limited number of observations the fixed effects models cannot be estimated for the 
non-EIC securities. Robust standard errors (clustered at the lender level) are reported in parentheses.* p < 0.10, 
** p < 0.05, *** p < 0.01 
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Outliers 

It is possible that a few, extreme values for the haircuts influence our results. A standard way 

to deal with this issue is to winsorize the data. We winsorize the top and bottom 5 percent of 

observations, and re-estimate (see Table E.3). The results are largely unchanged. Coefficients 

are significant throughout, and are statistically indistinguishable from those in the baseline 

specification. For completeness we do the same for interest rates and re-estimate our 

benchmark results. Again, results are virtually unchanged.  

 

Table E. 3: Haircuts – Winsorized dependent variable 
 (1) (2) (3) (4) (5) 
 Pooled 

OLS 
Pooled 
OLS 

FE FE FE 

Exposed -0.005 -0.003  -0.001  
 (0.005) (0.004)  (0.006)  

Exposed * Post 1772 0.072 0.064 0.060 0.040 0.059 
 (0.020)*** (0.022)*** (0.032)* (0.022)* (0.031)* 

Non-EIC -0.057 -0.054 -0.047 -0.051 -0.045 
 (0.006)*** (0.006)*** (0.011)*** (0.008)*** (0.014)*** 

Constant 0.219 0.240 0.236 0.214 0.199 
 (0.006)*** (0.014)*** (0.022)*** (0.011)*** (0.033)*** 
R2 0.365 0.466 0.630 0.638 0.785 
Year dummies Y Y Y Y Y 
Lender FE N N Y N Y 
Borrower FE N N N Y Y 

Lender type dummies N Y  Y  
Borrower type 
dummies 

N Y Y   

N 418 387 418 387 418 
N (if balanced panel)   166 77 33 
# lenders 177 152 177 152 177 
# borrowers 72 70 72 70 72 
Regression estimates for all English securities. Observations refer to new contracts. Haircuts are calculated as 
the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to 
liquidate collateral after the events of Christmas 1772. The interaction between the Exposed and the Post 1772 
dummies captures the diff-in-diff effect. Observations are weighted by the face value of the collateral; the top 
and bottom 5% of the haircut distribution are Winsorized. Lender and borrower type dummies are as in Table 3. 
Lender and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender 
level) are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table E. 4: Interest rates – Winsorized dependent variable  
 (1) (2) (3) (4) (5) 
 Pooled OLS Pooled OLS FE FE FE 
Exposed 0.064 0.042  0.060  
 (0.035)* (0.033)  (0.041)  
      
Exposed * Post 1772 -0.019 -0.008 -0.061 0.026 0.028 
 (0.077) (0.077) (0.087) (0.080) (0.159) 
      
non-EIC -0.072 -0.087 -0.077 -0.104 -0.081 
 (0.036)** (0.033)** (0.046)* (0.049)** (0.052) 
      
Constant 3.534 3.617 3.628 3.583 3.658 
 (0.033)*** (0.092)*** (0.093)*** (0.070)*** (0.156)*** 
R2 0.464 0.515 0.733 0.659 0.824 
Year dummies Y Y Y Y Y 
Lender FE N N Y N Y 
Borrower FE N N N Y Y 

Lender type dummies N Y  Y  
Borrower type 
dummies 

N Y Y   

N 418 386 418 386 418 
N (if balanced panel)   166 77 33 
# lenders 177 152 177 152 177 
# borrowers 72 70 72 70 72
Regression estimates for all English securities. Exposed lenders are those who were forced to liquidate collateral after 
the events of Christmas 1772. The interaction between the Exposed and the Post 1772 dummies captures the diff-in-
diff effect. Observations are weighted by face value of the collateral; the top and bottom 5% of the distribution are 
Winsorized. Robust standard errors (clustered at the lender level) are reported in parentheses. * p < 0.10, ** p < 0.05, 
*** p < 0.01 
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Extreme observations 

The final step is to examine the sensitivity of our results to the influence of a single lender or 

borrower. To this end, we re-estimate the baseline specification (Table 6, Col 2), dropping 

one lender or borrower at a time. Figure E. 1 Panels A-D shows the distribution of 

coefficients (first row) and t-statistics (second row). The range of estimated coefficients is 

small, with results ranging from 5.5 to 7.5 percent. The t-statistics never falls below 2. This 

shows that our results are not driven by a single lender or borrower. 

 
Figure E. 1: Outlier analysis, dropping one lender (borrower) at a time 

Dropping one lender at a time Dropping one borrower at a time 
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Coefficients on the interaction effect and t-statistics are generated dropping one lender (or borrower) at a time. All estimates 
include lender and borrower observables.  
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Appendix F: Primary Sources 
 
GAR: Gemeentearchief Rotterdam (City Archives Rotterdam); NA: Nationaal Archief 

(Dutch National Archives); OSA: Oud Archief van de Stad Rotterdam (Old Archives 
City of Rotterdam); SAA: Stadsarchief Amsterdam (City Archives Amsterdam) 

SAA (library), ‘Stukken betreffende den boedel van Clifford en Zoonen’, 1773-1779 
SAA, Notariële protocollen Daniel van den Brink, 5075: 10,593 - 10,613 (various notary 

protocols) 
SAA, Tex den Bondt aanvulling 1 en 2, 30269: 347 (‘Staat en inventaris van de boedel van 

Johannes van Seppenwolde’) 
SAA, Archief van de Stads Beleenkamer, 5043: 1 (‘Notulen van de vergaderingen van het 

‘Fonds tot maintien van het publiek crediet’ (1773)’) 
NA, Archief van de familie Van der Staal van Piershil, 3.20.54: 381, 386, 396 (various 

correspondence) 
OSA, 1.01: 3710 (‘Stukken betreffende de kasgeldlening groot fl. 300.000 door de stad aan J. 

en H. van Seppenwolde, kooplieden te Amsterdam’) 
GAR, Archief van de Maatschappij van Assurantie,  Belening, etc., 199: 5, 40, 354 (various 

accounts and letters) 
GAR, Archief van Kuyls Fundatie,  90: 52, 56 (various letters) 
De Koopman, Vol. IV ( 1772-1773) (Dutch periodical) 

 



Appendix G: Full model solution1

The appendix is structured as follows. In Section G.1 we first describe the setup of the model

and the underlying assumptions, including the specific loan contract and matching frictions

that we consider. Next, in Section G.2, we analyze the Nash bargaining problem that borrowers

and lenders solve when they meet. To do so, we first derive each agent’s value function from

obtaining a loan. We prove Proposition 3 in the main text that describes under what conditions

borrowers will always accept a loan from a relatively pessimistic agent. In Section G.3 we

then derive the equilibrium price as a function of outcomes in the loan market. We provide

the conditions under which the general equilibrium exists and is unique. In Section G.4 we

prove Proposition 1 in the main text that states that the optimal contract is always risk-free. We

also show that Proposition 2 in the main text follows logically from the preceding results. In

Section G.5, we analyse the local comparative statics of the model in closed-form and we prove

Lemmas 4 – 7. Finally, in Section G.6 we provide global results through numerical analysis.

G.1 Setup and Assumptions

We model the market for collateralized lending as a matching market with frictions. Time is

continuous and there is an infinite horizon. We focus on a steady state solution.

Apart from a risk free storage technology (with an instantaneous interest rate of zero), there

is a single risky asset that is in unit supply. Following Geanakoplos (2003), the asset has a

binomial payout where the good and the bad state occur with probability 1/2. The timing of

the payout is uncertain and follows a Poisson process with intensity π > 0.

There are three type of agents in the market i ∈ {1, 2, 3} with masses Ni who are all

risk neutral and have a subjective discount rate of zero. Each agent is infinitesimally small.

Crucially, the agents have different beliefs about the asset payout. They all agree that in the

good state of the world the asset will pay r, they disagree about the payoff in the bad state of

the world: r1 < r2 < r3. Expected payouts are given by vi. All agents have a cash endowment

of ci. For simplicity, we assume that only type 3 agents will ever be cash constrained.

We focus on the case where v2 < p < v3. After the derivation of the equilibrium, we provide

sufficient restrictions on the model’s primitives to arrive at this case. In this scenario, only type

3 agents are willing to buy the asset. They will try to borrow from type 1 and type 2 agents to

1We are indebted to Dmitry Orlov and Victor Westrupp for their assistance in the development of this appendix.
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increase their asset holdings above and beyond what they can buy with their own capital c3. In

what follows, we will initially derive the general case where N1 6= N2. However, to generate

closed-form solutions, we will restrict the analysis to the special case where N1 = N2.

G.1.1 Contract Space and Loan Contracts

We consider the following (restricted) contract space. First, there are shorting restrictions and

agents can only buy and hold the asset. Second, agents can contract loans from each other to

increase their asset holdings. Loans are collateralized with the asset and are non-recourse. (In

equilibrium this assumption turns out to be irrelevant since a borrower will invest all of her

wealth in the asset.)

A loan contract stipulates the size of the loan per unit of the asset lj and an interest rate ρj

for j ∈ {1, 2}. In our stylized setting, loan contracts do not have a fixed maturity: a contract

ends if (1) the asset pays out, or if (2) the contract breaks down with an exogenous Poisson

intensity λ. This greatly facilitates the computation of the steady state equilibrium. Interest

payments are made lump sum at the end of the contract and are independent of the realized

contract length. This may seem unrealistic, but notice that agents’ subjective discount rates are

zero. Interest rates therefore only reflect the underlying risk of the collateral or the transfer of

surplus from borrower to lender, both of which are independent of the length of the contract.

We assume that if the contract ends before the asset pays out, the interest payment is zero.

The borrower simply uses the proceeds from selling the collateral to repay the principal of

the loan. We need to make this assumption to ensure the existence of a steady state solution,

but there is a clear economic intuition behind it. Again, interest rates only capture risk or the

transfer of surplus. In steady state, a loan contract ending before the asset pays out is always

risk free: the price at which the asset was bought and the price at which the collateral is sold

to repay the loan has to be the same by the definition of a steady state. Furthermore, if a loan

contract ends before the asset pays out, there is no surplus generated yet that can be shared.

If the loan contract ends upon the asset payout, there are two possible scenarios. In the good

state of the world, the asset payout is always sufficient to settle both principal and interest. In

the bad state of the world, this may not be the case: the borrower may be forced to default. In

that case, a lender can seize the asset’s payout without any additional costs. It will charge a

risk premium in the good state of the world to be compensated for this default risk. Crucially,

borrowers and lenders can disagree about whether there will be default in the bad state of the
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world or not. If a borrower is more optimistic, he might believe that the return in the bad state

of world will be sufficient to repay principal and interest, while the lender believes this is not

the case.

G.1.2 Population Dynamics

We closely follow Duffie, Garleanu and Pedersen (2005) in setting up the population dynamics.

Define Mj(t) as the total mass of matches between type 3 agents (borrowers) and type j ∈

{1, 2} agents (lenders) at time t. Let Uj(t) = Nj −Mj(t) be the unmatched mass of type j

lenders and U3(t) = N3 −M1(t) −M2(t) the unmatched mass of borrowers. N is the total

mass of agents in the economy. Lower case variables refer to proportions relative to N and are,

by definition, bounded in between 0 and 1.

For simplicity, we assume that only borrowers actively search for lenders. They search with

intensity µ and they cannot ex ante distinguish between type-1 and type-2 lenders or other type-

3 agents. Under the exact law of large numbers for random independent matches, a borrower

is matched with a lender of type-j at a total rate of µu3(t)uj(t). At the same time, a fraction

of existing contracts breaks down with intensity λ. The rates of change for u3(t) and mj(t) for

j ∈ {1, 2} are therefore given by

du3(t) = −µu3(t) [u1(t) + u2(t)] + λ [m1(t) +m2(t)] (G.1)

dmj(t) = µu3(t)uj(t)− λmj(t) (G.2)

with the following restrictions

mj(t) + uj(t) = nj (G.3)

u3(t) = n3 −m1(t)−m2(t) (G.4)

n1 + n2 + n3 = 1 (G.5)

Proposition G.1 There exists a unique steady-state solution to equations (G.1)-(G.5).

Proof. Conjecture that a steady-state exists. Start by substituting (G.3)-(G.5) in (G.1) and

setting the right hand side of (G.1) to 0. This gives the following quadratic equation:

G(u3) ≡ u2
3µ+ u3(µ+ λ− 2µn3)− λn3 = 0.

Now notice that G(0) < 0 and G(1) > 0, which implies that one of the roots of G(.) must be

negative while the other must lie in (0, 1). Let u3 be the positive root for the quadratic problem
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above. To show that u3 < n3, all we need to prove is that G(n3) > 0. This follows directly

from the fact that G(n3) = n3µ(1− n3) > 0.

After setting the right hand side of (G.2) to zero, using (G.3), and realizing that mj =

u3µ
u3µ+λ

nj and u3 is bounded in (0, 1), it is immediate that the equilibrium values for m1 and m2

are also bounded in (0, 1). When we analyze the special case where N1 = N2, it is straightfor-

ward to see that u1 = u2 and m1 = m2.

G.2 The Loan Decision

G.2.1 Value Functions

We first define the borrowers’ steady state value functions. We define q∗j as the number of

assets a borrower can buy in equilibrium when he is matched to a type j lender, and Π∗3,j as the

expected profit per unit of the asset from a type-j loan for j ∈ {1, 2}. Vj is the value function

from signing a loan contract with a type-j lender. q∗0 and Π∗3,0 are defined as quantities and

expected profits when a borrower is not matched to a lender; V0 is the corresponding value

function.

We first conjecture that a steady state exists in which the price p, loan quantities l∗j and

interest rates ρ∗j are constant and in which Vj ≥ V0 (full matching). In this case, the value

functions are given by the following:

V0 =
π

π + µ
q∗0Π∗0 +

µ

π + µ
[u1V1 + u2V2 + (1− u1 − u2)V0] (G.6)

V1 =
π

π + λ
q∗1Π∗1 +

λ

π + λ
V0 (G.7)

V2 =
π

π + λ
q∗2Π∗2 +

λ

π + λ
V0 (G.8)

where

Π∗0 = v3 − p (G.9)

and

Π∗j =
1

2

[
r − (1 + ρj)l

∗
j −

c3

q∗j

]
+

1

2
max

[
r3 − (1 + ρj)l

∗
j −

c3

q∗j
,−c3

q∗j

]
,

which, realizing that −c3/q
∗
j = l∗j − p, can be rewritten as

Π∗j =
1

2
(r − ρjl∗j ) +

1

2

{
l∗j + max

[
r3 − (1 + ρj)l

∗
j , 0
]}
− p. (G.10)
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The total amount of assets q∗j that a borrower can purchase depends on the amount of capital

c3 he has and loan size l∗j :

q∗j (p− l∗j ) ≤ c3.

Defining haircuts as

h∗j =
p− l∗j
p

, (G.11)

this constraint can be rewritten more intuitively as

q∗j × p× h∗j ≤ c3:

the borrower’s capital should cover the total value of the assets purchased times the haircut. As

long as Π∗j , the borrower’s expected profit per unit of the asset, is strictly positive, the borrower

will want buy as much of the asset as possible and the constraint will be binding, in which case

q∗j =
c3

p− l∗j

for j ∈ {1, 2}, and

q∗0 =
c3

p
.

Solving equations (G.6)-(G.8) in terms of quantities and expected profits, we arrive at

V0 =
(π + λ)2q∗0Π∗0 + (π + λ)µu1q

∗
1Π∗1 + (π + λ)µu2q

∗
2Π∗2

(π + λ)[π + λ+ µ(u1 + u2)]
(G.12)

V1 =
(π + λ)λq∗0Π∗0 + [(π + λ)(π + µu1) + πµu2]q∗1Π∗1 + λµu2q

∗
2Π∗2

(π + λ)[π + λ+ µ(u1 + u2)]
(G.13)

V2 =
(π + λ)λq∗0Π∗0 + λµu1q

∗
1Π∗1 + [(π + λ)(π + µu2) + πµu1]q∗2Π∗2

(π + λ)[π + λ+ µ(u1 + u2)]
. (G.14)

Intuitively, each value function is a weighted average of all the possible payoffs. Under the

exact law of large numbers, these weights can interpreted as the probabilities that a certain

payoff Π∗j will be realized.

We then consider the lenders’ value functions, where Lj0 is the value of not having a contract

for a type-j lender and Lj is the value of being in a loan contract. In steady state, the value

functions are given by:

Lj0 =
µ

π + µ
(ujL

j + (1− uj)Lj0) (G.15)

Lj =
π

π + λ
q∗j

{
1

2
ρ∗j l
∗
j +

1

2
[min{rj, l∗j (1 + ρ∗j)} − l∗j ]

}
+

λ

π + λ
Lj0, (G.16)

31



solving the system of equations in terms of interest rates and loan sizes, we arrive at the fol-

lowing results:

Lj0 =
µuj

π + λ+ µuj
q∗j

{
1

2
ρ∗j l
∗
j +

1

2
[min{rj, l∗j (1 + ρ∗j)} − l∗j ]

}
(G.17)

Ljj =
π + µuj

π + λ+ µuj
q∗j

{
1

2
ρ∗j l
∗
j +

1

2
[min{rj, l∗j (1 + ρ∗j)} − l∗j ]

}
. (G.18)

G.2.2 Nash Bargaining Solution For The Optimal Contract

When a borrower and lender meet they negotiate over the terms of the contract. We assume

that they Nash bargain over the total surplus of the contract, where borrowers have bargaining

power θ ∈ [0, 1] that is determined outside the model. Before we solve the bargaining problem,

note the following:

• We conjecture that the optimal debt contract is always risk free from both the perspective

of the borrower and lender. We prove this after the derivation of the equilibrium. This

means that lj(1 + ρj) ≤ rj .

• As long as
(
l∗j , ρ

∗
j

)
≥ 0, a lender will always be at least indifferent between signing a

loan contract or not. We assume that a lender will always go ahead with the loan contract

if the borrower strictly prefers to sign the contract.

• Borrowers do not always strictly prefer to go ahead with a loan. Specifically, they might

decide to turn down a type-1 contract. In what follows, we focus on a “full matching”

equilibrium where Vj ≥ V0 for j = 1, 2 and a borrower will always accept a type-1 loan.

After the derivation of the equilibrium, we will calculate the constraints on the model’s

primitives that are sufficient to guarantee this.

• There are cases (specifically when lenders have all the bargaining power) that a borrower

is indifferent between signing a loan contract or not. As long as the lender strictly prefers

to go through with the loan, we assume that the borrower will go ahead and sign the

contract.

The Nash bargaining problem can be formulated as

max
lj ,ρj

(Vj − V0)θ(Ljj − L
j
0)1−θ (G.19)
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such that

lj ≥ 0

ρj ≥ 0

lj(1 + ρj) ≤ rj

We define SBj = Vj − V0 as the borrower’s surplus associated with a type-j loan and SLj =

Lj − Lj0 as the lender’s surplus. We can rewrite each agent’s surplus as follows:

SBj = (γ + νu−j)qjΠj − γq0Π0 − νu−jq−jΠ−j

SLj = ϑjqj

{
1

2
ρjlj +

1

2
[min{rj, lj(1 + ρj)} − lj]

}
where

γ =
π

π + λ+ µ(u1 + u2)
, (G.20)

δ =
πµ

(π + λ)(π + λ+ µ(u1 + u2))
, and (G.21)

ϑj =
π

π + λ+ µuj
. (G.22)

As long as the optimal contract is risk-free, we can use the expressions from (G.9)-(G.10) to

rewrite the surpluses as:

SBj = (γ + δu−j)
c3

p− lj
(v3 − p− ρjlj)− γ

c3

p
(v3 − p)− δu−j

c3

p− l−j
(v3 − p− ρ−jl−j)(G.23)

SLj = ϑj
c3

p− lj
ρjlj (G.24)

The Lagrangian is given by:

L(lj, ρj; η, l
∗
−j, ρ

∗
−j) = (SBj )θ(SLj )1−θ + η1lj + η2ρj + η3(rj − lj(1 + ρj))

and the Kuhn-Tucker necessary conditions for the constrained maximization problem are the

following:

θ(SBj )θ−1(SLj )1−θ ∂S
B
j

∂lj
+ (1− θ)(SBj )θ(SLj )−θ

∂SLj
∂lj

+ η1 − η3(1 + ρj) = 0 (G.25)

θ(SBj )θ−1(SLj )1−θ ∂S
B
j

∂ρj
+ (1− θ)(SBj )θ(SLj )−θ

∂SLj
∂ρj

+ η2 − η3lj = 0 (G.26)

(lj, ρj, rj − lj(1 + ρj)) ≥ 0 (G.27)

(η1lj, η2ρj, η3(rj − lj(1 + ρj)) = 0. (G.28)

We solve this problem in multiple steps:
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1. Multiply (G.25) by lj and (G.26) by ρj , thus eliminating the restrictions related to η1 and

η2. We can thus rewrite (G.25) and (G.26) as the following:

(SBj )θ−1(SLj )−θ

[
θSLj lj

∂SBj
∂lj

+ (1− θ)SBj lj
∂SLj
∂lj

]
= η3lj(1 + ρj) (G.29)

(SBj )θ−1(SLj )−θ

[
θSLj ρj

∂SBj
∂ρj

+ (1− θ)SBj ρj
∂SLj
∂ρj

]
= η3ρjlj (G.30)

2. Suppose that the last constraint is binding such that rj = lj(1 + ρj). Isolate η3 in (G.30)

and substitute in (G.29) to obtain the following:

θSLj lj
∂SBj
∂lj

+ (1− θ)SBj lj
∂SLj
∂lj

= θSLj (1 + ρj)
∂SBj
∂ρj

+ (1− θ)SBj (1 + ρj)
∂SLj
∂ρj

.

This leads to the following solution for the optimal value of lj:

lj(θ, l−j) = β(θ, l−j)rj + (1− β(θ, l−j))

[
rj − (v3 − p) +

Γ−j
κ−j

p)

1 +
Γ−j
κ−j

]

where:

β(θ, l−j) =
θ(v3 − rj)

θ(v3 − rj) + (1− θ)(p− rj)
[
1 +

Γ−j
κ−j

] ∈ [0, 1]

and

κ−j = γ + δu−j

Γ−j = γ
v3 − p
p

+ δu−j
v3 − p− ρ−jl−j

p− l−j

Note that the optimal loan contract lj(θ, l−j) is the best response function, given the equi-

librium contract with a type −j lender. We have therefore arrived at a Nash equilibrium

that is characterized by the following system of equations:

l1 = β(θ, l2)r1 + (1− β(θ, l2))

 Γ2
κ2
p− (p− r1)(v3 − p− r1)

p
(

1 + Γ2
κ2

)
− r1

 (G.31)

l2 = β(θ, l1)r2 + (1− β(θ, l1))

 Γ1
κ1
p− (p− r2)(v3 − p− r2)

p
(

1 + Γ1
κ1

)
− r2

 , (G.32)

which yields the following solution:

l∗j (θ, p) =
rj

[
φθ + θ

1−θ

(
v3−rj
p−rj

)]
+ (v3 − p)

[
a−j + (1− θ)aj(1− a−j)− φθ + (1− a−j)θ p

p−r−j

]
[
φθ + θ

1−θ

(
v3−rj
p−rj

)]
+ (v3−p)

p

[
a−j + (1− θ)aj(1− a−j) + (1− a−j)θ p

p−r−j

] ,

(G.33)

34



where:

aj =
γ

κj
=

γ

γ + δu−j
=

π + λ

π + λ+ µuj
, and (G.34)

φθ = 1− (1− θ)(1− a1)(1− a2) (G.35)

= 1− (1− θ) µ2u1u2

(π + λ+ µu1) (π + λ+ µu2)
. (G.36)

Note that in the special case where N1 = N2 , we get that u1 = u2 and a1 = a2 = a.

If the constraint lj(1 + ρj) ≤ rj is not binding (such that η3 = 0), it can be shown that no

equilibrium exists. Borrowers and lenders can always find a better allocation by adjusting

lj and ρj up to the point that the constraint binds. Intuitively, type-3 agents will borrow

the maximum amount at which the loan contract is still risk-free.

3. Next, we explore the boundary cases where θ = {0, 1}. For these two cases, we can

solve the maximization problem in the same way as before. The solutions to l∗j (θ, p) are

identical to the limiting cases when we take θ → 1 or θ → 0 in equation (G.33), proving

that the solution is continuous in θ. The solutions are given by lj → rj when θ → 1 (full

bargaining power to the borrower) and lj → rj
p
v3

when θ → 0 (full bargaining power to

the lender). Note that in the case where θ = 0 ,

h∗j(θ, p) = h∗j(θ)

=
v3 − rj
v3

(G.37)

and the equilibrium haircut does not depend on the price.

4. Finally, we calculate the equilibrium value for ρ∗j(θ, p). Notice that the constraint lj(1 +

ρj) ≤ rj is binding. This means that ρ∗j(θ, p) is given by:

ρ∗j(θ, p) =
rj − l∗j (θ, p)
l∗j (θ, p)

. (G.38)

Is the solution l∗j (θ, p) feasible? The solution is bounded between the interval
[
rj

p
v3
, rj

]
,

which is positive if rj > 0. Since lj(1 + ρj) ≤ rj , this implies that the interest rate interval

for ρ∗j(θ, p) is also bounded on the nonnegative side. We must now check if both SBj ≥ 0 and

SLj ≥ 0. Since ρjlj ≥ 0 in equilibrium for any value of θ, it follows that SLj ≥ 0.
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G.2.3 Proof of Proposition 3

As indicated before, it will not always be the case that SBj ≥ 0. Specifically, it might not be

optimal for a borrower to accept a loan from a type-1 lender. We can calculate the restrictions

on the model’s primitives that will guarantee that a borrower will always accept this loan.

Proof. of Proposition 3 (V1 ≥ V0).

The first step of the proof is provided by the following Lemma:

Lemma G.2 If SBj
(
l∗j (1, p), ρ

∗
j(1, p)

)
> 0, then SBj

(
l∗j (θ, p), ρ

∗
j(θ, p)

)
≥ 0 ∀θ ∈ [0, 1]

Proof. The case for θ = 0 is trivial since the SBj equals 0 if the lender has all the bargaining

power. Define S(θ) as short-hand for S(l∗j (θ, p), ρ
∗
j(θ, p)). We prove the Lemma by contradic-

tion. Suppose ∃θ̂ ∈ [0, 1] such that SBj (θ̂) < 0. Since SBj (θ) is continuous in θ, ∃θ̃ ∈ (θ̂, 1) such

that SB(θ̃) = 0. This implies that SBj (θ̂)θ̂SLj (θ̂)1−θ̂ ≥ SBj (θ̃)θ̂SLj (θ̃)1−θ̂ = 0 ⇒ SLj (θ̂) = 0.

If the lender’s surplus is equal to 0, this is only possible if l∗j (θ̂, p)ρ
∗
j(θ̂, p) = 0. Since the

loan contract is risk free, this implies that l∗j (θ̂, p) = rj , resulting in SBj (θ̂) = SBj (1) > 0, a

contradiction.

The intuition for this Lemma is straightforward. The reason a borrower would not want to

accept a type-1 loan would be that he is better off waiting for a type-2 lender. When θ = 1, the

borrower has full bargaining power and will capture all the surplus from the transaction. When

θ < 1, he will have to give some of that surplus to the lender. This means that if it is optimal to

accept a type-1 loan when θ = 1, it also has to be optimal when θ < 1.

As a result, we only have to verify the case when θ = 1, which is relatively simple since

(l∗j (1, p), ρ
∗
j(1, p)) = (rj, 0). Setting θ = 1 and substituting the expressions for Π∗j from (G.9)-

(G.10) into expression (G.23) for SB1 , the surplus from a type-1 loan, we find that the borrower’s

surplus from this contract is strictly positive when θ = 1 if and only if:

1 > a2
p− r1

p︸ ︷︷ ︸
<1

+ (1− a2)
p− r1

p− r2︸ ︷︷ ︸
>1

where a2 is given by (G.34). Isolating r2, and focusing on the special case where a1 = a2,

we arrive at inequality (2) in the main text. We can also isolate r1 to obtain the following

inequality:

r1 >
p(1− a2)r2

p− a2r2
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The RHS is strictly decreasing in p. Therefore, if we substitute v2 for p, we can derive the

following general condition that holds for all v2 < p < v3.

r1 >

(
v2 − a2v2

v2 − a2r2

)
︸ ︷︷ ︸

<1

r2

The inequality is intuitive. It states that the beliefs of type 1 and 2 lenders should not be too far

apart. The maximum distance depends on a2. If a2 is close to 1, matching frictions are quite

severe – either µ lies close to zero or u2, the fraction of free type-2 lenders in the population,

is close to 0 – and the inequality holds for any r2. If a2 is close to 0 and matching frictions are

negligible, the inequality will never hold.

G.3 General Equilibrium and Proof of Existence.

G.3.1 Market Clearing and Equilibrium Prices

The market clearing condition requires that total demand equals the (unit) supply of the asset:

1

N
= q∗0(n3 −m1 −m2) + q∗1m1 + q∗2m2

=
c3

p
u3 +

c3

p− l∗1(θ, p)
m1 +

c3

p− l∗2(θ, p)
m2 (G.39)

It is not feasible to find a closed form solution for all values of θ, but we can easily calculate

the solution for the case when θ = 0:

p∗(θ = 0) = Nc3

(
u3 +m1

v3

v3 − r1

+m2
v3

v3 − r2

)
(G.40)

G.3.2 Proof of existence

Starting with the closed form solution for p∗ when θ = 0, we can prove the existence of a

unique equilibrium for each possible value of θ, restricting the set of parameters such that

v2 < p∗(0) < v3. The proof proceeds as follows.

1. We first calculate the restrictions on the parameter space such that ∂p/∂θ ≥ 0 ∀(θ, p).

This is an intuitive condition that implies that if borrowers have more bargaining power,

they will have more funding at their disposal, and this will lead to a higher price for the

asset.

2. We then apply a version of Picard’s Existence and Uniqueness Theorem for Ordinary

Differential Equations (ODEs) to prove existence and uniqueness.
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Lemma G.3 As long as v3 > p, v2 > v3 − r1 will guarantee that ∂p/∂θ ≥ 0 ∀(θ, p).

Proof. Applying the implicit function theorem to (G.39), the derivative is equal to the following

expression:

∂p

∂θ
= −

(
m1

h1(θ,p)2
∂h1
∂θ

+ m2

h2(θ,p)2
∂h2
∂θ

)
1

Nc3
+ m1

h1(θ,p)2
∂h1
∂p

+ m2

h2(θ,p)2
∂h2
∂p

(G.41)

where hj(θ, p) ≡
[
p− l∗j (θ, p)

]
/p is the equilibrium haircut, given by:

hj(θ, p) =
(v3 − rj)

(
φθ + θ

1−θ
)

pφθ + (v3 − rj) θ
1−θ

(
p

p−rj

)
+ (v3 − p)

[
a−j + (1− a−j)

[
θ p
p−r−j

+ (1− θ)aj
]] .

(G.42)

Expression (G.42) shows that the sign of ∂p/∂θ directly depends on the signs of ∂hj/∂θ and

∂hj/∂p.

The first order derivative of hj with respect to p is equal to:

∂hj
∂p

=
(v3 − rj)

(
φθ + θ

1−θ
) [

θ
1−θ

(v3−rj)rj
(p−rj)2

+ (1− a−j)θ
(v3−r−j)r−j

(p−r−j)2

]
{
pφθ + (v3 − rj) θ

1−θ

(
p

p−rj

)
+ (v3 − p)

[
a−j + (1− a−j)

[
θ p
p−r−j

+ (1− θ)aj
]]}2

(G.43)

where aj and φθ are given by (G.34)-(G.35). This derivative is always positive for ∀(θ, p). We

proceed by listing the conditions under which the derivative of h with respect to θ is positive.

Given the complexity of the solution for ∂h1/∂θ, we list the conditions for the function to be

strictly decreasing in θ based on expression (G.42) for h(θ, p) itself. If the denominator grows

at a rate higher than the numerator with respect to θ, then it means that the function decreases.

Given that both φθ and θ
1−θ are strictly increasing in θ, p > v3−r1 and v3−p > 0 are necessary

and sufficient conditions for ∂h1/∂θ > 0.

Having v3−p is a necessary restriction for borrowers to be willing purchase the asset, which

we assume is always the case. Condition p > v3 − r1 is less straightforward. Since there is no

closed form solution for the equilibrium price p, we must define a lower bound that will hold

for any feasible value of p. Given that p > v2, assuming that v2 > v3− r1 ensures that the price

is strictly increasing in θ, no matter the equilibrium p, as long as v2 < p < v3.

Proposition G.4 As long as v2 < p∗(0) < v3 and v2 > v3− r1, there exists an unique solution

to the problem defined by (G.19).

Proof. We use a variant of Picard’s Existence and Uniqueness Theorem for ODEs to prove this

proposition.2 The initial condition for the ODE is provided by p∗(0) ≡ p0, defined by (G.40).

2See Adkins and Davidson (2012) pp. 87 Theorem 5 for one of the many references in the literature.
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We approximate the differential with the first order derivative of the conjectured equilibrium

price function dp/dθ ≈ ∂p/∂θ. Let the RHS of (G.41) be defined as F (θ, p), then we can

rewrite (G.41) as

p′ = F (θ, p). (G.44)

If F (θ, p) is continuous in both θ and p and continuously differentiable with respect to p on the

rectangle R = {(θ, p) : 0 ≤ θ ≤ 1, a ≤ p ≤ b}, then if (0, p0) ∈ R, there exists an unique

solution to (G.44) with p(0) = p0.

First, we must defineR in our specific setup. Under the restriction listed in Lemma G.3, the

equilibrium price is increasing in terms of θ. It is therefore natural to define {a, b} = {p0, p1}

where p1 ≡ p∗(1). We already defined p0 – clearly (0, p0) ∈ R. Now, we must characterize p1.

Given l∗j (θ = 1, p) = rj , p1 is defined by the following equation:

p1 = Nc3

(
u3 +m1

p1

p1 − r1

+m2
p1

p1 − r2

)
. (G.45)

where p1 is a positive real root of the underlying cubic equation. By Descartes’ rule of signs,

the solution can have either one or three positive real roots. Algebraic manipulation reveals that

there is only one real root, which therefore has to be positive. Let b = p1 be this root.

Next we ensure that p1 < v3. We start from equation (G.45). Notice that the LHS is strictly

increasing in p1 while the RHS is strictly decreasing in p1. Therefore, if v3 is such that:

v3 > p0 = Nc3

(
u3 +m1

v3

v3 − r1

+m2
v3

v3 − r2

)
then it must be that p1 < v3. Note that this restriction is an upper bound and might be too

restrictive.

Finally, we need to make sure that F (.) is continuous and continuously differentiable on p

overR. Analyzing equations (G.41)-(G.43), first notice that the image of hj(.) for (θ, p) ∈ R is

bounded. The solution p(θ) is an increasing function of θ, and therefore, if p1 < v3 and p0 > v2,

it follows that v2 < p < v3 for any p ∈ R. This condition ensures that all the functions inside

(G.41) are continuous except potentially when θ = 1. Now we already know that hj(1, p) =

p/
(
p− rj

)
< ∞ for any p ∈ R, which implies that ∂hj/∂p|θ=1 < ∞ and ∂hj/∂θ|θ=1 < ∞,

ensuring that F (.) is continuous inR. In order to show that F (.) is continuously differentiable

with respect to p, one can easily define an open neighborhood U such that R ⊂ U but none of

the prior restrictions are violated, and show that partial derivatives of F (.) exist for (θ, p) ∈ U ,

thus proving that F ∈ C1. The partial derivatives will depend on
∂2hj
∂θp

,
∂2hj
∂θ2

and
∂2hj
∂p2

which

again can be shown to be continuous in U , including the case when θ = 1.
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G.3.3 Aggregating Restrictions on Parameters

In the preceding analysis we have listed a number of restrictions to ensure that a unique, full

matching equilibrium exists where v2 < p < v3. We now summarize these restrictions:

1. The proof of Proposition 3 states that r1 >
v2−a2v2
v2−a2r2

r2 for V1 > V0 (full matching equilib-

rium). Define

g2 ≡
v2 − a2v2

v2 − a2r2

. (G.46)

2. We know that for the price to be increasing in θ (a necessary condition for uniqueness

and existence of the equilibrium), v2 > v3 − r1, or 2r1 + r2 > r3.

3. In addition, we need that v2 < p0 < v3, where p0 = Nc3

(
u3 +m1

v3
v3−r1

+m2
v3

v3−r2

)
.

Grouping these three restrictions, the model’s primitives must satisfy the following:

g2r2 < r1 < r2 (G.47)

r2 < r3 < (1 + 2g2)r2 (G.48)

r2 < 2p0 − r < r3 (G.49)

Intuitively, the first two restrictions state that beliefs cannot lie too far apart. If beliefs diverge

by too much, the equilibrium price will fall below v2, or borrowers will start to decline type-1

loan contracts. The third restriction effectively defines an upper and lower bound for what c3

can be. If c3 is too small, the price will dip below v2, if it is too large, the price will exceed v3.

G.4 Proofs of Propositions 1 and 2

Next, we prove Proposition 1 in the main text that states that the risk-free contract is the optimal

contract, under the set of parameter restrictions defined before. Borrowers and lenders have

different beliefs about r. This means that their expectations about whether the borrower will

default in the bad state of the world might also differ.

Proof. of Proposition 1 (the equilibrium loan contract is always risk free: lj(1 + ρj) = rj).

We consider two deviations from the risk-free contract, one in which both borrowers and

lenders belief that default in the bad state of the world will occur, one in which only the (more

pessimistic) lenders think the borrower will default.
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1. Default according to both borrowers and lenders: r3 < lj(1 + ρj) ≤ r.

This case is ruled out because there are no gains from trade. We prove this by contradic-

tion. Suppose there exists a contract with gains from trade. From (G.10) and (G.15) we

can rewrite borrowers’ and type-j lenders’ profit functions (per unit of the asset) as

1

2

[
r − p− ρjlj

]
+

1

2
[lj − p] ≥ 0

1

2

[
ρjlj
]

+
1

2

[
rj − lj

]
≥ 0

respectively. Combining the two inequalities implies that

rj ≥ lj(1− ρj) ≥ 2p− r ⇒ rj ≥ 2p− r ⇒ vj ≥ p.

This is a contradiction since p > vj .

2. Default according to lenders; full repayment according to borrowers: rj < lj(1 + ρj) ≤

r3.

In this case, the lender’s surplus is given by

SLj = ϑj
c3

p− lj
1

2
(ρjlj − lj + rj).

This is the average of the contract’s payoff in the good and bad state of the world. Since

the borrower does not expect to default, his surplus function is unchanged and given by

(G.23).

Define

xBj (θ) =
v3 − p− ρ∗j(θ, p)l∗j (θ, p)

p− l∗j (θ, p)
and (G.50)

xLj (θ) =
ρ∗j(θ, p)l

∗
j (θ, p)

p− l∗j (θ, p)
(G.51)

where l∗j () and ρ∗j() are the optimal risk-free contracts. xBj (θ) can be interpreted as a

borrower’s profit from the risk-free contract with a type-j lender, per unit of his own

capital, c3. xjj is the lender’s profit. Any risky contract (ρj, lj) > (ρ∗j , l
∗
j ) that attempts to

maximize total surplus for any θ ∈ [0, 1] must satisfy the following conditions:

c3

p− lj
(v3 − p− ρjlj) ≥ c3x

B
j (θ) (G.52)

c3

p− lj
1

2
(ρjlj + rj − lj) ≥ c3x

L
j (θ) (G.53)

rj < lj(1 + ρj) < r3. (G.54)
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We concentrate on conditions (G.52) and (G.53), from which we can derive the following

condition for ρjlj:

v3 − p− xBj (θ)(p− lj) ≥ ρjlj ≥ 2xLj (θ)(p− lj) + lj − rj

This interval is only non-empty if

v3 − p− xBj (θ)(p− lj) ≥ 2xLj (θ)(p− lj) + lj − rj .

After substituting for (G.50) and (G.51), we can rewrite the inequality as:

(v3 + rj − 2p)︸ ︷︷ ︸
<0

(
lj − l∗j
p− l∗j

)
︸ ︷︷ ︸

>0

≥ 0,

which is a contradiction. The first LHS term is strictly negative since v3 +rj < 2v2 < 2p.

To verify this, consider j = 2 and notice that 2v2 = r + r2 > v3 + r2. The second term

on the LHS is always strictly positive since any risky contract must feature a loan size

that is strictly larger than the risk-free choice. This implies that a risky contract with

lj > l∗j (and ρj > ρ∗j) makes borrowers worse off compared to the risk-free contract.

In sum, following the intuition from Geanakoplos (2003), a risky loan is never optimal.

The proof of Proposition 2 in the main text follows logically from these results:

Proof. of Proposition 2 (as long as r1 < r2⇒ h1 > h2).

The inequality h1 > h2 follows directly from (G.11) and the fact that the optimal contract

is risk free and l∗1 < l∗2.

G.5 Comparative Statics: proofs of Lemmas 4 – 7

Next, we analyse the comparative statics of the model and, in particular, provide proofs for

Lemmas 4 – 7. Starting point is a situation where beliefs of type 1 and 2 lenders are identical,

i.e. r1 = r2. We then analyse the impact of a shock to r1, keeping r2 constant. In order to

guarantee closed form solutions, we simplify the model in two dimensions. First, we calculate

all derivatives at the point where r1 = r2 = r. The comparative static results are therefore local

and only valid for small changes in r1. In the next section, we present global results through

numerical analysis. Second, we restrict the analysis to the special case where N1 = N2 and

a1 = a2 = a.

Proof. of Lemma 4: δh1
δr1
− δh2

δr1

∣∣∣
r1=r2

< 0 for ∀(θ, p) ∈ [0, 1]× (v2, v3)
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First, we calculate the differences in first order derivatives from expression (G.11):

δh1

δr1

− δh2

δr1

∣∣∣∣
r1=r2

= −1

p

(
δl∗1
δr1

− δl∗2
δr1

)
− 1

p

δp

δr1

(
δl∗1
δp
− δl∗2
δp

)
+
δp

δr1

(
l∗1 − l∗2
p2

)∣∣∣∣
r1=r2

(G.55)

The third term on the RHS will be equal to zero as l∗1 = l∗2 = l∗. The same is true for the second

term. To see this, start from expression (G.33) and notice that l∗1 and l∗2 depend on p in exactly

the same way. As a result, the derivatives of l∗1 and l∗2 with respect to p will be identical when

r1 = r2.

The first term on the RHS is different from zero. We first calculate the derivatives of l∗j with

respect to r1:

δl∗1
δr1

=
1

D(l∗1)

{
φθ +

θ

1− θ

[
v3 − r1

p− r1

+
v3 − p

(p− r1)2
(r1 − l∗1)

]}
δl∗2
δr1

=
1

D(l∗2)

v3 − p
(p− r2)2

(1− a) θ(p− l∗2)

where D(l∗j ) is the denominator in expression (G.33) and φθ is given by (G.35). As long as

r1 = r2, D(l∗1) = D(l∗2) = D(l∗). We then calculate the difference:

δl∗1
δr1

− δl∗2
δr1

∣∣∣∣
r1=r2

=
1

D(l∗)

{
φθ +

θ

1− θ
(v3 − r) (p− r) + (v3 − p) [(r − l∗)− (1− a)(1− θ)(p− l∗)]

(p− r)2

}
.

(G.56)

If θ = 0, the difference is always positive since, from expression (G.35), φθ > 0 for ∀θ ∈ [0, 1].

The second term on the RHS will be smallest when (1−a)(1− θ) is close to one, its maximum

value. Since

(v3 − r) (p− r) + (v3 − p) (r − l∗)− (v3 − p) (p− l∗) = (p− r)2 > 0, (G.57)

the RHS will always be positive.

Proof. of Lemma 5: δh1
δc3
− δh2

δc3

∣∣∣
r1=r2

= 0 for ∀(θ, p) ∈ [0, 1]× (v2, v3)

This proof follows from the fact that

δh1

δc3

− δh2

δc3

∣∣∣∣
r1=r2

= −1

p

δp

δc3

(
δl∗1
δp
− δl∗2
δp

)
− δp

δc3

(
l∗1 − l∗2
p2

)
. (G.58)

As long as r1 = r2, the second term on the RHS will be equal to zero. So will the first term:

since l∗1 and l∗2 depend on p in exactly the same way, the derivatives of l∗1 and l∗2 with respect to

p will be identical.

Proof. of Lemma 6:
δρ1
δr1
− δρ2

δr1

∣∣∣
r1=r2

≶ 0
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In equilibrium, loans are risk free and the total loan payment equals the return in the bad

state of the world (from the point of the lender), that is lj(1 + ρj) = rj . Therefore

δρ1

δr1

=
1

(l∗1)2

(
l∗1 − r1

δl∗1
δr1

)
δρ2

δr1

= − 1

(l∗1)2
r2

δl∗2
δr1

.

Taking the difference and imposing that r1 = r2 yields

δρ1

δr1

− δρ2

δr1

∣∣∣∣
r1=r2

=
1

(l∗)2

[
l∗ − r

(
δl∗1
δr1

− δl∗2
δr1

)∣∣∣∣
r1=r2

]
.

Using expressions (G.33) and (G.56) for l∗ and
δl∗1
δr1
− δl∗2

δr1

∣∣∣
r1=r2

to simplify, we arrive at

δρ1

δr1

− δρ2

δr1

∣∣∣∣
r1=r2

=
1

(l∗)2

1

D(l∗)

θ

1− θ
v3 − p

(p− r)2︸ ︷︷ ︸
>0

[(1− a) (1− θ) [r(p− r) + p− l∗]− (r − l∗)] .

(G.59)

While the first term is always weakly positive, the sign of the second term is ambiguous and

depends on the exact values of θ and a. Note that if θ = 0, the difference in derivatives is zero.

In this case, lenders extract all surplus, such that ρ∗j(0, p) = v3−p
v3

, which does not depend on r1.

If θ = 1, interest rates will be zero, as borrowers have all bargaining power, and the difference

in derivatives is not defined.

Proof. of Lemma 7:

∣∣∣∂h1∂r1
− ∂h2

∂r1

∣∣∣
r1=r2

1
h
>
∣∣∣∂ρ1∂r1
− ∂ρ2

∂r1

∣∣∣
r1=r2

1
ρ

Let

∆εh,r1 ≡
[
∂h1

∂r1

− ∂h2

∂r1

]
r1=r2

1

h

∆ερ,r1 ≡
[
∂ρ1

∂r1

− ∂ρ2

∂r1

]
r1=r2

1

ρ
,

where h and ρ are the initial haircut and interest rate given by p−l∗
p

and
r−l∗
l∗ , respectively. ∆εh,r1

and ∆ερ,r1 are the differences in semi-elasticities of type 1 and 2 haircuts and interest rates with

respect to a change in r1. The semi-elasticities measure the percentage change in haircuts or

interest rates in response to a unit change in r1. For example, if r1 falls by x, ∆εh,r1 captures

the percentage difference in responses between h1 and h2.

Using expressions (G.55) and (G.56), we arrive at the following absolute value of ∆εh,r1:∣∣∆εh,r1∣∣ =
1

p− l∗
1

D(l∗)

[
φθ +

θ

1− θ
(v3 − r)(p− r) + (v3 − p)[(r − l∗)− (1− a)(1− θ)(p− l∗)]

(p− r)2

]
(G.60)
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We use l∗’s functional form from (G.33) to simplify this expression. We first rewrite (G.33),

noting that we are considering the case where a1 = a2 = a, and plugging in for φθ from (G.35):

l∗(p, θ)|r1=r2
=

1

D(l∗)

[
r

(
φθ +

θ

1− θ
v3 − r
p− r

)
+ (v3 − p)

θ(1− a)r

p− r

]
=

r

D(l∗)

[
φθ +

θ

1− θ
(v3 − r)(p− r) + (v3 − p)(1− a)(1− θ)(p− r)

(p− r)2

]
(G.61)

Combining expressions (G.60) and (G.61), we arrive at

∣∣∆εh,r1∣∣ =
l∗

(p− l∗) r +
1

p− l∗
1

D(l∗)

θ

1− θ
(v3 − p)
(p− r)2

[(r − l∗)− (1− a)(1− θ)(2p− l∗ − r)]︸ ︷︷ ︸
>0

(G.62)

From (G.57) we can see that ∆εh,r1 is always positive.

Using (G.59), it is straightforward to derive the following expression for ∆ερ,r1:

∆ερ,r1 =
1

(r − l∗)
1

l∗
1

D(l∗)

θ

1− θ
(v3 − p)
(p− r)2

[(1− a)(1− θ)[2p− r − l∗]− (r − l∗)]︸ ︷︷ ︸
≶0

. (G.63)

Following the discussion below expression (G.59), the sign of ∆ερ,r1 is ambiguous and depends

on the exact parameter values.

To calculate the difference between |∆εh,r1| and |∆ερ,r1|, we need to consider two cases:

1. [(1− a)(1− θ)[2p− r − l∗]− (r − l∗)] < 0 and |∆ερ,r1| = −∆ερ,r1

In this case we have that:

|∆εh,r1 | − |∆ερ,r1 | =
l∗

(p− l∗) r︸ ︷︷ ︸
>0

+
1

D(l∗)

θ

1− θ
(v3 − p)
(p− r)2

[(r − l∗)− (1− a)(1− θ)(2p− l∗ − r)]︸ ︷︷ ︸
>0

×
[

1

p− l∗ −
1

r − l∗
r

l∗

]
︸ ︷︷ ︸

<0

=
φθ

D(l∗)(p− l∗) +
1

D(l∗)(p− l∗)
θ

1− θ
(v3 − p)
(p− r)2

× Φ

with

Φ = (v3 − r)(p− r)
[

1

v3 − p
+ (1− a)(1− θ)

]
︸ ︷︷ ︸

>0

+[r − l∗ − (1− a)(1− θ)(2p− r − l∗)] 1

r − l∗︸ ︷︷ ︸
>0

[
r − l∗ − (p− l∗) r

l∗

]
︸ ︷︷ ︸

<0

.
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It can be shown that Φ > 0:

Φ >I (v3 − r)(p− r)
[

1

v3 − p
+ (1− a)(1− θ)

]
+ [1− (1− a)(1− θ)]

[
r − l∗ − (p− l∗) r

l∗

]
≥II (v3 − r)

(p− r)
(v3 − p)

+
[
r − l∗ − (p− l∗) r

l∗

]
>III (v3 − r)

(p− r)
(v3 − p)

− (v3 − r)

= (v3 − r)
(

2p− r − v3

v3 − p

)
>IV 0,

where (>(I)) comes from replacing (2p− r − l∗) with (r − l∗). Since p > r and

r − l∗ − (1− a)(1− θ)(2p− r − l∗) > 0,

replacing p by r increases a positive coefficient multiplying a negative term, thus strictly

decreasing the expression. (>(II)) comes from setting (1 − a)(1 − θ) = 0, its minimal

value. (>(III)) comes from setting l∗ and v3 at their maximum attainable values ( l∗(θ =

1) = r and p = v3) in the negative term. Finally, (>(IV )) comes from p > v2 and

2v2 − r − v3 = 1
2
(r − r3) > 0.

2. [(1− a)(1− θ)[2p− r − l∗]− (r − l∗)] > 0 and |∆ερ,r1| = ∆ερ,r1

For this case, we were unable to find a closed-form proof. Extensive numerical analy-

sis (available upon request) indicated, however, that |∆εh,r1| > |∆ερ,r1 | for all feasible

parameter values.

In sum, the Lemma holds for both cases.

G.6 Numerical simulations and global results

In the previous section, we derived closed form solutions for the relevant comparative statics

when r1 = r2. These results indicate how haircuts and interest rates change in response to

relatively small changes in r1. It is possible that responses look different when we consider

larger shocks. In this section, we analyze this numerically. In general, results are consistent

with the previous section.

Starting point for the numerical simulations is r1 = r2. We then reduce r1, keeping r2

constant, and trace out the impact on haircuts and interest rates. As discussed in Section G.3.3,

to guarantee the existence of a (unique equilibrium), we can only let r1 decrease to g2r2 , where

g2 is given by expression (G.46). For this exercise, we normalize the model in two dimensions.
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First, we impose that the average valuation of the asset by type 2 and 3 agents equals one, that

is

v2 + v3

2
= 1. (G.64)

This is a pure normalization. Second, we impose that in the scenario where lenders have all

bargaining power (θ = 0) and r1 = r2, the price also equals unity: p(θ = 0, r1 = r2) = 1.

A price lower than one would mean than a shock to r1 would sooner drive the price below

v2 , at which point the equilibrium breaks down. A price higher than one would imply that

allocating more bargaining power to borrowers (θ → 1) would sooner drive prices above v3,

also destroying the equilibrium. Imposing that p(θ = 0, r1 = r2) = 1 trades off these two

potential (numerical) problems. Keeping all else equal, equation (G.40) pins down the amount

of optimist capital c3.

For our simulations, we fix the haircut a lender charges when θ = 0 and r1 = r2 = r at

h(θ = 0, r1 = r2) ≡ h0. Together with expression (G.64), this imposes a number of restrictions

on r and r.

1. When θ = 0, the haircut is given by expression (G.37):

h0 =
v3 − r
v3

.

Combining this with expression (G.64), and noting that r2 = r, implies that

r = (1− h0)
4− r
3− h0

. (G.65)

2. The condition that v3 < r implies a lower bound on the values that r can take. Plugging

in for (G.64) and (G.65), we arrive at:

r >
4

4− h0

.

3. Finally, we need that r3 > r. This implies an upper bound on the values that r can take.

To see this, plug in for (G.64) and (G.65) to arrive at:

r < 1 + h0.

Points (2.) and (3.) define an interval for possible values of r. For simplicity, we use the

midpoint of this interval in our simulations (results are generally robust to using other feasible

values). Given h0, this choice for r pins down r through expression (G.65).

47



Apart from these normalizations, we need to fix the other parameters of the model. Most

important is h0. Changing the other parameter values does not have important quantitative

implications. We cannot use any value of h0 in (0, 1): there is an upper bound. As discussed in

Section G.3.3, differences of beliefs in the model cannot be too extreme, specifically,

r2 >
r3

1 + g2

Using (G.64), and noting that r2 = r, implies that:

r <
2− r
1 + g2

.

Plugging in for (G.65) yields

h0 <
2(r − 1) + g2(4− r)

2 + g2(4− r) ≡ h0.

In our simulations we set h0 equal to this upper bound. Qualitatively, results are similar for

other h0 ∈ (0, h0], but using h0 is most conservative. Lemma 7 states that the difference (in

absolute value) in semi-elasticities between type 1 and 2 loans with respect to changes in r1 is

larger for haircuts than it is for interest rates. Unreported simulation results indicate that this

difference is smallest when h0 = h0.

Table G.1 gives an overview of the different normalizations and parameter choices and

Figure G.1 presents the simulation results. On the x-axis we display r1 ∈ [g2r2, r2] Panels A

and C show how haircuts charged by type 1 and type 2 lenders change as we move r1 away

from r2. We consider three scenarios where θ ∈ {0.1, 0.5, 0.9}. As expected, in response to

a decrease in r1, type 1 haircuts increase. At the same time, market wide leverage falls and

the equilibrium price p drops. This causes type 2 haircuts to decrease. Panel E presents the

difference between the two type of haircuts, normalized by their initial level where r1 = r2 =

r and h1 = h2 = h :

h1(r1)− h2(r1)

h(r)
. (G.66)

This expression shows how much the difference in haircuts goes up in response to a given

decrease in r1 relative to the initial level of haircuts. In the main text, we calculate the difference

in semi-elasticities at the point where r1 = r2. Expression (G.66) is the global equivalent.

Consistent with Lemma 4, expression (G.66) is always positive.

Panels B and D repeat the exercise for interest rates. For both type 1 and 2 loans, interest

rates increase as r1 falls. The interest rate is defined as surplus payments divided by the loan
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amount. Loans extended by type 1 agents become smaller when r1 falls (“size effect”) and

generate a smaller overall surplus which leads to a reduction in surplus payments to the lenders

(“surplus effect”). The net impact on the interest rate is ambiguous. In the simulations, the size

effect dominates and interest rates increase. Loans extended by type 2 agents tend to increase

due to a fall in the equilibrium price and generate a higher overall surplus. Again, the net

impact on the interest rate is unclear. In the simulations, the surplus effect always dominates

and interest rates go up. Panel F shows the difference in interest rates, normalized by their

initial level where ρ1 = ρ2 = ρ. In the simulations, type 2 interest rates always increase more

than type 1 interest rates, but differences are small: Panels B and D are difficult to distinguish

from each other. This discussion echoes the results from Lemma 6 that establishes that the sign

of the difference is ambiguous.

Panel G looks at the differences between Panels E and F: are relative changes in haircuts

larger than those for interest rates? Consistent with Lemma 7 in the main text, the impact on

haircuts dominates for feasible changes in r1:∣∣∣∣h1(r1)− h2(r1)

h(r)

∣∣∣∣ > ∣∣∣∣ρ1(r1)− ρ2(r1)

ρ(r)

∣∣∣∣
Unreported simulation results indicate that when θ approaches unity and the change in r1 is

large, there are cases where the response in interest rates is larger than for haircuts. However,

these are instances where interest rates are low to begin with, implying that we divide the

difference between ρ1 and ρ2 by a number close to zero. We interpret this result as an artefact

of the model, and our definition of semi-elasticties, rather than a substantive economic result.

In any case, for moderate changes in r, Lemma 7 is always valid.
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Figure G.1: Simulation results

50



Table G.1: Parameter values numerical analysis

Parameter: π µ λ n1 n2 n3

Values: 1 1 1 1/3 1/3 1/3

Parameter c3 r2 r3 r h0

Values: 2.181 0.550 0.826 1.311 0.485

Normalization(s): p(θ = 0, r1 = r2) = 1 v2 + v3 = 2 h0 = 2(r−1)+g2(4−r)
2+g2(4−r)

h0 =
v3−rj
v3

r = 2
4−h0 + 1+h0

2
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