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This appendix extends our results to the case in which protection not only

requires that an insider has paid cp upon entry, but also that she has never

stopped paying the per-period �xed cost f > 0 at some point in time in the

past. Therefore, the sole modi�cation with respect to the baseline model is

that, in any period, if all insiders have incurred the protection cost cp and

continuously paid f , the outsiders are assumed to be able to instantaneously

enter by paying ce > 0; however, if one of the insiders did not pay cp upon

entry or stopped paying f , then entry would become costless for all outsiders.

Insiders and outsiders take actions simultaneously at each point in time, with

all past actions being observable. In each period, an outsider must therefore

choose whether to take action p, action u or action w. In turn, an insider must

choose whether to pay the protection cost f (an action denoted by bp) or not
to incur it (an action denoted by bu). Throughout, we will let F � f=r.
We �rst study the case in which �n > ce, mentioning at the end of the

appendix how to deal with the cases in which such condition is violated. Before

starting the equilibrium analysis, let us clarify several points. First, we note

that in any subgame in which at least one of the insiders did not pay for

protection in the past (either did not pay cp upon entry or stopped paying

f at some point after entry), all outsiders immediately enter for free. Thus

in the following discussion, we exclusively focus on subgames in which all

insiders have paid for protection at each point in time until the beginning of

the subgame.

Second, we point out that, in any subgame with k � n � 2 outsiders,
there always exist equilibria such that no insider pays f and all the outsiders

then immediately enter at zero cost. Such an equilibrium is a normal outcome

in coordination games. As we explained in the paper�s main text, we shall

refer to such continuation equilibria in subgames with k � n � 2 outsiders
as �no-barrier continuation equilibria�(with the implicit understanding that

the continuation subgame to which they refer is the one with k outsiders).

For certain range of parameters, there will be other equilibria in which all the

insiders will �nd it optimal to pay f in the subgame under consideration. We

will call those �barrier continuation equilibria.�
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Third, note that a key consideration when we study subgames with k out-

siders left is what equilibria will be played in subgames following entry of one

of the outsiders, i.e., subgames with k0 < k outsiders. In particular, if it is

expected that no-barrier equilibria will be played in all following subgames, all

players know that after the next entry, all outsiders will enter for free. This con-

sideration therefore leads to a multiplicity of equilibria. To reduce the number

of cases under consideration, we shall restrict attention to the following class

of equilibria: if, in a subgame with k outsiders, a no-barrier (continuation)

equilibrium is played, then no-barrier equilibria are played in all subgames

with less than k outsiders.1 Technically, this preserves some monotonicity in

the continuation payo¤s of insiders that are useful to determine the payo¤ in

the preemption phase: in that phase, given that the number of outsiders who

enter is random, all continuation subgames are possible outcomes. Intuitively,

these equilibria also appear very reasonable: if it is not possible to coordinate

on paying f for a subgame with k outsiders and n � k insiders, it should be
even more di¢ cult when there are more insiders.

Finally, we note that we will not directly use a proof by induction as we did

in the paper�s appendix in order to illustrate how we compute the continuous-

time limit of the game given the randomizing behavior by game players.

Solving the subgames with less than three outsiders

One outsider left to enter

We work backwards in the state space, so we begin our analysis by consid-

ering those subgames in which just one outsider is left to enter, that is, k = 1.

Since �n > ce, it is a dominant strategy for the unique outsider to enter im-

mediately, so no insider ever pays for protection. The continuation payo¤ of

an insider in such a subgame is then I1 = �n. The continuation payo¤ of the

outsider is O1 = �n.

Two outsiders left to enter

1It is important to take into account that if a barrier equilibrium exists in a subgame with
k outsiders, then there exists a barrier equilibrium in any subgame with fewer outsiders.
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We now consider the subgames with only two outsiders left (i.e., k = 2). As

pointed out above, there always exist �no-barrier equilibria�in which insiders

never pay f in this subgame and both outsiders enter immediately as soon

as the subgame starts. If F is large (F > �n�2 � �n), this is the unique
equilibrium outcome of this subgame. When F < �n�2 � �n, we proceed to
show that there exists another equilibrium in which insiders continuously pay

f as long as no entry takes place. This behavior by insiders, aimed at keeping

the entry cost at ce, creates the same dilemma for the two remaining outsiders

as the one that we studied in the paper�s main text, so they will mix between

entering without paying the protection cost and waiting. The following lemma

formalizes the possible equilibrium outcomes in these subgames as we work in

continuous time.

Lemma A In subgames with two outsiders:

1. There always exists a no-barrier continuation equilibrium such that insid-

ers do not pay f and outsiders choose action u; the continuation payo¤ of

an outsider is O2 = �n, whereas the continuation payo¤ of an insider is

I2 = �n. If F > �n�2 � �n, this is the unique (symmetric) equilibrium.

2. If F < �n�2 � �n, there also exists a barrier continuation equilibrium
such that insiders pay f as long as the subgame is not over and outsiders

mix between actions u and w at each point in time. In the continuous-

time limit of the game, the entry time of an outsider is drawn from an

exponential distribution with parameter �2, where �2 � r(�n � ce)=ce.
The continuation payo¤ of an outsider is O2 = �n � ce, whereas the
continuation payo¤ of insiders is I2 = �2(�n�2�F )+ (1��2)�n, where
�2 � r=(r + 2�2).

Proof. This lemma is a particular case (for k = 2) of a general situation
involving 2 � k � n � 1 outsiders and n � k insiders under the restriction
that no outsider ever takes action p. We do the proof for general k as it will

be used to show later results. For the case of k = 2 (Lemma A), action p is
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dominated for outsiders. We characterize the equilibrium of this game in a

sequence of steps. First, we rule out mixing by the n � k insiders. Next, we
characterize the probability with which each of the k outsiders takes action

u at each point in time (as long as no outsider has yet entered). Finally, we

characterize continuation payo¤s to the k outsiders and the n� k insiders.
We proceed by proving �rst the following claim: if in the subgame with k

outsiders, these players mix between actions u and w, then the existing n� k
insiders cannot be mixing between actions bu and bp in a symmetric equilibrium.
Given that outsiders each choose u with (behavioral) probability �u;k 2 (0; 1)
at each period in which the subgame is not over, suppose to the contrary that

the existing n� k insiders pay f with (per-period) probability 'k 2 (0; 1).
To ease notation, normalize to zero the date at which the subgame under

consideration starts, and let Vbp;k(�) denote an insider�s expected payo¤ from
paying f until time � > 0 given that the other n� k � 1 insiders pay it with
probability 'k and the k outsiders play u with probability �u;k. If there are

�=� periods of length � > 0 each until � is reached, it then follows that

Vbp;k(�) =

�
�
�1X

s=0

('n�k�1k (1� �u;k)k)s(1� 'n�k�1k (1� �u;k)k)(
s�1X
l=0

(�n�k � f)��l +
1X
l=s

�n��
l)

+('n�k�1k (1� �u;k)k)
�
� (

�
�
�1X
l=0

(�n�k � f)��l +
1X
l= �

�

�n��
l),

where we have used the fact that
R �
0
�n�je

�rsds � �n�j� for small � > 0.2

Note that some straightforward manipulations yield that the variation in the

insider�s payo¤ if she pays f one more period (conditional on the subgame not

being over) equals

Vbp;k(�+�)�Vbp;k(�) = ('n�k�1k (1��u;k)k)
�
�'n�k�1k (1��u;k)k(�n�k��n�f)��

�
� .

Because sign(Vbp;k(� +�)�Vbp;k(�)) = sign(�n�k��n� f), we �nd that when
2Recall that the end of the current subgame results in immediate entry by the remaining

outsiders, thus e¤ectively ending the overall game.
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all other insiders pay f at each period with some probability 'k 2 (0; 1) (and
outsiders enter with probability �u;k 2 (0; 1)) that an insider would �nd it

optimally to unilaterally deviate. In particular, she would prefer paying f

with probability one until entry occurred if f < �n�k � �n (equivalently, if
F < �n�k � �n), and she would prefer not to ever put some positive weight
in paying f at any point in time otherwise.

The consequence is that equilibria must involve either all insiders contin-

uously paying f until entry by some outsider occurs or neither of them ever

paying f . It is clear that an equilibrium in which no insider pays f always

exists and it is such that Ik = �n and Ok = �n. In addition, using the same

proof above for 'k = 1 shows that the existing n�k insiders have an incentive
to choose 'k = 1 if F < �n�k � �n regardless of the value taken by �u;k (if
F � �n�k � �n, only 'k = 0 is possible). That is, when F < �n�k � �n,
there exists another equilibrium in which insiders pay f as long as entry does

not occur and outsiders engage in a waiting game to determine who pays the

entry cost ce. We proceed to characterize behavior by outsiders in such an

equilibrium exhibiting delay.

To �nd out the value of �u;k, let 'k = 1 and let Vu;k(�) denote the payo¤

of an outsider to choosing u at time � > 0 given that each of the other k � 1
outsiders choose such an action with probability �u;k at each period of length

� > 0 and wait with complementary probability. It readily follows that

Vu;k(�) =

�
�
�1X

s=0

[(1��u;k)k�1]s[1�(1��u;k)k�1]
 1X
l=s

�n��
l

!
+[(1��u;k)k�1]

�
�

0@ 1X
l= �

�

�n��
l � ce�

�
�

1A ,
so we have

Vu;k(� +�)� Vu;k(�) = �
�
� [(1� �u;k)k]

�
� [ce � (1� �u;k)k�1(�n�+ �ce)].

In order for an outsider to be indi¤erent among choosing action u at all points

in time, we must have that Vu;k(� +�) = Vu;k(�) for all � . Since � � 1� r�
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for small enough � > 0, it follows that

�u;k = 1� (1 + �2�)�1=(k�1),

where �2 � r(�n � ce)=ce.
Given some �xed time � > 0, and m(�) = �=� periods of play until then,

the probability that an outsider does not choose action u at some time earlier

than � converges to

1� lim
�!0

(1��u;k)m(�) = 1� lim
�!0

(1+�2�)
� �
(k�1)� = 1� lim

�!0
[(1+�2�)

1
�2� ]�

�2�
k�1 = 1�e�

�2�
k�1 .

Using the fact �2=(k � 1) = r(�n � ce)=((k � 1)ce), it then follows that an
outsider chooses the �rst time at which to select action u according to an

exponential distribution with parameter �k � r(�n � ce)=((k � 1)ce).
In a mixed-strategy Nash equilibrium, an outsider should be indi¤erent

among all possible times at which to choose action u, so the fact that Vu;k(�) =

�n � ce implies that the expected gain of an outsider is Ok = �n � ce. In
addition, using the fact that each outsider chooses her entry time according

to an exponential distribution with parameter �k, the continuation payo¤ of

an insider is

Ik =

Z 1

0

�Z b�
0

(�n�k � f)e�rsds+
Z 1

b� �ne
�rsds

�
k�ke

�k�kb�db� .
Integrating and letting �k � r=(r + k�k) then yields that the continuation

payo¤ of an insider equals

Ik = �k(�n�k � F ) + (1� �k)�n.

Three outsiders left to enter

As before, if F > �n�3 ��n, there can be no equilibria in these subgames
other than no-barrier ones. If F < �n�3 ��n, no-barrier equilibria still exist,
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but there may also exist barrier equilibria that we proceed to characterize. In

particular, we show below that sustaining barrier equilibria in the subgame

with three outsiders can be based on the expectation that it will be followed

by either a no-barrier continuation equilibrium play or a barrier continuation

equilibrium in the subgame in which two outsiders are left. Suppose �rst that

a no-barrier equilibrium outcome is expected to occur in the subgame with

two outsiders. It then follows that action p (enter and pay the �xed protection

cost) is dominated in the current subgame with three outsiders since no one

will pay f later on. This creates, as in the previous lemma, the conditions

for a waiting game in which the three outsiders try to free ride on each other

so as to save on the entry cost ce. We show in the next lemma that the

individual entry time then follows an exponential distribution with parameter

�3 � r(�n � ce)=(2ce).
Suppose now that a barrier equilibrium outcome is expected to occur in

the subgame with two outsiders. We examine whether barrier equilibria in

the current subgame can be sustained by such an expectation, leaving insid-

ers�incentives to pay f aside for the moment and just focusing on outsiders�

incentives. By the previous lemma, an outsider that enters �rst by paying cp
expects a continuation payo¤ of I2 = �2(�n�2�F ) + (1� �2)�n, so it follows
that playing action p is (weakly) dominated by u if I2 � cp � ce � O2 � ce.
Given that O2 = �n � ce, the condition can be equivalently expressed as
cp � c�2;F � �2(�n�2 � �n � F ). As we just saw above, in this case, the three
outsiders will play a waiting game, hoping that another outsider will enter

before them. In order for insiders to have an incentive to pay f , it is necessary

that F not be too large (F < �n�3 � �n).
So the three outsiders left to enter in the subgames under consideration

can �nd themselves in a waiting game for di¤erent reasons. As explained

above, this can occur because coordination on paying f is expected to fail

in the next subgame (no-barrier equilibria will be played) or because of the

expectation that an outsider will �nd it too costly to pay for protection when

entering even if she foresees that a barrier equilibrium will be played if she

enters (barrier equilibria will be played with cp � c�2;F and F < �n�3 � �n).
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In both cases, paying cp is dominated in the current subgame, and any entry

will thus be followed by entry of all the remaining outsiders, so the outsiders

wait to enter in the hope of saving ce. In the lemma below, both of these cases

are summarized in part 2a.

If it instead holds that cp < c�2;F (which necessarily requires that F <

�n�2 � �n), preemptively entering and paying cp becomes very attractive for
an outsider if the other two do not enter and a barrier equilibrium is foreseen

in the subgame with two outsiders left. There is however a risk of coordination

failure were all outsiders simultaneously to enter and pay cp. This creates the

conditions for a preemption game described in the lemma below, part 2b. As

the time between two consecutive periods shrinks, outsiders essentially mix

between p and w, that is, between entering with protection and waiting. En-

try occurs instantaneously with probability one, and the number of entrants

follows a binomial distribution (so that there is positive probability of simul-

taneous entry by several outsiders). Because insiders pay f over a negligible

amount of time, in the limit there is no constraint on how small F should be

(other than the condition initially imposed that F be smaller than �n�2��n).

Lemma B In subgames with three outsiders:

1. There always exists a no-barrier continuation equilibrium such that in-

siders never pay f and outsiders choose action u immediately. If F >

�n�3 � �n, this is the unique (symmetric) equilibrium.

2. If F < �n�3 � �n:

(a) There also exist barrier continuation equilibria such that insiders

pay f while the subgame is not over and outsiders mix between ac-

tions u and w at each point in time. In the continuous-time limit of

the game, the entry time of an outsider is drawn from an exponen-

tial distribution with parameter �3, where �3 � r(�n � ce)=(2ce).
The continuation payo¤ of an outsider is O3 = �n�ce, whereas the
continuation payo¤ of insiders is I3 = �3(�n�3 � F ) + (1� �3)�n,
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where �3 � r=(r + 3�3). Furthermore, these are the unique barrier
equilibria if cp � c�2.

(b) If cp < c�2, there also exist barrier equilibria such that the three

outsiders start playing a preemption game as soon as this subgame

begins. In the continuous-time limit of the game, outsiders mix

between w and p. The continuation payo¤ of the outsiders converges

to O3 = �n � ce, whereas the continuation payo¤ of the insiders is
I3 = �3(1)I2 + (1 � �3(1))�n, where �3(1) is the probability of a
single outsider entering (out of the three existing ones).3

Proof. Consider �rst subgames with three outsiders in which insiders play
a no-barrier equilibrium in the subgame with two outsiders left. As we showed

in the proof of Lemma A (now for the case of k = 3), there always exist a

no-barrier equilibrium in the current subgame, and no other equilibrium exists

if F > �n�3��n. For F < �n�3��n, there also exist barrier equilibria in the
current subgame in which insiders pay f with probability one and outsiders mix

between actions u and w. Each outsider chooses her entry time according to an

exponential distribution with parameter �3 � r(�n�ce)=(2ce), so O3 = �n�ce
and I3 = �3(�n�3 � F ) + (1� �3)�n, where �3 � r=(r + 3�3).
Consider now subgames with three outsiders in which insiders play the

barrier equilibrium in the subgame with two outsiders left (which requires

that F < �n�2 � �n). Regardless of parameter values, there always exist a
no-barrier equilibrium in the current subgame, so it simply remains to examine

(and characterize if applicable) other types of equilibria.

Throughout the remainder of the proof, we normalize to zero the date at

which the subgame with three outsiders starts. Recalling that each player in

a mixed-strategy equilibrium should be indi¤erent among all actions chosen

with positive probability, we have that outsiders may mix in principle using

the three actions available to each of them, namely w, p and u. Similarly,

insiders may mix between bp and bu. We denote �a;k � 0 for the probability

3See expression (7) in the proof for the speci�c formula for �3(1).
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with which one of the outsiders plays action a when k outsiders remain to

enter, whereas 'k > 0 denotes the probability with which each insider plays

action bp when k outsiders remain to enter (recall we have already analyzed the
case in which 'k = 0). We let Va;k denote the outsider�s payo¤when following

action a 2 fw; p; ug (given the mixing probabilities used by the other players),
and denote the insider�s payo¤ when following action ba 2 fbp; bug by Vba;k.4 We
have the following:

Vp;3 = �2w;3(�n�2�+ I2�) + 2�w;3(1� �w;3)(�n�1�+�n�) + (1� �w;3)2�n � ce � cp
�(1� 'n�33 )�2w;3(I2 � �n)� (1)

Vu;3 = �
2
w;3(�n�2�+�n�)+2�w;3(1��w;3)(�n�1�+�n�)+(1��w;3)2�n�ce (2)

and

Vw;3 = 'n�33 [�2w;3(Vw;3�) + 2�w;3�p;3O2� + (�w;3 + �p;3 + 1)�u;3�n� + �
2
p;3(�n � ce)�]

+(1� 'n�33 )�n�. (3)

Letting C l3 =
�
3
l

�
denotes the binomial coe¢ cient indexed by 3 and l, we

can also compute what an insider expects to earn when not paying f ,

Vbu;3 = �n� +
3X
l=0

C l3(�w;3)
l(1� �w;3)3�l(�n�l�),

and similarly when she does pay f :

Vbp;3 = 'n�43

8><>:
(�w;3)

3(�n�3�+ bVp;3�) + 3(�w;3)2[�u;3(�n�2�+�n�) + �p;3(�n�2�+ I2�)]+
3�w;3[(�u;3)

2(�n�1�+�n�) + (�p;3)
2(�n�1�+�n�) + 2�u;3�p;3(�n�1�+�n�)]

+(1� �w;3)3(�n�+�n�)

9>=>;
+(1� 'n�43 )[�n� +

3X
l=0

C l3(�w;3)
l(1� �w;3)3�l(�n�l�)]� f�.

4All these probabilities (�a;k, a 2 fw; p; ug, and 'k) and value functions (Va;k, a 2
fw; p; ug, and Vba;k, ba 2 fbp; bug) depend on �, but we omit the dependence to avoid clutter.
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The facts that �u;3 + �p;3 = 1� �w;3 and
P3

l=0C
l
3(�w;3)

l(1� �w;3)3�l = 1 yield
that the expression for Vbp;3 can be rewritten after some manipulations as

Vbp;3 = �n+3'
n�4
3 (�w;3)

2�p;3�n +�n(� � 1) +
P3

l=0C
l
3(�w;3)

l(1� �w;3)3�l(�n�l�)� f�
1� 'n�43 (�w;3)

3�
.

Note �rst that action p is dominated (i.e., �p;3 = 0) when cp � c�2;F , so the
argument used in the proof of Lemma A (for the case of k = 3) proves part

2a.5 To complete the proof, it simply remains to analyze the cases in which

cp < c
�
2;F . In these cases, we must have �p;3 > 0: otherwise, outsiders would

engage in a waiting game such as the one studied in the proof of Lemma A

(for k = 3), and cp < c�2;F would imply that an outsider could do better o¤

by choosing action p at � = 0. Outsiders must clearly always put positive

weight on w, since they wish to avoid coordination failures when entering if

there is an incentive to preempt, and they wish to free ride on others if there

is some incentive to enter without protection. So we must also have �w;3 > 0

(otherwise, we would have Vu;3 > Vp;3, which would contradict �p;3 > 0). So

both �p;3 and �w;3 must be bounded away from 0 whenever cp < c�2;F .

We now show that we must have Vbu;3 < Vbp;3 for � > 0 small enough, which
means that '3 must equal 1 in the continuous-time limit of the game. To

demonstrate this result, note that Vbu;3 < Vbp;3 if and only if

3'n�43 (�w;3)
2�p;3�n+'

n�4
3 (�w;3)

3�[�n(��1)+
3X
l=0

C l3(�w;3)
l(1��w;3)3�l(�n�l�)] > f�,

so the facts that � � 1 � r� and '3�n > 0 (recall the hypothesis that

'3 > 0) yields that the inequality holds for � > 0 small enough provided

lim�!0 �w;3�p;3 > 0, which was shown earlier. So situations in which mixing

by outsiders involves positive weights on w and p must be accompanied by in-

siders choosing to protect themselves: an insider �nds it unilaterally optimal

to choose '3 = 1 if the other insiders choose '3 = 1 as well.

5Note that playing barrier equilibria in the subgame with two outsiders left necessarily
requires that F < �n�2 � �n, so the fact that cp > 0 � c�2;F for F � �n�2 � �n indeed
shows that we have completed the proof of part 2a.
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To sum up the situation when cp < c�2;F , we have shown that �p;3�w;3 > 0

and '3 = 1. We now prove by contradiction that action u must be chosen with

positive probability (even if turns out to be negligible as �! 0). Suppose to

the contrary that �u;3 = 0. Then it is straightforward to show that Vp;3 = Vw;3

yields �w;3 !
r

cp
I2 � �n

as �! 0. Letting V3(�w;3;�) � Vw;3 � Vp;3, that is,

V3(�w;3;�) =
(1� �2w;3)(�n � ce)e�r�

1� �2w;3e�r�
� �2w;3(�n�2�+ I2e�r�) +

2�w;3(1� �w;3)(�n�1�+�ne�r�) + (1� �w;3)2�n � ce � cp,

the implicit function theorem implies that

d�w;3
d�

����
�=0

= �

@V3
@�

����
�=0

@V3
@�w;3

����
�=0

= �

r(�n � ce)
1� �2w;3

+ r�w;3(2(1� �w;3)(�n�1 � �n) + �w;3(�n�2 � I2))

2�w;3(I2 � �n)
,

so �n < I2 < �n�2 and ce < �n < �n�1 imply that
d�w;3
d�

����
�=0

< 0, which in

turn implies that �w;3 "
r

cp
I2 � �n

as � ! 0. Now consider an outsider who

contemplates choosing action u instead of p, noting that expressions (1) and

(2) for '3 = 1 yield

Vu;3 � Vp;3 = cp � ��2w;3(I2 � �n). (4)

Since Vu;3 = Vp;3 for � = 0 (note �w;3 =
r

cp
I2 � �n

in such a case), it holds as

� is in�nitesimally increased that both � and �2w;3 decrease, so we would have

that Vu;3 � Vp;3 increases and hence Vu;3 must be greater than Vp;3 for � close

enough to 0. Because there can be no pro�table deviation in equilibrium, we
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have found a contradiction, and therefore we must have that action u is played

with positive probability in a mixed-strategy equilibrium.

So we must have Vw;3 = Vp;3 = Vu;3 in a mixed-strategy equilibrium in

which players use stationary strategies. Since Vp;3 = Vu;3, �w;3 > 0 yields

�w;3 =

r
cp

(I2 � �n)�
, (5)

where we have used equated Vu;3 � Vp;3 to 0 in expression (4). Using the
working hypothesis that cp < c�2;F � I2 � �n yields that

cp
(I2 � �n)�

< ��1, so

�w;3 < 1 for � > 0 close enough to zero.

Because �u;3 = 1� (�w;3 + �p;3) and O2 = �n � ce, the expression for Vw;3
in (3) can be rewritten for '3 = 1 as follows:

Vw;3 =
(1� �2w;3)�n � �p;3(�p;3 + 2�w;3)ce

��1 � �2w;3
.

Equating Vu;3 and Vw;3 yields the value for �p;3 > 0 after some manipulations:

�p;3 =

s
ce � (1� �)B�n ���w;3(1� ��2w;3)C

�ce
� �w;3, (6)

where B � �(2� �w;3)�3w;3 + (1� �w;3)2 and C � 2�n�1(1� �w;3) + �w;3�n�2.
Using the fact that I2��n = �2(�n�2��n�F ), we �nd for small � > 0

that

�w;3 �
r

cp
�2(�n�2 � �n � F )

,

�p;3 � 1�
r

cp
�2(�n�2 � �n � F )

,

and

�u;3 � 0,

that is, action u is played with positive but vanishing probability as �! 0.

We now determine payo¤s. Given m periods of play between time 0 and

some �xed time � > 0, it holds that the probability that no outsider has

13



entered and paid for protection once time � arrives is (�w;3)
3m = (�w;3)

3�=�

(since m = �=�), which converges to zero as � converges to zero for any

arbitrarily chosen � > 0. We then must have that there is probability one that

at least one outsider will enter and pay for protection (almost) instantaneously.

In words, outsiders correlate their actions as � goes to zero even though they

randomize independently.

We conclude the proof by characterizing the probability distribution over

entry outcomes at (normalized) time 0 as well as equilibrium payo¤s for the

case under consideration. Because the probability of no entry at any point

in time is (1 � �p;3)3, it holds that the probability that at least one outsider
enters is 1 � (1 � �p;3)3. Conditional upon at least one outsider entering, we
then have that

�3(3) = (�p;3)
3=(1� (1� �p;3)3),

�3(2) = 3(1� �p;3)(�p;3)2=(1� (1� �p;3)3),

and

�3(1) = 3(1� �p;3)2�p;3=(1� (1� �p;3)3), (7)

where �k(l) denotes the probability that l � 1 outsiders enter simultaneously at
� = 0 given that there are k � l of them. We �nally observe that an outsider�s
continuation payo¤ at the beginning of these subgames is O3 = �n� ce (since
Vp;3 = Vu;3 = Vw;3 � �n� ce for small enough � > 0). Since I1 = I0 = �n, the
expected payo¤ earned by an insider is

I3 = �3(1)I2 + (1� �3(1))�n.

More than three outsiders left to enter

The ideas uncovered in the subgames with three outsiders partially extend

to the subgames with a larger number of outsiders.6 Letting c�k;F � �k(�n�k�
6We recall that if a no-barrier (continuation) equilibrium is played in a subgame with

k outsiders, then no-barrier equilibria are assumed to be played in all subgames with less
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�n�F ), it holds in the subgames with k � 3 outsiders that cp � c�k�1;F implies
that the only barrier equilibrium is such that players mix between w and u,

and the time of �rst entry is exponentially distributed. As in the paper�s

main text, the critical ingredient of the induction argument is that fc�k;Fgn�1k=2

is a monotonically increasing sequence.7 This implies that, when cp � c�k�1;F ,
if one outsider chooses to enter by paying the protection cost cp, the k � 1
remaining outsiders will then engage in a waiting game, since cp > c�k�2;F . The

following result therefore holds.

Lemma C In subgames with k 2 f3; :::; n� 1g outsiders:

1. There always exists a no-barrier continuation equilibrium such that in-

siders never pay f and outsiders choose action u. If F > �n�k � �n,
this is the unique (symmetric) equilibrium.

2. If F < �n�k � �n, there also exists a barrier continuation equilibrium
such that insiders pay f while the subgame is not over and the k outsiders

mix between actions u and w. In the continuous-time limit of the game,

the entry time of outsiders is drawn from an exponential distribution with

parameter k�k, where �k � r(�n � ce)=((k � 1)ce). The continuation
payo¤ of an outsider is Ok = �n� ce, whereas the continuation payo¤ of
an insider is Ik = �k(�n�k � F ) + (1� �k)�n, where �k � r=(r + k�k).
If cp � c�k�1;F , this is the unique barrier equilibrium.

Proof. We prove the result by induction. Lemma B established the result
for k = 3, so it only remains to prove that it holds for k � 4 whenever it is true
for k�1. So suppose that the result holds for k�1, and consider the subgames
with k outsiders when cp � c�k�1. Let us focus on an outsider�s incentive to

play p. Since c�k0;F < c
�
k�1;F for all k

0 < k� 1, she knows when choosing action

than k outsiders.
7Note that �k = (k � 1)ce=(k�n � ce) is increasing in k, since ce < �n implies that

d�k=dk = ce(�n�ce)=(k�n�ce)2 > 0. Taking into account that both �k and �n�k��n�F
are positive, the fact that �n�k and �k are both increasing in k then yields that c

�
2;F <

c�3;F < ::: < c
�
n�1;F .
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p that p being simultaneously chosen by l � 0 other outsiders will result in the
remaining ones playing a waiting game (by the induction hypothesis). Clearly,

the highest payo¤ that can be achieved is the one attained when no other

outsider enters simultaneously, i.e., when l = 0. Thus, the highest payo¤ she

can obtain by taking action p is Ik�1� cp� ce = �k�1�n�k+1+(1��k�1)�n�
cp� ce. Since cp � c�k�1;F implies Ik�1� cp� ce < �n� ce, it then follows that
no outsider must be willing to enter by paying the protection cost in subgames

with k outsiders. Letting k � 4 in the proof of Lemma A then delivers the

desired result.

We now consider the more complex case where preemption can occur. It is

essential for our purposes to de�ne J 0, the critical number of outsiders such that

a waiting game is played if the number of outsiders is strictly less than J 0 (i.e.,

in subgames in which the number of outsiders left to enter equals 2; :::; J 0�1).
As we explained earlier, outsiders can go from playing a preemption game

to a waiting game for two reasons: either it is expected that a no-barrier

equilibrium will be played in the next subgame, or, even if it is expected that

a barrier equilibrium will then be played, it is still not worthwhile to pay for

protection upon entry (cp > c�k�1;F ). Corresponding to the �rst case, we de�ne

J1 as the maximum value of k such that the continuation equilibrium played in

a subgame with k�1 outsiders is of the no-barrier type, so J1 ranges from 2 to
n. For the second case, we de�ne J2 � inffk � 3 : cp < c�k�1;Fg, where J2 = n
if it is not well de�ned. Note that J2 is a step function of cp ranging from 3

to n. Overall, we let J 0 � max(J1; J2).8 As soon as any of these thresholds J1
and J2 is crossed, a waiting game starts. We will now show that for k � J 0, a
series of preemption games takes place. A priori, the players may mix between

the three available actions, w, p and u. We can show that action u is chosen,

but with vanishing probability as � goes to zero, so we have the following

result.

Lemma D In subgames with k 2 fJ 0; :::; n � 1g outsiders such that cp <
c�k�1;F , the unique symmetric equilibrium in the continuous-time limit of the

8Note that J = J2, so J 0 � J , and hence the introduction of a �ow cost of protection
mitigates preemption incentives whenever J1 > J2.
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game has the following features:9

(i) Outsiders mix only between actions p and w at each point in time, and

the probability �k of playing p is uniquely determined.

(ii) Such probability �k increases with k.

(iii) Immediate entry by at least one outsider occurs.

Proof. The current situation is signi�cantly more complex than the one
we analyzed earlier when k = 3, since a sequence of preemption games can

now occur. In the three outsider case, there was at most a single preemption

game being played and we could thus derive probabilities explicitly and take

the limit for small values of �. When k > 3, the probabilities of entry in each

subgame exhibiting preemption features must be determined recursively, so we

shall pursue the following approach for characterizing the game�s continuous-

time limit. For a given period length �, let �a;k(�) � 0 be the probability

with which each outsider plays action a 2 fw; p; ug when k outsiders are left
to enter. Also, let �ba;k(�) � 0 be the probability with which each insider

plays action ba 2 fbp; bug in such subgames. Furthermore, let Va;k(�) denote the
outsider�s payo¤ from choosing action a given that the k � 1 other outsiders
are mixing over actions with probability �a;k(�) and the n� k insiders choose
�ba;k(�). In equilibrium, the mixing probabilities �a;k(�) for a 2 fw; p; ug must
be such that outsiders are indi¤erent between all three actions and such that

these are indeed probabilities (i.e. Vp;k(�) = Vu;k(�) = Vw;k(�), �a;k(�) 2
(0; 1) and

P
a2fw;p;ug �a;k(�) = 1). In addition, �bp;k(�) = 1 requires that

Vbp;k(�) > Vbu;k(�), whereas �bu;k(�) = 1 requires that Vbp;k(�) < Vbu;k(�).
9The proof of the lemma also reveals when J 0 6= n that In�1 < In�2 < ::: < IJ0 < IJ0�1,

i.e., the gate-keeper expects her payo¤ to improve as preemption by outsiders choosing
protected entry takes place: even though entry harms the gate-keeper�s payo¤, the threat
of potential entry becomes less intense because the remaining outsiders enter with a smaller
probability, and the latter e¤ect dominates the former. The �nding that In�1 < In�2 <
::: < IJ0 < IJ0�1 when J 0 6= n, coupled with our previous one that IJ0�1 > IJ0�2 > ::: >
I0 = �n (see previous lemma), means that the gate-keeper�s expected payo¤ peaks when
the outsiders�preemption incentives vanish and their incentives to free-ride on each other
appear (see Vettas 2000 for the discovery of such payo¤ nonmonotonicity result in a related
context.). When J 0 = n, it always holds that IJ0�1 > IJ0�2 > ::: > I0 = �n, so the gate-
keeper is severely harmed by outsider entry (her expected payo¤ falls from IJ0�1 to I0 = �n
as soon as there is entry).
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What we will do is to prove for small � > 0 that either Vbp;k(�) > Vbu;k(�)
or Vbp;k(�) < Vbu;k(�) and then solve for the solution of the system consisting

of Vp;k(�) = Vu;k(�) = Vw;k(�) for � = 0, what we call the continuous-time

approximation of the equilibrium.10 We will show that this solution exists and

is unique, so that the fact that the value functions Va;k(�) (a 2 fw; p; ug)
are continuous in � and in the probabilities will imply that our approach

e¤ectively provides the limit of equilibrium play when we move to continuous

time.

To illustrate further this method, consider the case of three players solved

in the proof of Lemma B. In that case we solved explicitly, for a small �xed

value of �, for the probabilities �a;3(�), a 2 fw; p; ug (see (5) and (6)). We
see from the solution presented in the proof of Lemma B, that taking the

limit of all the probabilities as � converges to zero (as we did) leads to the

same solution as directly solving the system consisting of equations (1)-(3) for

� = 0, as was to be expected due to the continuity of the system. From now

on, �a;k and Va;k shall respectively denote �a;k(�) and Va;k(�) for � = 0.

In order to solve for the approximation of the equilibrium outcome, we

work directly with the solution for � = 0. As in the proof of Lemma B, it is

easy to show that insiders cannot be randomizing between bu and bp, whereas
outsiders must be choosing each of the three actions available to them with

positive probability. Taking this into account, we prove the result in a number

of steps (the proof is quite similar to the one in the paper�s appendix).

Step 1: �u;k = 0.11

We show this result by induction. For � = 0, we have

Vu;J 0 = �n � ce
10Formally, what we mean by (continuous-time) approximation of the equilibrium is a set

of admissible mixing probabilities �a;k (a 2 fp; u; wg) satisfying the following property: for
any (small) � > 0, there exists �� such that � < �� implies that j�a;k(�)��a;kj < �, where
�a:k(�) is the exact equilibrium play.
11Rigorously speaking, this should be interpreted as �u;k # 0 as �! 0.
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and

Vw;J 0 = Pr[Xw;J 0 = J
0 � 1; Xp;J 0 = 0; Xu;J 0 = 0] Vw;J 0 +

J 0�1X
m=1

J 0�1�mX
l=0

Pr[Xw;J 0 = J
0 � 1� l �m;Xp;J 0 = l; Xu;J 0 = m] �n +

J 0�1X
l=1

Pr[Xw;J 0 = J
0 � 1� l; Xp;J 0 = l; Xu;J 0 = 0] OJ 0�l,

where Pr[Xw;k; Xp;k; Xu;k] denotes the probability that Xw;k outsiders choose

w, Xp;k outsiders choose p and Xu;k outsiders choose u. We know, that for all

k < J 0, a waiting game is played and, according to Lemma C, Ok = �n � ce,
so the system of equations can be rewritten as

Vu;J 0 = �n � ce

and

Vw;J 0 = Pr[Xw;J 0 = J
0 � 1; Xp;J 0 = 0; Xu;J 0 = 0] Vw;J 0 +

(1� Pr[Xw;J 0 = J
0 � 1; Xp;J 0 = 0; Xu;J 0 = 0]) �n �

J 0�1X
l=1

Pr[Xw;J 0 = J
0 � 1� l; Xp;J 0 = l; Xu;J 0 = 0] ce.

In a mixed-strategy equilibrium, an outsider must be indi¤erent between all

actions played with positive probability, so we must have Vu;J 0 = Vw;J 0, which

implies that

J 0�1X
l=1

Pr[Xw;J 0 = J
0�1�l; Xp;J 0 = l; Xu;J 0 = 0] = (1�Pr[Xw;J 0 = J

0�1; Xp;J 0 = 0; Xu;J 0 = 0]) = 1.

This holds if and only if

J 0�1X
l=0

Pr[Xw;J 0 = J
0 � 1� l; Xp;J 0 = l; Xu;J 0 = 0] = 1,
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hence we get that �u;J 0 = 0. Further, this implies that OJ 0 = �n � ce, and the
property is therefore true for k = J 0. The reasoning follows exactly the same

lines for larger values of k (since u is chosen in equilibrium, but with vanishing

probability as �! 0).

Thus, in the approximation we consider, the players will essentially mix

just between actions w and p in subgames in which insiders pay f while the

subgame is not over. We denote �k � �p;k for the individual probability of

entry (so we have �w;k = 1 � �k). Given k outsiders, the payo¤ to choosing
action p is given by

Vp;k =
k�1X
l=0

C lk�1(�k)
l(1� �k)k�1�lIk�1�l � cp � ce,

where C lk�1 =
�
k�1
l

�
denotes the binomial coe¢ cient indexed by k � 1 and l.

The value to an outsider of paying the protection cost when entering depends

on how many other outsiders simultaneously enter. If l other outsiders enter,

the outsider participates in the next period as an insider in a subgame with

k�1�l outsiders. Her expected gain in this case is thus Ik�1�l (the continuation
value of being an insider with k � 1� l outsiders).
Each of the k outsiders will mix between p and w so as to leave others

indi¤erent between these two actions, which yields that

Vp;k = �n � ce,

since Vw;k = Vu;k = �n � ce for � = 0. Letting Ik�1�l � Ik�1�l � �n and

Fk(�) �
k�1X
l=0

C lk�1 �
l(1� �)k�1�l Ik�1�l,

the indi¤erence condition can be equivalently written as:

Fk(�k) = cp. (8)

Step 2: �k is the unique solution to Fk(�k) = cp.
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Having established in Step 1 that �k must necessarily solve Fk(�k) = cp, we

now show that there exists a unique solution to such an equation. Consider

�rst the last �preemption game,�i.e., the subgame where J 0 outsiders are left

to enter. As shown in the main text, the indi¤erence between actions p and w

is de�ned by

FJ 0(�J 0) = cp,

where

FJ 0(�) =
J 0�1X
l=0

C lJ 0�1 �
l(1� �)J 0�1�l IJ 0�1�l.

Note that following entry by at least one outsider, a waiting game is played

(the speed will be determined by the number of other outsiders who happen to

enter). Note that according to Lemma C, IJ 0�1�l = �J 0�1�l(�n�(J 0�1�l)��n) =
c�J 0�1�l;F . We showed previously that c

�
k;F is an increasing function of k. So we

have IJ 0�1 > IJ 0�2 > ::: > I0, and it can be immediately observed that FJ 0(�)

strictly decreases with �. Indeed, increasing � shifts the distribution to states

with lower payo¤s.

Furthermore, if J 0 = J2, then we have FJ2(0) = IJ2�1 = c
�
J2�1;F > cp (since

J2 = inffk � 3 : cp < c�k�1;Fg by de�nition). If instead J 0 = J1, we also have
FJ1(0) = IJ1�1 = c

�
J1�1;F > cp (since J1 � J2 implies cp < c

�
J2�1;F � c

�
J1�1;F by

the increasingness of c�k;F ). So it always holds that FJ 0(0) = IJ 0�1 = c
�
J 0�1;F >

cp. Since FJ 0(1) = I0 = 0 and FJ 0(�) is a continuous and strictly decreasing

function, it then follows that the equation FJ 0(�) = cp has a unique solution

�J 0 2 (0; 1).
We now work recursively with Fk+1(�) for k � J 0. We use the following

key properties of Fk+1(�) proven below:

� Property 1:
@Fk+1
@�

(�) = (
k

1� �)(Fk(�)� Fk+1(�)).

� Property 2:
@Fk+1
@�

(0) > 0.
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� Property 3:
Ik = Fk+1(�k).

From Properties 1 and 2, we can show recursively that Fk+1(�) is increas-

ing at zero, reaches a maximum when Fk+1(�) and Fk(�) cross and is then

decreasing.12 Furthermore, we know that Fk+1(1) = I0 = 0. So to estab-

lish that Fk+1(�) = cp has a unique solution it is su¢ cient to show that

Fk+1(0) > cp. To prove it, note that we have Fk+1(0) = Ik, and Property

3 implies that Ik = Fk+1(�k), so it holds that Fk+1(0) = Fk+1(�k). Because

Fk+1(�) is increasing at zero according to Property 2, the unique maximum

must be reached somewhere between 0 and �k. According to Property 1, we

know that Fk+1(�) > Fk(�) for � � �k, and therefore Fk+1(�k) > Fk(�k).

Taking into account that Fk+1(0) = Fk+1(�k), as we just showed, and that

Fk(�k) = cp, it follows that Fk+1(0) > cp.

Step 3: Lemma D (i) follows directly from steps 1 and 2. We also showed

above that Fk+1(�) > cp for � 2 (0; �k), so we must that have �k < �k+1, which
proves (ii). Finally, (iii) can be shown as in the proof of Lemma B.

To conclude the proof, we show that properties 1-3 stated above do hold:

Property 1 We have that

Fk(�) =
k�1X
l=0

C lk�1 (�)
l(1� �)k�1�l Ik�1�l

and

Fk+1(�) =

kX
l=0

C lk (�)
l(1� �)k�l Ik�l. (9)

12Indeed, we have shown that FJ0 is a decreasing function. By Property 2, FJ0+1 is
increasing at zero and must cross FJ0 at least once since FJ0 converges to zero when �
converges to one and FJ0+1 starts above zero. At this intersection point, by Property 1,
FJ0+1 must reach a local maximum. Such a function cannot have another turning point
(which should be a local minimum given that FJ0+1 is continuously di¤erentiable): if this
were the case, FJ0+1 should be decreasing at a faster rate than the everywhere decreasing
function FJ0 , so the continuous di¤erentiability of FJ0+1 rules out that FJ0+1 be tangent to
FJ0 at the local minimum, and it must be that FJ0+1 and FJ0 cross at such a point, which
in turn would contradict Property 1 applied on the right neighborhood of the turning point
by the continuous di¤erentiability of FJ0+1.
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So we can establish that

Fk(�)� Fk+1(�) =
k�1X
l=0

C lk�1 (�)
l(1� �)k�1�l Ik�1�l �

kX
l=0

C lk (�)
l(1� �)k�l Ik�l

=

kX
l=1

C l�1k�1 (�)
l�1(1� �)k�l Ik�l �

kX
l=1

C lk (�)
l(1� �)k�l Ik�l � (1� �)k Ik.(10)

Consider

@Fk+1
@�

(�) =
kX
l=0

C lk
�
l(�)l�1(1� �)k�l � (k � l)(�)l(1� �)k�l�1

�
Ik�l

=
kX
l=0

C lk (�)
l�1(1� �)k�l�1(l � k�) Ik�l

=
kX
l=1

C lk (�)
l�1(1� �)k�l�1(l � k�) Ik�l � k(1� �)k�1Ik, (11)

so that

@Fk+1
@�

(�) =
kX
l=1

lC lk (�)
l�1(1��)k�l�1 Ik�l�k

kX
l=1

C lk (�)
l(1��)k�l�1 Ik�l�k(1��)k�1Ik.

Given that C l�1k�1 = lC
l
k=k, using (10) yields:

@Fk+1
@�

(�) = (
k

1� �)(Fk(�)� Fk+1(�)), (12)

as claimed.

Properties 2 and 3 We have that

@Fk
@�
(�) =

k�1X
l=0

C lk�1
�
l(�)l�1(1� �)k�1�l � (k � 1� l)(�)l(1� �)k�l�2

�
Ik�1�l

=

k�1X
l=1

C lk�1 (�)
l�1(1� �)k�l�2 [l � (k � 1)�] Ik�1�l � (k � 1)(1� �)k�2Ik�1,
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so
@Fk
@�
(0) = �(k � 1)(Ik�1 � Ik�2) (13)

for k � J + 1.
Denote now bIk(�) for the expected payo¤ to an insider when there are

k outsiders who choose to enter with probability � (the expectation being

conditional upon at least one outsider entering). Then

bIk(�) = kX
l=1

C lk
(�)l(1� �)k�l
1� (1� �)k Ik�l, (14)

so straightforward manipulations yield:

(1� (1� �)k) bIk(�) =
kX
l=1

C lk (�)
l(1� �)k�l Ik�l

=
kX
l=0

C lk (�)
l(1� �)k�l Ik�l � (1� �)k Ik

= Fk+1(�)� (1� �)k Ik.

If there existed a unique �k satisfying Fk(�k) = cp, then we would have bIk(�k) =
Ik, so using the previous equality for � = �k would yield

(1� (1� �k)k) Ik = Fk+1(�k)� (1� �k)k Ik,

that is, an insider�s expected payo¤ (net of �n) when k outsiders remain to

enter would satisfy

Ik = Fk+1(�k) (15)

if a unique �k satisfying Fk(�k) = cp existed.

Because we know that there exists a unique �J 0 satisfying FJ 0(�J 0) = cp, it

simply remains to prove that
@Fk
@�
(0) > 0, that is, Ik�1 < Ik�2 for k � J 0 + 1,

which follows from working recursively on k as in Vettas (2000).13

13Notice that expressions (4a), (5a) and (6)-(9) in Vettas (2000) are equivalent to ex-
pressions (8), (15), (9) for � = 0, (12), Fk(1) = 0 < cp, and (13), respectively. Note
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A direct application of Lemmas A-D yields the following result.

Proposition 1b
In the continuous-time limit of the game, the outcome of any symmet-

ric equilibrium exhibits the following properties when �n > ce: there exists a

critical number J 0 2 f3; :::; ng such that, if the gate-keeper initially paid for
protection (paid cp and continuously paid f as long as no entry takes place):

1. J 0 6= n implies that outsiders randomize in such a way that at least n�J 0

of them immediately enter and pay the protection cost cp, whereas J 0 = n

implies that no outsider enters immediately.

2. After entry by at least n � J 0 outsiders (if J 0 6= n) or none of them (if

J 0 = n), the remaining outsiders, if there are at least two, delay entry

for a random length of time and do not pay for protection upon entry.

3. After one of them enters without paying the protection cost, all the re-

maining outsiders immediately follow at no cost.

This proposition also holds when �n � ce, a situation that for large enough
values of n approximates free entry. In particular, there exists a critical value

J such that if the number of outsiders is larger or equal to J , outsiders mix

between actions p and w and at least n�J immediately enter if J 6= n or none
enter if J = n. The main di¤erence is that if the number of outsiders is less

than J , no further entry takes place whereas in the case ce < �n, all players

play a waiting game and eventually enter. We derive the value of J below.

In situations where ce � �n, action u is always dominated by w if no insider
has ever stopped paying for protection (both upon entry and thereafter), since

playing u yields payo¤ �n � ce � 0. De�ne c0k � �n�k � ce in what follows,
and let J � max(J1; J

0
2), where J

0
2 � inffk � 3 : cp < c

0
k�1g (with J 02 = n if

the de�nition is vacuous), so that subgames with k � J � 1 outsiders exhibit

that the expression that turns out to be equivalent in our setting to (10) in Vettas (2000)
(namely, Fk+1(0) > Ik) actually holds with equality, and hence it is redundant based on the
expression in (9) evaluated at � = 0.
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no further entry.14 Lemmas A-D are then directly applicable by simply letting

ce = �n and rede�ning c�k;F and J2 as c
0
k � �n�k � ce and J 02, respectively.

Hence, the case in which ce � �n corresponds to in�nitely long entry delays in
subgames in which insiders continuously pay f and outsiders have no preemp-

tive incentives. The proposition then applies accounting for this new notation

and the fact that the delay in entry after the initial preemptive entry phase is

in�nite.

14Since it holds that �n�(J�1) � ce > cp � �n�(J�2) � ce by de�nition of J .
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