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A Equilibrium Dynamics and Asymptotics

This section characterizes the dynamic and asymptotic properties of a general version of the

economy introduced in Section 2. Our main result, stated in Proposition 2, shows that the

economy converges to a path of constant real consumption growth under milder conditions

than the ones analyzed in Section 2. It also provides a sharp characterization of the constant

growth path as a function of sectoral income elasticities, sectoral capital shares and produc-

tivity growth of different sectors. Moreover, we show that these results hold for a wider class

of models. In particular, we introduce a generalization of the baseline nonhomthetic CES ag-

gregator that allows us to establish a precise connection to empirical measures of the growth

rate of real aggregate consumption as defined in the Penn World Table 8.0 (Feenstra et al.,

2013).

Notation Henceforth, we denote by ηxf the elasticity of a (potentially multivariate) function

f with respect to its argument x, i.e., ηxf ≡ ∂ log f/∂ log x. When function f is defined over a

single variable x, we simply refer to the elasticity function as ηf . Moreover, we use bold face

notation to indicate a collection of sectoral variables. For instance, p(t) stands for the set of

sectoral prices at time t, that is, {pi (t)}Ii=1.

A.1 Household Preferences and Demand

Consider a unit mass of households with identical preferences over a stream of real consump-

tion per capita [c (t)]∞t=0, defined as

U(0) ≡
∫ ∞

0
e−(ρ−n)tu (c (t)) dt, (A.1)

where u(·) is the instantaneous utility function, ρ > 0 is the discount rate, and n ≥ 0 denotes

population growth. We make the standard assumption that n < ρ, and that the instantaneous

utility function u is asymptotically isoelastic, that is, limc→∞ ηu ≡ cu′/u = 1− θ with θ > 0.

Households inelastically supply labor, L (t) ≡ L (0) ent.

Per capita real consumption c (t) aggregates cosumption of a bundle c(t) = {ci (t)}Ii=1 of

goods according to generalized nonhomothetic CES preferences defined implicitly through

I∑
i=1

[
g (c (t))−εi ci (t)

]σ−1
σ = 1, (A.2)

where each consumption good is characterized by an income elasticity parameter εi > 0

and σ ∈ (0, 1) denotes the elasticity of substitution. Function g(·) is a positive-valued and
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monotonic function and will be characterized in what follows.1

When consumers face prices p ≡ {pi}Ii=1 , the expenditure function corresponding to the

preferences above is be given by (see derivations in the main Appendix A)

e (c;p) ≡

(
I∑
i=1

[g (c)εi pi]
1−σ
) 1

1−σ

. (A.3)

Correspondingly, the consumption expenditure share of good i is given by

ωi (c;p) ≡ pici
e (c;p)

=

(
g (c)εi pi
e (c;p)

)1−σ
. (A.4)

For any variable that varies across sectors, e.g., income elasticity parameters εi, we can define

expenditure-weighted averages. For instance, we define the economy-wide average income

elasticity paramter as

ε (c;p) ≡
I∑
i=1

ωi (c;p) εi. (A.5)

In the remainder of the paper, we will drop the dependence of expenditure-weighted average

functions on the prices whenever the corresponding prices are clear from the context.

The real consumption aggregator defined by equation (A.2) characterizes the consumer’s

instantaneous utility function up to a monotonic transformation implied by g(·). In order for

our concept of real aggregate consumption c(t) to correspond to empirical measures of real

income, the choice of g(·) should express consumer utility in terms of equivalent expenditure

in constant prices.2 Accordingly, we choose function g (·) in such a way that aggregate con-

sumption per capita c is expressed in terms of constant prices q, i.e., in real terms. We define

g(·) implicitly through:

c ≡

(
I∑
i=1

[g (c)εi qi]
1−σ
) 1

1−σ

, (A.6)

that is, we let g ≡ e−1 (·; q). With this definition, Equation (A.2) defines c(t) as an aggregator

of a bundle {ci (t)}Ii=1 expressed in terms of the cost of an optimal bundle when consumers

face given constant prices q.

1To find the basic isoelastic nonhomothetic CES aggregator presented in Section 2, one can simply replace
g(c) → c and εi → εi−σ

1−σ . We focus our attention to the empirically relevant case (at least, for three sectors)
where the elasticity of substitution is not greater than unity to avoid a taxonomical analysis, but these pref-
erences are well defined for σ > 1 (see main Appendix A) and, as it will become clear in the analysis that
follows, the theoretical results extend to σ > 1.

2This point becomes critical only when we aim to characterize the asymptotic behavior of our economy.
Measures of real consumption constructed based on chained Fisher indices provide a local approximation of
the utility for any smooth utility function. Therefore, in so far as the local approximation holds, the choice of
g(·) does not bear on our empirical results in Section 3. We refer the readers to the online Appendix for more
details on this point.
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The next proposition, characterizes the solution to the household problem.

Proposition 1. Consider the household’s problem of maximizing (A.1) where the aggregator

is defined by Equations (A.2) and (A.6), subject to the flow budget constraint

ȧ (t) = w (t) + [r (t)− n] a (t)− e (c (t) ;p (t)) , (A.7)

and the No-Ponzi condition

lim
t→∞

a (t) exp

(
−
∫ t

0

(
r
(
t′
)
− n

)
dt′
)
≥ 0, (A.8)

for some path of wage w(·), interest rate r(·), and sectoral prices p(·). Then, the Euler

Equation

ċ(t)

c(t)
=
r (t)− ρ− ṗ(t)

p(t) − (1− σ)Cov( εi
ε(c(t))

, ṗi(t)pi(t)
)

ηcec (c (t) ; t)− ηu′(c(t))
, (A.9)

along with the transversality condition

lim
t→∞

a (t) e−(ρ−n)t c(t)

e(c(t);p(t))

ε (c; q)

ε (c;p (t))
= 0, (A.10)

characterize necessary conditions for any paths of consumption and assets to be the solution

to the household problem. In the Euler Equation above ṗ/p and ε are expenditure-weighted

sectoral averages at price p(t), and the elasticity of marginal expenditure is given by

ηcec (c (t) ; t) =

(
ε (c;p (t))

ε (c; q)
− 1

)[
1 + (1− σ)

(
V ar (ε; c,p(t))

ε (c;p(t))
2

)]
,

+ (1− σ)

[
V ar (ε; c,p(t))

ε (c;p(t))
2 − V ar (ε; c, q)

ε (c; q)
2

]
. (A.11)

Furthermore, let ∆ ≡ εmax/εmin be the ratio of the largest to the smallest sectoral elasticity

parameters correpsonding to the household preference’s aggregator in Equation (A.2), and

suppose the elasticity of intertemporal substition is bounded above by 1/θ, that is, ηu′ (c) < −θ
for all c. If the following inequality is satisfied

θ > (∆− 1)

[
1

∆
+

1− σ
4

(∆− 1)

]
, (A.12)

then the household problem has a unique solution, fully characterized by the Euler equation

and the transversality conditions above.

The proposition above establishes that under mild conditions on the concavity of instan-

taneous utility function u(·), the household problem has a unique optimum that can be found
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by solving an Euler equation. First, note that if all income elasticity parameters are the same,

then the real consumption elasticity of the marginal expenditure in Equation (A.11) becomes

zero and the Euler equation reduces to its familiar form of standard homothetic preferences

with heterogenous technological growth growth rates across consumption sectors (see, e.g.,

Ngai and Pissarides, 2007).

When income elasticity parameters are heterogenous across sectors, we have two distinct

modifications to the standard Euler equation. To unpack these two different modifications,

note that
(
ηcec − ηu′

)
ċ
c is the rate of decline in the marginal utility of consumer spending

(expenditure) at constant prices, which in turn depends on the concavity of the instantaneous

utility function and the expenditure function. Accordingly, the numerator of equation (A.9)

describes the growth rate of the marginal utility of consumer spending, while the denominator

expresses the ratio between growth rates of consumer spending and real aggreate consumption

in terms of base prices q.

First, due to nonhomotheticity, the expenditure function is a nonlinear function of real

consumption. Therefore, the denominator in the right hand side of the Euler equation (A.9)

includes an adjustment term that reflects the convexity of the expenditure function. The ad-

justment effectively increases the concavity of the instantaneous utility function by the degree

of the convexity of the expenditure function. Equation (A.11) shows that this nonhomoth-

eticity adjustment depends on the mean and the variance of the income elasticity parameters

with distributions implied by expenditure shares, under current and base prices. The larger

the mean and the variance of the income elasticity parameters under current prices relative

to base prices, the larger is this adjustment. Intuitively, the components of consumer’s ex-

penditure corresponding to goods with higher income elasticity have higher convexity in real

aggregate consumption. When the income of a typical consumer grows, she spends a larger

share of her income on more income elastic goods. As a result, the expenditure function as a

whole becomes a more convex function of real aggregate consumption.

The last term on the numerator of Euler equation (A.9) accounts for the interaction of

income elasticity and growth rates of sectoral prices. If the rates of growth in sectoral prices are

positively correlated with income elasticity parameters, when (real) income grows consumers

have to shift a larger share of their expenditure toward more expensive goods. This effectively

reduces the growth rate of their real consumption.

We emphasize that equations (A.9), (A.10), (A.11), and (A.12) are all invariant to common

scaling of sectoral elasticity parameters εi’s. Therefore, our choice of cardinality for function

g(·) in equation (A.6) highlights (and pins down) the one degree of freedom that we face in

our choice of sectoral elasticity parameters.
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A.2 Production

The production side of our model includes sectoral heterogeneity in rates of technological

progress, analyzed first by Ngai and Pissarides (2007), as well as sectoral heterogeneity in

factor intensities, studied first in a two-sector setting by Acemoglu and Guerrieri (2008). We

show that our growth model remains fully tractable when we incoporate both these supply

side channels.

Capital is accumulated using investment goods produced by sector i = 0,

K̇ (t) = Y0 (t)− δK (t) . (A.13)

Labor and capital are combined by producers of consumption good sectors i ∈ {1, . . . , I} to

produce output using a Cobb-Douglas technology

Yi (t) = Ai (t)Li (t)1−αi Ki (t)αi , for i ∈ {0, . . . , I} , (A.14)

where the production function in sector i is characterized with sector-specific capital in-

tensity αi ∈ (0, 1). The Hicks-neutral technological progress Ai (t) grows exogenously with

the (potentially time varying) rate γi(t) that asymptotically becomes constant, i.e., rate

limt→∞ Ȧi (t) /Ai (t) = γi > 0 for all sectors i.

Since we assume competitive labor and capital markets, the marginal revenue product of

labor and capital have to equate their respective prices, that is,

w (t) = (1− αi)
pi (t)Yi (t)

Li (t)
, (A.15)

R (t) = αi
pi (t)Yi (t)

Ki (t)
. (A.16)

We define sectoral capital-labor ratios as

κi (t) ≡ Ki (t)

Li (t)
=

αi
1− αi

w (t)

R (t)
, for i ∈ {0, . . . , I} . (A.17)

Equation (A.17) shows that sectoral capital-labor ratios are proportional to each other, and

to the relative price of labor to capital.

As before, we normalize the price of the investment sector in each period to unity,

p0 (t) ≡ 1. We find the prices of sectoral consumption goods by equalizing marginal rev-
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enue products of capital from equation (A.16)

pi (t) =
αα0

0 (1− α0)1−α0

ααii (1− αi)1−αi ·
A0 (t)

Ai (t)
·
(
w (t)

R (t)

)α0−αi
,

=

(
α0

αi

)αi (1− α0

1− αi

)1−αi A0 (t)

Ai (t)
κ0 (t)α0−αi , (A.18)

where in the second equality we have substituted for relative price of inputs from equation

(A.17), and κ0 denotes the capital-labor ratio in the investment sector. Equation (A.18)

shows that consumption good prices depend only on sectoral TFPs and the capital-labor

ratio in the investment sector. As expected, goods produced by sectors with lower TFPs are

more expensive. The dependence of prices on capital-labor ratio in the investment sector in

equation (A.18) is a proxy for their dependence on the rental price of capital. Goods produced

by sectors with higher capital intensities become more expensive as capital-labor ratios rise

and the rental price of capital falls.

Equation (A.18) illustrates how both supply-side forces driving structural change appear

through sectoral prices. A higher rate of technological progress in sector i (relative to the

investment sector) is a force lowering the price in this sector, the mechanism featured in the

model of Ngai and Pissarides (2007). As the economy accumulates capital, the capital-labor

ratio grows proportionally in all sectors. A higher capital intensity in sector i (relative to the

investment sector) is an alternative force lowering the price in this sector, one formalized in

the model by Acemoglu and Guerrieri (2008).

A.3 Competitive Equilibrium and Equilibrium Dynamics

Market clearing implies that for all t ≥ 0,

L(t) =
I∑
i=0

Li(t) (A.19)

K(t) =

I∑
i=0

Ki(t) = a(t)L(t), (A.20)

pi(t)Yi(t) = ωi(t) e(t)L(t), (A.21)

where ωi(t) = ωi(c(t);p(t)) and e(t) = e(c(t);p(t)) are the expenditure share and expenditure

functions as defined in equations (A.3) and (A.4). Equation (A.21) connects the production

allocations to the nonhomothetic CES demand system. In particular, this equation charac-

terizes the total sectoral outputs that, together with prices of labor and capital, pin down

equilibrium sectoral allocations of labor and capital from equations (A.15) and (A.16). More-
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over, the total value of output at time t is given by

Y (t) ≡
I∑
i=0

pi (t)Yi (t) ,

= Y0 (t) + L (t) e (t) .

An equilibrium path in our economy consists of the path [c(·), a(·),ω(·),Y (·),K(·),L(·)]∞t=0

of per capita real consumption and assets, sectoral shares in consumption expenditure, and sec-

toral outputs and allocations of capital and employment, along with the path [r(·), R(·), w(·),p(·)]∞t=0

of real interest rate, rental price of capital, wage, and sectoral output prices satisfying equa-

tions (A.4), (A.9), (A.10), (A.13), (A.14), (A.19), (A.20), (A.21) and r(t) = R(t) − δ for all

t ≥ 0.

The next proposition characterizes the asymptotic properties of the competitve equilibrium

of our economy.

Proposition 2. Let constant γ∗ be defined as

γ∗ ≡ min
i∈I/{0}

(1− α0) γi + αiγ0

(1− α0) εi/εmax
, (A.22)

where εmax is the maximum among all income elasticity parameters. Assume that condi-

tion (A.12) is satisfied (which ensures that the instantaneous utility function defined in equa-

tions (A.1), (A.6), and (A.2) is concave in real consumption c), and that

ρ > n+ (1− θ) γ∗. (A.23)

Then, there exists a unique competitive equilibrium path for our economy, along which per

capita real consumption asymptotically grows at a constant rate

lim
t→∞

ċ(t)

c(t)
= γ∗. (A.24)

Let I∗ be the set of consumption sectors achieving the minimum in equation (A.22). Asymp-

totically, the share of sectors belonging to this set in employment and consumption expendi-

ture converges to a time-constant distribution. The employment and consumption expenditure

shares of any sector i outside the set I∗ vanishes at a rate

lim
t→∞

l̇i(t)

li(t)
= lim

t→∞

ω̇i(t)

ωi(t)
= −(1− σ)

(
γi +

αi
1− α0

γ0 −
εi
εmax

γ∗
)
. (A.25)

Proposition 2 states the key asymptotic properties of our economy. First, as with standard

growth models, the equilibrium is unique and the rate of growth of real consumption and real
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interest rate coverge to constant values. More notably, the economy asymptotically features

realloction of labor across consumption sectors: while some sectors converge to comprising

constant shares, others shrink at a constant rate. Crucially, the rate of growth of real con-

sumption and the set of sectors that do not vanish asymptotically are determined through

a combination two forces: 1) the supply-side subsitition forces, as captured by the sectoral

rates of technical growth and capital intensities in the numerator of equation (A.22), and

2) the demand-side income forces, as captured by the preference elasticity parameter in the

denominator of the same equation. This relation generalizes and encompasses the results of

both Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008) and unifies them with

our account of long-run demand nonhomotheticity.

Here, we offer some basic intuition for the results and leave a detailed proof of the propo-

sition to Appendix B. Define the productivity-adjusted capital-labor ratio in the investment

sector as

κ̃0(t) ≡ K0(t)

A0(t)
1

1−α0L0(t)
. (A.26)

This variable has a one-to-one relationship with real interest rate through r(t) = α0κ̃0(·)tα0−1−
δ and, as we will explain below, constitutes the main state variable of the economy. As we

expect from a path of asymptotically constant growth, this variable has to converge to a

constant. Now, substituting the normalized capital-labor ratio of the investment sector in

equation (A.18), we observe that the growth rates of consumption good prices take the form

pi (t)

pi (0)
=

(
κ̃0 (t)

κ̃0 (0)

)α0−αi
e
−
(
γi−

1−αi
1−α0

γ0
)
t
. (A.27)

Therefore, if the rental price of capital remains constant, price of consumption good i falls

at the rate (γi − γ0) + αi−α0
1−α0

γ0, where the first terms in the parantheses captures technical

growth in sector i and the second term captures the extent to which technical growth in

the investment sector differentially impacts growth in sector i through differences in capital

intensity.

Since households invest optimally, both investement and household expenditure comprise

non-negligible values of the total value as the economy grows. Therefore, total consumption

expenditure of households asymptotically grows at the same rate as the rate of growth of the

investment sector. Combining these insights and equations (A.27) and (A.4) yields

lim
t→∞

ω̇i(t)

ωi(t)
= (1− σ)

[
ηgεiγ

∗ −
(
γi +

αi
1− α0

γ0

)]
. (A.28)

Since all shares are bounded above by one, the rate of growth of sectoral shares cannot remain

asymptotically positive. Therefore, for the equilibrium to be well defined we need to ensure

that these rates of growth do not asymptotically exceed 0. This simple rule in fact pins down
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the asymptotic rate of growth of real consumption per capita γ∗ in equation (A.22), which in

general will be different from the rate of growth of per capita consumption expenditure γ0
1−α0

.

While Proposition 2 provides a simple account of the asymptotic properties of our model,

the dynamics of the equilibrium path in this economy may generally be more complex. How-

ever, the model still remains fully tractable and the dynamic equations can be written in

terms of a state variable κ̃0, investment-sector capital-labor ratio, and a control variable c,

per capita real consumption. Appendix C provides the full derivation of dynamic equations

characterizing the competitive equilibrium everywhere along an path with an initial condition

(c(0), κ̃0(0)). A system of two linear equations in ċ(t)
c(t) and κ̃0(t)

κ̃0(t) determines rates of growth of

the two variables for (c(t), κ̃0(t)) at time t. Our unified model includes heterogeneity across

sectors along three different dimensions, i.e., income elasticity of demand for sectoral outputs,

capital intensitiy, and rate of technical growth, the interactions between all these sources of

heterogeneity appear in the dynamic equations.

Here, for the sake of brevity, we present the dynamic equations for the special case where

αi ≡ α for all sectors i. This case parallels the workhorse model analyzed by Buera and

Kaboski (2009) and Herrendorf et al. (2013) including two competing forces: income non-

homotheticity and heterogeneous rates of technological growth. When capital intensities are

identical, capital-labor ratios equalize across all sectors in equilibrium and κ̃0 equals the

economy-wide capital-labor ratio. Dropping the subscript 0 to reflect this fact, the dynamics

of equilibrium paths take the following form:

ċ

c
=

ακ̃α−1 − (δ + ρ) + γ̄ (1 + (1− σ) ρε,γ)− γ0

−ηu′ − 1 +
(
ε̄
ε̄′ − 1

) (
1 + (1− σ)V ar

(
ε
ε̄

))
+ (1− σ)

(
V ar

(
ε
ε̄

)
− V ar′

(
ε
ε̄′

)) ,
˙̃κ = κ̃α − ẽ

κ̃
−
(
n+ δ +

γ0

1− α0

)
κ̃,

where κ̃ denotes the normalized capital-labor ratio (which is the same across all sectors), ·̄,
V ar(·), and ρ·,· indicate mean, variance, and correlation coefficient of sectoral variables with

distribution implied by expenditure shares under current prices, while ·̄′ and V ar′(·) denote

mean and variance of sectoral variables with distribution implied by expenditure shares under

base prices.

10



B Proofs of Section A

Proof of Proposition 1.

Using an argument similar to the one used for Lemma 1, we can decompose the problem

into two intra-temporal and intertemporal problems. To avoid repetition, we focus on the

latter, using the definition of the expenditure function in Equation (A.3) as the cost of real

consumption c (t) for the representative consumer in terms of the price of investment good at

time t.

For a given path of wages [w (t)]∞t=0, rental prices of capital [r (t)]∞t=0, and sectoral good

prices [p (t)]∞t=0, the current-value Hamiltonian for the consumer problem (A.1) may be written

as:

Ĥ (t, c (t) , a(t), λ (t)) ≡ u (c (t)) + λ (t) (w (t) + [r (t)− n] a (t)− e (c (t) ;p (t))) .

Let us start with the necessary conditions. The FOCs for the Hamiltonian are as follows:

∂Ĥ
∂c

= 0 ⇒ u′ (c)− λ∂e
∂c

= 0, (B.1)

∂Ĥ
∂a

= (ρ− n)λ− λ̇ ⇒ λ̇

λ
= − (r − ρ) . (B.2)

In addition, we impose that the solution satisfy the transversality condition:

lim
t→∞

e−(ρ−n)tλ (t) a (t) = 0. (B.3)

Equations (B.1) and (B.2) together with the law of evolution of assets (A.10) and the transver-

sality equation (B.3) characterize paths of per capita real aggregate consumption and asset

holdings [c (·) , a (·)], and costate λ (·) that satisfy necessary conditions for optimality.

Next, we show conditions that ensure the solution above indeed corresponds to the unique

solution to the household utility maximization problem. A standard argument (using (B.2)

and the No-Ponzi constraint) shows that for all feasible pairs [c (·) , a (·)] , we have that

limt→∞ exp (− (ρ− n) t)λ (t) a (t) ≥ 0. Therefore, we can establish that the pair characterized

by Equations (B.1), (B.2), and (B.3) indeed correspond to the optimum if the Hamiltonian

is concave in c. Furthermore, since the Hamiltonian is separable in (c, a) and linear a, strict

concavity in c implies the uniqueness of the optimum for the household problem. We will

come back to the characterization of conditions ensuring the concavity of e at the end of the

proof.

From Equation (B.1), we find that

λ (t) =
u′ (c (t))
∂e(c(t);p(t))

∂c

=
u′ (c (t))

e
cη
c
e

, (B.4)
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where ∂e
∂c is the marginal (dollar) cost of consumption.We can compute the consumption

elasticity of expenditure:

ηce =
∂ log e

∂ log c
=

c

1− σ
∂

∂c
log

I∑
i=1

(gεipi)
1−σ ,

= ηg ·
I∑
i=1

εiωi,

where the last equation can be explicitly expressed as ηg (c) · ε (c;p) as a function of real

aggregate consumption c and current prices p.

To translate the equations above into the Euler format, we need to compute λ̇ (t) /λ (t),

which corresponds to the growth in value of income at time t. Using Equation (B.4), we

can write the growth in utility value of income as the sum of the contribution of growth of

real consumption, decline in the price index, and the decline in the average income elasticity

parameter, that is,

λ̇

λ
= ηcu′

ċ

c
−

˙(e/c)

e/c
− η̇ce
ηce
.

First, we simplify the growth of consumption expenditure:

ė

e
= ηce

ċ

c
+
∑
i

ṗi
pi
ωi,

= ηg ε̄ ·
ċ

c
+
ṗi
pi
,

where we have used the fact that ηpie = ωi from Lemma 1 (see below) and have defined ṗi
pi

to be the average rate of growth of prices across sectors, as weighted by their corresponding

consumption expenditures. Next, we compute the growth of the real consumption elasticity

of expenditure:

η̇ce
ηce

=
η̇g
ηg

+
ε̇

ε
,

= ηηg ·
ċ

c
+ ηcε ·

ċ

c
+
∑
i

ηpiε̄

(
ṗi
pi

)
,

= ηηg ·
ċ

c
+ (1− σ) ηgε · V ar

(ε
ε

)
+ (1− σ)

∑
i

(εi
ε̄
− 1
)( ṗi

pi

)
ωi,

= ηηg ·
ċ

c
+ (1− σ) ηgε · V ar

(ε
ε

)
· ċ
c

+ (1− σ)Cov

(
ε

ε
,
ṗ

p

)
,

12



where in the third equality, we have used the results of Lemma 1 substituting for the elasticities

of average income elasticity parameter ε.

Combining all of the above, we find the Euler equation to be:

ċ

c
=

r − ρ− ṗi
pi
− (1− σ)Cov

(
εi
ε ,

ṗi
pi

)
−ηu′ − 1 + ηηg + ηg ε̄

(
1 + (1− σ)V ar

(
εi
ε̄

)) . (B.5)

The Euler Equation (B.5) is expressed for a general function g(·). Specializing this result

to the specific function defined in Equation (A.6), we will now derive the Euler Equation

for the real consumption stated in terms of constant prices q. Since g is the inverse of the

expenditure function at prices q, from Equation (B.5), we have:

1 = ηg(c) · ε(c; q),

suggesting ηg = ε(c; q)
−1

. It follows that:

ηce =
ε (c;p)

ε (c; q)
,

which is positive if we have εi > 0 for all sectors. This ensures that the function e is monoton-

ically increasing and one-to-one. This elasticity, which may in general be different from zero,

characterizes the way income effects shifts expenditure across sectors with different prices. In

particular, whenever the average elasticity parameter ε̄ is higher than the one at base prices,

marginal cost of increasing real consumption exceeds the current aggregate price index.

Similarly, substituting for q in Equation (B.10) from Lemma 1 below, we find:

ηηg = −∂ log ε(c; q)

∂ log c
= −(1− σ)

 ε2(c; q)(
ε(c; q)

)2 − 1

 ,

To ensure the sufficiency of the FOCs and the uniqueness of the solution, we need to find

conditions under which the Hamiltonian in strictly concave. The second order condition for

c is

u′′ − λ∂
2e

∂c2
=

u

c2
ηu
(
ηu′ − η∂e/∂c

)
,

where we have substituted for λ from Equation (B.4). This expression has to always be

negative. We need to only focus on the term within the parentheses. The first term on the

right hand side, by assumption, is always greater than θ. To compute the second term, note

13



that

ηcec ≡ η
c
∂e/∂c =

c

e · ηce/c
∂2e

∂c2
,

= ηce + ηcηce − 1, (B.6)

and ηcηce is given by Equation (A.14) from Section A.

Finally, we can find ηηg in Equation (A.14) by using the definition of function g(·) in

Equation (A.6). Since e(c; q) = c, we have that ηcηce = 0 at prices q and therefore:

0 = ηgεi

[
ηηg + (1− σ)V ar

(
εi

εi(c; q)

)]
, (B.7)

which implies ηηg = − (1− σ)V ar
(

εi
εi(c;q)

)
.

Combining all the results above, we find the second order condition to require:

θ +
ε (c;p)

ε (c; q)
− 1 + (1− σ)

[
ε (c;p)

ε (c; q)

(
V ar (ε; c,p)

ε (c;p)
2

)
− V ar (ε; c, q)

ε (c; q)
2

]
> 0,

for all c. Remembering that the variance of any distribution on {εi}Ii=1 is bounded above by
1
4 (εmax − εmin)2, it immediately follows that condition (A.12) is a sufficient condition for the

FOC to always characterize an optimal solution.

Lemma 1. The real consumption and sectoral price elasticities of the expenditure function

are given by:

ηce = ηgε, (B.8)

ηpie = ωi. (B.9)

Furthermore, define the average x of some sectoral parameters xi across the consumption

sector weighted by expenditure shares:

x̄ ≡
I∑
i=1

xiωi.

The elasticities of this function are given by:

ηcx =
1− σ
x̄

ηgCov (ε, x) , (B.10)

ηpix = (1− σ)
(xi
x
− 1
)
ωi. (B.11)
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Proof. We can compute the consumption elasticity of expenditure:

ηce =
∂ log e

∂ log c
=

c

1− σ
∂

∂c
log

I∑
i=1

(gεipi)
1−σ ,

= ηg ·
I∑
i=1

εiωi,

= ηgε.

where the last equation can be explicitly expressed as ηg (c) · ε (c;p) as a function of real

aggregate consumption c. Similarly, we can compute the price elasticity of the expenditure

function:

ηpie =
∂ log e

∂ log pi
=

pi
1− σ

∂

∂pi
log

I∑
j=1

(gεjpj)
1−σ ,

=

(
gεipi
e

)1−σ
,

= ωi.

Next, we use the expressions above to compute the elasticities of the sectoral shares in con-

sumption expenditure. From Equation (A.4) we have:

ηcωi = (1− σ) (ηgεi − ηce) = (1− σ) ηg (εi − ε) ,

η
pj
ωi = (1− σ)

(
δij − η

pj
e

)
= (1− σ) (δij − ωj) ,

where δij stands for the kronecker delta function.

Finally, we use the elasticities of the expenditures shares to compute elasticities of a general

function x. We find:

ηcx̄ =
1

x̄

∑
j

xjωjη
c
ωj ,

=
1− σ
x̄

ηg
∑
j

xjωj (εj − ε) ,

=
1− σ
x̄

ηgCov (εi, xi)

ηpix̄ =
1

x̄

∑
j

xjωjη
pi
ωj ,

=
1− σ
x̄

∑
j

xjωj (δij − ωi) ,

= (1− σ)
(xi
x
− 1
)
ωi.
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For instance, for xi ≡ εi, we find that:

ηcε = (1− σ) ηgCov
(εi
ε
, εi

)
= (1− σ) ηgεV ar

(ε
ε

)
. (B.12)

Proof of Proposition 2

Our strategy for the proof of this proposition is as follows. To establish the existence and

uniqueness of the competitive equilibrium, we invoke the second Welfare Theorem. We for-

mulate the social planner’s problem, whose potential solutions have to correspond to different

competitive equilibria in our economy. We solve the social planner’s problem and show that

it has a unique solution, and further establish a direct correspondence between this solution

and the competitive equilibrium, which thus has to also be unique.

Let û (c1, · · · , cI) ≡ u (c), where c is defined through Equation (A.2), denote the in-

stantaneous utility of the representative household over a bundle of c = (ci)
I
i=1 per capita

consumption of I different goods. The social planner’s problem can be stated as the following

maximization problem:

max
{ki(·),li(·)}Ii=0

∫ ∞
0

e−(ρ−n)tû (c1 (t) , · · · , cI (t)) ,

where

ci = Aik
αi
i l

1−αi
i , 1 ≤ i ≤ I, (B.13)

k̇ = A0k
α0
0 l1−α0

0 − (δ + n) k, (B.14)

subject to constraints:

I∑
i=0

li = 1, (B.15)

I∑
i=0

ki = k, (B.16)

and k (0) = K (0) /L (0) and k (t) ≥ 0 for all t.

The corresponding present value Hamiltonian is given by:

H = û+ µ
(
A0Lk

α0
0 l1−α0

0 − (δ + n) k
)
,

where we substitute for per capita consumption, i.e., Equations (B.13) and (B.16), in the

expression for û making the latter a function of vectors of sectoral per capita stocks of capital
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and employment shares (k, l).3

We can show that the function M (k) = max(k,l) Ĥ under the constraints suggested by

Equations (B.15) and (B.16) is a strictly concave function of k, if û is a strictly concave

function of its arguments. To see why, let us define functions F (k, l) ≡ û (k, l)+µA0Lk
α0
0 l1−α0

0

and F̂ (k) = maxl F (k, l). First, it is straightforward to see that F is jointly strictly concave

in (k, l) for µ ≥ 0, which implies that F̂ is a strictly concave function of vector k. The

strict concavity of the latter then implies thatM (k) = max∑
i ki=k

F̂ (k) is a strictly concave

function of k.

Now let us find a candidate solution for the social planner’s problem that satisfies the

following conditions:

−∂H
∂k

= (δ + n)µ− ς = µ̇− (ρ− n)µ, (B.17)

∂H
∂ki

= αi
∂û

∂ci
Ai

(
ki
li

)αi−1

= ς, 1 ≤ i ≤ I, (B.18)

∂H
∂li

= (1− αi)
∂û

∂ci
Ai

(
ki
li

)αi
= ξ, 1 ≤ i ≤ I, (B.19)

∂H
∂k0

= α0µA0

(
k0

l0

)α0−1

= ς, (B.20)

∂H
∂l0

= (1− α0)µA0

(
k0

l0

)α0

= ξ, (B.21)

and the transversality condition

lim
t→∞

e−(ρ−n)tµ (t) k (t) = 0, (B.22)

where ξ and ς are Lagrange multipliers corresponding to the two constraints Equations (B.13)

and (B.16), respectively.

From Equations (B.17) and (B.20) we find:

µ (t) = µ (0) exp

(
−
∫ t

0

(
α0κ̃0

(
t′
)α0−1 − (ρ+ δ)

)
dt′
)
, (B.23)

where we have used the productivity adjusted definition of capital-labor ratio:

κ̃0 (t) ≡ A0 (t)−1/(1−α0) k0 (t)

l0 (t)
. (B.24)

Similarly, we define the economy-wide aggregate capital-labor ratio k̃ (t) ≡ A0 (t)−1/(1−α0) k (t) /l (t)

3Let us remember that according to our vector notation k ≡ (k0, · · · , kI) denotes the vector of sectoral per
capita stocks of capital, which is distinct from k, the economy-wide total per capita stock of capital.
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and rewrite the transversality condition as:

lim
t→∞

k̃ (t)µ (0) exp

(
−
∫ t

0

(
α0κ̃0

(
t′
)α0−1 −

(
δ + n+

γ0

1− α0

))
dt′
)

= 0, (B.25)

where we have used the fact, which we will show later, that asymptotically k (t)→ k̃∗e
γ0

1−α0
t
.

Note that with this transformation Equation (B.14) can be written as:

˙̃
k (t) = l0κ̃0 (t)α0 −

(
n+ δ +

γ0

1− α0

)
k̃ (t) . (B.26)

Henceforth, we use the notation that x̃ (t) denotes variable x (t) adjusted by productivity in

the investment sector, i.e., x̃ (t) ≡ A0 (t)−1/(1−α0) x (t). Dividing (B.19) by (B.18), we find:

1− αi
αi

κ̃i (t) =
ξ̃ (t)

ς (t)
, (B.27)

suggesting that capital-labor ratios in all sectors are proportional to each other. This relation

echoes Equation (A.17), suggesting, as we show below, that ξ and ς correspond to the wage

and rental price of capital in a competitive equilibrium.

Starting from any initial value µ(0), Equation (B.23) along with conditions (B.18) to (B.21)

define a unique path for the allocations. The argument follows from the strict concavity of

function F defined earlier, and the intuition is as follows. Equation (B.23) determines µ(t)

and therefore function F at time t. The optimal allocation at this point it time is simply

given by maximizing function F under constraints (B.15) and (B.15), which has to be unique.

Note that any candidate path that satisfies the conditions above has to further satisfy the

following two asymptotic conditions:

lim
t→∞

κ̃0 (t) = κ̃∗0 > 0, (B.28)

lim
t→∞

l0 (t) = l∗0, 0 < l∗0 < 1, (B.29)

implying that the asymptotic capital-labor ratio and employment in the investment sector are

constant and interior. If, on the contrary, we asymptotically have κ̃0 → 0, we can show that

ξ → 0 and Equation (B.19) has to be violated.4 If κ̃0 → ∞, Equation (B.26) implies that

the tranversality condition B.25 has to be violated. Therefore, condition (B.28), has to hold.

Now from Equation (B.27) we learn that all sectoral capital-labor ratios asymptote to nonzero

constants and therefore limt→∞ k̃ (t) = k̃∗ =
∑I

i=0 l
∗
i κ̃
∗
i > 0. Hence, from Equation (B.26)

4Assume κ̃0 converges to zero exponentially at a constant rate. From Equation (B.23), µ has to converge
to zero at the rate of −∞, which implies the same has to be the case for ξ. From Equation (B.19), we need to
have that ∂û/∂ci converges to zero at the rate of −∞, which can hold only if ci’s all grow at an ever increasing
rate. This contradicts the initial assumption that capital-labor ratios converge to zero.
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we know that l∗0 > 0, since otherwise k̃ → 0. Finally, assuming l∗0 = 1 would suggest that

k̃∗ = κ̃∗0 and (κ̃∗0)α0−1 = n + δ + γ0
1−α0

. Substituting this in Equation (B.25) would violate

the transversality condition. Therefore, any candidate path satisfying the conditions above

will asymptotically be an interior candidate solution, in the sense that labor-capital ratios

grow at the same rate as the rate of technological progress in the investment sector and

there is an interior split of employment between the investment and the consumption sector.

This implies, as we will see shortly, that the per capita consumption expenditure in the

corresponding competitive equilibrium also grows at the same rate as the rate of growth of

technology in the investment sector.

Next, we show that the growth of real consumption per capita along any candidate path

satisfying the conditions above has to be asymptotically constant. To see this, note that

combining Equations (B.13) and (B.27), we find that ci = A
αi

1−α0
0 Ailiκ̃

αi
0 for i ∈ {1, · · · , I}.

Equation (B.28) then implies:

lim
t→∞

ċi (t)

ci (t)
= γi +

αi
1− α0

γ0 + γ̂Ci , (B.30)

where we defined the asymptotic rate of growth of the share of employment in sector i as:5

γ̂Ci ≡ lim
t→∞

l̇i (t)

li (t)
≤ 0. (B.31)

Now, from Equation (A.2), we have that for all t ≥ 0:

I∑
i=1

νi

(
γi +

αi
1− α0

γ0 + gi − ηgεi
ċ

c

)
= 0,

where we have defined the effective share of sector i in consumption as νi ≡
(
g (c)−εi ci

)(σ−1)/σ
.6

The rate of growth of per capita real consumption is then given by

ċ

c
=

1

ηgε

(
γ +

α

1− α0
γ0 + γ̂C

)
, (B.32)

where averages are taken with respect to the distribution implied by {νi}Ii=1. Equation (B.19)

suggests that, up to a constant, consumption share νi’s are the same as employment shares

5Note that Equation (B.29) establishes the total employment share in the consumption sector asymptotically
converges to a constant lC → 1 − l∗0 . However, within the aggregate consumption sector, some sectors could
continue to shrink asymptotically which can result in Equation (B.31) taking nonzero values.

6As a reminder, share νi equals the share of sector i in consumption expenditure ωi ≡ (g (c)εi pi/e)
1−σ

for the corresponding prices in the competitive equilibrium. We introduce a different variable here solely to
respect the conceptual distinction between the formulation of the social planner’s problem and the competitive
equilibrium where the prices are implicit in the former (and the current formulation).
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li’s. To see this, rewrite Equation (B.19) as:

ξ = (1− αi)u′ (c)
∂c

∂ci

ci
li
,

= (1− αi)u′ (c)
c

ηgε

νi
li
,

where we have used ηcic = νi/ηgε from Equation (A.8).

Define set I∗ ⊂ {1, · · · , I} as the set of consumption sectors with nonzero asymptotic

employment shares, i.e., I∗ =
{
i|γ̂Ci = 0

}
. Consider some sector i /∈ I∗, for which γ̂Ci < 0

implying that the asymptotic employment share of this sector is zero, i.e., limt→∞ li = 0. Since

consumption shares νi’s have to grow proportionally to employment shares as we showed

above, for any such sector i we have limt→∞ νi = 0. It then follows that limt→∞ γ̂
C =∑

i∈I∗ γ̂
C
i = 0, and taking the limit of expression (B.32), we find the asymptotic rate of

growth of per capital consumption as:

γ∗ ≡ lim
t→∞

ċ (t)

c (t)
=

1

ηgε∗

(
γ∗ +

α∗

1− α0
γ0

)
,

where averages are taken with respect to the distribution implied by {ν∗i }
I
i=1 the limit of

distribution {νi}Ii=1, with support I∗.
In order to characterize the set I∗, we need to compute the asymptotic rate of growth of

νi for each sector i. Substituting Equation (B.27) in Equation (B.19), we find:

u′ (c)
∂c

∂ci
=

1

Ai

(
ς

αi

)αi ( ξ

1− αi

)1−αi
, (B.33)

where the right hand side captures the social cost of producing good i in marginal utility

terms at time t. From Equations (B.20) and (B.21), we have:

ς = µα0κ̃
α0−1
0 , (B.34)

ξ = µA
1

1−α0
0 (1− α0) κ̃α0

0 . (B.35)

Substituting in the expression above we find:

u′ (c)

µ

c

ci

νi
ηgε

=

(
α0

αi

)αi (1− α0

1− αi

)1−αi A
1−αi
1−α0
0

Ai
κ̃α0−αi

0 , (B.36)

where we have again used ηcic = νi/ηgε .

We proceed by establishing that the asymptotic rate of growth of the term u′(c)
µ

c
ηgε

is γ0
1−α0

.
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To see this, let us rewrite Equation (B.19) as:

cu′ (c)

ηgε
νi =

li
1− αi

ξ,

which we can then sum over i ∈ {1, · · · , I} to find:

cu′ (c)

ηgε
= ξ

I∑
i=1

li
1− αi

.

Since
∑I

i=1 li converges to a nonzero value 1− l∗0, the rate of growth of the expression on the

left hand side is the same as ξ, which we know, from Equation (B.35), grows at the same

rate as µA
1/(1−α0)
0 . We use this fact and the fact that νi

ci
= v

1/(1−σ)
i g (c)εi to conclude from

Equation (B.36) that:

lim
t→∞

v̇i
vi

= (1− σ)

(
ηgεiγ

∗ − γi −
αi

1− α0
γ0

)
. (B.37)

Crucially, Equation (B.37) implies that for any sector i∗ ∈ I∗, whose employment share

does not asymptotically vanish, we should have:

γ∗ =
1

ηgεi∗

(
γi∗ +

αi∗

1− α0
γ0

)
.

Now, consider the set Î, defined as follows:

Î ≡ argmini∈I/{0}
(1− α0) γi + αiγ0

(1− α0) εi
.

Consider the rate of growth of employment share in a consumption sector î ∈ Î :

lim
t→∞

v̇î
vî

= (1− σ)

(
ηgεîγ

∗ − γî −
αî

1− α0
γ0

)
,

= (1− σ) εî

[
1

εi∗

(
γi∗ +

αi∗

1− α0
γ0

)
− 1

εî

(
γî +

αî
1− α0

γ0

)]
.

The expression shows that Î = I∗. If î /∈ I∗, this expression has to be strictly negative, vio-

lating the assumption that î ∈ Î. If i∗ /∈ Î, will have to be negative violating the assumption

that i∗ ∈ I∗. It then follows that:

γ∗ = min
i∈I/{0}

(1− α0) γi + αiγ0

ηg (1− α0) εi
.

Finally, we need to check that the transversality condition is indeed satisfied. Since we
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know that the asymptotic rate of growth of cu′(c)
µηgε

is γ0
1−α0

, we find that:

lim
t→∞

µ̇ (t)

µ (t)
= (1− θ) γ∗ − γ0

1− α0
,

where we have used the fact that limt→∞ ε (t) = ε∗ and limt→∞ ηg (c (t)) = ηg are both

constants. Therefore, in order to satisfy condition B.25, we need to ensure that

ρ > n+ (1− θ) γ∗.

From Equations (B.17) and (B.20), µ (t) ≥ 0 for all t. Therefore, from strict concavity

of F it follows that these equations together give a unique path of [k (·) , l (·) , k (·) , µ (·)]∞t=0.

Due to the strict concavity of M, we conclude that the resulting path corresponds to the

unique solution to the social planner’s problem (see Theorem 7.14 in Acemoglu, 2008). This

completes the proof of the proposition.

For completeness, we state the correspondence between the variables above and the vari-

ables characterizing the competitive equilibrium. Comparing expressions (B.34) and (B.35)

with expressions (A.15) and (A.16) in the derivations of the competitive equilibrium, we find

that ς ≡ µR and ξ ≡ µw. Substituting in the expression (B.33) yields:

u′ (c)

µ

∂c

∂ci
=

1

Ai

(
R

αi

)αi ( w

1− αi

)1−αi
,

where the right hand side corresponds to the expression for unit price of goods in sector i in

Equation (A.18). We use ηcic = νi/ηgε to rewrite this expression as

cu′ (c)

µ

νi
ηgε

= pici,

which, once we sum over i ∈ {1, · · · , I}, implies

cu′ (c)

µηgε
≡ e.

In light of this connection, the key step of the proof above establishing the rate of growth of the

expression on the left hand side has a stright forward interpretation: per capita consumption

expenditure grows at the same rate as the output of the investment sector.
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C Equilibrium Dynamic Equations

In this section, we characterize the dynamics of this economy along the equilibrium path.

Define investment sector productivity-adjusted aggregate and investment variables:

k̃ (t) ≡ K (t)

A
1

1−α0
0 (t)L (t)

, ỹ0 (t) ≡ Y0 (t)

A
1

1−α0
0 (t)L (t)

. ẽ (t) ≡ e (t)

A
1

1−α0
0 (t)

, κ̃0 (t) ≡ κ0 (t)

A
1

1−α0
0 (t)

,

(C.1)

and denote the share of labor employed in the investment sector be l0(t) ≡ L0(t)/L. With

this normalization, the rental price of capitaly and the capital-labor ratio in the investment

sector have the following one-to-one relationship R (t) = α0κ̃0(t)α0−1 and we can use them

interchangably to characterize the path of the aggregate economy.

Per capita consumption and productivity-adjusted capital-labor ratio in the investment

sector (c(t), κ̃0(t)) fully characterize the state of the economy at time t. First, note that

productivity-adjusted per capita consumption expenditure ẽ(t) is a function of these two

variables and time:

ẽ (t) = ẽ (c (t) , κ̃0 (t) , t) =

(
I∑
i=1

[
ϕi(t)g (c (t))εi κ̃0 (t)α0−αi]1−σ) 1

1−σ

, (C.2)

where we have substituted from Equations (A.18) and (C.1) in the definition of Equation

(A.3) and have defined a (exogenously given) time-dependent function

ϕi(t) ≡
(
α0

αi

)αi (1− α0

1− αi

)1−αi
A0 (t)

− αi
1−α0 Ai (t)−1 .

The direct dependence on time is due to the impact of time-varying sectoral technologies

on prices. Similarly, we can write the share of sector i in consumption expenditure as a

function of (c(t), κ̃0(t)) and time as ωi (t) = ωi (c (t) , κ̃0 (t) , t) . Averages of the income

elasticity parameter and capital share in the consumption sector of the economy ε̄ and ᾱ then

also become functions of the two state variables (and time). We emphasize in the special

case where capital intensities are identical across all consumption sectors, the expenditure

function in Equation (A.3) becomes independent of capital-labor ratios and solely depends on

real consumption per capita c and time.

In addition to the expenditure and sectoral shares, the duplet (c(t), κ̃0(t)) also pins down

total investment and total per-capita stock of capital at time t along any equilibrium path.

To see that, we first compute the employment share of the investment sector, dropping the
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dependence on time to simplify notation:

l0 ≡
L0

L
=

1

1 + LC
L0

,

=
(1− α0) ỹ0

(1− α0) ỹ0 + (1− ᾱ) ẽ
, (C.3)

where in the second line we have used the equality LC(t)
L0(t) = 1−ᾱ

1−α0

e
ỹ0

. Combining Equation

(C.3) with ỹ0 = l0κ̃
α0
0 , we can write both the normalized output and the employment share

of the investment sector as:

ỹ0 = κ̃α0
0 −

1− ᾱ
1− α0

ẽ, (C.4)

l0 = 1− 1− ᾱ
1− α0

ẽ

κ̃α0
0

. (C.5)

Therefore, since average capital share ᾱ and normalized expenditure ẽ are both functions of

(c(t), κ̃0(t)) and time, so are the employment share and normalized output of the investment

sector. Finally, the following lemma establishes that the total per-capita stock of capital is

also a function of the same pair of variables.

Lemma 2. Along any equilibrium path and for all times t, the aggregate productivity-adjusted

per-capita stock of capital k̃ and the productivity-adjusted capital-labor ratio in the investment

sector κ̃0 satisfy the following equation:

k̃ = κ̃0

[
1 +

ẽ

κ̃α0
0

(
ᾱ− α0

α0 (1− α0)

)]
, (C.6)

where ẽ and ᾱ are functions of (c, κ̃0) and time as defined by Equation (C.2). Moreover, for

any level of per capita real consumption c > 0 at time t, Equation (C.6) defines a monotoni-

cally increasing and one-to-one mapping between k̃ and κ̃0.

Proof. Along any equilibrium path, the output of all consumption goods are strictly positive

and therefore κi > 0 for all i ≥ 1. From Equation (A.16), we know that R ≥ α0A0κ
α0−1
0 and

therefore along any equilibrium path κ0 > 0. Hence, the allocations of labor and capital to

all sectors are always interior.
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Aggregate capital to labor ratio in the economy may be written as:

k =
K

L
=

L0

L
κ0 +

LC
L
κC ,

= l0κ0 + (1− l0)κ0
κC
κ0
,

= κ0

[
l0 + (1− l0)

ᾱ/ (1− ᾱ)

α0/ (1− α0)

]
,

= κ0

[
1 +

ẽ

κ̃α0
0

(
ᾱ

α0
− 1− ᾱ

1− α0

)]
, (C.7)

where in the second equality, we have defined LC and κC as the total employment and captial-

labor ratio in the consumption sector, and in the third equality, we have used the expressions

for capital-to-labor ratios in Equations (A.17) as well as

κC =
α

1− α
w

R
.

In the last equality, we have used the expression for the share of employment in the investment

sector from Equation (C.5). Adjusting both sides of Equation (C.7) with respect to the

productivity in the investment sector yields the desired result.

We will now show that the function defined by Equation (C.7) is one-to-one and mono-

tonically increasing, mapping values of k̃ to κ̃0 everywhere along any equilibrium path. To

show this, it is sufficient to establish that the derivative of this function with respect to κ̃0 is

everywhere strictly positive.

∂k̃

∂κ̃0
= 1 +

(
ᾱ− α0

α0 (1− α0)

)
∂

∂κ̃0

(
κ̃1−α0

0 ẽ
)

+
(
κ̃1−α0

0 ẽ
) ∂

∂κ̃0

(
ᾱ− α0

α0 (1− α0)

)
,

= 1 +

(
ᾱ− α0

α0 (1− α0)

)
κ̃−α0

0 ẽ
∂ log

(
κ̃1−α0

0 ẽ
)

∂ log κ̃0
+
(
κ̃1−α0

0 ẽ
) ᾱ

α0 (1− α0) κ̃0

∂ log ᾱ

∂ log κ̃0
,

= 1 +

(
κ̃−α0

0 ẽ

α0 (1− α0)

)[
(ᾱ− α0)

(
1− α0 −

∑
i

ηpiẽ η
κ̃0
pi

)
+ α

∑
i

ηpiα η
κ̃0
pi

]
,

= 1 +

(
κ̃−α0

0 ẽ

α0 (1− α0)

)[
(ᾱ− α0) (1− α0 − (α0 − α)) + α (1− σ)

∑
i

ωi

(αi
α
− 1
)

(α0 − αi)

]
,

= 1 +

(
κ̃−α0

0 ẽ

α0 (1− α0)

)
[(ᾱ− α0) (1− α)− (1− σ)V ar (α)] ,

where in the third equality we have invoked the results of Lemma 1. Recalling the expression

for the employment share of the investment sector l0 from Equation C.5, we can now rewrite
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this as follows:

∂k̃

∂κ̃0
= 1 + (1− l0)

(
ᾱ− α0

α0
− (1− σ)V ar (α)

α0 (1− ᾱ)

)
,

= l0 +
1− l0

α0 (1− ᾱ)
[ᾱ (1− ᾱ)− (1− σ)V ar (α)] .

Finally, note that the expression within the square bracket on the right hand side is always

positive. This is because:

ᾱ (1− ᾱ)− (1− σ)V ar (α) ≥ ᾱ (1− ᾱ)− V ar (α) ,

= ᾱ− α2 > 0.

where the inequality in the second line follows from the fact that for all sectors i, we have

0 < αi < 1. This completes the proof that the mapping of k̃ to κ̃0 is monotonic and one-to-

one.

Equation (C.6) shows that whenever average capital share of the consumption sector

exceeds that of the investment sector, the economy-wide capital-labor ratio k is greater than

the capital-labor ratio in the investment sector κ0. Furthermore, the lemma ensures us that

the relationship that the two ratios is one-to-one. This point is critical since it allows us to

use the investment sector capital-labor ratio κ̃0 as the state variable fully characterizing the

path of capital accumulation in the economy.

The next proposition characterizes the dynamics of competitive equilibria in our economy

in terms of the two state variables (c, κ̃0). Before introducing the dynamic equations, let us

introduce a function a function χ of the state variables:

χ (c, κ̃0; t) ≡ κ̃−α0
0 ẽ (c, κ̃0; t)

α0 (1− α0)
. (C.8)

This function has the property that χ = lC
α0(1−α) = k̃/κ̃0−1

α−α0
and will greatly simplify the

exposition of the forthcoming lemma.

Proposition 3. The following system of two equations characterizes the dynamics of state
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variables (c, κ̃0) in any competitive equilibria of our economy:[
−ηu′ − 1 + ηηg + ηg ε̄

(
1 + (1− σ)V ar

(ε
ε̄

))] ċ
c

+ [α0 − α (1 + (1− σ) ρε,α)]
˙̃κ0

κ̃0
= α0κ̃

α0−1
0 − (δ + ρ) + γ̄ (1 + (1− σ) ρε,γ)

− 1− α (1 + (1− σ) ρε,α)

1− α0
γ0,

(C.9)

ηgε [α (1 + (1− σ) ρε,α)− α0]χ
ċ

c

+ [1 + (1− α) (α− α0)χ− (1− σ)V ar (α)χ]
˙̃κ0

κ̃0
= (1− α0 (1− α)χ) κ̃α0−1

0

− (1 + (α− α0)χ)

(
n+ δ +

γ0

1− α0

)
+ [α (α− α0) + (1− σ)V ar (α)]χγ0

+ [α (1 + (1− σ) ρα,γ)− α0]χγ,

(C.10)

where x and V ar(x) denote the average and variance of a sector-specific set of parameters x

and ρx,x′ denotes the correlation coeffcient between this parameter and another set of parame-

ters x′, all according to the distribution implied by sectoral expenditures shares at time t, and

χ is defined by Equation (C.8).

If the condition (A.12) is satisfied (the instantaneous utility function defined in Equa-

tions (A.1), (A.6), and (A.2) is concave in real consumption c), then the system above uniquely

determines (ċ/c, ˙̃κ0/κ̃0) at time t.

Proof. First, let us express the Euler Equation (B.5) in terms of the variables (c, κ̃0, t) by

substituting for the growth of sectoral prices based on the production side of our economy.

From Equation (A.18) we can write sectoral prices as

pi = ϕ̃iA
−1
i A

1−αi
1−α0
0 κ̃α0−αi

0 ,

where ϕi is a constant sector-specific parameter. This implies that the rate of growth of

sectoral prices is given by:

ṗi
pi

=
1− αi
1− α0

γ0 − γi +
˙̃κ0

κ̃0
(α0 − αi) .

This allows us to compute the average of growth rates of sectoral prices and their covariance
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with income elasticity parameters under the distribution implied by expenditure shares:(
ṗi
pi

)
=

1− α
1− α0

γ0 − γ + (α0 − α)
˙̃κ0

κ̃0
,

Cov

(
εi,

ṗi
pi

)
= −Cov (εi, γi)−

(
γ0

1− α0
+

˙̃κ0

κ̃0

)
Cov (εi, αi) .

Substituting this relation and the fact that r = R − δ = α0κ̃
α0−1
0 − δ in the Euler equation,

yields:[
−ηcu′ − 1 + ηηg + ηg ε̄

(
1 + (1− σ)V ar

(ε
ε̄

))] ċ
c

+ [α0 − α (1 + (1− σ) ρε,α)]
˙̃κ0

κ̃0
= α0κ̃

α0−1
0 − (δ + ρ) + γ̄ (1 + (1− σ) ρε,γ)

− 1− α (1 + (1− σ) ρε,α)

1− α0
γ0,

where ρε,γ and ρε,α denote correlation coefficients between the income elasticity parameters

and the technological rates of growth and capital shares at the sectoral levels, both under the

distributions implied by expenditure shares.

The equation governing the evolution of aggregate capital stock can be written as follows

˙̃
k =

(
K̇

K
− n− γ0

1− α0

)
k̃,

=
Y0k̃

K
−
(
n+ δ +

γ0

1− α0

)
k̃,

= ỹ0 −
(
n+ δ +

γ0

1− α0

)
k̃,

= κ̃α0
0 (1− α0 (1− α)χ)−

(
n+ δ +

γ0

1− α0

)
k̃, (C.11)

where we have used K̇ = Y0−δK in the second equality and Equations (C.4) and (C.8) in the

fourth equality. Next, we need to transform this equation into one described in terms of the

per-capita stock of capital in the investment sector κ̃0. This will complete the characterization

of the dynamics of the pair (c, κ̃0).

Lemma 2 established that along any equilibrium path a one-to-one mapping exists that

relates a level of (productivity-adjusted) per capita stock of capital k̃ to a corresponding

level of (productivity-adjusted) capital-per-worker κ̃0 in the investment sector. Taking the
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derivative of this function (from Equation (C.6)) yields:

˙̃
k = ˙̃κ0 + (1− α0) κ̃−α0

0 ẽ
α− α0

α0 (1− α0)
˙̃κ0 + κ̃1−α0

0

α− α0

α0 (1− α0)
˙̃e+ κ̃1−α0

0 ẽ
1

α0 (1− α0)
α̇,

=

[
κ̃0 + (1− α0) κ̃1−α0

0 ẽ
α− α0

α0 (1− α0)

] ˙̃κ0

κ̃0
+

κ̃1−α0
0 ẽ

α0 (1− α0)

[
(α− α0)

˙̃e

ẽ
+ α

α̇

α

]
. (C.12)

Therefore, we need to compute the growth rates of expenditure ˙̃e/ẽ and average (consumption-

sector) capital intensities α̇/α in terms of the growth rates of real consumption ċ/c and

investment-sector capital-to-labor ratio ˙̃κ0/κ̃0.

Now, we can use the expressions for the elasticity of function α with respect to real

consumption and price, from Lemma 1, to find:

α̇

α
= ηcα ·

ċ

c
+
∑
i

ηpiα
ṗi
pi
,

=
1− σ
α

ηgCov (ε, α) · ċ
c

+ (1− σ)
∑
i

(αi
α
− 1
)
ωi

[
1− αi
1− α0

Ȧ0

A0
− Ȧi
Ai

+ (α0 − αi)
˙̃κ0

κ̃0

]
,

= (1− σ) ηgερε,α ·
ċ

c
− 1− σ

α

[
Cov (α, γ) +

(
γ0

1− α0
+

˙̃κ0

κ̃0

)
V ar (α)

]
.

Similarly, we can write the growth rate of consumption expenditure as:

˙̃e

ẽ
= ηce

ċ

c
+
∑
i

ηpie
ṗi
pi
− 1

1− α0

Ȧ0

A0
,

= ηgε
ċ

c
+
∑
i

ωi

[
1− αi
1− α0

Ȧ0

A0
− Ȧi
Ai

+ (α0 − αi)
˙̃κ0

κ̃0

]
− 1

1− α0

Ȧ0

A0
,

= ηgε
ċ

c
− γ + (α0 − α)

˙̃κ0

κ̃0
− αγ0

1− α0
.

We can write Equation (C.12) as:

˙̃
k

κ̃0
= [1 + (1− α0) (α− α0)χ]

˙̃κ0

κ̃0
+ χ

[
(α− α0)

˙̃e

ẽ
+ α

α̇

α

]
,

= [1 + (1− α) (α− α0)χ− (1− σ)V ar (α)]
˙̃κ0

κ̃0
+ ηgε [α (1 + (1− σ) ρε,α)− α0]χ

ċ

c

− [α (1 + (1− σ) ρα,γ)− α0]χγ − [α (α− α0) + (1− σ)V ar (α)]χγ0.
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Finally, substituting this expression into Equation (C.11) give us:

[1 + (1− α) (α− α0)χ− (1− σ)V ar (α)]
˙̃κ0

κ̃0

+ηgε [α (1 + (1− σ) ρε,α)− α0]χ
ċ

c
= (1− α0 (1− α)χ) κ̃α0−1

0

− (1 + (α− α0)χ)

(
ρ+ δ +

γ0

1− α0

)
+ [α (α− α0) + (1− σ)V ar (α)]χγ0

+ [α (1 + (1− σ) ρα,γ)− α0]χγ.

where we have used the fact that l0 = 1− lC = 1− α0 (1− α)χ and k̃/κ̃0 = 1 + (α− α0)χ.

To ensure that the system of Equations above indeed has a solution, we need to establish

that the determinant of the following matrix is nonzero:

M =

[
−ηcu′ − 1 + ηηg + ηg ε̄

(
1 + (1− σ)V ar

(
ε
ε̄

))
α0 − α (1 + (1− σ) ρε,α)

ηgε [α (1 + (1− σ) ρε,α)− α0]χ 1 + (1− α) (α− α0)χ− (1− σ)V ar (α)χ

]
.

A necessary condition for the Euler equation to have a unique solution is that the expression

M1,1 is strictly positive. Since M1,2 ·M2,1 ≤ 0 and M2,2 = ∂k
∂κ0

> 0 (from Lemma 2), this is

sufficient to ensure that the determinant of matrix M is indeed positive.

Starting from initial level of per capita stock of capital k(0), Equation (C.6) and a choice

of c(0), give the corresponding allocation of capital to the investment sector κ0. For all t ≥ 0,

Equations (C.9) and (C.10) describe the dynamics of the economy in terms of (c, κ̃0).

The two state variables (c, κ̃0) at time t are sufficient to fully specify the economy. As

we discussed, both ẽ and ᾱ are functions of c and κ̃0, with the dependence on the latter

going through the dependence of functions (A.4) on prices, as specified by Equation (A.18).

Knowing the two state variables at any given time t, capital and labor employed in each

consumption good sector i may be written as:

Ki =

(
αi
α0
ωi (c, κ̃0) · ẽ (c, κ̃0)

κ̃α0
0

)
· LA0

1
1−α0 ,

Li =

(
1− αi
1− α0

ωi (c, κ̃0) · ẽ (c, κ̃0)

κ̃α0
0

)
· L,

which completes the characterization of the economy.
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D Stone-Geary Estimation

We follow the estimation procedure described in Herrendorf et al. (2013). The identification

of the parameters in the utility function is based on the estimation of the first order conditions

of the intra-period problem to estimate the parameters of the aggregator (28),

Lcit
Lct

=
Ωc
ip
c1−σ
it∑

i∈{a,m,s}Ωc
ip
c1−σ
it

(
1 +

∑
i∈{a,s} p

c
itc̄i∑

i∈{a,m,s} p
c
itC

c
it

)
− pcitc̄i∑

i∈{a,m,s} p
c
itC

c
it

(D.1)

with the understanding that c̄m = 0. We perform the estimation with and without sectoral

trade controls for net exports. As with nonhomothetic CES preferences, we estimate three

parameters that are common across countries {σ, c̄a, c̄s} that govern the price and income

elasticities, and {Ωc
i}i∈I,c∈C which are country specific parameters.

Table G.6 (also in the online appendix) reports the estimates. As expected, we find that

c̄a < 0 and c̄s > 0. However, we cannot reject that the point estimates are statistically

different from zero at conventional levels when clustering the standard errors at the country

level.7

To have a better grasp of the magnitude of the income effects, we compute the values of

− pca,tc̄a∑
i∈{a,m,s} p

c
itC

c
it

and
pcs,tc̄s∑

i∈{a,m,s} p
c
itC

c
it
. For the U.S., they are never higher (in absolute terms)

than .05%, which suggests that non-homtheticities are insignificant when companred to ag-

gregate consumption. The highest values of the non-homotheticities are found in Venezuela

where they reach 11% for agriculture and 22% for services.

E Stata Code for Monte-Carlo Simulations and Estimation

This Stata code generates time series of prices, sectoral expenditure for one country as chosen

by a representative agent with nonhomothetic CES.8 The code prints on screen the estimated

elasticities using the true price index, a chained Fisher price index and a simple CPI con-

structed using weighted prices by expenditure shares. The bottom line is that all of them

provide very similar estimates.

Note that we have shocks to growth rates of relative prices and aggregate consumption to

avoid colinearity among regressors and allow for identification. All shocks can be dispensed

with if two (or more) countries are generated, as this provides additional variation to identify

the elasticities.

** Create a fake dataset using non-homothetic CES and estimate it

clear all

7We control for net sectoral exports in agriculture and manufacturing in each regression. We also report
the log-likelihood of the overall fit and the Akaike information criterion in Table G.6.

8We thank Tomasz Swiecki for a fruitful discussion on this topic.
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set more off

******* Basic Parameters *********

set obs 100 /*number of observations*/

global gc .01 /*growth of real c*/

global sigma .75 /* Price Elasticity -- Change here to obtain different resilts*/

global ga .022

global gm .017

global gs .016

global ea 0.5 /*Income Elasticities */

global em 1.1

global es 1.4

******* Generate Variables ********

gen t = _n

gen rc = rnormal(0,.01)

gen C = 100*(1+$gc+rc)^t

gen ra = rnormal(0,.01)

gen rm = rnormal(0,.01)

gen rs = rnormal(0,.01)

gen pa= 100*(1+$ga+ra)^(-t)

gen pm= 100*(1+$gm+rm)^(-t)

gen ps= 100*(1+$gs+rs)^(-t)

gen P = (C^($ea-1)*pa^(1-$sigma)+C^($em-1)*pm^(1-$sigma) ///

+C^($es-1)*ps^(1-$sigma))^(1/(1-$sigma))

label var P "Ideal Price Index"

gen expsh_a = C^($ea-1)*(pa/P)^(1-$sigma)

gen expsh_m = C^($em-1)*(pm/P)^(1-$sigma)

gen expsh_s = C^($es-1)*(ps/P)^(1-$sigma)

gen cpi =expsh_a*pa+ expsh_m*pm + expsh_s*ps

gen fisher = sqrt(expsh_a*pa[t-1]+ expsh_m*pm[t-1] + expsh_s*ps[t-1]) ///

*sqrt(expsh_a[t-1]*pa+ expsh_m[t-1]*pm + expsh_s[t-1]*ps)

gen expenditure = P*C

gen log_cpi_inv = log(expenditure/cpi)

gen log_fisher_inv=log(expenditure/fisher)
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****** Generate Logs of Variables ********

gen log_expsh_a = log(expsh_a)

gen log_expsh_m = log(expsh_m)

gen log_expsh_s = log(expsh_s)

gen log_sh_am = log(expsh_a)-log(expsh_m)

gen log_sh_sm = log(expsh_s)-log(expsh_m)

gen log_pam = log(pa/pm)

gen log_psm = log(ps/pm)

gen log_c = log(C)

****** Regression Analysis *********

* True Regression

reg log_sh_am log_pam log_c

reg log_sh_sm log_psm log_c

* Regression with Regular CPI and Fisher Indices

reg log_sh_am log_pam log_cpi_inv

reg log_sh_sm log_psm log_cpi_inv

* Regressions run in the paper (SUR)

local eq1 log_sh_am log_pam log_cpi_inv,

local eq2 log_sh_sm log_psm log_cpi_inv,

constraint 1 [log_sh_sm]log_psm=[log_sh_am]log_pam

sureg (‘eq1’) (‘eq2’) , const(1)

local eq1 log_sh_am log_pam log_fisher_inv,

local eq2 log_sh_sm log_psm log_fisher_inv,

constraint 1 [log_sh_sm]log_psm=[log_sh_am]log_pam

sureg (‘eq1’) (‘eq2’) , const(1)

********* Display Results **********

quietly {

noisily: di "*******************************"_n"SIGMA" _n ///

"True: $sigma" _n "Estimated: "(1-_b[log_sh_sm:log_psm])

noisily: di _n "RELATIVE INCOME ELASTICITIES"

noisily: di "True: " (($ea-$em)/($es-$em))

noisily: di "Estimated: "(_b[log_sh_am:log_fisher_inv]/_b[log_sh_sm:log_fisher_inv]) ///

_n "*******************************"

}
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F Further Discussion on the Definition and Use of Real Con-

sumption

In this paragraph, we outline the justification for the choice of the chained-Fisher price index

as a deflator to construct our empirical measures of real consumption. A more detailed

explanation is given in subsection F.1. The justification comes from the following two facts.

First, the exact ideal price index for any non-homothetic continuously differentiable utility

function is the Törnqvist-Theil Index up to a second order approximation. Second, the Fisher

index and the Törnqvist-Theil Index approximate each other up to second order. Thus, the

using a Fisher index provides a second order approximation to our ideal price index. Diewert

(1976, 1978, 2002) provides a formal proof of these statements and a quantitative analysis. To

assess the accuracy of this second order estimation we have also run Monte-Carlo simulations

using the true price index and the Fisher price index and the estimation results are almost

identical. For example, when generating data consistent with the U.S., the estimates were

identical up to the fifth decimal. Also, using a simple non-chained deflator did not make a big

quantitative difference. This is indeed a mere reproduction of the results reported in Diewert

(1976, 1978) and Hill (2006). Online Appendix E contains a template of the code used.

F.1 On the Use of Price Deflators to Construct Real Consumption Mea-

sures

In this section we discuss the results from Diewert (1976, 1978) and cover in more detail the discussion

on the Use of Price Deflators to Construct Real Consumption Measures discussed in the first paragraph

paragraph. Let the distance function be defined as d(c, u) = maxd{δ : U(c/δ) ≥ u}, where bold fonts

denote vectors and U(c) is consumer’s direct utility function. This function is the dual of the cost

function implied by U , κ(p, u) (see Deaton, 1979). Note that by definition U(c/d(c, u)) = u. Thus, d

is simply a quantity index defined relative to scalar value u.

To see more clearly the quantity index nature of the distance function, studying the dual of the

distance function is useful. Let ψ(p, E) = ψ(1,p/E) ≡ ψ(p/E) denote the indirect utility associated

with U , where we have used homogeneity of degree zero of the indirect utility function. Suppose that

at given prices p and expenditure E, we have that ψ(p, E) = u. Define the dual distance d∗(p, u).

Then,

ψ

(
p

d∗(p, u)

)
= u. (F.1)

Thus, d∗(p, u) = E. In other words,

d(q, u)κ(p, u) = E. (F.2)

It is in this sense that d ≡ C is interpreted as a quantity index (real consumption in our case) and

κ ≡ P as a price index. The previous expression can be written in terms of log-changes as

∆ ln d+ ∆ lnκ = ∆ lnE, (F.3)
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where ∆ denotes a change between, say, period 0 and 1. The Malmquist Quantity Index is defined the

difference in distances holding the reference utility constant, lnQM
01(q0,q1, u) = ln d(q1, u)−ln d(q0, u).

Intuitively, it compares two different consumption baskets measuring the change in the distance to

an indifference curve that generates utility u. Theorems 2.16 and 2.17 in Diewert (1976) state the

following:

Theorem Let the distance function generated by U be a general translog function of the form

ln d(c, U) = a0 + a′ ln c +
1

2
ln c′A ln c + b0 lnU + lnUb′ ln c +

1

2
c0 (lnU)

2
(F.4)

where bold fonts denote vectors and calligraphic, matrices.9 Suppose that the quantity vector ci is a

solution to the maximization problem maxc{U(ci) : pic = pici} then

Q01 (c0, c1,p0,p1) =
N∏
i=1

(
c1i
c0i

)ω0i+ω1i
2

=
d(c1, u

∗)

d(c0, u∗)
= QM

01(c0, c1, u
∗) (F.5)

where cji and ωji denote consumption and expenditure shares of good i at time t and u∗ =
√
U(qo)U(q1).

Let the cost function generated by U , κ(p, u), be a translog function (analogous to F.4). Then,

P01 (c0, c1,p0,p1) =

N∏
i=1

(
p1i
p0i

)ω0i+ω1i
2

=
κ(p1, u

∗)

κ(p0, u∗)
(F.6)

The left hand side of (F.5) and (F.6) correspond to the Törnqvist indeces (which can be computed

empirically), while the right hand side of (F.5) is the Malquist Index and the Konüs index or “True Cost

of Living” (Diewert, 1976), for (F.6). Diewert (1976) shows that there exists functional specifications

of (F.4) other than the translog for which this result also holds exactly. In other words, this is not

an if and only if result. The appeal of the translog function is that it approximates to a second

order any continuously differentiable function. In particular, for the cost function implied by (A.3) is

continuously differentiable, so this theory applies to the preferences in our paper.

Diewert (1978) shows that the Törnqvist index and the Fisher price index coincide with each

other up to the second order terms of a Taylor expansion around any arbitrary pair of prices and

quantities (p0,p1, c0, c1). In other words, Törnqvist and Fisher price indeces have exactly the same

first and second order derivatives evaluated at (p0,p1, c0, c1). Thus, they approximate each other up

to a second order. Quantitatively, the difference between these indices is very small. For example, Hill

(2006) studies a time series data set covering 64 components of United States gross domestic product

from 1977 to 1994. He finds that making all possible bilateral comparisons between any two years, the

Fisher and Törnqvist price indices differed by only 0.1 per cent on average. This close correspondence

is consistent with the results of other empirical studies using annual time series data (Diewert, 1976,

1978). Thus, the use of both price indices seems to make very little difference in practice.

Diewert (1978) argues that chaining the indices overtime is preferable to hold a constant basket

as long as quantities change less between two adjacent periods than in two distant-in-time periods.

9There exists some regularity restrictions for the distance function in order to be a well defined object from
the point of view of consumer theory. See Diewert (1971, 1976).
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Indeed, Alterman et al. (1999) (page 61, Proposition 1) showed that if the logarithmic price ratios

ln(pit/pit−1) trend linearly with time t and the expenditure shares also trend linearly with time, then

the Törnqvist chained-index is exact in the sense that it does not introduce any intertemporal bias.

That is, chaining by year or defining a price index between two arbitrary years is equivalent. They

also show that quantitatively using Fisher or Törnqvist makes little difference (the theoretical reason

being again that one approximates the other very well, as we have already discussed).

We conclude from this analysis that using the chained Fisher price indexes to deflate nominal

expenditure constitutes a very good approximation of real consumption.

F.2 Income Elasticities and Utility Cardinalization

Finally, concerning the identification of the income elasticities, as noted by Hanoch (1975),

there is one degree of freedom that is not pinned down by the nonhomothetic CES, (2). This

is why only the relative slopes of the Engel curves, εi − εm can be identified. However, this

normalization does not affect the real allocations, just the level of utility. To see that, consider

the monotonic transformation our real consumption measure as C̃t = Cζt in the definition of

the utility function, (2). This would not change the real allocations in our economy nor

the expenditure elasticities as defined in (14) (see Appendix A). However, the implied real

consumption elasticities would change from εi to ζεi. Thus, the level of the estimates we

obtain in our estimation εi − εj depend on the choice of the definition of real consumption.

As we have discussed, when we deflate using the chained-Fisher price index, our aggregate

consumption is defined relative to a baseline utility level (that is not known).10 This is the

reason why in the theory section A we choose a different normalization of utility that can be

interpreted in meaningful monetary terms. We follow the definition of Feenstra et al. (2013)

for real aggregate variables. We select a cardinalization of the utility such that it informs us

of the monetary cost of obtaining a given level of utility for a given set of reference prices.

In practice, this definition introduces a normalization to income elasticities (dividing all of

them by the elasticity with highest value, εmax). Thus, this pins down the degree of freedom

in defining income elasticities.
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Table G.1: Residual Relative Log-Expenditure Shares on Residual Aggregate Consumption

Dep. Var.: log
(

Agriculture
Manufact.

)
log
(

Services
Manufact.

)
Residual Log-Expenditure (1) (2) (3) (4)

Residual Log Aggregate Income -0.34 -0.42 0.27 0.23
(0.11) (0.12) (0.08) (0.07)

Residual Log Agg. Income below Median Income 0.19 0.09
(0.12) (0.13)

R2 0.27 0.29 0.20 0.21
Observations 513 513 513 513

Note: Standard errors clustered by country. Residual Aggregate Income is constructed
by taking the residuals of the following OLS regresssion: log Y c

t = α log pcat + β log pcmt +
γ log pcst+ξ

c+νct where superscript c denotes country, and subscript t, time. pcat denotes price
of agriculture in country c at time t. Likewise pcmt and pcst denote the prices of manufacturing
and services, respectively. ξc denotes a country fixed effect and νct the error term. Residual
log-expenditures are constructed in an analogous manner.

Table G.2: Contribution of Relative Prices and Consumption

Specification Log- LR Test AIC BIC
Likelihood χ2 p-value

FE Only -324.28 − − 754.56 1010.02

FE + Prices -270.30 107.96 0.00 648.61 908.89
FE + Consumption 363.34 1375.25 0.00 -616.68 -351.58

Full Specification 412.08
1472.71 0.00

-712.15 -442.23
97.47 0.00

Note: AIC refers to the Akaike Information Criterion, BIC refers to the Bayesian
Information Criterion. The first two Likelihood Ratio Tests are done against the
model that has only country-(relative)sector fixed effects. The last Likelihood Ratio
Test compares the full model against one with fixed effects and consumption.

H Plots of Fit with Regional Estimates for All Countries

Figures H.4, H.5 and H.6 starting on page 48 report the fit for all countries in our sample using

the region estimates for OECD, Asian and Latin American countries separately {σr, εs,r −
εm,r, εa,r − εm,r} where r denotes the regional estimation .
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Table G.3: Partial Correlations

Regression Consumption Relative Prices
Equation Partial Corr. Partial Corr.2 Partial Corr. Partial Corr.2

La/Lm -0.85 0.72 0.11 0.01
Ls/Lm 0.46 0.21 0.17 0.03

Note: Country*(relative)sector fixed effects included. Suppose that y is determined
by x1, x2, . . . , xk. The partial correlation between y and x1 is estimates the corre-
lation that would be observed between y and x1 if the other x’s did not vary. The
squared correlations estimate the proportion of the variance of y that is explained
by each.

Table G.4: Heterogeneous Price Elasticity of Substitution

Agri.-Manu. Serv.-Manu
Dep. Var: Emp. Shares (1) (2)

σam 0.67
(0.12)

σsm 0.78
(0.18)

εa − εm -1.01
(0.13)

εs − εm 0.33
(0.13)

c · sm Fixed Effects Y Y
Trade Controls Y Y

Note: Standard errors clustered by country.

Table G.5: Value Added Regressions

Dep. Var: Value Added (1) (2)

σ 0.91 0.51
(0.25) (0.14)

εa − εm -1.00 -1.17
(0.21) (0.15)

εs − εm 0.22 0.10
(0.08) (0.15)

Observations 1043 1043
c · sm Fixed Effects N Y

Note: Standard errors clustered by country.
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Table G.6: Stone-Geary Estimation Results

Dep. Var.: Emp. Shares (1) (2)

σ 0.21 0.21
(0.05) (0.05)

c̄a -208 -201
(205) (194)

c̄s 415 395
(475) (452)

Log-Likelihood 173677 173645
Akaike IC -347348 -347274
Bayesian IC -347333 -347236

Sectoral Trade Control N Y

Measures of Non-homotheticity
Entire Sample
max psc̄s∑

i∈{a,m,s} piCi
-0.00 -0.00

min psc̄s∑
i∈{a,m,s} piCi

-0.11 -0.11

max pac̄a∑
i∈{a,m,s} piCi

-0.00 -0.00

min pac̄a∑
i∈{a,m,s} piCi

-0.11 -0.11

United States

max pU.S.s c̄s∑
i∈{a,m,s} p

U.S.
i CU.S.i

4.9e-04 4.9e-04

min pU.S.a c̄a∑
i∈{a,m,s} p

U.S.
i CU.S.i

-5.4e-04 -5.4e-04

Note: Standard errors clustered by country.
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Table G.7: Contribution of Prices and Consumption for OECD Countries

Specification Log- LR Test AIC BIC
Likelihood χ2 p-value

FE Only 43.84 − − -45.68 33.91

FE + Prices 119.21 150.74 0.00 -194.41 -111.03
FE + Consumption 428.92 770.16 0.00 -811.84 -724.67

Full Specification 441.01
794.35 0.00

-834.03 -743.07
24.18 0.00

Note: AIC refers to the Akaike Information Criterion, BIC refers to the Bayesian
Information Criterion. The first two Likelihood Ratio Tests are done against the
model that has only country-(relative)sector fixed effects. The last Likelihood Ratio
Test compares the full model against one with fixed effects and consumption.

Regression Consumption Relative Prices
Equation Partial Corr. Partial Corr.2 Partial Corr. Partial Corr.2

La/Lm -0.52 0.27 -0.24 0.06
Ls/Lm 0.88 0.77 0.02 0.00

Note: Country*(relative)sector fixed effects included. Suppose that y is determined
by x1, x2, . . . , xk. The partial correlation between y and x1 is estimates the corre-
lation that would be observed between y and x1 if the other x’s did not vary. The
squared correlations estimate the proportion of the variance of y that is explained
by each.

Figure G.1: Predicted Evolution of Expenditure Shares for the U.S.
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Table G.8: Contribution of Prices and Consumption for Non-OECD Countries

Specification Log- LR Test AIC BIC
Likelihood χ2 p-value

FE Only -186.07 − − 442.13 595.38

FE + Prices -182.83 6.47 0.01 437.66 595.28
FE + Consumption 261.90 895.94 0.00 -449.81 -287.80

Full Specification 280.09
932.32 0.00

-484.19 -317.81
36.38 0.00

Note: AIC refers to the Akaike Information Criterion, BIC refers to the Bayesian
Information Criterion. The first two Likelihood Ratio Tests are done against the
model that has only country-(relative)sector fixed effects. The last Likelihood Ratio
Test compares the full model against one with fixed effects and consumption.

Regression Consumption Relative Prices
Equation Partial Corr. Partial Corr.2 Partial Corr. Partial Corr.2

La/Lm -0.88 0.78 0.17 0.03
Ls/Lm 0.22 0.05 0.00 0.00

Note: Country*(relative)sector fixed effects included. Suppose that y is determined
by x1, x2, . . . , xk. The partial correlation between y and x1 is estimates the corre-
lation that would be observed between y and x1 if the other x’s did not vary. The
squared correlations estimate the proportion of the variance of y that is explained
by each.

Table G.9: Growth Rates of Relative Prices in the Country Panel

log
(
pci,t
pcm,t

)
= αcim + βi ·Year + εcim,t, i = {s, a}

log
(
pca
pcm

)
log
(
pcs
pcm

)
Year -0.59 0.13

(0.05) (0.04)

Country-Sector FE Yes Yes
R2 0.49 0.41
Observations 1680 1680

Note: Year has been re-scaled to Year/100.
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Figure G.2: Country Fit Using Stone-Geary Preferences
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Figure G.3: Country Fit Using Stone-Geary Preferences
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