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Numerical Derivation of Full Equilibria

In this supplement, we provide the numerical calculations that verify the
examples for full equilibria from the paper.

The Numerical Setup
Recall the example from the paper. The values are v` = 0 and vh = 1, with

equal probability, ρ` = ρh = 1/2. Signals are binary on [x, x̄] = [0, 1], with a
jump at x̂ = 1/2. We consider the case with λ = gh(1)

g`(1) = 3, meaning,

g` (x) =

{
2
4 if x > 1

2 ,
6
4 if x ≤ 1

2 ,
and gh (x) =

{
6
4 if x > 1

2 ,
2
4 if x ≤ 1

2 ,

and

G`

(
1

2

)
=

3

4
and Gh

(
1

2

)
=

1

4
.

Part 1: A Full Equilibrium with (n`, nh) = (16, 5)
We now show that for our numerical example, if

s = 0.0011 = 1. 1× 10−3,

then the following numbers constitute a full equilibrium

b = 0.08 and b̄ = 0.49

n` = 16 and nh = 5

All calculations are done in MuPAD 3.1.

Seller’s optimality.
Choosing nω bidders is optimal given a two-step bidding function if and only

if
(Gω)

nω−1
(1−Gω)

(
b̄− b

)
≥ s ≥ (Gω)

nω−1
(1−Gω)

(
b̄− b

)
,
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with Gω = Gω (x̂) here and in the following. Let ∆b =
(
b̄− b

)
. In the example,

∆b = 0.41. Substituting the numbers,

∆b (Gh)
nh−1

(1−Gh) = (0.41)

(
1

4

)5−1(
1− 1

4

)
= 1. 201 171 875× 10−3

∆b (Gh)
nh (1−Gh) = (0.41)

(
1

4

)5(
1− 1

4

)
= 3. 002 929 688× 10−4

∆b (G`)
n`−1

(1−G`) = (0.41)

(
3

4

)16−1(
1− 3

4

)
= 1. 369 754 754× 10−3

∆b (G`)
n` (1−G`) = (0.41)

(
3

4

)16(
1− 3

4

)
= 1. 027 316 065× 10−3

Hence, the seller’s optimality conditions hold with

s = 0.001 1 = 1.1× 10−3.

Bidder’s Optimality.
Let us calculate some critical conditional expected values. In particular,

E
[
v|x̄, sol,win at b > b̄

]
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
=

3
(

5
16

)
3
(

5
16

)
+ 1

= 0.483 870 967 7.

Furthermore,

E
[
v|x, sol,win at b̄

]
=

Pr(win at b̄|h)
Pr(win at b̄|`)

(
5
16

) (
1
3

)
1 +

Pr(win at b̄|h)
Pr(win at b̄|`)

(
5
16

) (
1
3

) =

5
16


1−( 14 )

5

5(1− 1
4 )

1−( 34 )
16

16(1− 3
4 )

( 1
3

)

1 + 5
16


1−( 14 )

5

5(1− 1
4 )

1−( 34 )
16

16(1− 3
4 )

( 1
3

) = 0.100 821 634 7

and

E [v|x, sol,win at b] =

Pr(win at b|h)
Pr(win at b|`)

5
16

1
3

1 + Pr(win at b|h)
Pr(win at b|`)

5
16

1
3

=

( 14 )
5

(5) 1
4

( 34 )
16

(16) 3
4

5
16

1
3

1 +

( 14 )
5

(5) 1
4

( 34 )
16

(16) 3
4

5
16

1
3

= 8. 878 520 312×10−2

and for b ∈
(
b, b̄
)

E [v|x, sol,win at b] =

Pr(win at b|h)
Pr(win at b|`)

5
16

1
3

1 + Pr(win at b|h)
Pr(win at b|`)

5
16

1
3

=

( 14 )
4

( 34 )
15

5
16

1
3

1 +
( 14 )

4

( 34 )
15

5
16

1
3

= 2. 954 904 5×10−2
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We now show that bidding b̄ is optimal for x̄. We compare the payoff from
bidding b̄ to the payoff from bidding b > b̄, b, and from bidding b ∈

(
b, b̄
)
. To

do so, we derive the payoffs from each type of bid:

U
(
b > b̄|x̄,sol

)
< E

[
v|x̄,win at b > b̄, sol

]
− b̄ = 0.483 870 967 7− 0.49 < 0

Furthermore,

U
(
b̄|x̄,sol

)
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
Pr
(
win at b̄|h

) (
1− b̄

)
+

1
gh
g`
nh
n`

+ 1
Pr
(
win at b̄|`

) (
−b̄
)

=
3
(

5
16

)
3
(

5
16

)
+ 1

1−
(

1
4

)5
5
(
1− 1

4

) (1− 0.49) +
1

3
(

5
16

)
+ 1

1−
(

3
4

)16

16
(
1− 3

4

) (−0.49)

= 3. 150 067 748× 10−3

and

U (b|x̄,sol) =

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
Pr (win at b|h) (1− b) +

1
gh
g`
nh
n`

+ 1
Pr (win at b|`) (−b)

=
3
(

5
16

)
3
(

5
16

)
+ 1

(
1
4

)5
5
(

1
4

) (1− 0.08) +
1

3
(

5
16

)
+ 1

(
3
4

)16

16
(

3
4

) (−0.08)

= 3. 132 959 071× 10−4

and for b ∈
(
b, b̄
)

U (b|x̄,sol) ≤
gh
g`
nh
n`

gh
g`
nh
n`

+ 1
Pr (win at b|h) (1− b) +

1
gh
g`
nh
n`

+ 1
Pr (win at b|`) (−b)

=
3
(

5
16

)
3
(

5
16

)
+ 1

(
1

4

)4

(1− 0.08) +
1

3
(

5
16

)
+ 1

(
3

4

)15

(−0.08)

= 1. 187 129 674× 10−3

Comparing the profit at these four candidate bids shows that it is optimal
to bid b̄.

Finally, it is optimal to bid b = 0.08 for x. To see this, recall the expected
values conditional on winning at b and at candidates for deviations:

E [v|x,sol,win at b = b] = 8. 878 520 312× 10−2 > b

E
[
v|x,sol,win at b ∈

(
b, b̄
)]

= 2. 954 904 5× 10−2 < b

E
[
v|x,sol,win at b = b̄

]
= 0.100 821 634 7 < b̄

E
[
v|x,sol,win at b > b̄

]
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
=

1
3

(
5
16

)
1
3

(
5
16

)
+ 1

= 9. 434 0× 10−2 < b̄.

Part 2: A Full Equilibrium with (n`, nh) = (40, 10)
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We now show that for our numerical example, if

s = 0.0000011 = 1. 1× 10−6,

then the following numbers constitute a full equilibrium

b = 0.08 and b̄ = 0.49,

n` = 40 and nh = 10.

Seller’s optimality.
Choosing nω bidders is optimal given a two-step bidding function if and only

if
(Gω)

nω−1
(1−Gω)

(
b̄− b

)
≥ s ≥ (Gω)

nω−1
(1−Gω)

(
b̄− b

)
.

Let ∆b =
(
b̄− b

)
. In the example, ∆b = 0.41. Substituting the numbers,

∆b (Gh)
nh−1

(1−Gh) = (0.41)

(
1

4

)10−1(
1− 1

4

)
= 1. 173 019 4× 10−6

∆b (Gh)
nh (1−Gh) = (0.41)

(
1

4

)10(
1− 1

4

)
= 2. 932 548 5× 10−7

∆b (G`)
n`−1

(1−G`) = (0.41)

(
3

4

)40−1(
1− 3

4

)
= 1. 374 400 0× 10−6

∆b (G`)
n` (1−G`) = (0.41)

(
3

4

)40(
1− 3

4

)
= 1. 030 800 0× 10−6

Hence, the seller’s optimality conditions hold with

s = 1.1× 10−6.

Bidder’s Optimality.
Let us calculate the critical conditional expected values. In particular,

E
[
v|x̄, sol,win at b > b̄

]
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
=

3
(

10
40

)
3
(

10
40

)
+ 1

= 0.428 571 428 6

Further

E
[
v|x, sol,win at b̄

]
=

Pr(win at b̄|h)
Pr(win at b̄|`)

10
40

(
1
3

)
1 +

Pr(win at b̄|h)
Pr(win at b̄|`)

10
40

(
1
3

) =

10
40


1−( 14 )

10

10(1− 1
4 )

1−( 34 )
40

40(1− 3
4 )

( 1
3

)

1 + 10
40


1−( 14 )

10

10(1− 1
4 )

1−( 34 )
40

40(1− 3
4 )

( 1
3

) = 0.100 000 819 3
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and

E [v|x,win at b, sol] =

Pr(win at b|h)
Pr(win at b|`)

10
40

1
3

1 + Pr(win at b|h)
Pr(win at b|`)

10
40

1
3

=

( 14 )
10

(10) 1
4

( 34 )
40

(40) 3
4

10
40

1
3

1 +

( 14 )
10

(10) 1
4

( 34 )
40

(40) 3
4

10
40

1
3

= 8. 661 687 9×10−2

and for b ∈
(
b, b̄
)

E [v|x,win at b, sol] =

Pr(win at b|h)
Pr(win at b|`)

10
40

1
3

1 + Pr(win at b|h)
Pr(win at b|`)

10
40

1
3

=

( 14 )
10

( 34 )
40

10
40

1
3

1 +
( 14 )

10

( 34 )
40

10
40

1
3

= 7. 840 608 206×10−3

and

E [v|x̄,win at b, sol] =

Pr(win at b|h)
Pr(win at b|`)

10
403

1 + Pr(win at b|h)
Pr(win at b|`)

10
403

=

( 14 )
10

( 34 )
40

10
403

1 +
( 14 )

10

( 34 )
40

10
403

= 6. 640 051 074×10−2

We now show that bidding b̄ is optimal for x̄. We compare the payoff from
bidding b̄ to the payoff from bidding b > b̄, b, and from bidding b ∈

(
b, b̄
)
.

To do so, we derive the payoffs from each type of bid:

U
(
b > b̄|x̄,sol

)
< E

[
v|x̄,win at b > b̄, sol

]
− b̄ = 0.428 571 428 6− 0.49 < 0

Furthermore,

U
(
b̄|x̄,sol

)
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
Pr
(
win at b̄|h

) (
1− b̄

)
+

1
gh
g`
nh
n`

+ 1
Pr
(
win at b̄|`

) (
−b̄
)

=
3
(

10
40

)
3
(

10
40

)
+ 1

1−
(

1
4

)10

10
(
1− 1

4

) (1− 0.49) +
1

3
(

10
40

)
+ 1

1−
(

3
4

)40

40
(
1− 3

4

) (−0.49)

= 1. 143 110 9× 10−3

and

U (b|x̄,sol) =

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
Pr (win at b|h) (1− b) +

1
gh
g`
nh
n`

+ 1
Pr (win at b|`) (−b)

=
3
(

10
40

)
3
(

10
40

)
+ 1

(
1
4

)10

10
(

1
4

) (1− 0.08) +
1

3
(

10
40

)
+ 1

(
3
4

)40

40
(

3
4

) (−0.08)

= 1. 350 837 434× 10−7
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and
U
(
b ∈

(
b, b̄
)
|x̄,sol

)
< (E [v|x̄,win at b, sol]− b) < 0

Thus, U (b|x̄,sol) is maximal at b̄.

Finally, it is optimal to bid b for x. This follows from

E [v|x,win at b, sol] = 8. 661 687 931× 10−2 > b

E
[
v|x,win at ∈

(
b, b̄
)
, sol

]
= 7. 840 608 206× 10−3 < b

E
[
v|x,win at b̄, sol

]
= 0.100 000 819 3 < b̄

E
[
v|x,win at b > b̄, sol

]
=

gh
g`
nh
n`

gh
g`
nh
n`

+ 1
=

1
3

(
10
40

)
1
3

(
10
40

)
+ 1

< b̄
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