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This online appendix discusses alternative microfoundations that are consistent

with the paper’s main results. The main results of the paper are as follows.

Result 1 (closed economy result) at the steady state, output volatility is higher

in more distorted economies.

Result 2 (open economy result) at the steady state, financial integration increases

volatility relatively more in more distorted economies.

In the paper, the derivation of these results builds on a strong assumption re-

garding the relationship between misallocation and decreasing returns. In particular,

it is assumed that more efficient allocations imply aggregate production functions

that have uniformly steeper marginal products. In general, models of misallocation

can generate aggregate production functions that do not always satisfy this property.

Despite this, it turns out that standard models of misallocation are consistent with

these results, at least for some parametric restrictions, and often for the same reasons

as those highlighted in the paper.

The discussion that follows will focus on models that generate steady states in

which the rate of return to savers, rss, satisfies β(1 + rss) = 1 for some β ∈ (0, 1).

At the steady state, savings (s) fluctuate exogenously; it is assumed that var(ln(s))

is the same across countries, regardless of the degree of misallocation. Finally, it will

∗This note reflects my own views and not necessarily those of the World Bank, its Executive
Directors or the countries they represent. Please send comments to meden@worldbank.org.
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be useful to assume that the depreciation rate of capital, δ, satisfies δ = 1. Nothing

hinges on this assumption but it simplifies the exposition. The following lemma will

be useful for establishing results 1 and 2 in the context of different models.

Lemma 1 Let k(r) denote the equilibrium capital level given r. Assume that:

1. ∂ ln(Y (kss))
∂ ln k

is larger in more distorted economies, and

2. |∂ ln(k(rss))
∂r

| is larger in more distorted economies.

Then, Results 1 and 2 hold.

Result 1 follows from the lemma’s first assumption: since δ = 1, it follows that, in

a closed economy, st = kt+1. Hence, given that var(ln(s)) is the same across countries,

so is var(ln(k)). In the closed economy,

var(ln(Y )) ≈ (
∂ ln(Y )

∂ ln(k)
)2var(ln(k)) = (

∂ ln(Y )

∂ ln(k)
)2var(ln(s)) (1)

hence, a higher elasticity of output with respect to capital implies higher output

volatility in the closed economy.

To establish Result 2, note that the volatility of the capital stock in country i is

approximately:

var(ln(ki)) ≈ (
∂ ln(ki(r

ss))

∂r
)2var(ri) (2)

When economies are financially integrated, they face the same interest rate and

var(ri) = var(r). Thus, using the second condition of the lemma, it follows that

capital volatility is higher in more distorted economies. Since, under autarky, capital

volatility is the same across countries, financial integration increases capital volatility

relatively more in more distorted economies. The same applies to output volatility

given the approximation in equation 1.

A 2x2 example. Before proceeding with the analysis of richer models of misallo-

cation, it is useful to illustrate the conditions of Lemma 1 in a simple 2x2 example.

Consider a discrete environment in which there are only two projects, x = 1, 2, where

A(1) > A(2). In this economy, there are only two possible orders of implementation:

with probability γ = ω(1, 1) = ω(2, 2), projects are implemented in the efficient order

(π(1) = 1 and π(2) = 2), and with probability 1− γ = ω(1, 2) = ω(2, 1), the order of
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implementation is reverse (π(1) = 2 and π(2) = 1). Note that γ captures the proba-

bility of an efficient allocation at the micro level. Thus, the conditions of Lemma 1

hold if the discrete counterparts of ∂ ln(Y (kss))
∂ ln k

and |∂ ln(k(rss))
∂r

| are decreasing in γ.

There are two possible capital levels in this economy: k = 1 or k = 2. Given a

probability γ of an efficient allocation, the expected marginal product, y(k), is given

by:

y(k) =

γA(1) + (1− γ)A(2) if k = 1

γA(2) + (1− γ)A(1) if k = 2
(3)

the aggregate production function is:

Y (k) =

y(1) = γA(1) + (1− γ)A(2) if k = 1

y(1) + y(2) = A(1) + A(2) if k = 2
(4)

In this environment, y(1) is increasing in γ and y(2) is decreasing in γ. The

restriction γ ≥ 0.5 guarantees that y(1) ≥ y(2).

The discrete counterpart of the first condition of Lemma 1 follows from equation

4:

ln(Y (2))− ln(Y (1)) = ln(A(1) + A(2))− ln(y(1)) (5)

which is decreasing in γ because y(1) is increasing in γ.

Using the relationship ∂k
∂r

= 1/( ∂r
∂k

), and the equilibrium condition y = r + δ, the

discrete counterpart of the second condition of Lemma 1 amounts to the monotonicity

of y(1) − y(2). This follows similarly from the fact that y(1) is increasing in γ and

y(2) is decreasing in γ.

This benchmark highlights the intuitions underlying the relationship between mis-

allocation and the conditions of Lemma 1. The following sections illustrate that,

under certain conditions, this relationship can be obtained in standard models of

misallocation. Section 1 considers limited pledgeability in the Kiyotaki and Moore

[1997] setup. Section 2 considers misallocation due to adverse selection, as in Stiglitz

and Weiss [1981]. Finally, section 3 explores the case of misallocation due to uncer-

tainty, in the spirit of Asker et al. [2014].
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1 Limited pledgeability

This section derives the conditions of Lemma 1 in the standard Kiyotaki and Moore

[1997] framework. Both conditions can be derived with minor modifications to the

original framework. While the first condition is a direct outcome of misallocation,

the second condition is obtained somewhat mechanically using the assumption that

constrained firms operate a constant returns technology.

In the Kiyotaki and Moore setup, the aggregate production function is an aggre-

gation of two types of projects: “farming” projects and “gathering” projects. There

is a measure 1 of farmers and a measure 1 of gatherers. Gatherers produce according

to a decreasing returns technology, G(kg), where kg is the capital stock employed

by the gatherer, and the production function G satisfies G′ > 0 and G′′ < 0. This

production technology can be thought of as a collection of “gathering” projects with

productivities given by AG(xg) = G′(xg) for xg ∈ (0,∞), and an allocation in which

gatherers implement “gathering” projects in an efficient order.

Farmers have a constant returns technology given by:

F (kf ) = (a+ c)kf (6)

where kf is the capital employed by farmers, a is the pledgeable portion returns, and c

is a non-pledgeable component. Similarly, this production technology can be thought

of as a collection of “farming” projects with a constant productivity distribution,

AF (xf ) = a+ c for xf ∈ (0,∞).

Assuming that limkg→0G
′(kg) > a, the equilibrium of this economy is character-

ized by the condition:

G′(kg) ≥ a (7)

When aggregate capital is sufficiently high, G′(kg) = a and savers are indifferent

between lending to gatherers and lending to farmers, taking into account that the

return from lending to farmers is a rather than a+ c.

Let k̃ denote the minimal capital level such that there is lending to farmers:

G′(k̃) = a (8)
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Figure 1: The return to savers and the marginal product of capital in the Kiyotaki
and Moore [1997] setup, where a1 > a2 and a1 + c1 = a2 + c2 = f .

The aggregate production function is given by:

Y (k) =

G(k) if k ≤ k̃

G(k̃) + (a+ c)(k − k̃) otherwise.
(9)

Let R(k) denote the marginal return to savers. The function R(k) is given by:

R(k) =

G′(k) if k ≤ k̃

a otherwise.
(10)

Figure 1 plots the return to savers and the marginal product curve for two different

values of a (holding a+ c constant). While the return to savers is always decreasing

in k, the marginal product is locally increasing when the rate of return reaches a and

farming projects begin to be implemented.

To compare economies with different levels of misallocation but the same distribu-

tion of projects, define f = a+c as the return to farming projects, and λ = a/f as the

fraction of pledgeable returns. Note that a higher λ corresponds to a less constrained

farming sector that is able to pledge a higher share of returns. As illustrated by figure

1b, the marginal product is always weakly increasing in a. It follows immediately that

output (the area under the marginal product curve) is increasing in a as well, and

thus efficiency is increasing in λ.

The analysis in Kiyotaki and Moore [1997] focuses on domestic reallocation of

capital in response to productivity shocks, holding the aggregate capital stock fixed.
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In contrast, the focus here is on fluctuations in the capital stock around the steady

state of the neoclassical growth model. In this setup, there cannot be a steady state

in which farming projects are implemented in two economies with different values of

λ. To see this, note that a steady state requires that:

R(kss) + 1− δ =
1

β
(11)

If 1
β
− 1 + δ = λf , then any economy with λ′ < λ will not implement any farming

projects, whereas any economy with λ′ > λ will not converge to a steady state.

Before modifying the model to address this concern, it is instructive to consider

the following lemma, that illustrates the effects of misallocation on the elasticity of

output with respect to capital. The lemma implies that, at a given capital level,

output is more sensitive to fluctuations in capital in more distorted economies.

Lemma 2 Assume that λ1 > λ2, and let Y (k, λ) denote the aggregate production

function given λ. Then, for k such that G′(k) < λ2f , the elasticity of output with

respect to capital is higher in the more constrained economy: ∂ lnY (k,λ2)
∂ ln k

> ∂ lnY (k,λ1)
∂ ln k

.

To prove this lemma, note that, under the assumptions G′(k) < λ2f and λ1 > λ2,

the marginal unit of capital is allocated to farmers in both economies. Thus,

∂ lnY (k, λi)

∂ ln k
=
∂ ln(Y (k, λi))

∂k

∂k

∂ ln(k)
=

∂Y (k,λi)
∂k

Y (k, λi)
k =

f

Y (k, λi)
k (12)

for i = 1, 2. The lemma then follows from the fact that Y (k, λ2) < Y (k, λ1), since

lower pledgeable returns to farming lead to greater misallocation of capital and lower

productivity in economy 2.

Note that Lemma 2 applies only under the parametric restriction G′(k) < λ2f ,

guaranteeing that the capital level is such that farming projects are implemented in

both economies.1

Lemma 2 is, in some ways, analogous to Result 1: a change in the capital stock

has a larger effect on output in economies with greater misallocation. This finding

is a direct outcome of misallocation: while the productivity of marginal projects is

1Otherwise, the result may not apply: if λ2f < G′(k) < λ1f , farming projects are implemented
only in the less constrained economy. It is easy to see that, in this case, the elasticity of output with
respect to capital is higher in the less distorted economy.
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the same in both economies, the average quality of inframarginal projects is lower in

the more constrained economy. Consequently, the percent change in output induced

by a percent change in capital is larger in economies with lower pledgeability. Note,

however, that Lemma 2 is not equivalent to Result 1, as it offers a comparison between

economies with the same capital stock, rather than a comparison of economies at their

respective steady states.

To derive Results 1 and 2 in this setting, it is necessary to modify the model

to allow for a steady state in which some farming projects are implemented in both

economies. The model can be modified to guarantee a steady state by imposing a

limit on the supply of farming projects.2 Assume that the supply of farming projects

is given by some x̄ and that, when the economy runs out of farming projects, it

implements the remaining gathering projects according to their efficient order. The

aggregate production function is modified to:

Y (k) =


G(k) if k ≤ k̃

G(k̃) + (a+ c)(k − k̃) if k̃ < k ≤ k̃ + x̄

G(k − x̄) + (a+ c)x̄ if k > k̃ + x̄

(13)

The plegeable rate of return to capital, R, is modified to:

R(k) =


G′(k) if k ≤ k̃

a if k̃ < k ≤ k̃ + x̄

G′(k − x̄) if k > k̃ + x̄

(14)

Figure 2 plots the modified rates of return and the modified marginal product

curves.

Note that, if G satisfies the Inada conditions, then this modified model always

has a steady state. However, the steady state may not be unique: if 1
β
− 1 + δ = a,

then the marginal return to capital does not uniquely pin down the capital stock, as

all farming projects produce the same marginal return.

2Note that in the Kiyotaki and Moore model, there are, implicitly, infinitely many projects,
and, in equilibrium, many projects that are never implemented, regardless of the level of capi-
tal: in particular, gathering projects with AG(x) < a will never be implemented. Thus, for these
projects, ω(x, p) = 0 for all p, and

∫∞
0
ω(x, p)dp = 0, in violation of the model’s assumption that∫∞

0
ω(x, p)dp = 1 for all x.
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Figure 2: The return to savers and the marginal product of capital in the modified
Kiyotaki and Moore [1997] setup, where the supply of farming projects is limited. In
the above figure, a1 > a2 and a1 + c1 = a2 + c2 = f .

The following lemma establishes that in this modified setup, the conditions of

Lemma 1 may hold, provided that the steady state rate of return is equal to the

pledgeable component of farming projects in the more constrained economy.

Lemma 3 Assume that λ1 > λ2, and that λ2f + 1− δ = 1
β

. Then, there exist steady

states in which the conditions of Lemma 1 hold.

The steady state under the restriction λ2f + 1 − δ = 1
β

can be illustrated by

figure 2. In this example, the steady state rate of return is a2. In country 1, the

steady state capital stock is kss1 = k̃2 + x̄, which is the unique capital level consistent

with that return. In country 2, the steady state capital stock may take any value

kss2 ∈ [k̃2, k̃2 + x̄]. The marginal product in country 1 is equalized with the marginal

return (R1(kss) = y1(kss) = a2). The marginal product in country 2 is greater than

the marginal return, and is given by f .

To establish the first condition of Lemma 1, note that the maximum level of steady

state capital in country 2 is k̃2 + x̄ = kss1 . By equation 12, for a steady state in which

kss1 = kss2 , the elasticity of output is higher in the more distort economy:

∂ ln(Y2(kss2 ))

∂ ln(k)
=
∂ ln(Y2(kss1 ))

∂ ln(k)
=

fkss1
Y2(kss1 )

>
λ2fk

ss
1

Y1(kss1 )
=
∂ ln(Y1(kss1 ))

∂ ln(k)
(15)

where the inequality follows from Y1(kss1 ) > Y2(kss1 ) and λ2 < 1. By continuity, this

property holds for any kss2 = kss1 − ε, provided that ε > 0 is sufficiently small. Note

that while the lemma guarantees the existence of steady states which satisfy this
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property, additional assumptions are needed in order to guarantee that any steady

state satisfies this property.3

It is useful to clarify the components of the proof that build on the mechanisms

highlighted in the paper, and those that do not. The proof builds on three features of

the modified Kiyotaki and Moore environment: (a) both economies can have similar

steady state capital levels; (b) the marginal product of capital at the steady state

is higher in the more distorted economy and (c) steady state output is lower in the

more distorted economy.

The model in the paper relies on features (b) and (c), but does not require feature

(a). In particular, misallocation increases the return to marginal units of capital

relative to inframarginal units. Given the assumption that allocations can be ranked

according to the steepness of their marginal product curves, the relationship between

volatility and misallocation does not depend on the relative values of steady state

capital stocks. However, since the Kiyotaki and Moore framework does not imply a

uniform ranking of allocations in terms of decreasing returns, the result requires (a)

as well.

To establish the second condition, note that at any interior steady state in which

kss2 ∈ (k̃2, k̃2 + x̄),
∂k2(rss)

∂r
= −∞ (16)

as any small change in the interest rate leads to a measurable change in the capital

stock in country 2. It thus follows that |∂ ln(k2(rss))
∂r

| > |∂ ln(k1(rss))
∂r

|, consistent with the

second condition of Lemma 1.

While the modified Kiyotaki and Moore setup generates comparative statics that

are consistent with the second condition of Lemma 1, it does so for reasons that are

largely unrelated to misallocation. In the modified Kioytaki and Moore setup, this

result builds heavily on the technological assumption of constant returns to farming

projects, which, in this model, are not an endogenous outcome of misallocation. This

3Under the conditions of Lemma 3, the added assumption G(k̃2) < k̃2f guarantees that the
elasticity of output with respect to capital is higher in country 2 in any steady state. To see this,
note that, under this assumption, the average product of capital in country 2 is increasing in k2 for
k2 ∈ [k̃2, k̃2 + x̄]: Y2/k2 = (G(k̃2) + (k2 − k̃2)f)/k2 = (G(k̃2) − k̃2f)/k2 + f . It follows that, under
this condition, the steady state elasticity of output with respect to capital in country 2 (which is
given by fkss2 /Y

ss
2 ) is decreasing in kss2 . Since kss2 = kss1 is the maximum steady state capital level

in country 2, it follows that the elasticity of output with respect to capital is higher in country 2 at
any steady state.
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is in contrast to Result 1 which is closely tied to misallocation and the mechanisms

highlighted in the paper.

2 Adverse selection

Stiglitz and Weiss [1981] study optimal lending behavior in an environment in which

projects are heterogeneous in their risk. Their model highlights the possibility of

credit rationing whenever there is asymmetric information between borrowers and

lenders regarding the riskiness of projects. This section illustrates that credit ra-

tioning generates comparative statics consistent with Results 1 and 2, and for similar

reasons.

While Stiglitz and Weiss [1981] restrict attention to environments in which projects

have the same mean returns, it will be useful to modify their setup to allow for

heterogeneous returns. Consider an economy with two types of projects: safe projects

indexed x ∈ [0, x̄], and risky projects indexed v ∈ [0, x̄]. The safe project x delivers a

certain return of B = A(x), where A(·) is decreasing and A(x) ≥ 0. The risky project

v delivers a return B = 2A(v) with probability 0.5, and B = 0 otherwise. Thus, if

x = v, the mean returns of projects x and v are the same, but v is more risky.

Borrowers make positive profits only when their projects’ realized returns exceed

their debt obligations. Otherwise, they default and realize 0 profits. Given an interest

rate of r̃, the profits associated with a project that realizes a return of B are:

Π(B, r̃) = max{B − (1 + r̃), 0} (17)

In an event of default, lenders seize the project’s returns, B. The return to lenders

is therefore:

ρ(B, r̃) = min{1 + r̃, B} (18)

When applying for a loan, borrowers know the distribution of their projects’ re-

turns. It is assumed that borrowers apply for loans only when doing so is associated

with strictly positive expected profits (EB(Π(B, r̃)) > 0).

I will consider two economies: in economy 1, lenders are able to differentiate

between risky and safe projects. In economy 2, lenders are unable to distinguish

between safe and risky projects. In both economies, it is assumed that lenders do not

observe projects’ mean returns.

10



I begin by characterizing the equilibrium in economy 1. In this environment, a

risk neutral lender sets two interest rates: a safe interest rate, r∗, and a risky interest

rate, r̃. Only safe borrowers can access loans at the safe interest rate. Note that

owners of safe projects will find it optimal to apply for loans only when x is such

that:

A(x) > 1 + r∗ (19)

thus, there will be no default associated with lending to safe projects.

In contrast, risky projects will borrow whenever their returns exceed 1 + r̃ in the

good state:

2A(v) > 1 + r̃ (20)

In the bad state, risky projects will default. Thus, the expected return from lending

to risky projects is 0.5(1+ r̃). In equilibrium, lenders are indifferent between safe and

risky projects. Thus,

1 + r∗ = 0.5(1 + r̃) (21)

It follows that the equilibrium implements the efficient allocation. To see this, note

that the set of safe projects that are implemented is characterized by the condition

A(x) > 1 + r∗, and the set of risky projects that are implemented is characterized by

the condition 2A(v) > 2(1 + r∗), or A(v) > 1 + r∗. It follows that there is a unique

cutoff v = x, such that projects are implemented if and only if their expected returns

exceed A(v) = A(x).

Next, I derive the equilibrium in economy 2. In economy 2, lenders are restricted

to one interest rate, r̃, that applies to both risky and safe borrowers. I follow Stiglitz

and Weiss [1981] and define the average dollar return to loans as a function of the

interest rate, ρ̄(r̃). If 1+ r̃ > A(0), only risky projects borrow, and the average return

is ρ̄ = 0.5(1 + r̃). If 1 + r̃ < A(0), both safe and risky borrowers apply for loans. An

interior solution is characterized by the thresholds v(r̃) and x(r̃), respectively:

A(x(r̃)) = 2A(v(r̃)) = 1 + r̃ (22)

The average return to the lender is then:

ρ̄(r̃) =


0.5(1+r̃)v(r̃)+(1+r̃)x(r̃)

v(r̃)+x(r̃)
if 1 + r̃ ∈ (0, A(0))

0.5(1 + r̃) if 1 + r̃ > A(0)
(23)
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Note that the restriction r∗ = r̃ implies that the allocation is inefficient, since

there are too many risky projects being implemented. To see this, note that in the

efficient allocation, the set of implemented projects consists of equal measures of safe

and risky projects (v = x), whereas in economy 2 the measure of risky projects is

always larger than the measure of safe projects (v ≥ x).

It is possible to construct examples in which the function ρ̄(r̃) is non-monotone

and realizes an interior maximum in the region 1 + r̃ ∈ (0, A(0)), in which both risky

and safe projects borrow.4 Let ro denote this interior maximum. As illustrated in

Stiglitz and Weiss [1981], there are multiple levels of credit supply that yield the

optimality of ro.

Lemma 4 [Stiglitz and Weiss] Assume that the market clearing interest rate, rmc,

satisfies rmc > ro and ρ̄(rmc) < ρ̄(ro). Then, the equilibrium interest rate is r̃ = ro.

The proof is immediate: rather than setting the market clearing interest rate, the

lenders realize higher returns by setting the lower interest rate ro and rationing credit.

To embed this framework in a neoclassical growth model, it will be useful to

assume that A(x) is the gross return (or that δ = 1) and that the representative

household is the representative lender, facing the return ρ̄(r̃). The following lemma

states that if there is credit rationing at the steady state, then the conditions of

Lemma 1 apply.

Lemma 5 Assume that βρ̄(ro) = 1. Then, there exist steady states in which:
∂ ln(Y ss

2 )

∂ ln(k2)
=

1 >
∂ ln(Y ss

1 )

∂ ln(k1)
and ∂ ln(k2(ρss))

∂ρ
= −∞ < ∂ ln(k1(ρss))

∂ρ
.

As illustrated by Lemma 4, there are multiple capital levels that imply an equilibrium

return of ρ̄(ro). I will restrict attention to kss2 in which there is credit rationing. Using

rmc(k) to denote the market clearing interest rate given k, it will be assumed that

rmc(kss2 ) > ro and ρ̄(rmc(kss2 )) < ρ̄(ro).

When credit is rationed, a marginal expansion in credit supply does not lead to a

change in the lending rate. This is a generic feature of credit rationing (see Corollary

1 in Stiglitz and Weiss [1981]). Thus, since the supply of funding in country 2 adjusts

through the financing of credit-rationed projects, the resulting increase in output is

proportional to the increase in the capital stock. In contrast, in country 1, output

4To provide a concrete example, I confirm this numerically for the productivity distribution
A(x) = x̄− x.
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increases less than proportionately since the projects funded at the margin are less

productive than the inframarginal projects. Essentially, the dynamics implied by this

model are, at least locally, the same as in the random allocation example.

Similarly, as the equilibrium is locally equivalent to the random allocation exam-

ple, a marginal change in k2 leaves ρ̄ unchanged, whereas a marginal change in k1

leads to a decline in the rate of return. Thus, a small increase in the required rate

of return, ρ, can be accommodated in country 1 by small adjustments to r∗ and r̃,

which lead to a small adjustment in the amount of credit. However, in country 2,

ρ̄(r0) is the maximum level of the expected return function ρ̄(·). Thus, an increase in

the required expected return will lead to a dry-up of credit in country 2, and hence
∂k2(ρss)

∂ρ
= −∞.

This analysis illustrates that the stark results obtained from the random allocation

example can be generated as equilibrium outcomes in a much richer environment. In

particular, note that the only difference between countries 1 and 2 is in the ability of

lenders to assess the riskiness of projects. The ability to discriminate based on risk

is sufficient for guaranteeing the efficient allocation, even when lenders are unable to

observe projects’ expected returns. In contrast, absent the ability to discern between

risky and safe projects, the equilibrium may exhibit credit rationing. By definition,

credit rationing implies a condition in which there are some projects that are denied

financing while financing is granted to other projects with identical characteristics.

This generically implies a local “flatness” of the marginal product curve, as marginal

increases in funding can adjust through the financing of credit-rationed projects rather

than through a decline in the rate of return.

3 Uncertainty

This section generates the conditions of Lemma 1 in an environment in which ex-post

misallocation is an outcome of ex-ante uncertainty regarding projects’ returns. Asker

et al. [2014] illustrate that, when it is costly for firms to adjust capital in response to

idiosyncratic productivity shocks, there will be some misallocation of capital ex-post.

In what follows, I consider a simplified version of this model, in which the degree of

uncertainty determines the degree of ex-post misallocation.

Consider the following setup. The ex-post distribution of projects is log Normal

with mean 0 and standard deviation of 1 (ln(A(x)) ∼ N(0, 1)). At the time of
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borrowing, project owners receive a noisy signal ζ(x), which is correlated with their

productivity.5 In particular, the ex-post returns to project x are:

ln(A(x)) =
√

1− σ2ζ(x) + σε(x) (24)

where σ ∈ [0, 1], and ζ(x) and ε(x) are independently distributed Normal variables:

ζ(x), ε(x) ∼ N(0, 1). Note that the ex-post distribution of ln(A(x)) is given by the

standard Normal distribution, and does not depend on σ.6 At the time of borrowing,

project owners observe ζ(x) but not ε(x).

In this model, σ determines the degree of uncertainty. When σ = 0, ln(A(x)) =

ζ(x), and there is no ex-ante uncertainty; when σ = 1, project owners do not have

any information regarding the expected returns to their projects.

Project owners are risk neutral and borrow whenever expected returns exceed the

interest rate:

E(A(x)|ζ(x)) = E(exp(
√

1− σ2ζ(x) + σε(x))|ζ(x)) (25)

= exp(
√

1− σ2ζ(x))E(exp(σε(x))) ≥ 1 + r

Taking logs yields the following cutoff, ζ̄(r), such that projects are implemented if

and only if ζ(x) > ζ̄(r):

√
1− σ2ζ̄(r) = ln(1 + r)− ln(E(exp(σε(x)))) (26)

To solve for aggregate quantities, note that the measure of projects that realize

ζ(x) > ζ̄(r) must be equal to the capital stock. Using φ to denote the probability

density function of the standard Normal distribution, k is given by:

k(r) =

∫ ∞
ζ̄(r)

φ(ζ)dζ (27)

5In Asker et al. [2014], firms invest dynamically and current productivity is an informative signal
of future productivity. In this framework, ζ(x) can be interpreted as last period’s productivity and
ε(x) as an idiosyncratic productivity shock.

6The standard deviations of
√

1− σ2ζ(x) and σε(x) are
√

1− σ2 and σ, respectively, and hence
the variance of ln(A(x)) is the sum (

√
1− σ2)2 + σ2 = 1.
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Figure 3: The conditions of Lemma 1 in the uncertainty model. The first condition
requires an increasing relationship between σ and ∂ lnY (kss)

∂ ln k
. The second condition

requires an increasing relationship between σ and |∂ ln(k(rss))
∂r

|. The figure illustrates
that both conditions are satisfied for σ ∈ [0, 0.8].

Aggregate output is the expected returns of all implemented projects:

Y (r) =

∫ ∞
ζ̄(r)

∫ ∞
−∞

φ(ε)φ(ζ) exp(
√

1− σ2ζ + σε)dεdζ (28)

= E(exp(σε))

∫ ∞
ζ̄(r)

φ(ζ) exp(
√

1− σ2ζ)dζ

To assess the conditions of Lemma 1, note that the elasticity of output with respect

to capital is:
∂ ln(Y )

∂ ln(k)
=
∂ ln(Y )

∂k
k =

∂Y
∂k

Y
k =

1 + r

Y
k (29)

And, using equations 26 and 27, the derivative of capital with respect to ln(1 + r) is:

| ∂k

∂ ln(1 + r)
| = φ(ζ̄(r))√

1− σ2
(30)

and hence:

| ∂ ln(k)

∂ ln(1 + r)
| = φ(ζ̄(r))√

1− σ2
∫∞
ζ̄(r)

φ(ζ)dζ
(31)
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Equations 29 and 30 can be assessed numerically for different values of σ at their

corresponding steady states. Figure 3 illustrates the results under the assumption

that rss = 0.02.

The first condition of Lemma 1, requiring that ∂ lnY (kss)
∂ ln k

is increasing in σ, appears

to be a robust feature of this model. This condition guarantees Result 1, but not

Result 2. The second condition of Lemma 1, requiring that |∂ ln(k(rss))
∂r

| is increasing

in σ, is satisfied for σ ∈ [0, 0.8] but not for the entire range σ ∈ [0, 1]. To understand

why higher values of σ violate this condition, note that, in the extreme case of σ =

1, all projects are implemented if and only if the mean value of the log Normal

distribution exceeds 1 + r. This implies that, close to this limit, the measure of

projects implemented at the margin, φ(ζ̄(r)), will be small (unless 1 + r happens

to equal to the mean of the log Normal distribution). From equation 30, this will

generate an equilibrium capital stock that is relatively insensitive to changes in the

interest rate.

To summarize, this online appendix establishes that the main insights of the paper

can be generated by three off-the-shelf models of misallocation, at least under certain

parametric restrictions. It is useful to keep in mind that the models considered here

were not constructed with the purpose of studying the effects of misallocation on the

shape of the aggregate production function. In light of this, Result 1 appears to be

relatively more robust than Result 2, as the latter relies on a local property of the

marginal product curve around the steady state, whereas the former relates to the

ratio of the marginal return and the average return. However, Result 2 appears to

hold as well under some parametric restrictions.
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