An Online Appendix to

"Quadratic Voting:

How Mechanism Design Can Radicalize Democracy"

Steven P. Lalley*
E. Glen Weyl ${ }^{\dagger}$

December 24, 2017

Abstract

This appendix proves the main theorem of "Quadratic Voting: How Mechanism Design Can Radicalize Democracy"' in the 2017 American Economic AssociationPapers and Proceedings and available at http: //ssrn.com/abstract=2790624

First consider the "if" direction. The general quadratic rule is $c(x)=k x^{2}$ for some $k>0$. By price-taking, voters maximize $2 p u_{i} v_{i}-k v_{i}^{2}$. A necessary condition for maximization is that $2 p u_{i}=2 k v_{i}$ or

$$
v_{i}^{\star}=\frac{p u_{i}}{k} .
$$

Thus

$$
\operatorname{sign}\left(\sum_{i} v_{i}^{\star}\right)=\operatorname{sign}\left(\sum_{i} \frac{p u_{i}}{k}\right)=\operatorname{sign}\left(\sum_{i} u_{i}\right)
$$

as $k, p>0$.
For the "only if" direction, consider any cost c. Then by strict convexity and differentiability, voters will chose the unique v_{i}^{\star} solving

$$
2 p u_{i}=c^{\prime}\left(v_{i}\right) \Longleftrightarrow v_{i}^{\star}=\gamma\left(2 p u_{i}\right),
$$

where γ is the inverse function of c^{\prime}, which is well-defined by strict convexity. Consider the special case of the robust optimality requirement in which $p=1 / 2$; for the "only if" direction this is without loss of generality. In this case we have $v_{i}^{\star}=\gamma\left(u_{i}\right)$. The only homogeneous of degree one functions of a single variable are linear, so either γ is linear or it is not homogeneous of degree one. In the first case, inversion and integration yields that c takes the form claimed. In the second case, there must exist some $u^{\prime}>0, \kappa>1$ such that $\gamma\left(\kappa u^{\prime}\right) \neq \kappa \gamma\left(u^{\prime}\right)$. Let $\Delta \equiv \frac{\gamma\left(\kappa u^{\prime}\right)}{\kappa \gamma\left(u^{\prime}\right)}-1$.

[^0]Again we can break this into two cases: $\Delta>0$ and $\Delta<0$. In the first case, let N^{\star} be the least integer strictly greater than $\frac{2 \kappa(1+\Delta)}{\Delta}$ and let $N^{\star \star}$ be the greatest integer strictly less than $\frac{N^{\star}}{\kappa}$.

Consider a collective decision problem where $N^{\star \star}$ voters have value $-\kappa u^{\prime}, N^{\star}$ voters have value u^{\prime} and there are no other voters. Then

$$
\sum_{i} u_{i}=N^{\star} u^{\prime}-N^{\star \star} \kappa u^{\prime}>N^{\star} u^{\prime}-\frac{N^{\star}}{\kappa} \kappa u^{\prime}=0
$$

However, by the oddness of γ derived from the evenness of c,

$$
\begin{gathered}
\sum_{i} v_{i}^{\star}=N^{\star} \gamma\left(u^{\prime}\right)-N^{\star \star} \gamma\left(\kappa u^{\prime}\right)=\gamma\left(u^{\prime}\right)\left[N^{\star}-N^{\star \star} \kappa(1+\Delta)\right] \leq \\
\gamma\left(u^{\prime}\right)\left[N^{\star}-\left(N^{\star}-\kappa\right)(1+\Delta)\right]=\kappa \gamma\left(u^{\prime}\right)\left[1+\Delta-\Delta \frac{N^{\star}}{\kappa}\right]<\kappa \gamma\left(u^{\prime}\right)[1+\Delta-2(1+\Delta)]<0 .
\end{gathered}
$$

Here we used the fact that $\kappa, \gamma>0$ for all non-zero arguments of γ by the strict monotonicity of γ. Thus c cannot in this case be robustly optimal.

Now consider the case when $\Delta<0$. Let \hat{N} be the greatest integer strictly less than $-\frac{2 \kappa(1+\Delta)}{\Delta}$ and let \tilde{N} be the least integer strictly greater than $\frac{\hat{N}}{\kappa}$. Consider a collective decision problem where \tilde{N} voters have value $-\kappa u^{\prime}, \hat{N}$ voters have value u^{\prime} and there are no other voters. Then

$$
\sum_{i} u_{i}=\hat{N} u^{\prime}-\tilde{N} \kappa u^{\prime}<\hat{N} u^{\prime}-\frac{\hat{N}}{\kappa} \kappa u^{\prime}=0
$$

However, by the oddness of γ derived from the evenness of c,

$$
\begin{gathered}
\sum_{i} v_{i}^{\star}=\hat{N} \gamma\left(u^{\prime}\right)-\tilde{N} \gamma\left(\kappa u^{\prime}\right)=\gamma\left(u^{\prime}\right)[\hat{N}-\tilde{N} \kappa(1+\Delta)] \geq \\
\gamma\left(u^{\prime}\right)[\hat{N}-(\hat{N}+\kappa)(1+\Delta)]=-\kappa \gamma\left(u^{\prime}\right)\left[1+\Delta+\Delta \frac{\hat{N}}{\kappa}\right]>\kappa \gamma\left(u^{\prime}\right)[2(1+\Delta)-1-\Delta]>0 .
\end{gathered}
$$

Here we used the fact that $k, \gamma>0$ for all non-zero arguments of γ by the strict monotonicity of γ and thus that $\Delta>-1$. Thus c cannot in this case be robustly optimal or thus in any case when γ is not homogeneous of degree one, completing the proof.

[^0]: *Department of Statistics, University of Chicago, 5747 S. Ellis Avenue, Chicago, IL 60637 (lalley@galton.uchicago.edu).
 ${ }^{\dagger}$ Microsoft Research, One Memorial Drive, Cambridge, MA 02142 and Yale University Department of Economics and Law School (glenweyl@microsoft.com).

