An Online Appendix to

"Quadratic Voting:

How Mechanism Design Can Radicalize Democracy"

Steven P. Lalley^{*} E. Glen Weyl[†]

December 24, 2017

Abstract

This appendix proves the main theorem of "Quadratic Voting: How Mechanism Design Can Radicalize Democracy"' in the 2017 American Economic AssociationPapers and Proceedings and available at http://ssrn.com/abstract=2790624.

First consider the "if" direction. The general quadratic rule is $c(x) = kx^2$ for some k > 0. By price-taking, voters maximize $2pu_iv_i - kv_i^2$. A necessary condition for maximization is that $2pu_i = 2kv_i$ or

$$v_i^\star = \frac{pu_i}{k}.$$

Thus

$$\operatorname{sign}\left(\sum_{i} v_{i}^{\star}\right) = \operatorname{sign}\left(\sum_{i} \frac{pu_{i}}{k}\right) = \operatorname{sign}\left(\sum_{i} u_{i}\right)$$

as k, p > 0.

For the "only if" direction, consider any cost c. Then by strict convexity and differentiability, voters will chose the unique v_i^{\star} solving

$$2pu_{i} = c'(v_{i}) \iff v_{i}^{\star} = \gamma(2pu_{i}),$$

where γ is the inverse function of c', which is well-defined by strict convexity. Consider the special case of the robust optimality requirement in which p = 1/2; for the "only if" direction this is without loss of generality. In this case we have $v_i^* = \gamma(u_i)$. The only homogeneous of degree one functions of a single variable are linear, so either γ is linear or it is not homogeneous of degree one. In the first case, inversion and integration yields that c takes the form claimed. In the second case, there must exist some $u' > 0, \kappa > 1$ such that $\gamma(\kappa u') \neq \kappa \gamma(u')$. Let $\Delta \equiv \frac{\gamma(\kappa u')}{\kappa \gamma(u')} - 1$.

^{*}Department of Statistics, University of Chicago, 5747 S. Ellis Avenue, Chicago, IL 60637 (lalley@galton.uchicago.edu).

[†]Microsoft Research, One Memorial Drive, Cambridge, MA 02142 and Yale University Department of Economics and Law School (glenweyl@microsoft.com).

Again we can break this into two cases: $\Delta > 0$ and $\Delta < 0$. In the first case, let N^* be the least integer strictly greater than $\frac{2\kappa(1+\Delta)}{\Delta}$ and let N^{**} be the greatest integer strictly less than $\frac{N^*}{\kappa}$.

Consider a collective decision problem where $N^{\star\star}$ voters have value $-\kappa u'$, N^{\star} voters have value u' and there are no other voters. Then

$$\sum_{i} u_i = N^* u' - N^{**} \kappa u' > N^* u' - \frac{N^*}{\kappa} \kappa u' = 0$$

However, by the oddness of γ derived from the evenness of c,

$$\sum_{i} v_{i}^{\star} = N^{\star} \gamma \left(u^{\prime} \right) - N^{\star \star} \gamma \left(\kappa u^{\prime} \right) = \gamma \left(u^{\prime} \right) \left[N^{\star} - N^{\star \star} \kappa \left(1 + \Delta \right) \right] \leq \gamma \left(u^{\prime} \right) \left[N^{\star} - \left(N^{\star} - \kappa \right) \left(1 + \Delta \right) \right] = \kappa \gamma \left(u^{\prime} \right) \left[1 + \Delta - \Delta \frac{N^{\star}}{\kappa} \right] < \kappa \gamma \left(u^{\prime} \right) \left[1 + \Delta - 2 \left(1 + \Delta \right) \right] < 0$$

Here we used the fact that $\kappa, \gamma > 0$ for all non-zero arguments of γ by the strict monotonicity of γ . Thus ccannot in this case be robustly optimal.

Now consider the case when $\Delta < 0$. Let \hat{N} be the greatest integer strictly less than $-\frac{2\kappa(1+\Delta)}{\Delta}$ and let \tilde{N} be the least integer strictly greater than $\frac{\hat{N}}{\kappa}$. Consider a collective decision problem where \tilde{N} voters have value $-\kappa u'$, \hat{N} voters have value u' and there are no other voters. Then

$$\sum_{i} u_{i} = \hat{N}u' - \tilde{N}\kappa u' < \hat{N}u' - \frac{\hat{N}}{\kappa}\kappa u' = 0.$$

However, by the oddness of γ derived from the evenness of c,

$$\sum_{i} v_{i}^{\star} = \hat{N}\gamma\left(u'\right) - \tilde{N}\gamma\left(\kappa u'\right) = \gamma\left(u'\right) \left[\hat{N} - \tilde{N}\kappa\left(1 + \Delta\right)\right] \ge \gamma\left(u'\right) \left[\hat{N} - \left(\hat{N} + \kappa\right)\left(1 + \Delta\right)\right] = -\kappa\gamma\left(u'\right) \left[1 + \Delta + \Delta\frac{\hat{N}}{\kappa}\right] > \kappa\gamma\left(u'\right) \left[2\left(1 + \Delta\right) - 1 - \Delta\right] > 0$$

Here we used the fact that $k, \gamma > 0$ for all non-zero arguments of γ by the strict monotonicity of γ and thus that $\Delta > -1$. Thus c cannot in this case be robustly optimal or thus in any case when γ is not homogeneous of degree one, completing the proof.