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Appendix I: 

Specifying the Marginal Product of Capital with Neutral and Factor-Augmenting 

Technical Change 

This appendix presents the details of the derivation of the marginal product of capital 

when there is both neutral and factor-augmenting technical change, and the derivation shows that 

the latter has no impact on the specification of the estimating equation used in this study.  We 

assume that production possibilities are described by the following CES technology that relates 

output ( *
i,tY ) to capital   ( *

i,tK ), labor  ( *
i,tL ), and neutral technical progress ( *

i,tA ), and factor-

augmenting technical progress on capital and labor ( K* L*
i,t i,tA and A ,  respectively) for industry i 

at time t,  

     * * * * K* L*
i,t i,t i,t i,t i,t i,tY Y[K , L , A , A , A ] ,        (I-1) 

       [ /( 1)]* K* * [( 1)/ ] L* * [( 1)/ ]
i,t i,t i,t i,t i,tA (A K ) (1 )(A L )

         

where   is the capital distribution parameter and   is the elasticity of substitution between 

labor and capital.  We use the value-added form of the CES production function for convenience.  
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 The derivative of *
i,tY  with respect to *

i,tK , *
i,tY ' , is computed from equation (I-1) as 

follows, 

     
 [[ /( 1)] 1]* * K* * [( 1)/ ] L* * [( 1)/ ]

i,t i,t i,t i,t i,ti,t

K* * [[( 1)/ ] 1] K*
i,t i,t i,t

Y ' [ / ( 1)]A (A K ) (1 )(A L )

*[( 1) / ] (A K ) A .

     

  

     

  
  (I-2)  

Since (( 1) / ) 1 1/      , we can rewrite equation (I-2) as follows,   

     
 

 

* * [ 1/ ]
i,t i,t

[ /( 1)]* K* * [( 1)/ ] L* * [( 1)/ ]
i,t i,t i,t i,t i,t

1K* * [( 1)/ ] L* * [( 1)/ ]
i,t i,t i,t i,t

K*[( 1)/ ]
i,t

Y ' K

A (A K ) (1 )(A L )

(A K ) (1 )(A L )

A .

 

    

   

 

 

  

  
     (I-3)   

In equation (I-3), the second line equals *
i,tY  per equation (I-1), and the third line equals the 

product of * *
i,t i,tY andA  raised to the appropriate powers, 

      

* * [ 1/ ]
i,t i,t

*
i,t

*[(1 )/ ] *[( 1)/ ]
i,t i,t

K*[( 1)/ ]
i,t

Y ' K

Y

Y A

A

 

   

 

 

  ,        (I-4) 

which can be rewritten as follows, 

     *[1/ ] *[( 1)/ ]* * [ 1/ ] K*[( 1)/ ]
i,t i,t i,ti,t i,tY ' K Y A A        .    (I-5a) 

     * [1/ ] KY [1/ ]
i,t i,t i,t((Y / K ) ) U   ,       (I-5b) 

        *[ 1]KY [1/ ] K*[ 1]
i,t i,ti,tU A A  .     (I-5c) 

A profit-maximizing firm will equate the marginal product of capital in equation (I-5a) to the 

user cost of capital, the price of capital divided by the price of output,  

   K Y * * [1/ ] KY [1/ ]
i,t i,t i,t i,t i,t(P / P ) ((Y / K ) ) U   .      (I-6) 

Equation (I-6) can be rearranged to isolate the capital/output ratio on the left-side, 
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   * K Y * KY
i,t i,t i,t i,t i,t(K / Y ) ((P / P ) ) U   ,       (I-7) 

which is equation (2) in the text except for the inclusion of K*
i,tA  in the error term (cf. equation 

(I-5c).  Thus, factor-augmenting technical change has no impact on the specification of the 

estimating equation for  , and the only implication is a warning about possible correlation 

between the error term and the regressor.  
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Appendix II: 

Data Transformations and the Frequency Response Scalars 

Our estimation strategy is designed to emphasize long-run variation, and Section II uses 

spectral analysis to evaluate our approach and the choices of  and q.  This appendix provides 

some analytic details underlying the results stated and used in Section II.   

In analyzing the spectral properties of our estimator, it is convenient to write the LPF 

transformation (for a finite q), the logarithmic transformation, and the first-difference 

transformation as follows,  

     
q

*
i,t h i,t h

h q

x [ ,q] d [ ] x 


    ,        (II-1a) 

     * *
i,t i,ty [ ,q] ln[x [ , q]]    ,         (II-1b) 

     * *
i,t i,tz [ , q] y [ , q]     ,         (II-1c) 

where i,tx  represents the raw data series, either i,t i,t(K / Y ) or K Y
i,t i,t(P / P ) .  The spectra 

corresponding to the * * *
i,t i,t i,tx [.], y [.], and z [.] output series in equations (II-1) are defined over 

the interval  0,   as the product of the spectrum for an input series and a scalar that is 

nonnegative, real, and may be depend on  ,  , or q,  

     x* xg [ , ,q] [ , ,q] g [ ]        ,        (II-2a) 

     y* x*g [ , ,q] g [ ]     ,         (II-2b) 

     z* y*g [ , ,q] [ ] g [ ]      ,        (II-2c) 

where xg [ ]  is the spectrum for the raw series and the scalars are defined as follows, 

     

2q

h
h 1

1/2

( / ) 2 cos[h ] d ' [ ]
[ , , q] a[ , q]

[ ,q] {(1 cos[ (2q 1)]) / (1 cos[ ])}



 
            

 
         

 
 



   (II-3a) 

     2
x*b ( )   ,          (II-3b) 

       c 2 (1 cos[ ])     ,         (II-3c) 
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where x*  equals the unconditional expectation of *
i,tx [.] .  To ensure comparability in the 

analyses to follow that vary   and q, the areas under the spectra from 0 to   are normalized to 

one by an appropriate choice of normalizing constants, a[ , q] , b, and c in equations (II-3).  

 The three scalars -- [ , , q]   ,   , and [ ]   -- correspond to the LPF, logarithmic, and 

first-difference transformations, respectively, and they are derived as follows.  The [ , , q]    

scalar is based on Sargent (1987, Chapter XI, equation (33)), 

   
q q

ih ih
h h

h q h q

[ , , q] a[ , q] e d [ ] e d [ ] .  

 

               
      
         (II-4) 

The two-sided summations are symmetric about zero and only differ by the minus sign in the 

exponential terms.  Hence, the two sums in braces are nearly identical.  The hd [.] 's  appearing in 

the summations are separated into [.]  and the hd ' [.] 's  (cf. equations (6)).  For the latter terms, a 

further distinction is made between the term at h=0 and the remaining terms (h=1,q) that are 

symmetric about h=0.  Equation (II-4) can be written as follows, 

  

2
q q

ih ih ih
h

h q h 1

[ , , q] a[ , q] [ , q] e ( / ) (e e ) d ' [ ]   

 

               
  

      .  (II-5) 

The first sum of exponential terms in equation (II-5) is evaluated based on Sargent (1987,  

p. 275), 

       
1/22

q q
1/2ih ih

h q h q

e e (1 cos[(2q 1) ] / (1 cos[ ] . 

 

               

    (II-6) 

The second sum of exponential terms in equation (II-5) is evaluated with the Euler relations, 

ihe cos[h ] i sin[h ]      ,  

     
q q

ih ih
h h

h 1 h 1

(e e ) d ' [ ] 2 cos[h ] d ' [ ]  

 
       .     (II-7) 

 The   scalar is based on the approximation in Granger (1964, p. 48, equation 3.7.6), 

which states that the approximation will be accurate if the mean is much larger than the standard 

deviation of the input series ( *
i,tx [.] ).   
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The [ ]   scalar is based on the well-known formula for the first-difference 

transformation (Hamilton 1994, equation 6.4.8).  

The importance of the above analytical results is that the combined effects of the three 

transformations are captured by three scalars that multiply the spectrum of the raw series,  

      z* xg [ , ,q] [ , ,q] g [ ]           .       (II-8)  

Equation (II-8) allows us to examine the extent to which our estimation strategy emphasizes 

long-run frequencies.  Since the spectra for the raw series ( xg [ ] ) and the scalars associated 

with the logarithmic and first-difference transformations (  and   , respectively) do not 

depend on   or q, their impacts on the data will be absorbed in the normalizing constants 

( a[ , q], b, and c ), and hence they will not affect relative comparisons.  Alternative values of   

or q, will only affect the LPF[ , q]  and the associated scalar, [ , , q]   .   
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Appendix III: 

 

Appendix Table 3:  OLS Estimates of Equation (5): Various Critical Periodicities ( ) and 
Fixed Window (q=3) 

 
  Reordered 

Transformations 
Cross-Sectional 

Dependence 
Value-Added 

Output 
Split-Sample 

1960-1982  1983-2005 
K/L 

Model 
  (1) (2) (3) (4) (5) (6) 

  = 2 σ  
[NW s.e.]  
{R2} 

0.229 
[0.022] 
{0.405} 

0.409 
(0.115) 

 

0.335 
[0.028] 
{0.493} 

0.219 
[0.035] 
{0.419} 

0.242 
[0.036] 
{0.369} 

0.120 
[0.050] 
{0.154} 

        

 = 4 σ  
[NW s.e.]  
{R2} 

0.323 
[0.024] 
{0.514} 

0.375 
(0.124) 

 

0.442 
[0.031] 
{0.611} 

0.291 
[0.030] 
{0.539} 

0.350 
[0.033] 
{0.446} 

0.262 
[0.051] 
{0.274} 

        

  = 6 σ  
[NW s.e.]  
{R2} 

0.361 
[0.026] 
{0.503} 

0.370 
(0.119) 

 

0.503 
[0.035] 
{0.641} 

0.316 
[0.029] 
{0.510} 

0.413 
[0.040] 
{0.472} 

0.304 
[0.052] 
{0.315} 

        

  = 8 σ  
[NW s.e.]  
{R2} 

0.395 
[0.032] 
{0.500} 

0.391 
(0.060) 

 

0.543 
[0.038] 
{0.652} 

0.336 
[0.034] 
{0.472} 

0.460 
[0.047] 
{0.496} 

0.333 
[0.053] 
{0.339} 

        

  = 10 σ  
[NW s.e.]  
{R2} 

0.406 
[0.035] 
{0.494} 

0.291 
(0.171) 

 

0.550 
[0.039] 
{0.641} 

0.341 
[0.037] 
{0.442} 

0.472 
[0.051] 
{0.499} 

0.333 
[0.051] 
{0.333} 

        

  = 20 σ  
[NW s.e.]  
{R2} 

0.401 
[0.035] 
{0.479} 

0.415 
(0.095) 

 

0.534 
[0.038] 
{0.607} 

0.335 
[0.036] 
{0.407} 

0.464 
[0.052] 
{0.484} 

0.310 
[0.046] 
{0.301} 

        

    σ  
[NW s.e.]  
{R2} 

0.398 
[0.035] 
{0.476} 

0.376 
(0.069) 

 

0.528 
[0.037] 
{0.600} 

0.332 
[0.036] 
{0.403} 

0.460 
[0.052] 
{0.480} 

0.303 
[0.046] 
{0.294} 

 
Table notes are placed after the table in the published paper. 
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Appendix Table 4:  IV and OLS Estimates of Equation (5): Various Critical Periodicities           

(  ) and Fixed Window (q=3) 
 
 

  With Time Fixed Effects 
 

Without Time Fixed Effects 
 

  IV OLS IV 
 

  &
i,t 2p   @

i,t 2p   

 

Benchmark 
Model 

 

Corporate 
Tax Rate 

Three Corporate 
Tax Rates 

Three Corporate 
Tax Rates 

&
i,t 2p   

  (1) (2) (3) (4) (5) (6) 

  = 2 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.359 
[0.055] 
/7.14/ 

0.316 
[0.069] 
/6.63/ 

0.254 
[0.021] 

 

0.440 
[0.070] 
/29.49/ 

0.513 
[0.057] 
/15.74/ 
(0.001) 

0.456 
[0.039] 
/24.64/ 
(0.002) 

        

  = 4 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.367 
[0.049] 
/10.57/ 

0.314 
[0.062] 
/11.93/ 

0.353 
[0.023] 

 

0.433 
[0.085] 
/43.35/ 

0.478 
[0.053] 
/28.09/ 
(0.078) 

0.417 
[0.037] 
/63.68/ 
(0.082) 

        

  = 6 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.412 
[0.058] 
/12.99/ 

0.333 
[0.077] 
/13.94/ 

0.387 
[0.024] 

 

0.445 
[0.095] 
/70.56/ 

0.481 
[0.064] 
/36.34/ 
(0.381) 

0.440 
[0.045] 
/88.33/ 
(0.244) 

        

  = 8 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.438 
[0.062] 
/14.16/ 

0.345 
[0.087] 
/15.16/ 

0.415 
[0.029] 

0.452 
[0.103] 
/93.56/ 

 

0.483 
[0.080] 
/40.80/ 
(0.704) 

0.455 
[0.050] 
/111.80/ 
(0.554) 

        

  = 10 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.450 
[0.063] 
/14.30/ 

0.349 
[0.091] 
/15.12/ 

0.423 
[0.031] 

 

0.456 
[0.108] 
/99.65/ 

0.485 
[0.091] 
/40.26/ 
(0.455) 

0.462 
[0.053] 
/117.58/ 
(0.594) 

        

  = 20 σ  
[NW s.e.]  
/F/  
(J p-value) 

0.462 
[0.065] 
/13.90/ 

0.354 
[0.094] 
/14.00/ 

0.417 
[0.031] 

 

0.460 
[0.115] 
/94.40/ 

0.492 
[0.104] 
/35.57/ 
(0.120) 

0.472 
[0.055] 
/109.47/ 
(0.195) 

        

   σ  
[NW s.e.]  
/F/  
(J p-value) 

0.464 
[0.065] 
/13.77/ 

0.355 
[0.095] 
/13.69/ 

0.414 
[0.016] 

 

0.460 
[0.116] 
/92.09/ 

0.493 
[0.107] 
/34.40/ 
(0.088) 

0.459 
[0.073] 
/57.37/ 
(0.141) 

 
Table notes are placed after the table in the published paper. 
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Appendix IV: 

Stationarity Properties of the Model Variables 

 To assess stationarity of the variables used in the regression models, we use the panel unit 

root test proposed by Pesaran (2007) that extends the standard augmented Dickey-Fuller test to 

allow for cross-sectional dependence in panel data.   For a given variable 

 K Y
i,t i,t i,t i,t i,t i,t i,tX (K / Y ), (P / P ), k , p ,    , we estimate the following auxiliary equation,  

t 1 t j

J ' J ' __ _
ii,t i i i,t 1 i, j i,t j i i,ti, j

j 1 j 0

X a b X b X d X d X g t u ,  
 

             (IV-1a) 

 i,t i i,t 1 i,tu r u    ,                   (IV-1b) 

 
35

b i
i 1

b / 35


   ,                   (IV-1c)  

where 
_

tX is a cross-section average of i,tX , t is a time index, and the remaining lower case 

roman letters are parameters to be estimated.   The lag length (J’) for the lagged dependent 

variable ( i,t jX  ) and lagged difference in cross-section averages ( t jX  ) is determined by the 

need to absorb any serial correlation in the errors.  The null hypothesis that i,tX  has a unit root is 

evaluated by b , the average of the estimated ib coefficients.  The critical values for b  are 

provided in Pesaran’s Tables II.b and II.c for tests without and with a time trend ( ig t  in the 

above equation), respectively; they are reported in columns (3) to (5) in Appendix Table IV 

below.  

 The test statistics for the raw series are presented in panel A of Appendix Table IV, and 

they are all negative.   For i,t i,t(K / Y ) , the test statistics are greater than the (negative) critical 

values, even at the 10% level.  For K Y
i,t i,t(P / P ) , the test statistics are less than the (negative) 

critical at the 10% level.  These results suggest that the relative price term is stationary, while the 

capital/output ratio is nonstationary.     
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 As discussed in sub-section IV.A. , the LPF is not strictly valid when applied to 

nonstationary data, and we exploit the commutative property of the filters (equation (7d)).  In 

this case, we take logs and first-difference the data before applying the LPF.  As shown in panel 

B of Appendix Table IV, the unit root null hypothesis is rejected for all four model variables 

with or without a deterministic trend.  Thus, it is appropriate to apply the LPF to the 

logarithmically differenced data.    

 Appendix Table IV is on the next page.  
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Appendix Table IV:  Test Statistics for Stationarity of the  
Model Variables b  in Equation (IV-1c) 

 
Panel A:  Raw Series 
 
Variable With 

Deterministic 
Trend 

( ig 0  ) 

Critical Values 
 

 10%      5%       1% 
 

Without 
Deterministic 

Trend 
( ig 0 ) 

Critical Values 
 
 10%       5%        1% 

 

K / Yi,t i,t  

(1) 
 

-2.494 

(2) 
 

-2.550 

(3) 
 

-2.600 

(4) 
 

-2.720 

(5) 
 

-1.725 

(6) 
 

-2.050 

(7) 
 

-2.110 

(8) 
 

-2.230 

K YP / Pi,t i,t  
-2.852 -2.550 -2.600 -2.720 -2.085 -2.050 -2.110 -2.230 

         

K / Li,t i,t  
-1.856 -2.550 -2.600 -2.720 -1.722 -2.050 -2.110 -2.230 

K LP / Pi,t i,t  
-2.730 

 
-2.550 -2.600 -2.720 -2.448 

 
-2.050 -2.110 -2.230 

 
 
Panel B:  Transformed Series; First-Differences of Logs of Raw Series 
 
Variable With 

Deterministic 
Trend 

( ig 0  ) 

Critical Values 
 

 10%      5%       1% 
 

Without 
Deterministic 

Trend 
( ig 0 ) 

Critical Values 
 
 10%       5%        1% 

 

ki,t  

(1) 
 

-5.342 

(2) 
 

-2.550 

(3) 
 

-2.600 

(4) 
 

-2.720 

(5) 
 

-5.118 

(6) 
 

-2.050 

(7) 
 

-2.110 

(8) 
 

-2.230 

pi,t  -6.133 -2.550 -2.600 -2.720 -5.974 -2.050 -2.110 -2.230 

         

kli,t  -5.702 -2.550 -2.600 -2.720 -5.495 -2.050 -2.110 -2.230 

klpi,t  -6.243 -2.550 -2.600 -2.720 -6.059 -2.050 -2.110 -2.230 
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Appendix V: 

The Common Correlated Effects (CCE) Estimator 

 Cross-sectional dependence may not be fully captured by time fixed effects and hence 

becomes part of the error term.  Correlation between these shocks and the regressors would lead 

to inconsistent estimates of  . Even absent such correlation, the shocks will lead to biased 

standard errors.  The common correlated effects (CCE) estimator introduced by Pesaran (2006) is 

feasible for panels with a large number of cross-section units (unlike the Seemingly Unrelated 

Regression framework), and it accounts for the effects of cross-sectional dependence by 

including cross-section averages (CSA’s) of the dependent and independent variables as 

additional right-hand side variables,   

      * * * *
i,t i,t i,t i i,t i,tk p e CSA k CSA p  ,                     (V-1) 

where  CSA .  is the cross-section average operator and the i 's  are 35 additional parameters to 

be estimated.  If the i 's in equation (V-1) are constrained to be 1.0 for all i, the specification 

would be equivalent to transforming the data by demeaning each variable with respect to its 

CSA, the standard way of controlling for time fixed effects with the least squares dummy 

variables (LSDV) estimator.   

 In general, the CSA’s in the CCE estimator are formed with a set of state weights, jv  for 

j = 1,…,J, such that, 

     
J

t j j,t
j 1

x v x ,


        
J

j
j 1

v 1.


         (V-2) 

 

As shown by Pesaran (2006), the asymptotic properties of the CCE estimator are invariant to the 

choice of the jv  weights. The empirical work reported here is based on equal weighting              

( jv 1/ J  for all j). 
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Appendix VI: 

Relating Heterogeneous Industry and Aggregated 's  

 This appendix develops the formula for relating the aggregated   ( agg ) to 

heterogeneous industry 's  ( i ).  It then considers two alternative weighting schemes.   

 We begin with the definitions of agg  and i  that follow from equation (4) and are 

stated in terms of percentage changes in the aggregate and industry capital/output ratios  

(( agg aggK / Y ) and ( i iK / Y ), respectively) and the aggregate and industry relative prices of 

capital ( KY
aggP  and KY

iP , respectively),    

     
   agg agg agg agg

agg KY KY
agg agg

d K / Y / K / Y

d P / P
  ,        aggY = constant,   (VI-1) 

     
   i i i i

i KY KY
i i

d K / Y / K / Y

d P / P
  ,       iY = constant.    (VI-2) 

While the relative price of capital varies by industry, we consider a percentage change that is 

equal across all industries (e.g., a change in the nominal or relative price of investment), 

     
KY KY KY KY
agg agg i id P / P d P / P d P / P, i   .      (VI-3) 

 We begin with identities relating changes in the aggregated to industry capital, and 

changes in the aggregated and industry capital/output ratios, respectively,   

     
agg i

i

dK dK

d P / P d P / P
  ,          (VI-4) 

     
 agg aggagg

agg
d K / YdK

* Y
d P / P d P / P

 ,               aggY = constant,    (VI-5) 

     
 i ii

i
d K / YdK

* Y
d P / P d P / P

 ,     iY = constant.    (VI-6) 

Substituting equations (VI-5) and (VI-6) into equation (VI-4), dividing both sides by aggK , and 

rearranging, we obtain the following equation, 

     
       agg agg agg agg i i

i agg
i

d K / Y / K / Y d K / Y
* Y / K

d P / P d P / P
  .    (VI-7) 
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The left-side equals agg  by equation (VI-1).  Multiplying the right-side by  i iK / K  and 

rearranging, we obtain the following equation, 

     
     i i i i

agg i agg
i

d K / Y * K / Y
* K / K

d P / P
   .      (VI-8) 

Using the definition of i  from equation (VI-2) and defining the latter object in equation 

(VI-8) as an industry weight, we obtain the following equation,1 

     agg i i
i

*w   ,   i i aggw K / K .     (VI-9) 

In equation (VI-9), the aggregated   ( agg ) is a weighted average of the industry  ’s ( i 's ), 

where the iw 's  are industry weights defined in terms of industry capital ratios.2     

 Alternative aggregation procedures have been developed in two papers.  First, Oberfield 

and Raval (2014; hereafter, OR) present a scheme that estimates 's  at the plant level, and then 

aggregates them to the industry and manufacturing levels.  Their procedure allows for 

reallocation of resources as a result of the change in factor prices.   

 The aggregation procedure developed in this Appendix and used in Section V differs 

from that of OR in that we evaluate our derivatives at the initial, pre-change point (see equations 

(VI-5) and (VI-6)), while OR evaluate derivatives at the post-change point.  See the equation 

between equations (5) and (6) in their paper.  Their id / d ln(w / r)  term represents the change in 

industry weights that is non-zero in OR and zero in our paper.  (In a loose sense, the difference in 

aggregation procedures is akin to the difference between using a Paasche (OR) or Laspeyres (our 

paper) price indices.)  The benefit of the OR procedure is that it allows for reallocations of 

factors and economic activity.  However, their procedure also requires estimates of the own-

industry and cross-industries demand elasticities and the elasticity of substitution between 

                                                 
1 Note that   can be defined in terms of the capital/labor ratio analyzed in Section IV.F.  In this case, the derivation 
presented in this appendix is unaffected (merely replace aggY  with aggL  and iY  with iL  in equations (VI-5) to 

(VI-8) and KY
aggP  with KL

aggP  and KY
iP  with KL

iP  in equation (VI-3).   

 
2 It should be noted that the   from the benchmark model is also effectively a weighted-average estimate.  The 
heterogeneous model analyzed in this appendix weights the i ' s  by industry capital shares, while the homogeneous 

model effectively weights the i ' s  by relative industry variances.   
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material and non-material factors.  Also, once changes in product demand are introduced, the 

price elasticity of demand for a factor of production is no longer equal to just  .  Rather, per 

Hicks formula for the derived demand of a factor of production (see Chirinko and Mallick 2011, 

equations (10) or (11) for a recent statement of the Hicks formula), the price elasticity also 

depends on the capital income share and the own-demand elasticity.    

 A less important difference is that OR analyze 's  in terms of the capital/labor ratio, 

while we analyze the capital/output ratio.   

 Second, in a provocative paper, Jones (2005) formally relates industry and aggregate 

(global) production functions to the distribution of alternative production techniques (APT’s) for 

combining capital and labor.  His striking result is that the industry and aggregate production 

functions will be Cobb-Douglas in the long-run.  This approach has the benefit of developing 

solid microfoundations for production functions but is sensitive to the assumed distribution of 

ideas.  When APT’s are distributed according to a Pareto distribution with independence between 

marginal APT distributions, the Cobb-Douglas result obtains.  However, when APT’s are 

distributed according to a Weibull distribution (Growiec 2008a) or a Pareto distribution with 

dependence between marginal APT distributions (Growiec 2008b), the industry and aggregate 

production functions are CES.  These theoretical results, coupled with the empirical results 

presented in this paper, suggest the need for further study of aggregation procedures and the 

underlying distribution of ideas.  
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Appendix VII: 

Relating the Capital Share of Income and agg  

 This appendix formally relates the capital share of income to agg  in order to evaluate 

the impact of a rising agg  in Figure 4 (from 0.63 to 0.67) on a rising capital share of income 

(from 0.25 to 0.40; Chirinko, Wilson and Zidar 2015, Slide 5).  Time and firm subscripts, “*” 

superscripts, and technology shocks are omitted for notational convenience.  

 The capital share of income (KS) is defined as follows, 

     
MPK * K

KS
Y

  .                     (VII-1) 

Equating the MPK to the relative price of capital ( K YP / P ), denoting this relative price by the   

the Jorgensonian user cost of capital (C), and substituting equation (2) for the K/Y ratio, we 

obtain the following equation, 

     1KS C C C       .                   (VII-2) 

Calibrating equation (VII-2) by assuming that KS = 0.25 (the value in 1980 for the gross capital 

share), C = 0.15, and 0.63   (the value in 1980 from Figure 4), 0.34  .  If   rises to 0.67, 

KS rises by only one percentage point to 0.26.   
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