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1. Practical Implementation and Empirical Examples

To illustrate the methods developed in this paper, we consider two empirical examples. In the

first, we use the method outlined in the paper to estimate the effect of 401(k) eligibility on ac-

cumulated assets. In this example, the treatment variable is not randomly assigned and we aim

to eliminate the potential biases due to the lack of random assignment by flexibly controlling for

a rich set of variables. The second example reexamines the Pennsylvania Reemployment Bonus

experiment which used a randomized control trial to investigate the incentive effect of unemploy-

ment insurance. Our goal in this supplement is to illustrate the use of our method and examine

its empirical properties in two different settings: 1) an observational study where it is important

to flexibly control for a large number of variables in order to overcome endogeneity, and 2) a ran-

domized control trial where controlling for confounding factors is not needed for bias reduction but

may produce more precise estimates.

Practical Details: Incorporating Uncertainty Induced by Sample Splitting. The results

we report are based on repeated application of the method developed in the main paper as discussed

in Section III. Specifically, we repeat the main estimation procedure 100 times repartitioning the
1
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data in each replication. We then report the average of the ATE estimates from the 100 random

splits as the “Mean ATE,” and we report the median of the ATE estimates from the 100 splits as the

“Median ATE.” We then report the measures of uncertainty that account for sampling variability

and variability across the splits, σ̂Mean ATE and σ̂Median ATE, for the “Mean ATE” and the “Median

ATE” respectively.

The effect of 401(k) Eligibility on Net Financial Assets. The key problem in determining

the effect of 401(k) eligibility is that working for a firm that offers access to a 401(k) plan is not

randomly assigned. To overcome the lack of random assignment, we follow the strategy developed in

Poterba, Venti and Wise (1994a) and Poterba, Venti and Wise (1994b). In these papers, the authors

use data from the 1991 Survey of Income and Program Participation and argue that eligibility for

enrolling in a 401(k) plan in this data can be taken as exogenous after conditioning on a few

observables of which the most important for their argument is income. The basic idea of their

argument is that, at least around the time 401(k)’s initially became available, people were unlikely

to be basing their employment decisions on whether an employer offered a 401(k) but would instead

focus on income and other aspects of the job. Following this argument, whether one is eligible for

a 401(k) may then be taken as exogenous after appropriately conditioning on income and other

control variables related to job choice.

A key component of the argument underlying the exogeneity of 401(k) eligibility is that eligibility

may only be taken as exogenous after conditioning on income and other variables related to job

choice that may correlate with whether a firm offers a 401(k). Poterba, Venti and Wise (1994a)

and Poterba, Venti and Wise (1994b) and many subsequent papers adopt this argument but control

only linearly for a small number of terms. One might wonder whether such specifications are able

to adequately control for income and other related confounds. At the same time, the power to

learn about treatment effects decreases as one allows more flexible models. The principled use of

flexible machine learning tools offers one resolution to this tension. The results presented below thus

complement previous results which rely on the assumption that confounding effects can adequately

be controlled for by a small number of variables chosen ex ante by the researcher.

In the example in this paper, we use the same data as in Chernozhukov and Hansen (2004). We

use net financial assets - defined as the sum of IRA balances, 401(k) balances, checking accounts,

U.S. saving bonds, other interest-earning accounts in banks and other financial institutions, other

interest-earning assets (such as bonds held personally), stocks, and mutual funds less non-mortgage

debt - as the outcome variable, Y , in our analysis. Our treatment variable, D, is an indicator for

being eligible to enroll in a 401(k) plan. The vector of raw covariates, Z, consists of age, income,

family size, years of education, a married indicator, a two-earner status indicator, a defined benefit

pension status indicator, an IRA participation indicator, and a home ownership indicator.

In Table 1, we report estimates of the mean average treatment effect (Mean ATE) of 401(k)

eligibility on net financial assets both in the partially linear model and allowing for heterogeneous
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treatment effects using the interactive model outlined in Section discussed in the main text. To

reduce the disproportionate impact of extreme propensity score weights in the interactive model

we trim the propensity scores which are close to the bounds, with the cutoff points of 0.01 and

0.99. We present two sets of results based on sample-splitting using a 2-fold cross-fitting and 5-fold

cross-fitting.

We report results based on five simple methods for estimating the nuisance functions used in

forming the orthogonal estimating equations. We consider three tree-based methods, labeled “Ran-

dom Forest”, “Reg. Tree”, and “Boosting”, one `1-penalization based method, labeled “Lasso”,

and a neural network method, labeled “Neural Net”. For “Reg. Tree,” we fit a single CART tree

to estimate each nuisance function with penalty parameter chosen by 10-fold cross-validation. The

results in the “Random Forest” column are obtained by estimating each nuisance function with a

random forest which averages over 1000 trees. The results in “Boosting” are obtained using boosted

regression trees with regularization parameters chosen by 10-fold cross-validation. To estimate the

nuisance functions using the neural networks, we use 8 hidden layers and a decay parameter of

0.01, and we set activation function as logistic for classification problems and as linear for regres-

sion problems.1 “Lasso” estimates an `1-penalized linear regression model using the data-driven

penalty parameter selection rule developed in Belloni et al. (2012). For “Lasso”, we use a set of 275

potential control variables formed from the raw set of covariates and all second order terms, i.e. all

squares and first-order interactions. For the remaining methods, we use the raw set of covariates

as features.

We also consider two hybrid methods labeled “Ensemble” and “Best”. “Ensemble” optimally

combines four of the machine learning methods listed above by estimating the nuisance functions as

weighted averages of estimates from “Lasso,” “Boosting,” “Random Forest,” and “Neural Net”. The

weights are restricted to sum to one and are chosen so that the weighted average of these methods

gives the lowest average mean squared out-of-sample prediction error estimated using 5-fold cross-

validation. The final column in Table 1 (“Best”) reports results that combines the methods in a

different way. After obtaining estimates from the five simple methods and “Ensemble”, we select the

best methods for estimating each nuisance functions based on the average out-of-sample prediction

performance for the target variable associated to each nuisance function obtained from each of the

previously described approaches. As a result, the reported estimate in the last column uses different

machine learning methods to estimate different nuisance functions. Note that if a single method

outperformed all the others in terms of prediction accuracy for all nuisance functions, the estimate

in the “Best” column would be identical to the estimate reported under that method.

Turning to the results, it is first worth noting that the estimated ATE of 401(k) eligibility on

net financial assets is $19,559 (not reported) with an estimated standard error of 1413 when no

1We also experimented with “Deep Learning” methods from which we obtained similar results for some tuning

parameters. However, we ran into stability and computational issues and chose not to report these results in the

empirical section.
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control variables are used. Of course, this number is not a valid estimate of the causal effect

of 401(k) eligibility on financial assets if there are neglected confounding variables as suggested

by Poterba, Venti and Wise (1994a) and Poterba, Venti and Wise (1994b). When we turn to

the estimates that flexibly account for confounding reported in Table 1, we see that they are

substantially attenuated relative to this baseline that does not account for confounding, suggesting

much smaller causal effects of 401(k) eligiblity on financial asset holdings. It is interesting and

reassuring that the results obtained from the different flexible methods are broadly consistent with

each other. This similarity is consistent with the theory that suggests that results obtained through

the use of orthogonal estimating equations and any sensible method of estimating the necessary

nuisance functions should be similar. Finally, it is interesting that these results are also broadly

consistent with those reported in the original work of Poterba, Venti and Wise (1994a) and Poterba,

Venti and Wise (1994b) which used a simple intuitively motivated functional form, suggesting that

this intuitive choice was sufficiently flexible to capture much of the confounding variation in this

example.

There are other interesting observations that can provide useful insights into understanding the

finite sample properties of the “double ML” estimation method. First, the standard errors of the

estimates obtained using 5-fold cross-fitting are considerably lower than those obtained from 2-fold

cross-fitting for all methods. This fact suggests that having more observations in the auxiliary

sample may be desirable. Specifically, 5-fold cross-fitting estimates uses more observations to learn

the nuisance functions than 2-fold cross-fitting and thus likely learns them more precisely. This

increase in precision in learning the nuisance functions may then translate into more precisely

estimated parameters of interest. While intuitive, we note that this statement does not seem to

be generalizable in that there does not appear to be a general relationship between the number

of folds in cross-fitting and the precision of the estimate of the parameter of interest. Second, we

also see that the standard errors of the Lasso estimates are noticeably larger than the standard

errors coming from the other machine learning methods. We believe that this is due to the fact

that the out-of-sample prediction errors from a linear model tend to be larger when there is a

need to extrapolate. In our framework, if the main sample includes observations that are outside

of the range of the observations in the auxiliary sample, the model has to extrapolate to those

observations. The fact that the standard errors are lower in 5-fold cross-fitting than in 2-fold cross-

fitting for the “Lasso” estimations also supports this hypothesis, because the higher number of

observations in the auxiliary sample reduces the degree of extrapolation.

In Table 2, we report the median ATE estimation results for the same models to check the

robustness of our results to the outliers due to sample splitting. We see that both the coefficients

and standard errors are similar to the “Mean ATE” estimates and standard errors. The similarity

between the “Mean ATE” and “Median ATE” suggests that the distribution of the ATE across

different splits is approximately symmetric and relatively thin-tailed.
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The effect of Unemployment Insurance Bonus on Unemployment Duration. As a further

example, we re-analyze the Pennsylvania Reemployment Bonus experiment which was conducted

by the US Department of Labor in the 1980s to test the incentive effects of alternative compensation

schemes for unemployment insurance (UI). This experiment has been previously studied by Bilias

(2000) and Bilias and Koenker (2002). In these experiments, UI claimants were randomly assigned

either to a control group or one of five treatment groups.2 In the control group the standard rules

of the UI applied. Individuals in the treatment groups were offered a cash bonus if they found

a job within some pre-specified period of time (qualification period), provided that the job was

retained for a specified duration. The treatments differed in the level of the bonus, the length of

the qualification period, and whether the bonus was declining over time in the qualification period;

see Bilias and Koenker (2002) for further details on data.

In our empirical example, we focus only on the most generous compensation scheme, treatment

4, and drop all individuals who received other treatments. In this treatment, the bonus amount is

high and qualification period is long compared to other treatments, and claimants are eligible to

enroll in a workshop. Our treatment variable, D, is an indicator variable for the treatment 4, and

the outcome variable, Y, is the log of duration of unemployment for the UI claimants. The vector

of covariates, Z, consists of age group dummies, gender, race, number of dependents, quarter of the

experiment, location within the state, existence of recall expectations, and type of occupation.

We report estimates of the ATE on unemployment duration both in the partially linear model

and in the interactive model. We again consider the same methods with the same tuning choices,

with one exception, for estimating the nuisance functions as in the previous example and so do not

repeat details for brevity. The one exception is that we implement neural networks with 2 hidden

layers and a decay parameter of 0.02 in this example which yields better prediction performance.

In “Lasso” estimation, we use a set of 96 control variables formed by taking nonlinear functions

and interactions of the raw set of covariates. For the remaining approaches, we use only the 14 raw

control variables listed above.

Table 3 presents estimates of the “Mean ATE” on unemployment duration using the partially

linear model and interactive model in panel A and B, respectively. To reduce the disproportionate

impact of extreme propensity score weights in the interactive model, we trim the propensity scores

at 0.01 and 0.99 as in the previous example. For both the partially linear model and the interactive

model, we report estimates obtained using 2-fold cross-fitting and 5-fold cross-fitting.

The estimation results are consistent with the findings of previous studies which have analyzed the

Pennsylvania Bonus Experiment. The ATE on unemployment duration is negative and significant

across all estimation methods at the 5% level with the exception of the estimate of the ATE obtained

from the interactive model using random forests, which is significant at the 10% level. When looking

at standard errors it is useful to remember that they include both sampling variation and variation

2There are six treatment groups in the experiments. Following Bilias (2000). we merge the groups 4 and 6.
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due to random sample splitting. It is reassuring to see that the variation due to sample splitting

does not change the conclusion. It is also interesting to see that, similar to the result in the

first empirical example, the “Mean ATE” estimates are broadly similar across different estimation

models. Finally in Table 4 we report the “Median ATE” estimates. The median estimates are

close to the mean estimates, giving further evidence for the stability of estimation across different

random splits.

In conclusion, we want to emphasize some important observations that can be drawn from

these empirical examples. First, for both examples the choice of the machine learning method

in estimating nuisance functions does not substantively change the conclusion, and we obtained

broadly consistent results regardless of which method we employ. Second, the similarity between

the median and mean estimates suggests that the results are robust to the particular sample split

used in estimation in these examples.
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Table 1. Estimated Mean ATE of 401(k) Eligibility on Net Financial Assets

Lasso Reg. Tree Random Forest Boosting Neural Net. Ensemble Best

A. Interactive Model

ATE (2 fold) 6331 7581 7966 7826 7805 7617 7800

(2712) (1374) (1549) (1345) (1688) (1299) (1325)

ATE (5 fold) 6964 8023 8104 7699 7772 7658 7890

(1654) (1311) (1364) (1223) (1324) (1204) (1198)

B. Partially Linear Model

ATE (2 fold) 7718 8745 9180 8768 9040 9043 9106

(1796) (1488) (1526) (1451) (1494) (1432) (1430)

ATE (5 fold) 8182 8913 9248 9092 9038 9186 9214

(1578) (1440) (1402) (1380) (1394) (1381) (1361)

Notes: Estimated Mean ATE and standard errors (in parentheses) from a linear model (Panel B) and heterogeneous

effect model (Panel A) based on orthogonal estimating equations. Column labels denote the method used to estimate

nuisance functions. Further details about the methods are provided in the main text.

Table 2. Estimated Median ATE of 401(k) Eligibility on Net Financial Assets

Lasso Reg. Tree Random Forest Boosting Neural Net. Ensemble Best

A. Interactive Model

ATE (2 fold) 6725 7557 8034 7820 7800 7620 7800

(1612) (1283) (1400) (1199) (1474) (1198) (1185)

ATE (5 fold) 7133 8046 8099 7690 7795 7668 7876

(1420) (1242) (1296) (1179) (1290) (1180) (1149)

B. Partially Linear Model

ATE (2 fold) 7707 8770 9204 8746 9104 9061 9129

(1785) (1424) (1392) (1391) (1388) (1343) (1342)

ATE (5 fold) 8202 8894 9252 9089 9065 9199 9232

(1581) (1440) (1400) (1378) (1393) (1379) (1359)

Notes: Estimated Median ATE and standard errors (in parentheses) from a linear model (Panel B) and heterogeneous

effect model (Panel A) based on orthogonal estimating equations. Column labels denote the method used to estimate

nuisance functions. Further details about the methods are provided in the main text.
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Table 3. Estimated Mean ATE of Cash Bonus on Unemployment Duration

Lasso Reg. Tree Random Forest Boosting Neural Net. Ensemble Best

A. Interactive Model

ATE (2 fold) -0.081 -0.084 -0.072 -0.078 -0.073 -0.079 -0.078

(0.036) (0.037) (0.042) (0.036) (0.041) (0.036) (0.036)

ATE (5 fold) -0.081 -0.084 -0.070 -0.076 -0.072 -0.079 -0.076

(0.036) (0.037) (0.040) (0.036) (0.038) (0.036) (0.036)

B. Partially Linear Model

ATE (2 fold) -0.081 -0.083 -0.076 -0.076 -0.073 -0.076 -0.076

(0.036) (0.037) (0.037) (0.036) (0.036) (0.036) (0.036)

ATE (5 fold) -0.080 -0.084 -0.075 -0.075 -0.074 -0.075 -0.075

(0.036) (0.037) (0.036) (0.036) (0.036) (0.036) (0.036)

Notes: Estimated Mean ATE and standard errors (in parentheses) from a linear model (Panel B) and heterogeneous

effect model (Panel A) based on orthogonal estimating equations. Column labels denote the method used to estimate

nuisance functions. Further details about the methods are provided in the main text.

Table 4. Estimated Median ATE of Cash Bonus on Unemployment Duration

Lasso Reg. Tree Random Forest Boosting Neural Net. Ensemble Best

A. Interactive Model

ATE (2 fold) -0.081 -0.084 -0.073 -0.078 -0.074 -0.079 -0.078

(0.036) (0.036) (0.041) (0.036) (0.039) (0.036) (0.036)

ATE (5 fold) -0.081 -0.085 -0.069 -0.076 -0.072 -0.079 -0.076

(0.036) (0.037) (0.039) (0.036) (0.038) (0.036) (0.036)

B. Partially Linear Model

ATE (2 fold) -0.081 -0.084 -0.077 -0.076 -0.074 -0.076 -0.076

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

ATE (5 fold) -0.079 -0.084 -0.076 -0.075 -0.073 -0.075 -0.075

(0.036) (0.037) (0.036) (0.035) (0.036) (0.035) (0.035)

Notes: Estimated Median ATE and standard errors (in parentheses) from a linear model (Panel B) and heterogeneous

effect model (Panel A) based on orthogonal estimating equations. Column labels denote the method used to estimate

nuisance functions. Further details about the methods are provided in the main text.
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2. Proofs

Notation. The symbols P and E denote probability and expectation operators with respect to a

generic probability measure. If we need to signify the dependence on a probability measure P , we

use P as a subscript in PP and EP . Note also that we use capital letters such as W to denote

random elements and use the corresponding lower case letters such as w to denote fixed values that

these random elements can take in the set W. In what follows, we use ‖ · ‖P,q to denote the Lq(P )

norm; for example, for measurable f :W → R, we denote

‖f(W )‖P,q :=

(∫
|f(w)|qdP (w)

)1/q

.

Define the empirical process Gn,I(ψ(W )) as a linear operator acting on measurable functions ψ :

W → R such that ‖ψ(W )‖P,2 <∞ via,

Gn,I(ψ(W )) :=
1√
n

∑
i∈I

f(Wi)−
∫
f(w)dP (w).

Analogously, we defined the empirical expectation and probability as:

En,I(ψ(W )) :=
1

n

∑
i∈I

f(Wi); Pn,I(A) :=
1

n

∑
i∈I

1(Wi ∈ A).

Proof of Theorem II.1. We will demonstrate the result for the case of ATE estimator, which

uses the score:

ψ(W, θ, η) := g(1, Z)− g(0, Z) + D(Y−g(1,Z))
m(Z) − (1−D)(Y−g(0,Z))

1−m(Z) − θ,

and the result for ATTE follows similarly. Choose any sequence {Pn} ∈ P.

Step 1: (Main Step). Letting θ̌0,k = θ̌0(Ik, I
c
k), write

√
n(θ̌k − θ0) = Gn,Ikψ(W ; θ0, η̂0(I

c
k)) +

√
n

∫
ψ(w, θ0, η̂0(I

c
k))dP (w).

Steps 2, 3, and 4 below demonstrate that for each k = 1, ...,K∫
(ψ(w, θ0, η̂0(I

c
k))− ψ(w, θ0, η0))

2dPn(w) = oPn(1), (2.1)

√
n

∫
(ψ(w, θ0, η̂0(I

c
k))− ψ(w, θ0, η0))dPn(w) = oPn(1), (2.2)

σ̂2 − σ2 = oPn(1), (2.3)

where σ2 is bounded away and from above by assumptions. These equations are the minimal

conditions needed on the estimators of the nuisance parameters, and could be used to replace the

more primitive conditions stated in the text.

Assertion (2.1) implies that

Gn,Ik(ψ(W ; θ0, η̂0(I
c
k))− ψ(W ; θ0, η0)) = oPn(1),
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since the quantity in the display converges in probability conditionally on the data (Wi)i∈Ick by

(2.1) and Chebyshev inequality, which in turn implies the unconditional convergence in probability,

as noted in the following simple lemma.

Lemma 2.1. Let {Xm} and {Ym} be a sequence of random vectors. If for any ε > 0, P(‖Xm‖ >
ε | Ym) →P 0, then P(‖Xm‖ > ε) → 0. In particular, this occurs if E[‖Xm‖q | Ym] →P 0 for some

q > 1, by Chebyshev inequality.

Proof. For any ε > 0 P(‖Xm‖ > ε) 6 E[P(‖Xm‖ > ε | Ym)]→ 0, since the sequence {P(‖Xm‖ >
ε | Ym) is uniformly integrable. �

Using independence of data blocks (Wi)i∈Ik , k = 1, ...,K, the application of the Lindeberg-Feller

theorem and the Cramer-Wold device, we conclude that(
σ−1
√
n(θ̌0,k − θ0)

)K
k=1

=
(
σ−1Gn,Ikψ(W ; θ0, η0)

)K
k=1

+ oPn(1) (Nk)Kk=1,

where (Nk)Kk=1 is a Gaussian vector with independent N(0, 1) coordinates. Therefore,

σ−1
√
nK(θ̃0 − θ0) = σ−1

√
nK

(
1

K

K∑
k=1

θ̌0,k − θ0

)

=
1√
K

K∑
k=1

σ−1Gn,Ikψ(W ; θ0, η0) 
1√
K

K∑
k=1

Nk = N(0, 1),

where the last line uses the sum-stability of the normal distribution. Moreover, the result continues

to hold if σ is replaced by σ̂ in view of (2.3) and σ bounded away from zero and from above.

The above claim implies that CIn = [θ̃0 ± Φ−1(1− α/2)σ̂/
√
N ] obeys

PPn(θ0 ∈ CIn)→ (1− α).

The last two claims hold under any sequence {Pn} ∈ P, which implies that these claims hold

uniformly in P ∈ P. Indeed, for example, choose {Pn} such that, for some εn → 0

sup
P∈P
|PP (θ0 ∈ CIn)− (1− α)| 6 |PPn(θ0 ∈ CIn)− (1− α)|+ εn.

The right side converges to zero, which implies the uniform convergence.

Step 2: This step demonstrates the assertion (2.1). Elementary calculations and the repeated

use of Holder’s inequality give

‖ψ(W ; θ0, η̂0(I
c
k))− ψ(W ; θ0; η0)‖P,2 6 Cε max

d∈{0,1}
‖ĝ0(d, Z; Ick)− g0(d, Z)‖P,2

+Cε

(
‖Y ‖P,4 + max

d∈{0,1}
‖g0(d, Z)‖P,4

)
·
√
‖m̂0(Z; Ick)−m0(Z)‖P,2

6 Cε(δn + 2C
√
δn)→ 0,

with P -probability no less than 1−∆n for all P ∈ P, where Cε depends on ε and P.
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Step 3: This step demonstrates the assertion (2.2). Rewrite (2.2) as

√
n

∫ ({
m̂0(z; I

c
k)−m0(z)

m̂0(z; Ick)

}
{ĝ0(1, z; Ick)− g0(1, z)}

−
{
m̂0(z; I

c
k)−m(z)

1− m̂0(z; Ick)

}
{ĝ0(0, z; Ick)− g0(0, z)}

)
dP (z).

Using the Cauchy-Schwarz inequality and the assumption that P (ε 6 m0(Z) 6 1− ε) = 1 and that

P (ε 6 m̂0(Z; Ick) 6 1 − ε) = 1 with P-probability at least 1 − ∆n, uniformly for all P ∈ P, this

quantity is bounded with the same probability by

√
n

2

ε
‖ĝ0(d, Z; Ick)− g0(d, Z)‖P,2 · ‖m̂0(Z; Ick)−m0(Z)‖P,2 6

2δn
ε
→ 0.

Step 4: This step demonstrates the assertion (2.3). Here →P is meant to be convergence

uniformly in P ∈ P. We can write

σ̂2 =
1

K

K∑
k=1

σ̂2k, σ̂2k := En,Ikψ
2(W ; θ̂k, η̂k(Ick)); σ2 = EPψ

2(W ; θ0, η0).

We claim that for each k = 1, ...,K,

En,Ikψ
2(W ; θ̂0, η̂0(I

c))− En,Ikψ
2(W ; θ0, η0)→P 0, En,Ikψ

2(W ; θ0, η0)− σ2 →P 0.

The latter property holds by the Chebyshev Inequality. Further, letting I denote a generic Ik, the

relation a2 − b2 = (a− b)(a+ b), and the Cauchy-Schwarz and triangle inequalities yield:

|En,I{ψ2(W ; θ̂0, η̂0(I
c))− ψ2(W ; θ0, η0)}| 6 rn ×

(
2‖ψ(W ; θ0, η0)‖Pn,I ,2 + rn

)
where

rn := ‖ψ(W ; θ̂0, η̂0(I
c))− ψ(W ; θ0, η0)‖Pn,I ,2.

Since ‖ψ(W ; θ0, η0)‖2Pn,I ,2
− σ2 →P 0 as noted above, and σ2 is bounded above by assumption,

the claim follows, provided rn →P 0.

Indeed, we have that

rn 6 ‖θ̃0 − θ0‖+ Cε max
d∈{0,1}

‖ĝ0(d, Z; Ic)− g0(d, Z)‖Pn,I ,2

+Cε

(
‖Y ‖Pn,I ,4 + max

d∈{0,1}
‖g0(d, Z)‖Pn,I ,4

)
·
√
‖m̂0(Z; Ic)−m0(Z)‖Pn,I ,2,

with P -probability no less than 1−∆n for all P ∈ P, where Cε depends on ε and P. We have that

by Markov inequality:

‖Y ‖4Pn,I ,4
+ max

d∈{0,1}
‖g0(d, Z)‖4Pn,I ,4

→P ‖Y ‖4P,4 + max
d∈{0,1}

‖g0(d, Z)‖4P,4;

and, with probability at least 1−∆n,

E[‖ĝ0(d, Z; Ic)− g0(d, Z)‖2Pn,I ,2
| (Wi)i∈Ic ] = ‖ĝ0(d, Z; Ic)− g0(d, Z)‖2P,2 6 δn,

E[‖m̂0(Z; Ic)−m0(Z)‖2Pn,I ,2
| (Wi)i∈Ic ] = ‖m̂0(Z; Ic)−m0(Z)‖2P,2 6 δn,
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which implies by Lemma 2.1 that

‖ĝ0(d, Z; Ic)− g0(d, Z)‖Pn,I ,2 + ‖m̂0(Z; Ic)−m0(Z)‖Pn,I ,2 →P 0.

Conclude that rn →P 0. �
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