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APPENDIX A. ADDITIONAL RESULTS

Proposition A.1. The preference 7, has basic correlation representation if and only
if it has a PCR.

Proof. 1t is easy to see that if 2~ has a basic representation, it has a PCR with
U = {{a} :a € A}. Suppose 77 has a PCR (U, 7, u). For every a € A, choose C, € U
with a € C,. Pick any B = {a4, ..., a,} C A. Define

rp({7€ QP € B Vi}) =n({@ e QU wCi € BN i})

where E; € o(a;) for i = 1,...,n. This g is clearly a measure defined on the 7-
system that generates ®7_;0(a;) and so can be uniquely extended to it. Moreover, the
collection {wg} is Kolmogorov consistent and so by Kolmogorov’s extension theorem,
we can define my on X4 to agree with every mg. Thus 77 has a basic correlation

representation with probability 7wy and utility w. O

For a PCR (U, 7, u) and finite B C U, let mp denote the marginal distribution over
the copies of ) assigned to understanding classes in B. Note that the utility of any

profile consisting of n actions is determined by some np with #B < n.

Theorem A.l. If = has a rich PCR (U,7,u) and u is a polynomial of degree N,
then it also has a PCR (U, u,w) if and only if up = mp for any B C U with #B < N.

Recall that Sy(z1,22,....2n) = Yocp,. v (=) #9u(Xico ;). From our ob-
servation in the proof of Theorem 2, if w is continuous, then Sy(z1,xs,...,2x) = 0
for all zq, ..., xy if and only if u is a polynomial of degree N — 1. From primitives,
Sy (21, ..., zn) = 0 for all a1, ..., 2, if and only if p& ~ p% where

= (Z(Nl)’éx)#cg i and py = (2(N1),3§2:z:)#62 o
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and @ ranges over all subsets (including @) of {x1,...,zy}. When z; > 0 for each 4,
a result in Eeckhoudt et al. (2009) implies p§, N-order stochastically dominates p.

Therefore, the result follows from the below Proposition.

Proposition A.2. If the preference 7~ has a rich PCR (U, 7,u), and
N* =inf{N : Sy(Z) = 0 for all ¥},

then the PCR (U, u,u) also represents = if and only if up(E) = w(E) for every
B C U with #B < N*.

Proof. Sufficiency follows from exactly the same arguments used in Thoerem 2. To
see necessity, suppose that Sy(Z) = 0 for all & and that 7 agrees with p on any
rectangle for B when #B < N — 1. Consider any profile (a;)",, and assume WLOG

that each a; belongs to a distinct understanding class C;; we show that

Vi({ai)ity) = Vu(<ai>;‘11)'

This is trivially true if m < N. The claim is proved if we show that, when m >
N, we can replace each V((a;)72,) and V,({a;)1*,) with the (possibly negatively)
weighted sum of the utilities of “sub-profiles” of (a;)™, with at most N — 1 elements.

Rearranging the equation Sy(z1,...,xx) =0,

(A.1) u(; T;) = — > ()N #Ly (3 ).

QC{1L,...N}#Q<N i€Q

for any x1, ..., zy. Now,

Vellaltm) = [ (S ale) an

=1

so by (A.1) where z; = a;(w), i =1,..., N — 1, and zy = 27 y a;(w"), each term

o (Sae) =0 (X atw + (3 ac )

i=1 i=1
can be written as the sum of utilities where each argument contains the sum of at
most m — 1 terms. We can repeat this procedure until the arguments of each w (-)
contain the sum of at most N — 1 terms. Naturally, the exact same procedure can be
applied to V),. This establishes the result. O]
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