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A Heterogeneous Payoffs

We now extend the analysis to allow for heterogeneous payoffs, by introducing an idiosyn-

cratic component to utility. We also relax the restriction to equilibria in which P2 is assumed

to fully disclose. Besides adding realism this will serve to show that, under general condi-

tions on the form of this heterogeneity, disclosure is still polarized and positively biased,

and that all equilibria are necessarily EE’s in which P2 strictly prefers to disclose.

Let the payoff to agent t from receiving signal x now be xϵt, where each ϵt is drawn

from a distribution H, independently from x. Without loss of generality, we assume that

E(ϵ) = 1 and H has full support on [0,∞), with a density h that is everywhere positive.

We further assume that the realization of their own ϵt is observable to an agent prior to

their consumption decision –e.g., it represents the intensity of their need for such a product–

whereas the value xϵt (or, equivalently, x itself) is revealed only when consumption occurs.

Thus ϵt guides the experimentation decision at, but when at = 1 the relevant information for

the disclosure decision dt remains x itself, since ϵt is irrelevant to any successor. Formally,

consumption rules now map both from beliefs and shocks, i.e. at : [0, 1] × [0,∞) → {0, 1},

while disclosure rules remain as before.

The expected values, from P1’s perspective, of subsequent players’ consumptions are

now:

u(r | q) ≡
∫ ∞

c/r
(qϵ− c) dH(ϵ),

Λ(r | q) ≡ Eϵ,z(u (r
zϵ | qzϵ)) =

∫ 1

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z).
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We start with some basic properties of u and Λ.

Lemma A.1. 1. Both maps r 7→ u(r | q) and Λ(r | q) are strictly maximized at q.

2. Λ(r | q) ≥ (>)u(r | q) for all r ≤ (<)q.

Proof. Direct calculation verifies that ∂u
∂r = − c2

r2

( q
r − 1

)
h
(
c
r

)
, which is equal to zero if and

only if q = r. Since Λ(r | q) = Eϵ,z(u (r
zϵ | qzϵ)), point 1 is verified. To verify point 2, note

that

Λ(r | q)− u(r | q) =
∫ 1

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z)− u(r | q)

=

∫ x̂

0

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z)

+

∫ 1

x̂

∫ ∞

c
rz

(qzϵ− c) dH(ϵ)dFq(z)︸ ︷︷ ︸
≥u(r|q)

−u(r | q) ≥ 0,

where the last inequality holds because z 7→ qzϵ − c is positive on the range [c/rz,∞) by

the MLRP, since by assumption r ≤ q.

Note that since V2(r | q) = u(r | q), Lemma A.1 implies that full disclosure by P2 is a

strictly dominant strategy. In Section 2, P2 was indifferent over posterior beliefs that induce

the same action by P3. Now, greater accuracy leads to a strictly lower chance of erroneous

consumption choices by P3 due to idiosyncratic shocks.

As before, this allows us to simplify player 1’s value function,

V1(r | q) = u(r | q) +
(
αC(r)Λ(r | q) + (1− α+ α (1− C(r))u(r | q)

)
, (A.1)

where

C(r) ≡
∫ ∞

c/r
dH(ϵ)

is the probability of consumption given a prior belief r, prior to the realization of ϵ.
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A.0.1 Selected Disclosure

In order to draw comparison to the results in Sections 3 and 4, we first adapt the definition

of experimentation equilibria in the most natural manner. Now, let

XE(σ) = {x ∈ N1(d) | a2(p∅, ϵ) > a2(p
x, ϵ) ∀ϵ ∈ [0,∞)}

denote the experimentation set for an equilibrium σ. First, we recover the result of polarized

disclosure.

Lemma A.2. (Polarized disclosure) Fix r ∈ (0, 1). Then, limq→0,1 [V1(q | q)− V1(r | q)] >

0.

Proof. For the lower limit, note that

u(r | 0) =
∫ ∞

c/r
−c dH(ϵ) < 0, Λ(r | 0) =

∫ 1

0

∫ ∞

c/rz
−c dH(ϵ)dFq(z) < 0,

whereas u(0 | 0) = Λ(0 | 0) = 0. Thus, by the expression for V1(r | q) given in (A.1),

V1(r | q) < 0 = V1(q | q). For the upper limit, note that

Λ(r | 1) =
∫ 1

0

∫ ∞

c
rz

(ϵ− c) dH(ϵ)dFq(z),

which is strictly increasing in r by the MLRP, since the integrand is strictly positive. Sim-

ilarly, r 7→ u(r | 1) is strictly increasing. Finally, r 7→ C(r) is also strictly increasing, and

thus so is r 7→ V1(r | 1). Therefore, the claim is verified.

Next, we demonstrate that for any prior p ∈ (0, 1), any posterior q ⩾ p (i.e. any signal

x ⩾ x̂) is disclosed by P1. Note that whereas in the baseline model (Lemma A.2) it was

dominant for all posteriors q ≥ c to be disclosed, here this is no longer necessarily the case.

Lemma A.3. If px ⩾ p, then d1(x) = 1 is a strictly dominant strategy.

Proof. Suppose not, so that there exists an x > x̂ such that d1(x) = 0. Take the largest
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such x and let q = px. By construction, to satisfy the equilibrium belief condition (3) it

must be that p∅ < q. But then by Lemma A.1, u(p∅ | q) < u(q | q) and Λ(p∅ | q) < Λ(q | q),

while we also have C(p∅) < C(q) as r 7→ C(r) is strictly increasing. Combining, we have

that V1(p∅ | q) < V1(q | q).

Finally, we prove that non-disclosure of signals that convey marginally bad news (namely,

such that the posterior px is just below the prior p) is optimal. This result has no direct

analog in the baseline model, insofar as non-disclosure now occurs at signals the revelation

of which would have induced consumption with strictly positive probability (c < px < p).

Lemma A.4. (Positive selection) Let Ṽ1(q) ≡ V1(r | q). Then Ṽ ′
1(q) >

∂V1
∂q |r=q.

Proof. Since Ṽ1
′
(q) = ∂V1(r | q)/∂r|r=q + ∂V1(r | q)/∂q|r=q, the claim is equivalent to

proving that ∂V1(r | q)/∂r|p=q > 0. But

∂V1|(r | q)
∂r

|r=q =
∂u

∂r r=q︸ ︷︷ ︸
=0

+
c

q2
h

(
c

q

)[
Λ(q | q) + (1− C(q))u(q | q)

]

+ C

(
c

q

)[
∂Λ

∂r
|r=q︸ ︷︷ ︸

=0

+(1− C(q))
∂u

∂r
|r=q︸ ︷︷ ︸
=0

−C ′(q)u(q | q)
]

= Λ(q | q)− C

(
c

q

)
u(q | q) c

q2
h

(
c

q

)
> 0,

where the last inequality holds because C(q | q) < 1 and Λ(q | q) > u(q | q).

In particular, for x = x̂ − ε where ε is small, non-disclosure is optimal. Combining

Lemmas A.3 and A.4 with a continuity argument yields that non-disclosure takes place in

(at least) some interval [x̂− ε, x̂), and thus disclosure is positively biased. Furthermore, we

have:

Lemma A.5. Any equilibrium is an EE.

Proof. To see that all equilibria admit a non-empty experimentation region, note that Lem-

mas A.2 and A.3 imply that in any equilibrium σ, for each p there exists a minimal posterior
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q(p) < p that is concealed. Continuity of r 7→ V1(r | q) then ensures the existence of a δ > 0

such that posteriors in the interval [q(p), q(p)+δ) are concealed. But for δ sufficiently small,

q(p) + δ < p, and so [q(p), q(p) + δ) ⊂ XE(σ).

B Optimal Feedback – Persuasion

We now turn to the benchmark wherein P1 can commit to an arbitrary messaging rule prior

to receiving their private signal x (Kamenica and Gentzkow, 2011). Formally, P1 chooses an

information structure, consisting of a message space S along with a collection of conditional

probabilities (π(· | x))x∈X , where π(s | x) denotes the likelihood of P1 sending the message

s given that they received signal x. Let M = X ∪ {∅} denote the (rich) message space that

naturally associates messages with outcomes, as well as a privileged message ∅ that denotes

no signal reported. We may take S = M. Since communication is no longer constrained

to be verifiable, we can set α = 1 without loss of generality. Contrasting this case with

that of hard-evidence disclosure will thus shed light on how ex-post IC constraints shape

optimal feedback. Recently developed techniques in the persuasion literature allow us to

completely characterize the solution (Dworczak and Martini, 2019). Denote V1(q | q) by

V1(q) for simplicity. The following result is illustrated in Figure 2.

Theorem B.1. There exist q∗(p) < c < q̄∗(p) such that the solution to the persuasion

problem takes the following form: reveal x if either px < q∗(p) or px ⩾ q̄∗(p), and pool all

x such that px ∈ [q∗(p), q̄∗(p)). Furthermore, q∗(p), q̄∗(p) solve

Ep(q | q ∈ [q∗(p), q̄∗(p))) ≡

∫ q̄∗(p)
q∗(p) q dGp(q)∫ q̄∗(p)
q∗(p) dGp(q)

= c, (B.1)

and
V1(q̄

∗(p))

V1(c)
=
q̄∗(p)− q∗(p)

c− q∗(p)
. (B.2)

Proof. Since q 7→ V1(r | q) is affine, standard arguments imply that the problem faced by
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P1 under commitment is to solve

v∗(p) = max
H∈∆([0,1])

∫ 1

0
V1(q) dH(q), (B.3)

subject to the constraint that H is a mean-preserving contraction of Gp (Kamenica and

Gentzkow, 2011). First, we prove that V1(q) is convex on [c, 1]. To see this, note that Lemma

1 implies that V1(q | q) = supr∈[0,1] V1(r | q) for q ∈ [c, 1], and that q 7→ V1(r | q) is affine.

The convexity of V1(q) then follows from standard results in convex duality (Rockafellar,

1997, Theorem 13.2).

We may now apply (Dworczak and Martini, 2019, Theorem 1). In particular, consider

the function ψ defined by

ψ(q) =


V1(q) if px ⩾ q̄∗(p)

V1(c)
(
q−q∗(p)
c−q∗(p)

)
if px ∈ [q∗(p), q̄∗(p))

V1(q) if px < q∗(p),

and the distribution Hp : [0, 1] → [0, 1] defined by

Hp(q) =


Gp(q) if px ⩾ q̄∗(p)

Gp(c) + Iq≥c[Gp(q̄
∗(p))−Gp(q

∗(p))] if px ∈ [q∗(p), q̄∗(p))

Gp(q) if px < q∗(p),

which reveals q when either q ≥ q̄∗(p) or q ≤ q∗(p) and pools otherwise. It is readily

verified that ψ and H together satisfy conditions 3.1-3.3 of (Dworczak and Martini, 2019,

Theorem 1), and thus constitute a solution to the commitment problem. Finally, note that

since q 7→ Gp(q) is continuous and strictly increasing, so too are q∗(p), q̄∗(p).

Communication under persuasion is also both polarized (pooling takes place on an inte-

rior interval) and positively selected (the average belief conditional on pooling is c, which
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Figure 2: Persuasion Solution

q

cq∗ q̄∗
0

V1(q)

ψ(q)

Separate Pool Separate

Disclosure under commitment. Value function V1(q) ≡ V1(q | q): solid black lines. q∗, q̄∗ are determined by
both E(q | q ∈ [q∗, q̄∗)) = c and lying on a straight-line segment ψ(q) (dotted red) intersecting V1(q) at q∗, q̄∗
and c.

is less than the prior p). In contrast to the disclosure benchmark, however, this pooling

interval remains even when the prior p is close to c. Crucially, under persuasion, P1 can

“pool down” by pooling posteriors above c with those below c, while still averaging to c

(equation (B.1)). This allows them to maintain a positive-measure pooling interval as the

prior p converges to either c or 1. In contrast, under disclosure such pooling down cannot

occur, since P1 finds it ex-post optimal to disclose (separate) at all posteriors above c. This

heavily constrains their ability to not disclose at posteriors below c. The logic presented

here highlights the role of ex-post optimality (equation (4)) that disclosure rules must satisfy

in shaping optimal feedback.

Corollary B.1. Both q∗(p) and q̄∗(p) are strictly decreasing in p. Furthermore, limp→c,1q
∗(p) <

c < limp→c,1 q̄
∗(p).

Proof. Note that the constraint (B.2) is independent of p, whereas a simple application of
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the posterior monotonicity property (Proposition 4 in Smith et al. (2021)) implies that for

fixed q, q̄,Ep(q | q ∈ [q, q̄)) is strictly increasing in p. Thus, to keep Ep(q | q ∈ [q, q̄)) fixed,

we must lower both q and q̄. The final part of the corollary follows by noting that V (q) is

strictly increasing and convex for q ≥ c and strictly positive at c, and thus for all p ∈ [c, 1]

the line segment intersecting the three points (q∗(p), 0), (c, V1(c)), (q̄
∗(p) and V1(q̄∗(p))) can

only exist if q∗(p) 6= q̄∗(p), while the constraint that Ep(q | q ∈ [q∗(p), q̄∗(p))) = c further

implies that q∗(p) < c < q̄∗(p).

Finally, notice that the persuasion outcome — which did not assume information to be

verifiable – can be implemented via commitment to the verifiable disclosure rule

d(x) =


1 if px ⩾ q̄∗(p)

∅ if px ∈ [q∗(p), q̄∗(p))

1 if px < q∗(p).

This is due to the simple structure of optimal persuasion; it is not only monotone partitional

(Dworczak and Martini, 2019), but includes only one pooling region (see Figure 2). Thus, the

pooling region can be interpreted as non-disclosure and the separating regions as disclosure,

satisfying the verifiability assumption. In this sense, the benefit of persuasion over (ex-post)

verifiable disclosure comes directly from which posteriors (signals) are credibly concealed,

rather than the communication language itself.

C Biased Feedback – Cheap Talk

We now consider a natural variant on our baseline model, by relaxing the requirement of

hard evidence disclosure and instead permitting arbitrary message reporting (cheap talk).

Such a variant is important for several reasons. First, in many applied settings, it might not

only be feasible but strategically optimal for consumers to misreport their experiences. The

hard-evidence baseline abstracts from this possibility, thus providing a useful benchmark;
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even when fake reviews are impossible, might there be scope for strategic disclosure? In

this section, we explore the extent of strategic information transmission when lying is both

feasible and costless. Second, by studying an alternative, well-established form of equilib-

rium information transmission, we make clear the features of strategic disclosure that are

invariant to the information-sharing technology available to agents.

Specifically, we endow each agent with a rich messaging space M = [0, 1] × {∅} that

allows not only for full separation but also for agents to send a privileged message that pools

with non-arriving consumers, so that messaging rules (previously, disclosure rules) are now

mappings dt : X×[0, 1] → M.21 Again, full transparency is dominant for P2, so we focus on

P1’s messaging strategy. Let r∗(m) denote P2’s equilibrium belief upon observing message

m. Then the IC constraint (4) is replaced with the condition

d(x) ∈ argmin
m∈supp(d)

V1(r
∗(m) | px). (C.1)

We focus on the case where α = 1. Combining various insights learned through the

baseline analysis, we summize that all equilibria must admit a partitional structure. The

proof of Theorem C.1 is constructive. First, we identify a lower-bound on the degree of

experimentation possible; there exists a qmin such that V1(c | qmin), thus any type lower

prefers to terminate experimentation, regardless of the continuation belief r. Each equilib-

rium is then determined by its associated q ∈ [qmin, c], that is the lowest type whose message

induces experimentation. See Figure 3 for a graphical illustration of this construction.

Theorem C.1. All equilibria are partitional. That is, for all r ∈ [0, 1] induced in equilib-

rium, the set of q in which r is induced forms an interval in [0, 1]. Furthermore, there must

be at most finitely many such intervals on [c, 1].

Proof. We proceed with a series of lemmas.

21We focus on pure-strategy equilibria for simplicity, noting the usual implementation via uniform ran-
domization in cheap-talk games
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Lemma C.1. All equilibria are partitional. Furthermore, there must be at most countably

infinitely many such intervals on [c, 1].

Proof. Lemma 1 tells us that r 7→ V1(r | q) is maximized at r = q, and that q 7→ V1(r | q) is

strictly increasing, so that argmaxr∈[0,1] V1(r | q) is strictly increasing in q, which proves the

first claim. To prove the second one, we argue that there can be no interval in [c, 1] on which

separation can occur. Suppose there were, and take the lowest such interval [q1, q2], q1 ≤ q2.

If q2 < 1, then we claim that types q ∈ (q2 + ε] have an incentive to pool with q2. For since

this was the lowest separating interval, it must be that types q ∈ (q2 + ε] induce a belief

q̂ = q2+ δ, δ > 0. By Lemma A.1, V1(q̂2 | q2+ ε) < V1(q2 | q2+ ε) ≈ V1(q2 | q2)+ εV ′
1(q2 | q2)

for small enough ε > 0. If q2 = 1, then we claim that q ∈ (q1 − ε] have an incentive to pool

with q1 by analogous reasoning.

Lemma C.2. There exists qmin < c such that full revelation is weakly dominant for all

types q ∈ [0, qmin).

Proof. qmin is the unique root of q 7→ V1(c | q) on [0, c], which is well-defined since the map

is continuous, strictly increasing with V1(c | 0) < 0 < V1(c | c).

It is thus without loss to associate an equilibrium with a lowest type q > 0 that forms

part of a pooling interval that itself induces experimentation. More specifically, combining

with Lemma C.1, an equilibrium can be described by a (possibly infinite) sequence (q ≡

q0 < q1 < q2 < . . . such that types in [qi, qi+1) pool and q̂ ≡ E(q | q ∈ [q, q1)) ≥ c. More

generally, we denote q̂i+1 = E(q | q ∈ [qi, qi+1)).

We next prove that the two first intervals [q, q1), [q1, q2) cannot be “too small” as types

just below q would then profitably deviate by pooling with [q1, q2) to induce q̂1.

Lemma C.3. For all q ∈ [qmin, c] there exists q̂2,min > c such that in any equilibrium,

q̂2 ≥ q̂2,min.
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Proof. If not, then for any ε > 0 there exists an equilibrium with q̂2 ≤ c + ε. But since

by definition q̂ ≥ c, it must be that q > qmin for sufficiently small ε, and by the sandwich

theorem, V1(q̂ | q) > 0, violating the IC constraint at q.

Lemma C.4. All equilibrium partitions essentially admit at most finitely many intervals

covering [c, 1].

Proof. We proceed constructively, via the following algorithm:

1. Fix a q ≥ qmin. Compute q̂max ≡ Ep(q | q ∈ [q, 1]).

(a) If V1(q̂max | q) > 0, then N∗(q) = 0 and q cannot be implemented in equilibrium.

(b) If not, then there exists a unique q1 > c such that V1(q̂1 | q) = 0, where q̂1 ≡ E(q | q ∈

[q, q1]). (Such a value exists by continuity and strict monotonicity of r 7→ V1(r | q)

on [q, 1], the Intermediate Value Theorem and because V1(c | q) > V1(c | qmin) = 0

by Lemma C.2).

2. Compute V1(q̂1 | q1).

(a) If V1(1 | q1) ≥ V1(q̂1 | q1), then N∗(q) = 1.

(b) If not, then there exists a unique q2 > q1 such that V1(q̂2 | q1) = V1(q̂1 | q1), where

q̂2 is analogously defined, and q2 exists by the same reasoning as q1.

3. Repeat from step 2.

Finally, we argue that this algorithm terminates in finitely many steps. Suppose not.

Then for all ε > 0, there exists an equilibrium and an interval [qi, qi+1) ⊂ [c, 1] such that

qi+1− qi ≤ ε. Without loss, assume equality, and further assume that [qi, qi+1) is the lowest

such interval (this is possible due to Lemma C.3). Let q̂i+1 = E(q | q ∈ [qi, qi+1)). Then

there exists δ(ε) < ε such that q̂i+1 − qi = δ(ε). The Mean Value Theorem implies that

V1(q̂i | qi)− V1(qi | qi) = V ′
1(φ1 | qi)(q̂1 − qi),
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Figure 3: Cheap-Talk Equilibria: Construction

r

q̂1q q1 q̂2 q̂3q2

W1(· | q)

W1(· | q2)

W1(· | q3)

PoolPoolPool

An equilibrium with three pooling intervals covering [c, 1]. Relaxed value function W1(r | q). For r ≥ c,
W1(· | q) = V1(· | q) (solid black lines). For r < c, V1(· | q) = 0.

for some φi ∈ (q̂i, qi). But since r 7→ V1(r | q) has a global maximum at q, we know that

V1(qi + δ(ε) | qi)− V1(qi | qi) ≈
∂2V1
∂r2

(qi | qi)δ(ε)2.

Combining these terms implies that qi − q̂i = κδ(ε), for some κ > 0, and so q̂i+1 − q̂i =

(q̂i+1 − qi) + (qi − q̂i) = κiδ(ε), for some κi > 0. Now, since ε > 0, there exists a finite

I > 0 such that qi−I ≤ q (if not, then Lemma C.3 is violated) and thus a simple inductive

argument implies that q̂1 − q̂ = κi−Iδ(ε), for some κi−I > 0. Taking ε (and thus δ(ε) < ε)

sufficiently small violates Lemma C.3.
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