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A Data
A.1 Air Pollution Data

The source is the US EPA Air Quality System (AQS). The AQS records provide daily summaries
from outdoor air quality monitors across the United States for a variety of pollutants.24 Raw
observations are at the level of the pollutant-monitor-day. We construct PM2.5-monitor-day ob-
servations from 3 PM2.5 from pollutant codes. Our primary source is PM2.5 coded as pollutant
88101. For monitor-days where 88101 data are missing we substitute with PM2.5 coded as pollu-
tant 88502. When both 88101 and 88502 are missing, we substitute with 88501. Thus, we obtain
PM2.5-monitor-day observations.

24AQS data are collected to ensure compliance with state and federal air quality regulations as well as to support
air pollution research. They are the principal source of historical air quality and have been previously employed in
numerous studies (Fann, Wesson and Hubbell, 2016).
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Monitor-day observations are collapsed to monitor-week averages. The monitors are matched
to the county in which the monitor is located. To construct a balanced panel of monitors, monitors
that are not observed for at least one week each year from 2008-2016 are dropped. We then
average the remaining monitor-weeks within each county to construct county-week observations of
mean PM2.5. Last, we collapse county-week observations to county-month averages. Throughout,
averages exclude missing observations. Figure A1 depicts the 232 counties in the balanced panel
of monitors and the counties with a monitor not in the balanced panel.

Figure A1: Analysis Sample

PM2.5 Monitor Type
(2008-2016)
Balanced
Unbalanced
None
> 200 km

Note: Figure shows non-grey counties with population-weighted centroids within 200km of heavy ship traffic, as defined by the top 5th percentile
of 2011 vessel density raster grid cells. Counties with population-weighted centroids further than 200km are shaded in grey. Blue counties are those
with a balanced PM2.5 monitor. They have at least one PM2.5 monitor with at least one observation per year from 2008 to 2016. Green counties
are those with only unbalanced PM2.5 monitors. They have PM2.5 monitor(s) but no single monitor with at least one observation per year from
2008 to 2016. Yellow counties have no PM2.5 monitors.
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A.2 NAAQS Standards

We use two data sets on counties’ air quality performance relative to the National Ambient Air
Quality Standards (NAAQS). In robustness checks, we control for county attainment status. We
obtain attainment status for each pollutant, standard, county, and calendar year from the US EPA
Green Book (U.S. EPA, 2023c). We focus explicitly on PM2.5 1997, 2006, and 2012 standards;
PM10 1987 standards; sulfur dioxide 1971 and 2010 standards; nitrogen dioxide 1971 standards;
ozone 1979, 1997, 2008, and 2015 standards; and carbon monoxide 1971 standards. We include
as controls indicators for whether part or all of the county is in non-attainment of any of the listed
standards for each pollutant. In our analysis of behavioral responses, we classify counties based
on their degree of compliance or non-compliance with the NAAQS PM2.5 standards in 2012.
To determine compliance with the NAAQS, the US EPA requires raw monitoring data to meet
stringent quality standards and follows particular formulas for aggregating. We employ the EPA’s
output of these calculations, called the design values. We obtain the cross-section of the 2012
PM2.5 design values, based on data from 2010-2012, for each country and standard (24-hour and
annual) from the US EPA (U.S. EPA, 2022a).

A.3 Weather Data

We use the PRISM Daily Weather Data for the Contiguous United States (Schlenker, 2020). We
compute the county-day means for each weather variable as the average of the grid-cell-day ob-
servations within the county. We calculate cubic functions of county-day minimum temperature,
maximum temperature, and total precipitation, as well as the interactions of precipitation with min-
imum temperature and maximum temperature. Last, we average over the county-day observations
to form county-month observations for each weather variable for our baseline weather controls.

A.4 Outdoor Activity Data

We use two sources of data to measure outdoor activity in order to observe whether individuals
exhibit behavioral changes in response to changing air quality. First, we make use of recreation data
from Recreation.gov, which maintains data on millions of visitors to federal parks. We use data on
campsite reservations from 2008 to 2016, which include over 24 million individual reservations at
over 3,400 facilities. We limit the sample to campsites in the continental US.25 We collapse the
visit-level data to the facility-by-month level and focus on number of visits, total people visiting,
and number of days.

We supplement this with data from the American Time Use Survey (ATUS) from 2008 to
2016. Conducted by the US Census Bureau and the Bureau of Labor Statistics, the ATUS asks
respondents to provide a detailed time diary of all activities over a 24-hour period, including the
location of each activity. We use the location information to measure respondents’ time spent
outdoors. Additional information records respondents’ county of residence, gender, race, ethnicity,
education, age, presence of a child in the household, and information on the day of the week and
whether the survey was conducted on a holiday.

25About 94 percent of facilities are classified as “sites.” The remaining categories include facilities classified as
entrance, lottery, POS, and tour. We exclude these categories to capture a homogeneous set of campsites where we are
confident that visitors are spending time outdoors, but the results are robust to including the other categories.
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B ECA Effect Additional Results and Robustness
B.1 Spatial Distribution of Main Effects

Figure A2: Scaled Reduction in PM2.5

PM2.5 (µgm-3)
0.80 - 1.35
0.45 - 0.80
0.30 - 0.45
0.20 - 0.30
0.10 - 0.20
0.00 - 0.10
> 200 km

Note: Figure shows the estimated reduction in ambient PM2.5 from the ECA at the county level. The estimated reductions are the county level
CMAQ predictions depicted in Figure 3 scaled by the estimated ECA effect coefficient in Table 2 column 1.
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Figure A3: Reductions in Low Birth Weight Infants

Low Weight
Births 2016 (#)
30.0 - 375.0
5.0 - 30.0
2.0 - 5.0
1.0 - 2.0
0.5 - 1.0
0.0 - 0.5
> 200 km

Note: Figure shows the estimated reduction in low birth weight (<2,500 g) infants at the county-level from the ECA policy in 2016. See text for
details.

46



Figure A4: Reductions in Infant Deaths

Infant
Deaths 2016 (#)
5.00 - 68.00
1.20 - 5.00
0.60 - 1.20
0.10 - 0.60
0.05 - 0.10
0.00 - 0.05
> 200 km

Note: Figure shows the estimated reduction in infant deaths at the county-level from the ECA policy in 2016. See text for details.

B.2 Additional Health Outcomes

We first examine other indicators of infant health and adult health. Columns 1-2 of Table A1 show
significant improvements from the ECA on average birth weight and gestation. As the elderly
also tend to be particularly sensitive to air pollution, we explore the effects on elderly mortality.
Columns 3-4 of Table A1 and Figure A5 show that the policy led to statistically significant declines
in mortality for individuals age 75-84 and age 85 and over. A one-unit predicted change in PM2.5
from CMAQ led to declines in elderly mortality of 0.03 and 0.15 percentage points, or 0.8 and
1.4 percent for ages 75-84 and above 85, respectively. Panels (a) and (b) of Figure A5 show little
evidence of pre-trends in years prior to the policy for elderly mortality and a decrease in mortality
in areas with heavy ship traffic after the ECA policy.

Similarly, We explore the distributional effect on birth weight further in the reduced form re-
sults in Panel A of Table A2, which shows the effect of the policy on bins of birth weight. Con-
sistent with the stronger effects on infant health at the lower end of the distribution, we find large
reductions in births for the four smallest bins in the birth weight distribution and increases in births
in the middle of the distribution. These results suggest that there are important impacts not only
for low birth weight (less than 2,500 g) infants, but also very low birth weight (less than 1,500
g) and extremely low birth weight (less than 1,000 g) infants. The negative health consequences
are especially severe for very and extremely low birth weight infants, so improvements in these

47



categories are quite beneficial.

Table A1: Effects of ECA on Additional Health Outcomes

(1) (2) (3) (4)
Birth weight Gestation Deaths: 75-84 Deaths: >85

Panel A. Reduced Form

Post-ECA*CMAQ 1.620 0.012 -0.031 -0.151
(0.874)* (0.006)** (0.010)*** (0.043)***

R2 0.82 0.71 0.77 0.65
N 25,052 25,052 25,056 25,056
N-counties 232 232 232 232
Mean 3305.18 38.78 3.72 10.90
%Change 0.05 0.03 -0.83 -1.38

Panel B. 2SLS

PM2.5 -3.309 -0.024 0.056 0.278
(1.835)* (0.011)** (0.019)*** (0.078)***

R2 0.81 0.67 0.76 0.60
N 24,901 24,901 24,905 24,905
F 18.33 18.33 27.54 26.91
N-counties 232 232 232 232
Mean 3305.10 38.78 3.72 10.90
%Change -0.10 -0.06 1.50 2.55

Panel B. OLS

PM2.5 0.087 -0.000 0.009 0.033
(0.079) (0.000) (0.002)*** (0.004)***

R2 0.82 0.71 0.77 0.65
N 24,901 24,901 24,905 24,905
N-counties 232 232 232 232
Mean 3305.10 38.78 3.72 10.90
%Change Post-ECA 0.00 -0.00 0.24 0.31

Note: Columns 1 and 2 repeat the analysis of Table 3 column 1 with outcomes birth weight in grams (column 1) and gestation in weeks (column
2). Columns 3 and 4 repeat the analysis of Table 3 column 4. In column 3, the outcome is deaths per 1,000 among individuals aged 75 to 84 and
the observations are weighted by the population aged 75 to 84. In column 4, the outcome is deaths per 1,000 among individuals aged 85 and older
and the observations are weighted by the population aged 85 and older.
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Figure A5: Effects of ECA on Elderly Mortality
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Note: Repeats the analysis of Figure 6. In column 1, the outcome is deaths per 1,000 among individuals aged 75 to 84 and the observations are
weighted by the population aged 75 to 84. In column 2, the outcome is deaths per 1,000 among individuals aged 85 and older and the observations
are weighted by the population aged 85 and older.
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Table A2: Effects of ECA on Birth Weight Distribution

(1) (2) (3) (4) (5) (6) (7) (8) (9)
<1,000 g 1,000-1,500 g 1,500-2,000 g 2,000-2,500 g 2,500-3,000 g 3,000-3,500 g 3,500-4,000 g 4,000-4,500 g >4,500 g

Panel A. Reduced Form

Post-ECA*CMAQ -0.173 -0.111 -0.266 -0.776 -0.347 1.807 0.456 -0.466 -0.124
(0.075)** (0.073) (0.115)** (0.201)*** (0.593) (0.483)*** (0.472) (0.292) (0.141)

R2 0.26 0.16 0.20 0.42 0.61 0.34 0.60 0.58 0.28
N 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,052
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.34 178.41 403.91 276.41 69.85 10.89
%Change -3.27 -2.10 -2.50 -1.97 -0.19 0.45 0.16 -0.67 -1.14

Panel B. 2SLS

PM2.5 0.350 0.225 0.534 1.566 0.746 -3.647 -0.930 0.908 0.248
(0.169)** (0.170) (0.270)** (0.620)** (1.112) (1.209)*** (0.959) (0.637) (0.304)

R2 0.22 0.14 0.15 0.34 0.61 0.26 0.60 0.57 0.27
N 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901
F 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.35 178.44 403.94 276.38 69.82 10.89
%Change 6.62 4.25 5.02 3.98 0.42 -0.90 -0.34 1.30 2.28

Panel C. OLS

PM2.5 -0.007 -0.004 -0.006 0.012 -0.026 -0.080 0.129 -0.026 0.007
(0.010) (0.010) (0.015) (0.028) (0.056) (0.056) (0.058)** (0.034) (0.016)

R2 0.26 0.16 0.20 0.42 0.61 0.34 0.60 0.58 0.28
N 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901
N-counties 232 232 232 232 232 232 232 232 232
Mean 5.28 5.29 10.62 39.35 178.44 403.94 276.38 69.82 10.89
%Change Post-ECA -0.13 -0.07 -0.05 0.03 -0.01 -0.02 0.05 -0.04 0.07

Note: Repeats the analysis of Table 3 column 1 with outcomes of births per 1,000 in 500 gram intervals of the domain of birth weight.
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B.3 Other Pollutants

In Table A3, we provide estimates of the impact of the policy on other pollutants and the AQI using
data from U.S. EPA (2022c) and U.S. EPA (2022d). We expect the spatial and temporal pattern
of these pollutants’ impacts will be different than those of PM2.5, and each other, because each
pollutant has a distinct chemistry that determines how it is dispersed, deposited, or converted to
other pollutants. While the CMAQ model predictions reflect the expected atmospheric dispersion
for PM2.5 from the policy, this may not accurately capture the spatial impacts of other pollutants.
Given the relatively short atmospheric lifetime of SO2 before it reacts in the atmosphere, we do not
expect reductions in this pollutant to be as widely geographically distributed as the reductions in
PM2.5.26 Consistent with this prior, we fail to see an impact of the ECA on SO2 using the predicted
PM2.5 decline from the CMAQ model as our measure of intensity of exposure to the policy in
column 1, but we find more precise evidence suggestive of a modest SO2 improvement when using
distance as the definition of exposure (column 2). Next, column 3 shows there is a significant
decline in NO2. While the ECA’s engine requirements targeting NOX likely contributed to this
decline, we expect the ECA’s contribution to have been small because the engine requirements
would have phased in for well under 25% of the US fleet during the sample (p.2-40). As an
additional check to isolate the effect of the ECA, row 12 of Table A5 shows that the reduced form
effects of the ECA on PM2.5, low infant birth weight, and infant death are robust to including NO2
as a control variable.

In addition to the primary pollutants NO2 and SO2, we also look for effects of the ECA on
ozone (O3) because it was a secondary pollutant of interest to the regulator. In column 4, we report
that we failed to see an impact of the ECA on ozone using the predicted PM2.5 decline from the
CMAQ model as our measure of intensity of exposure.27 The null result in column 4 indicates that
any ozone effect is not so strongly correlated with the PM2.5 effect as to explain our health results.

26SO2 rapidly dissolves in water droplets in the air or reacts to form sulfuric acid gas. The rate of these processes
depends on atmospheric conditions. As an example, in a cloud, 60% of SO2 gas molecules are converted to other
molecules within 20 minutes (Jacobson, 2002). The atmospheric lifetime of remaining SO2 is approximately 7.2 days
(U.S. EPA, 2017).

27The ECA may still have yielded a small improvement in ozone, but any effect would be small. An alternative
research design for this outcome would be to focus on seasonal ozone and use the separate CMAQ output for this
pollutant rather than PM2.5. Still, we expect these effects to be small because the regulator’s analysis predicted at
most a 1% decline in summer season 8-hour max ozone (p. 3-28).
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Table A3: Effect of ECA on Other Pollutants

(1) (2) (3) (4) (5)
SO2 (AQI) SO2 (AQI) NO2 (AQI) O3 (AQI) AQI

Post-ECA*CMAQ -0.200 -0.933 0.390 -1.270
(0.357) (0.272)*** (0.366) (0.416)***

Post-ECA*Dist -0.014
(0.005)***

R2 0.75 0.75 0.89 0.85 0.88
N 7,273 7,273 8,372 17,722 24,991
N-counties 68 68 79 184 232
Mean 3.61 3.61 22.15 39.20 54.32
%Change -5.54 -0.39 -4.21 1.00 -2.34

Note: The unit of observation is county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor from 2008-
2016. In columns 1-4 the sample is further restricted to counties with at least one monitor for the corresponding outcome pollutant from 2008-2016.
Reduced-form estimates are obtained from equation 1 with outcomes of monthly mean sulfur dioxide (column 1), nitrogen dioxide (column 3),
ozone (column 4), and maximum AQI across all criteria pollutants and standards (column 5). Column 2 repeats column 1 with the the intensity of
exposure to the policy is measured by distance to the nearest major port in lieu of CMAQ prediction in equation 1. Air quality index maps physical
pollutant concentrations to a 0–500 scale according to the health risk (U.S. EPA, 2018). Robust standard errors clustered at the county level are
reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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B.4 Placebo Outcomes

Next, we examine a number of placebo outcomes that support the validity of our results. A poten-
tial concern with our estimation of the ECA’s effects on health at birth is that the introduction of the
ECA could have been correlated with changes in demographic characteristics or local economic
activity. For example, if the introduction of the ECA was correlated with an increase in concep-
tions for mothers with high proclivity for prenatal care in coastal counties, then our results reflect
the change in the composition of mothers rather than the change from the air quality improvement
the policy induced.

We failed to find evidence that demographic and economic shocks correlated with the treatment
are driving the results in Table 2. To represent the many demographic characteristics relevant to
infant health, we construct an index of maternal demographic characteristics, defined as the birth
weight predicted from only observed maternal characteristics, including education, marital status,
race, ethnicity, age, smoking status, and diabetes. As shown in Table 2 column (2) and Figure A6,
we failed to find that these demographic characteristics are changing simultaneously with policy
exposure. Similarly, column (3) shows that the policy did not result in a significant change in the
number of conceptions. Finally, column (4) shows there is no evidence that the policy is correlated
with differential changes in economic activity as measured by the unemployment rate. In addition,
Table A4 shows there is no significant relationship between the policy variation and the following
additional outcomes: log pollutant emissions from power plants (Clean Air Markets Program Data
from U.S. EPA (2022b)), log emissions of PM2.5 (National Emissions Inventory from U.S. EPA
(2023a)), the number of other Toxic Release Inventory (TRI) pollution sources (County Business
Patterns Data from U.S. Census Bureau (2023)), the frequency of monitor readings, employment,
and earnings. These results provide additional support in favor of the assumption that the policy
instrument captures only changes in pollution, rather than changes in other confounding drivers of
health.

Table A4: Effects of ECA on Placebo Outcomes

(1) (2) (3) (4) (5) (6)
log(elec. log(PM2.5 TRI Establishments N PM2.5 Employees Payroll

emissions) emissions) (per 1,000) obs (per 1,000) ($1,000 per 1,000)

Post-ECA*CMAQ -0.055 -0.024 -0.007 -0.033 0.250 -643.017
(0.044) (0.019) (0.005) (0.160) (1.930) (497.209)

R2 0.84 0.95 0.99 0.75 0.99 0.98
N 13,739 8,352 25,052 25,052 25,052 25,052
N-counties 140 232 232 232 232 232
Mean 5.09 5.85 0.24 7.03 386.01 20476.12
%Change -5.47 -2.36 -3.03 -0.47 0.06 -3.14

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of births conceived in county i in year-month
ym. Reduced-form estimates are obtained from equation 1. Column 1 reports the effect of the ECA on emissions defined as log of total tons
of CO2, SO2, and NOx from power plants reported in the EPA’s Clean Air Markets Program data. Column 2 repeats column 1 with the log of
PM2.5 emissions from the National Emissions Inventory (NEI) data as the outcome variable. Column 3 repeats column 1 with the number of TRI
establishments per 1,000 population from the County Business Patterns (CBP) data as the outcome variable. Column 4 repeats column 1 with
the mean monitor-days per week with an observation. Columns 5 and 6 repeat column 1 with the number of employees per 1,000 population and
the payroll in thousands of dollars per 1,000 population at any CBP establishment. The insignificant coefficients indicate there is no evidence of
changes in underlying economic and pollution characteristics that are correlated with the CMAQ policy variation. Robust standard errors clustered
at the county level are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Figure A6: Maternal Demographics and CMAQ Exposure
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Note: The unit of observation is a county-year-month. The observations are weighted by the number of births conceived in county i in year-month
ym. The sample includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The outcome
is predicted birth weight based on observed characteristics and coefficients obtained from regressing birth weight on maternal characteristics,
including education, marital status, race, ethnicity, age, smoking status, and diabetes. The depicted coefficients are the estimated effect of a one-unit
increase in a county’s CMAQ predicted reduction from the ECA in each year relative to the year before the ECA came into effect. Robust standard
errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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B.5 Comparison with Previous Approaches

Employing the CMAQ output as a measure of intensity of exposure to the ECA policy improves on
approaches that rely on imprecise proxies for source-specific exposure. To illustrate the distinction,
we perform our analysis using distance to a port as the proxy for ship pollution exposure in lieu of
CMAQ output. We define distance to a port as the kilometers from the county population-weighted
centroid to the nearest major US port.28 We highlight two main concerns with distance metrics.
First, distance is a poor proxy for exposure to improvements from the policy because atmospheric
interactions play a major role in the dispersion of pollution. This concern would lead to bias from
measurement error. Second, there does not exist an a priori functional form for the relationship
between the distance from a pollution source and pollutant exposure from the source. This concern
would lead to bias from misspecification.

Table A7 reports the results of estimating equation (1) where intensity of exposure to the policy
is measured by either CMAQ or distance. We report the results for infant deaths, low birth weight,
and fine particulate matter in panels A-C, respectively. We standardize the coefficients and standard
errors into units of standard deviations so that the results are comparable across candidate treatment
variables. First, we compare the Bayesian information criteria (BIC), which is a criterion for
model selection based, in part, on the likelihood function. We observe that the estimates based on
CMAQ consistently yield a lower BIC across all outcomes, suggesting that CMAQ is preferred.
Across all outcomes, the CMAQ model appears to reduce measurement error, as expected. The
T-statistic is larger and standard errors are smaller for CMAQ relative to distance in all panels. The
estimated effect of a one standard deviation increase in distance relative to CMAQ exposure led to
a slightly larger reduction in infant deaths and low birth weight, but a slightly smaller reduction
in fine particulate matter. However, we do not emphasize these differences because the confidence
intervals of these estimates overlap. Nevertheless, these models show meaningful improvements
in precision when CMAQ is used to measure exposure to the ECA policy.

B.6 Robustness checks

Table A5 shows our results are robust to a number of alternative specifications. The main results for
fine particulate matter, low birth weight and infant deaths are shown in row 1 for reference. In row
2, we cluster the standard errors at the state-level to address the possibility of spatial dependence
in the data and find no consequential change in precision. The main results limit the sample to
counties whose centroids are within 200km of heavy ship traffic because counties far from the
coast are less likely to provide suitable counterfactuals. We show that our results are robust to
alternative choices for inclusion in the sample. Rows 3 and 4 of Table A5 show very similar
estimates when we limit the sample to counties within 150km or 300km as well.

While our main specification includes region-by-year fixed effects, we show that the results
are robust to more flexible state-by-year fixed effects in row 5. Row 6 includes more flexible
weather controls. For each weather variable, we include 7 bins: below 5th percentile, 5 bins for
even intervals from the 5th to 95th percentile, and above the 95th percentile. Next, rows 7-8 relax
the balanced panel requirement for air quality monitors. Rather than restricting the sample to

28We obtain the point-locations of principal ports, as defined by the US Army Corps of Engineers, from the National
Oceanic and Atmospheric Administration (NOAA, 2023). For purposes of comparison, we use the 27 major ports for
ocean-going vessels as defined in Gillingham and Huang (2021).
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balanced monitors from 2008 to 2016, row 7 only requires balance between 2009 and 2014. This
increases our sample of counties from 232 to 251. Row 8 relaxes the requirement for a sample of
balanced monitors and reports the unbalanced panel results. In row 9, we use an alternate measure
of intensity of treatment that is based on the CMAQ prediction of total emissions from maritime
shipping.

Next, we address concerns that other pollution abatement policies may occur during our sample
period. First, we exclude counties with a port in row 10 to show our results are not driven by any
port-specific policy changes that may have been adopted during our sample period. Our results are
not driven by port counties alone. Second, row 11 shows our results are robust to controlling for
Clean Air Act non-attainment status for each county over time. Third, we consider that the ECA
policy we study also tightened standards for engine emissions of nitrogen oxides for a small subset
of ship traffic. As an additional check to isolate the effect of the ECA on fuel standards, we show
that the reduced form effects of the ECA on PM2.5, low infant birth weight, and infant death are
robust to including NO2 as a control variable. For each of these robustness exercises in rows 2
through 12, the estimates remain significant and are similar in magnitude across each outcome.

Finally, row 13 tests whether the tightening of the fuel content standard in 2015 had any addi-
tional impact on improving air quality. We find no statistically significant impact on air quality or
health outcomes from this tightening. This is not surprising, as the 2015 fuel standard tightening
was a relatively small change and many ships were already using compliant fuel.
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Table A5: Robustness of Main Results

PM2.5 Low BW Death <1
(1) (2) (3) (4) (5) (6) (7)
β p-value β p-value β p-value N clusters

(1) Baseline -0.55 0.00 -1.33 0.00 -0.24 0.01 232.0
(0.10) (0.35) (0.09)

(2) State-level clustering -0.55 0.00 -1.33 0.01 -0.24 0.00 25.0
(0.11) (0.43) (0.05)

(3) 150 km -0.57 0.00 -1.32 0.00 -0.21 0.02 202.0
(0.11) (0.38) (0.09)

(4) 300 km -0.56 0.00 -1.28 0.00 -0.25 0.01 280.0
(0.10) (0.32) (0.09)

(5) State-year FE -0.45 0.00 -1.07 0.00 -0.21 0.03 232.0
(0.13) (0.32) (0.10)

(6) Bins of weather -0.55 0.00 -1.37 0.00 -0.23 0.01 232.0
(0.10) (0.32) (0.09)

(7) 2009-2014 balance -0.61 0.00 -1.38 0.00 -0.17 0.02 251.0
(0.12) (0.43) (0.07)

(8) Unbalanced panel -0.39 0.00 -1.25 0.00 -0.24 0.00 286.0
(0.10) (0.31) (0.08)

(9) Ships’ contribution -0.38 0.00 -1.10 0.00 -0.20 0.00 232.0
(0.11) (0.28) (0.07)

(10) No ports -0.58 0.00 -1.39 0.06 -0.51 0.00 192.0
(0.18) (0.74) (0.17)

(11) CAA controls -0.42 0.00 -1.27 0.00 -0.24 0.02 232.0
(0.11) (0.34) (0.10)

(12) NO2 controls -0.25 0.04 -0.75 0.01 -0.27 0.02 79.0
(0.12) (0.28) (0.11)

(13) 2015 0.1ppm -0.02 0.82 0.20 0.65 -0.04 0.68 232.0
(0.10) (0.45) (0.10)

Note: Row 1 replicates the baseline results for PM2.5, low birth weight, and infant deaths from Panel A of Table 3. Columns 1, 3, and 5 report
coefficients from estimating equation 1. Columns 2, 4, and 6 report p-values. Column 7 reports total number of clusters in each specification.
Robust standard errors clustered at the county level are reported in parentheses, unless otherwise noted. Rows 2-11 present robustness checks. Row
2 clusters standard errors at the state level. Rows 3 and 4 limit the sample of counties to those with population-weighted centroids within 150km
and 300km of heavy ship traffic, respectively. Row 5 replaces region-by-year fixed effects with state-by-year fixed effects. Row 6 includes more
flexible binned weather controls. For each weather variable, we include 7 bins: below 5th percentile, 5 bins for even intervals from the 5th to
95th percentile, and above the 95th percentile. Rows 7-8 relax the balanced panel requirement for air quality monitors by restricting to a sample
of balanced monitors from 2009 to 2014 (row 7) and to a sample of all counties that ever have PM2.5 data during the period of study (row 8).
Row 9 examines the robustness of the treatment definition by employing the CMAQ prediction of total emissions from maritime shipping. Row
10 excludes counties with a port. Row 11 includes controls for Clean Air Act attainment status. Row 12 examines the effect of tightening the fuel
content standard nationally in 2015.
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B.7 Sensitivity to Fixed Effects and Continuous Treatment

We further scrutinize the baseline specification in Table A6. It shows our estimates across a variety
of specifications for our three main outcomes in panels a-c: PM2.5, low birth weight, and infant
mortality.

Estimates in column 1 include only county and year-by-month fixed effects. However, it is im-
portant to note that these estimates do not allow for differential regional trends and only control for
nationally uniform time trends. If counties in California, for example, have substantially different
trends or yearly shocks than counties in Texas in terms of pollution and/or health outcomes, these
counties will not make a good counterfactual comparison. This seems likely. By controlling for
only nationally uniform time trends in column 1, there are many potentially omitted variables at the
region-by-year level that can bias estimates. This bias can be observed when we add our baseline
vector of controls for weather, demographics, and unemployment rates in column 2. Compar-
ing columns 1 and 2, we observe large changes in sign and magnitude for the estimated effects,
suggesting large potential for bias from unobserved factors in this specification (Oster, 2019).

Next, we add region-by-year fixed effects in column 3. Including region-by-year fixed ef-
fects allows for differential trends or shocks by region and makes counterfactual comparisons only
within the same region. Estimates in column 3 are statistically significant for all three outcomes
of interest. This is not surprising, as trends in health and pollution will be more similar within the
same region, and therefore these within-region comparisons provide better counterfactual com-
parisons. In Table A5 row 5, we also show our results are robust to including more granular
state-by-year fixed effects as well.

Columns 4-7 show a variety of other specifications, for completeness. Across all these spec-
ifications, our estimates are similar in magnitude and statistically significant. Column 4 drops
year-by-month fixed effects. Even without these controls, estimates in columns 3 and 4 are al-
most identical. In column 5, we include county-by-season fixed effects, rather than county fixed
effects (including county fixed effects would be co-linear with county-by-season fixed effects).
This allows for differential seasonal patterns of pollution and health for each county. As different
counties experience different seasonal weather and pollution patterns, for example, we view this
specification as capturing additional sources of bias at the county-season level. Column 6 adds our
baseline vector of controls for weather, demographics, and unemployment, and is our preferred
specification used in the paper. Comparing coefficients between columns 5 and 6 shows much
smaller coefficient changes than the comparison of columns 1 and 2, suggesting a much more lim-
ited potential for unobserved factors to bias this preferred specification, which is reassuring (Oster,
2019). An even more fully saturated model is provided in column 7, which adds year-by-month
fixed effects and the coefficients remain very similar. We find the similarity in our estimates across
these specifications reassuring.

We also to provide a binary difference-in-difference model in column 8. In this specification,
we interact our indicator for post-ECA with an indicator for the treatment group, counties above
the weighted mean of predicted PM2.5 decline from the CMAQ model, 0.76. (Note that other
cutoffs yield similar results.) This specification has the disadvantage that it does not leverage
the continuous nature of our treatment, but the coefficients remain statistically significant across
each of our outcomes. As expected, counties with greater exposure to the policy, with CMAQ
estimates above 0.76, have a larger relative decline in PM2.5, low birth weight, and infant death.
Fine particulate matter declines by 0.526 units in high exposure areas relative to low exposure
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areas after the policy, which is 5.04 percent relative to the pre-policy mean in high exposure areas,
10.45.

Table A6: Role of Fixed Effects on Reduced Form Estimates

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. PM2.5

Post-ECA*CMAQ 0.013 -0.261 -0.405 -0.395 -0.441 -0.554 -0.570
(0.117) (0.134)* (0.081)*** (0.081)*** (0.093)*** (0.104)*** (0.108)***

Post-ECA*1(CMAQ > 0.76) -0.526
(0.259)**

R2 0.52 0.68 0.53 0.40 0.52 0.60 0.69 0.59
N 24,901 24,901 24,901 24,901 24,901 24,901 24,901 24,901
County X X X X
Year-by-month X X X X
County-by-season X X X X
Region-by-year X X X X X X
Ximy X X X X

Panel B.Low birth weight

Post-ECA*CMAQ -0.465 -0.803 -1.344 -1.345 -1.349 -1.326 -1.308
(0.239)* (0.260)*** (0.337)*** (0.336)*** (0.351)*** (0.348)*** (0.348)***

Post-ECA*1(CMAQ > 0.76) -1.760
(0.481)***

R2 0.55 0.56 0.55 0.54 0.56 0.57 0.57 0.57
N 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,052
County X X X X
Year-by-month X X X X X
County-by-season X X X X
Region-by-year X X X X X X
Ximy X X X X

Panel C. Infant death

Post-ECA*CMAQ -0.073 -0.085 -0.254 -0.253 -0.254 -0.242 -0.246
(0.065) (0.076) (0.087)*** (0.087)*** (0.088)*** (0.089)*** (0.089)***

Post-ECA*1(CMAQ > 0.76) -0.442
(0.165)***

R2 0.62 0.62 0.62 0.62 0.63 0.63 0.63 0.63
N 25,052 25,052 25,052 25,052 25,052 25,052 25,052 25,048
County X X X X
Year-by-month X X X X
County-by-season X X X X
Region-by-year X X X X X X
Ximy X X X X

Note: The unit of observation is county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. The observations are weighted by the number of conceptions. The reduced-form estimates
obtained from equation 1 are reported with varying fixed effects indicated in the column notes. Robust standard errors clustered at the county level
are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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B.8 Comparing CMAQ with Distance Approach

Employing the CMAQ output as a measure of intensity of exposure to the ECA policy improves on
approaches that rely on imprecise proxies for source-specific exposure. To illustrate the distinction,
we perform our analysis using distance to a port as the proxy for ship pollution exposure in lieu of
CMAQ output. We define distance to a port as the kilometers from the county population-weighted
centroid to the nearest major US port (shown in Figure A7).29 We highlight two main concerns
with distance metrics. First, distance is a poor proxy for exposure to improvements from the policy
because atmospheric interactions play a major role in the dispersion of pollution. This concern
would lead to bias from measurement error. Second, there does not exist an a priori functional
form for the relationship between the distance from a pollution source and pollutant exposure from
the source. This concern would lead to bias from misspecification.

Table A7 reports the results of estimating equation (1) where intensity of exposure to the policy
is measured by either CMAQ or distance. We report the results for infant deaths, low birth weight,
and fine particulate matter in panels A-C, respectively. We standardize the coefficients and standard
errors into units of standard deviations so that the results are comparable across candidate treatment
variables. First, we compare the Bayesian information criteria (BIC), which is a criterion for
model selection based, in part, on the likelihood function. We observe that the estimates based on
CMAQ consistently yield a lower BIC across all outcomes, suggesting that CMAQ is preferred.
Across all outcomes, the CMAQ model appears to reduce measurement error, as expected. The
T-statistic is larger and standard errors are smaller for CMAQ relative to distance in all panels. The
estimated effect of a one standard deviation increase in distance relative to CMAQ exposure led to
a slightly larger reduction in infant deaths and low birth weight, but a slightly smaller reduction
in fine particulate matter. However, we do not emphasize these differences because the confidence
intervals of these estimates overlap. Nevertheless, these models show meaningful improvements
in precision when CMAQ is used to measure exposure to the ECA policy.

29We obtain the point-locations of principal ports, as defined by the US Army Corps of Engineers, from the National
Oceanic and Atmospheric Administration. For purposes of comparison, we use the 27 major ports for ocean-going
vessels as defined in Gillingham and Huang (2021).
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Figure A7: Distance to Ports
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Note: Figure shows the distance from the population-weighted centroid of each county to the nearest principal port.

Table A7: Comparison of Treatment Variables on Main Outcomes

BIC T-stat Coefficient Std error

Panel A: PM2.5

CMAQ 107,538.141 -5.346 -0.058 0.011
-Distance port 107,672.391 -1.665 -0.045 0.027

Panel B: Low birth weight

CMAQ 190,136.859 -3.807 -0.015 0.004
-Distance port 190,155.312 -2.177 -0.019 0.009

Panel C: Infant Deaths

CMAQ 136,256.172 -2.723 -0.010 0.004
-Distance port 136,259.469 -1.706 -0.017 0.010

Note: Table reports results of estimating equation 1 where the intensity of exposure to the policy is measured by either the CMAQ prediction or
distance to the nearest major port. County-year-months are weighted by the number of conceptions. We report the results for fine particulate matter,
low birth weight, and infant deaths in panels A-C, respectively. Coefficients and standard errors are standardized into units of standard deviations
so that the results are comparable across candidate treatment variables. Column 1 reports the Bayesian information criteria (BIC), where the lowest
BIC is preferred. Columns 2-4 report the T-statistic, coefficient, and standard error, respectively.
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C Incidence Results
C.1 Exposure Across Demographic Groups Results

Despite existing evidence of disproportionate pollutant exposure for disadvantaged groups from
land-based pollution sources, prior work has not examined the exposure gap for a source that is
mobile and at-sea. We highlight the differences in the demographics of the population exposed 13
to maritime fuel emissions versus comparable stationary on-land sources in Figure A8. Figure A8
shows the correlations between race/ethnicity and two measures of exposure to maritime pollution:
distance to ports (stationary on-land) and the overall intensity of ship emissions, as measured by
the CMAQ model (mobile at-sea).30 We report results for non-Hispanic white, non-Hispanic black,
non-Hispanic other race, and Hispanic. We use demographic information from 2010 census tract
data (U.S. Census Bureau, 2010). We restrict our sample for analysis to tracts within 200km of
heavy ship traffic. Each of the 100 circles represents the population-weighted average for equal-
sized bins of census tracts.

First, panels (a)-(d) show the relationship between race/ethnicity and distance to ports. We
calculate the distance from the population-weighted centroid of each tract to the nearest large port.
Counties further to the right are closer in distance to a port. Consistent with the environmental
justice literature, the population near ports is less likely to be white (panel (a)), and more likely to
be black, other race, or Hispanic (panels (b)-(d)).

While ports are an important source of air pollution, exposure to maritime pollution from ship-
ping routes is not captured by the distance-to-port measure. To account for the total contribution of
ship emissions to a local area’s pollution levels, panels (e)-(h) show the correlation between race
and intensity of ship emissions, as measured by the predicted change from requiring low-sulfur
maritime fuel, based on the CMAQ model. The x-axis reports the predicted change in fine par-
ticulate matter. Census tracts further to the right are predicted to have larger improvements in air
quality from the maritime fuel regulation. Interestingly, the correlation between the proportion of
non-Hispanic black individuals and maritime emissions intensity shown in panel (f) is negative.
This pattern is in contrast to most other pollution contexts, including distance to ports. All other
race/ethnicity groups show correlations in the same direction as those observed for distance to
ports. However, the slopes of each differ somewhat, especially for Hispanics.

Figure 8 shows an alternative way to visualize these patterns. Here we present the cumulative
distribution function of the proportion of individuals in each race/ethnicity group over distance to
port (panel (a)) and intensity of ship emissions (panel (b)). A few interesting patterns stand out and
are consistent with Figure A8. First, panel (a) shows that non-Hispanic blacks are more likely to
live very near ports. In general, non-white individuals are more likely to live near ports and non-
Hispanic whites are least likely to live near ports, consistent with the large environmental justice
literature looking at stationary land-based pollution sources. However, the pattern is different in
panel (b), which shows the cumulative distribution of individuals by intensity of exposure to overall
ship emissions, as measured by CMAQ. Unlike panel (a), black and white individuals have almost
identical distributions, suggesting they experience a much more similar distribution of exposure to
overall ship emissions. Moreover, both groups are less likely to live with high exposure to ship
emissions, relative to Hispanics and non-Hispanic other race groups.

30Figure A7 shows the distance to ports, and Figure 3 shows the overall intensity of ship emissions based on the
CMAQ model.
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Given that the exposed population is different from most land-based pollution sources, the
health effects of this policy are likely to be different than other reductions in air pollution. This
is likely to be the case if, for example, pollution has a heterogeneous health impact across demo-
graphic groups, perhaps due to differences in underlying health conditions or access to care. In
addition, the dose of exposure to maritime pollution may differ across demographic groups due to
differences in time spent outdoors or differential avoidance behaviors. We compare the magnitude
of our health results to the health effects of pollution found in other contexts to better understand
the extent to which these differences in the demographics of individuals exposed to maritime emis-
sions yield different overall effects on health.
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Figure A8: Demographics of the Population Exposed to Maritime Pollution
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Note: Demographic information on the proportion of non-Hispanic whites, non-Hispanic blacks, non-Hispanic other race, and Hispanics from 2010
census tract data. We restrict to our analysis sample, which includes tracts within 200km of heavy ship traffic. Each of the 100 circles represents the
population-weighted average for equal-sized bins of census tracts. Panels (a)-(d) show the correlation between race/ethnicity groups and distance
to ports. We calculate distance from the population-weighted centroid of each tract to the nearest major port. Counties further to the right are closer
in distance to a port. Panels (e)-(h) show the correlation between race/ethnicity and the intensity of ship emissions, as measured by the predicted
change from requiring low sulfur maritime fuel from the CMAQ model at the centroid of each tract. The x-axis is the predicted change in fine
particulate matter. Counties further to the right have higher ship emission exposure.64



C.2 Incidence across Demographic Groups Results
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Table A8: Heterogeneity of Effects of PM2.5 from ECA on Low Birth Weight

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
All NH White NH Black NH Other Hispanic High Educ Married Age 19-24 Age 25-34 Age 35

PM2.5 0.00266 0.00301 0.00212 0.00756 0.00107 0.00225 0.00181 0.00106 0.00266 0.00417
(0.00093)*** (0.00153)* (0.00256) (0.00209)*** (0.00060)* (0.00106)** (0.00059)*** (0.00087) (0.00106)** (0.00120)***

R2 0.01 0.01 0.01 -0.00 0.00 0.01 0.01 0.01 0.01 0.01
N 12,426,807 5,062,128 1,860,002 1,337,613 4,167,051 6,436,488 7,238,190 2,911,813 6,967,317 2,317,026
F 21.44 11.38 11.62 26.84 24.33 19.25 19.98 19.02 20.06 27.37
N-counties 232 232 232 231 232 232 232 232 232 232
Mean 0.06 0.05 0.11 0.06 0.06 0.05 0.05 0.07 0.06 0.07
%Change 4.39 6.42 1.99 12.03 1.92 4.17 3.63 1.57 4.81 6.42

Note: The unit of observation is the individual-year-month. The sample includes individuals in counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor
from 2008-2016. Observations are unweighted. Results show two-stage least squares estimates based on equation 2. Column 1 includes the entire sample and reports results analogous to Table 3 panel B,
column 2, but at the individual level. Columns 2-10 restrict the sample to individuals of different demographic groups, including non-Hispanic white, non-Hispanic black, non-Hispanic other, Hispanic,
highly educated, married, age 19-24, age 25-34, and age 35+. Within county-season R2 is reported. Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05;
*** p < 0.01.
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D Behavioral Response Additional Results
D.1 Ship Behavior

In this section, we explore the year-to-year variation in the effect of the policy. We found the vari-
ation was driven by the counties in southern California with partial-ECA coverage.31 To establish
this, Figure A9 presents the effect of the ECA PM2.5 separately for southern CA (panel a) and
elsewhere (panel b).

To further understand this pattern, we repeated our analysis with the addition of southern
California-by-year fixed effects to allow for differential yearly trends in southern California. Panel
(c) of Figure A9 repeats panel (a) with these additional controls and panel (d) repeats our base-
line result for the full sample with these additional controls. Once these controls are included,
for both groups the “bouncy” pattern observed in the post period is eliminated while the decline
in pollution remains statistically significant and similar in magnitude to our main estimates. This
indicates there were local shocks, perhaps to weather or pollution, in southern California that were
not perfectly captured by our baseline control variables; however, the addition of more granular
controls confirms a robust effect of the ECA policy and mitigates the year-to-year variation.

31We define southern California as the partial ECA counties in California. This includes nine counties: Imperial,
Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, Santa Barbara, and Ventura.
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Figure A9: Influence of southern California on year-to-year variation
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D.2 Other Emissions

Figure A10: Emissions Behavioral Response: Clean Air Act Regulatory Rebound
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Note: The outcome is fine particulate matter. The unit of observation is a county-year-month. The observations are unweighted. The sample
includes counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients are
the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in post-ECA (July 2012) time periods relative to
pre-ECA time periods. Robust standard errors are clustered at the county level. The confidence intervals are ± 1.96 standard errors.
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Table A9: Effect of ECA on Ship and Other Emissions Behavior

(1) (2) (3)
PM2.5 PM2.5 PM2.5

Post*CMAQ -0.610 -0.860 -1.713
(0.129)*** (0.195)*** (0.602)***

Post*CMAQ*1(ECA<200nm) 0.372
(0.176)**

Post*CMAQ*1(DV<0.8) 1.685
(0.560)***

Post*CMAQ*1(0.8 ≤ DV < 0.9) 0.906
(0.590)

Post*CMAQ*1(1.0 ≤ DV) 1.102
(0.578)*

R2 0.62 0.62 0.58
N 24,905 24,905 19,992
N-counties 232 232 186
Mean 8.30 8.30 8.72
% Change:
All -7.35
ECA=200nm -10.41
ECA<200nm -5.71
DV < 0.8 -0.36
0.8 ≤ DV < 0.9 -9.60
0.9 ≤ DV < 1.0 -17.00
1.0 ≤ DV -6.42

Note: The unit of observation is the county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. County-year-months are not weighted. Column 1 shows the results of estimating equation 1.
Column 1 repeats the estimate of Table 2 column 1 with unweighted data. Column 2 repeats column 1 with an additional interaction for whether the
ECA boundary is less than the full 200 nm from the county population-weighted centroid, 1(ECA<200 nm), as per equation 3. Column 3 repeats
column 1 with additional interactions for counties’ pre-policy distance to the regulatory threshold, DV, defined as the county 2012 PM2.5 maximum
design value as a percent of the standard, as per equation 4. Robust standard errors clustered at the county level are reported in parentheses: *
p < 0.1; ** p < 0.05; *** p < 0.01.

In addition to results presented in Figure A10 and Table A9, we present additional empirical ev-
idence consistent with this hypothesis in Table A10. To present this evidence, we simplify the
model to focus on counties with DV above and below 0.8. Our previous results estimated a more
flexible model, but the main finding was that the effect of the ECA policy on air quality was muted
for counties with DV <0.8, consistent with regulatory rebound in these counties. This streamlined
model preserves power for the additional analyses we present below.

We begin with additional evidence consistent with our conceptual intuition that counties with
DV<0.8 are reasonably constrained by the NAAQS. As anecdotal evidence that counties with
DV<0.8 are bound by the NAAQS, we note that of the 53 counties with DV <0.8, half are either
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in non-attainment for another pollutant or were previously in non-attainment for any pollutant.
This provides an additional way to measure which counties are relatively more constrained under
the NAAQS. We start by exploring heterogeneity by previous non-attainment or non-attainment
for another pollutant. In columns 3 and 4, we show below and above 0.8 DV counties, respec-
tively. For low DV counties in column 3, we see that the counties with past non-compliance or
non-compliance for other pollutants are largely contributing to the rebound among counties with
DV <0.8 because their post-ECA declines in PM2.5 per unit CMAQ are not different than zero.
By contrast, for DV≥0.8 counties in column 4, all counties demonstrate comparable decline in
ambient PM2.5 regardless of regulatory status.

Finally, we look for evidence of emissions changes that would yield the patterns we observe in
ambient PM2.5. Table A10 columns 5-6 explore heterogeneity in the effect of the policy on emis-
sions data from the EPA’s National Emissions Inventory (NEI). Column 5 reports the effect of the
ECA on the log of PM2.5 emissions while column 6 reports the effect on the log of PM1 (ultrafine
particles) emissions. For both pollutants, we found that the magnitude of the effect on emissions
was larger for counties with DV<0.8 than in counties with DV≥0.8, consistent with our hypothesis
and the effects on ambient PM2.5, but these differences are not statistically significant. Overall,
the emissions results in columns 5-6 suggest increasing emissions may have been a response to the
ECA policy, but we cannot rule out other types of strategic response that we do not observe.
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Table A10: Clean Air Act heterogeneity in ambient PM2.5 and total emissions

(1) (2) (3) (4) (5) (6)
PM2.5 PM2.5 PM2.5 PM2.5 log(PM2.5) log(PM1)

DV<0.8 DV>=0.8 (NEI) (NEI)

Post*CMAQ -0.610 -0.470 -0.527 -0.899 -0.039 0.004
(0.155)*** (0.233)** (0.469) (0.392)** (0.066) (0.108)

Post*CMAQ*1(DV<0.8) 0.715 0.108 0.196
(0.200)*** (0.140) (0.235)

Post*CMAQ*1(past or other NA) 0.088 0.581 0.107
(0.240) (0.363) (0.405)

Post*CMAQ*1(2012 PM2.5 NA) -0.168 0.365
(0.219) (0.372)

R2 0.58 0.62 0.57 0.57 0.92 0.89
N 19,992 24,905 5,685 14,307 6,696 6,420
N-counties 186 232 53 133 186 184
Mean 8.72 8.30 7.55 9.19 5.48 4.96
% Change:
DV<0.8 1.40 6.91 20.00
DV>=0.8 -6.63 -3.89 0.39
Always Attain -6.07 -6.90 -9.75
Past or other NA -4.78 0.72 -9.07
2012 PM2.5 NA -6.71 -5.61

Note: The unit of observation is county-year-month. The sample includes counties with population-weighted centroids within 200km of heavy
ship traffic and with a PM2.5 monitor from 2008-2016. County-year-months are not weighted. In columns (1) and (5)-(6), estimates are based on
equation 1 with an additional interaction of the main variable with an indicator for below 80 percent of the regulatory design value threshold. In
columns (2)-(4), estimates are based on equation 1 with an additional interaction of the main variable with a categorical variable for a county’s
compliance history with the Clean Air Act: {always attainment, past non-attainment or 2012 non-attainment with other pollutant, 2012 non-
attainment with PM2.5}. In columns (5) and (6), emissions are measured as the log of the county annual sum of fine particulate matter (column 5)
and ultrafine particulate matter (column 6) in the National Emissions Inventory for 2008, 2011, 2014, and 2017. Robust standard errors clustered at
the county level are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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D.3 Individual Behavior

Table A11: Effect of ECA on Individual Behavior

Campsite Reservations (IHS) Time Outdoors
Visits Visits People People Days Days (IHS)

(1) (2) (3) (4) (5) (6) (7)

post-ECA × CMAQ 0.164*** 0.144*** 0.149*** 0.144*** 0.166*** 0.147*** 0.0797*
(0.0603) (0.0325) (0.0480) (0.0357) (0.0597) (0.0307) (0.0473)

Region-year FE X X X X X X X
County-season FE X X X X
Facility-month FE X X X
Year-month FE X X X X
R-squared 0.879 0.944 0.871 0.927 0.906 0.950 0.064
Observations 10,909 38,385 10,909 38,385 10,909 38,385 29,516
N-counties 158 150 158 150 158 150 183
Mean 437 124 2,210 626 1,178 334 14.68

Note: The unit of observation is county-year-month in columns 1, 3, and 5, and is facility-year-month for columns 2, 4, and 6. For columns 1-6, observations are unweighted, and the sample is counties
with population-weighted centroids within 200km of heavy ship traffic. In columns 1-6, we estimate equation 5 where the outcomes are the inverse hyperbolic sine of the number of visits (columns 1-2),
the number of people (columns 3-4), and the number of days (columns 5-6). In column 7, the unit of observation is the individual-year-month, observations are weighted with survey weights, and the
sample includes observations in counties with population-weighted centroids within 200km of heavy ship traffic. In column 7, we estimate equation 6 where the outcome is the inverse hyperbolic sine of
the number of minutes the respondent reported spending outdoors for the previous day. All regressions include region-by-year fixed effects; columns 1, 3, 5, and 7 include county-by-season fixed effects;
columns 2, 4, and 6 include facility-by-month fixed effects; and columns 2, 4, 6, and 7 include year-by-month fixed effects. Column 7 also controls for gender, race, ethnicity, education, age, presence of
children in the household, and indicators for the day of the week of the survey and whether it was a holiday. Robust standard errors clustered at the county level are reported in parentheses: * p < 0.1; **
p < 0.05; *** p < 0.01.
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Figure A11: Individual Behavioral Response: Campsite Reservations

(a) Visits (b) Days

Note: The unit of observation is the county-year-month. The observations are unweighted. The sample includes counties with population-weighted
centroids within 200km of heavy ship traffic. The depicted coefficients are the estimated effect of a one-unit increase in a county’s CMAQ predicted
reduction from the ECA in each year relative to 2011, the year prior to policy adoption. Panels a and b show the estimates for outcomes variables
(a) inverse hyperbolic sine of total visits and (b) total days each month, respectively. Robust standard errors are clustered at the county level. The
confidence intervals are ± 1.96 standard errors.

Figure A12: Individual Behavioral Response: Time Spent Outdoors

Note: The unit of observation is the individual-county-year-month. The observations are weighted by sample weights. The sample includes
individuals in counties with population-weighted centroids within 200km of heavy ship traffic and with a PM2.5 monitor. The depicted coefficients
are the estimated effect of a one-unit increase in a county’s CMAQ predicted reduction from the ECA in each year relative to 2011, the year prior
to policy adoption. The outcome is the inverse hyperbolic sine transformation of minutes spent outdoors. Robust standard errors are clustered at the
county level. The confidence intervals are ± 1.96 standard errors.
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Table A12: Effect of ECA on Campsite Reservations (Log)

Visits Visits People People Days Days
(1) (2) (3) (4) (5) (6)

post-ECA × CMAQ 0.168*** 0.146*** 0.149*** 0.144*** 0.173*** 0.150***
(0.0609) (0.0335) (0.0487) (0.0362) (0.0606) (0.0310)

Region-year FE X X X X X X
County-season FE X X X
Facility-month FE X X X
Year-month FE X X X
R-squared 0.859 0.934 0.847 0.899 0.855 0.933
Observations 10,508 37,374 10,508 37,373 10,094 35,811
N-counties 148 143 148 143 140 135
Mean 454 127 2,294 643 1,273 358

Note: The unit of observation is county-year-month in columns 1, 3, and 5, and is facility-year-month for columns 2, 4, and 6. Observations are
unweighted, and the sample is counties with population-weighted centroids within 200km of heavy ship traffic. We estimate equation 5 where
the outcomes are the natural log of the number of visits (columns 1-2), the number of people (columns 3-4), and the number of days (columns
5-6). All regressions include region-by-year fixed effects; columns 1, 3, and 5 include county-by-season fixed effects; columns 2, 4, and 6 include
facility-by-month fixed effects; and columns 2, 4, and 6 include year-by-month fixed effects. Robust standard errors clustered at the county level
are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A13: Effect of ECA on Time Spent Outdoors: Extensive and Intensive Margins

IHS Any Log
(1) (2) (3)

post-ECA × CMAQ 0.0797* 0.0156 0.0553
(0.0473) (0.00986) (0.0663)

County-season FE X X X
Region-year FE X X X
Year-month FE X X X
R-squared 0.064 0.065 0.241
Observations 29,516 29,516 5,033
N-counties 183 183 162
Mean 14.68 0.174 84.81

Note: The unit of observation is the individual-year-month, observations are weighted with survey weights, and the sample includes observations
in counties with population-weighted centroids within 200km of heavy ship traffic. We estimate equation 6 where the outcome is a measure of
minutes the respondent reported spending outdoors for the previous day: column 1 uses the inverse hyperbolic sine of minutes outdoors, column 2
uses an indicator for any minutes outdoors, and column 3 uses the log of minutes outdoors, excluding zeros. All regressions include region-by-year
fixed effects, county-by-season fixed effects, and year-by-month fixed effects. Regressions include controls for gender, race, ethnicity, education,
age, presence of children in the household, and indicators for the day of the week of the survey and whether it was a holiday. Robust standard errors
clustered at the county level are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A14: Effect of ECA on Bins of Time Spent Outdoors

0 hrs 0-1 hrs 1-2 hrs 2-3 hrs 3-5 hrs >5 hrs
(1) (2) (3) (4) (5) (6)

post-ECA × CMAQ -0.0156 0.0141* 0.00307 -0.00319 -0.00270* 0.00434**
(0.00986) (0.00832) (0.00334) (0.00214) (0.00158) (0.00212)

R-squared 0.065 0.057 0.044 0.041 0.052 0.059
Observations 29,516 29,516 29,516 29,516 29,516 29,516
N-counties 183 183 183 183 183 183

Note: The unit of observation is the individual-year-month, observations are weighted with survey weights, and the sample includes observations in
counties with population-weighted centroids within 200km of heavy ship traffic. We estimate equation 6 where the outcome is bins of the number
of minutes the respondent reported spending outdoors for the previous day. All regressions include region-by-year fixed effects, county-by-season
fixed effects, and year-by-month fixed effects. Regressions include controls for gender, race, ethnicity, education, age, presence of children in the
household, and indicators for the day of the week of the survey and whether it was a holiday. Robust standard errors clustered at the county level
are reported in parentheses: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table A15: Time Outdoors: Placebo Tests

(1) (2) (3)
Sleep Housework Groceries

post-ECA × CMAQ 0.00112 0.0486 -0.0235
(0.00669) (0.0691) (0.0301)

Region-year FE X X X
County-season FE X X X
Year-month FE X X X
R-squared 0.083 0.153 0.063
Observations 29,516 29,516 29,516
N-counties 183 183 183

Note: The regression specifications are identical to those in Table A11, but for the following outcomes: time spent sleeping (activity code 010101),
time spent doing housework (activity codes 020101-020199), and time grocery shopping (activity code 070101).
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