B Online Appendix: "Scoring Strategic Agents" by Ian Ball

Nonlinear signaling equilibria are difficult to analyze in general. Here, I give a condition under which no Bayes-Nash equilibrium, pure or mixed, is fully informative.

Proposition 5 (No fully informative equilibrium)
If $\Sigma_{\delta \delta}$ has full rank, then the signaling game has no fully informative BayesNash equilibrium.

Proof. Assume $\Sigma_{\delta \delta}$ is full rank. Suppose for a contradiction that the signaling game has a fully informative equilibrium. I will show that some type of the sender has a profitable deviation.

The first step is to construct the candidate deviating types. The type space $T=\operatorname{supp}(\eta, \delta)$ must contain an ellipse E defined by the equation

$$
\left(\eta-\mu_{\eta}\right)^{T} \Sigma_{\eta \eta}^{-1}\left(\eta-\mu_{\eta}\right)+\left(\delta-\mu_{\delta}\right)^{T} \Sigma_{\delta \delta}^{-1}\left(\delta-\mu_{\delta}\right)=r^{2}
$$

for some positive radius r. Choose η^{0} such that $\left(\eta^{0}-\mu_{\eta}\right) \Sigma_{\eta \eta}^{-1}\left(\eta^{0}-\mu_{\eta}\right)$ is strictly between 0 and r^{2}. Then $\left(\eta^{0}, t \mu_{\delta}\right)$ intersects E for two positive values of t, which I denote $t_{1}<t_{2}$. Let $\delta^{0}=t_{1} \mu_{\delta}$ and set $\kappa=t_{2} / t_{1}$ so $\kappa \delta^{0}=t_{2} \mu_{\delta}$. Next, I construct a sequence of types converging to $\left(\eta^{0}, \delta^{0}\right)$ as follows. Since $\Sigma_{\delta \delta}$ and $\Sigma_{\eta \eta}$ both have full rank, we can find a strictly positive sequence t^{i} converging to 0 and a real sequence s^{i} converging to 0 such that each type

$$
\left(\eta^{i}, \delta^{i}\right):=\left(\eta^{0}+t^{i} \beta, \delta^{0}+s^{i} \delta^{0}\right)
$$

lies on the ellipse E. Clearly $\left(\eta^{i}, \delta^{i}\right) \rightarrow\left(\eta^{0}, \delta^{0}\right)$ as $i \rightarrow \infty$.
For all $i \geq 0$, choose a feature vector x^{i} that type $\left(\eta^{i}, \delta^{i}\right)$ induces through some equilibrium distortion choice. Since the equilibrium is fully informative, it follows that $y\left(x^{i}\right)=\beta_{0}+\beta^{T} \eta^{i}$ for each i. Each type (η^{i}, δ^{i}) can secure the payoff from mimicking $\left(\eta^{0}, \delta^{0}\right)$, so the sequence $\left(x^{i}\right)$ for $i \geq 1$ is bounded. After
possibly passing to a subsequence, I can assume that this sequence converges to some limit x^{*}.

Now I obtain the contradiction. To simplify notation, let

$$
c(d)=(1 / 2) \sum_{j=1}^{k} d_{j} / \delta_{j}^{0} .
$$

Each type $\left(\eta^{i}, \delta^{i}\right)$ weakly prefers x^{i} to x^{0}, so

$$
t^{i}\|\beta\|^{2} \geq \frac{c\left(x^{i}-\eta^{i}\right)-c\left(x^{0}-\eta^{i}\right)}{\left(1+s^{i}\right)^{2}}
$$

Passing to the limit in i gives

$$
\begin{equation*}
c\left(x^{*}-\eta^{0}\right) \leq c\left(x^{0}-\eta^{0}\right) \tag{32}
\end{equation*}
$$

Type $\left(\eta^{0}, \kappa \delta^{0}\right)$ must be indifferent between x^{0} and any feature vector chosen in equilibrium since x^{0} yields same decision and cannot be more costly (for otherwise type $\left(\eta^{0}, \delta^{0}\right)$ would have a profitable deviation). Therefore, type $\left(\eta^{0}, \kappa \delta^{0}\right)$ weakly prefers x^{0} to x^{i}, so

$$
\begin{equation*}
t^{i}\|\beta\|^{2} \leq \frac{c\left(x^{i}-\eta^{0}\right)-c\left(x^{0}-\eta^{0}\right)}{\kappa^{2}} \leq \frac{c\left(x^{i}-\eta^{0}\right)-c\left(x^{*}-\eta^{0}\right)}{\kappa^{2}} \tag{33}
\end{equation*}
$$

where the second inequality follows from (32).
Similarly, since each type $\left(\eta^{i}, \delta^{i}\right)$ prefers x^{i} to x^{j}, we have

$$
\left(t^{i}-t^{j}\right)\|\beta\|^{2} \geq \frac{c\left(x^{i}-\eta^{i}\right)-c\left(x^{j}-\eta^{i}\right)}{\left(1+s^{i}\right)^{2}} .
$$

Passing to the limit as $j \rightarrow \infty$ gives

$$
\begin{equation*}
t^{i}\|\beta\|^{2} \geq \frac{c\left(x^{i}-\eta^{i}\right)-c\left(x^{*}-\eta^{i}\right)}{\left(1+s^{i}\right)^{2}} \tag{34}
\end{equation*}
$$

Clear denominators in (33) and (34) and then subtract to get

$$
\begin{aligned}
& \left(\left(1+s_{i}\right)^{2}-(1+\kappa)^{2}\right) t^{i}\|\beta\|^{2} \\
& \geq\left[c\left(x^{i}-\eta^{i}\right)-c\left(x^{*}-\eta^{i}\right)\right]-\left[c\left(x^{i}-\eta^{0}\right)-c\left(x^{*}-\eta^{0}\right)\right] \\
& =\left[c\left(x^{i}-\eta^{i}\right)-c\left(x^{i}-\eta^{0}\right)\right]+\left[c\left(x^{*}-\eta^{0}\right)-c\left(x^{*}-\eta^{i}\right)\right] \\
& =\left[c\left(x^{i}-\eta^{0}-t^{i} \beta\right)-c\left(x^{i}-\eta^{0}\right)\right]+\left[c\left(x^{*}-\eta^{0}\right)-c\left(x^{*}-\eta^{0}-t^{i} \beta\right)\right] .
\end{aligned}
$$

Divide by t^{i} and pass to the limit as $i \rightarrow \infty$. By the mean value theorem, the terms on the right converge to $-c^{\prime}\left(x^{*}-\eta^{0}\right) \beta$ and $c^{\prime}\left(x^{*}-\eta^{0}\right) \beta$, so we obtain the contradiction

$$
-\left(\kappa^{2}-1\right)\|\beta\|^{2} \geq 0
$$

