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Appendix Figure A.1: Experimental Timeline for Sample Participant

Notes: This figure shows an experimental timeline for a participant. Visits were scheduled according to the participants’
availability. We introduced variation in the timing of incentive delivery by delaying the start of the intervention period by one
day for randomly selected participants. The intervention period was exactly 12 weeks for all participants.
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Appendix Figure A.2: Incentive Effects are Steady through the 12-Week Program

Notes: Panel (a) shows the average probability of exceeding the step target and Panel (b) shows the average daily steps walked,
both during the intervention period. Week 0 is the phase-in period (before randomization). The shaded areas represent a
collection of confidence intervals from tests of equality within each weekly period between the incentive and monitoring groups
from regressions with the same controls as in Table 2. Data are at the individual-week level. Both graphs are unconditional on
wearing the pedometer. Graphs look similar when condition on wearing the pedometer except that, in both groups, there is less
downward trend over time.
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Appendix Figure A.3: Incentive Effects Persist After the 12-Week Program

Notes: Panel (a) shows the average probability of exceeding the step target and Panel (b) shows the average daily steps walked,
both in the 12 weeks following the intervention. “No incentives” represents the pooled monitoring and control groups; the Panels
look very similar when we compare with the control group only. The shaded areas represent a collection of confidence intervals
from tests of equality within each weekly period between the incentive and no incentive groups from regressions with the same
controls as in Table 2. All graphs are unconditional on wearing the pedometer. Data are at the individual-week level. Graphs
look similar when condition on wearing the pedometer except that, in both groups, there is less downward trend over time.
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Appendix Figure A.4: Blood Sugar Treatment Effects Grow Over Time

Notes: Figures show how the impact of incentives on random blood sugar (RBS) evolves over time by presenting the treatment
effect of incentives on RBS separately for each time RBS was measured. Panel A shows the full sample and Panel B restricts to
those with above-median baseline values of the blood sugar index. Survey week 0 was the baseline survey measurement; survey
week 12 was the endline survey measurement; and survey weeks 3, 6, and 9 were the measurements at the pedometer sync visits
held every three weeks during the intervention period. Observations are at the individual level. The “No incentives” group
represents the pooled monitoring and control groups. As in our other graphs of trends over time, we pool the two comparison
groups (control and monitoring) for power. Results are similar but slightly less precise if we compare incentives with control
alone. For each survey, we regress random blood sugar on the incentives dummy and control for the same controls as in the
random blood sugar specification in Table 4. The shaded areas represent a collection of 95% confidence intervals from those
regressions. The p-values for the significance of the increase over time are .05 and .02 for the Panels A and B, respectively.
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Appendix Table A.1: Measures of Effort Impatience Correlate with Baseline Exercise, Health, and Behavior

Correlation with

Baseline exercise Baseline indices

Daily Negative Negative

Mean Daily exercise health vices Hca.lthy # Indi-
steps . L. . diet index  viduals
(min)  risk index  index
(1) 2) 3) (4) (5) (6) (1)
A. Impatience index measures
Impatience index 0.092 -0.080***  -0.070*** -0.016 -0.052 -0.181*** 1,740
1. 'm always saying: I'll do it tomorrow 2.217 -0.059 -0.101*** -0.010 -0.031 -0.147+* 1,740
2. I usually accomplish all the things I plan to do in a day  0.643 -0.054 -0.052 -0.012 -0.043*  -0.149*** 1,740
3. I postpone starting on things I dislike to do 3.967 -0.042* 0.004 0.004 -0.052 0.050 1,740
4. T'm on time for appointments 0.468 -0.054 0.006 -0.021 0.008 -0.097*** 1,740
5. T often start things at the last minute 2.506 -0.039  -0.069*** -0.009 -0.043*  -0.207*** 1,740
and find it difficult to complete them on time
B. Predicted index measures
Predicted index -0.052 0.000 -0.036 -0.064*** 0.021 0.004 3,192
1. In the past week, how many times have you found 0.526 0.015 -0.006 -0.064*** 0.007 0.026 3,192
yourself exercising less than you had planned?
2. In the past 24 hours, how many times have you 0.208 -0.001 0.050***  -0.058*** 0.015 0.034* 3,192
found yourself eating foods you had planned to avoid?
3. Do you worry that if you kept a higher balance 0.131 -0.027 -0.062*** -0.018 0.031* -0.038 3,192
on your phone, you would spend more on talk time?
C. Simple CTB
Simple CTB index 0.532 -0.120*** -0.028 -0.003 -0.018 -0.020 3,190
1. Chose 30 minutes today and 60 minutes in one week 0.508 -0.115*** -0.018 -0.006 -0.020 -0.021 3,190
2. Chose 20 minutes today and 60 minutes in one week 0.555 -0.120%** -0.037 0.000 -0.015 -0.019 3,190
D. Demand for commitment
Chose commitment index 0.485 0.045 -0.005 -0.027 0.011 0.015 2,871
1. Chose 4-day threshold 0.511 0.027 -0.010 -0.021 0.017 0.017 2,881
2. Chose 5-day threshold 0.461 0.057* -0.003 -0.030 0.004 0.015 2,889

Notes: This table displays the correlations between impatience measures and baseline behavior and health. Each coefficient
represents results from a separate regression. We normalize variables such that a higher impatience measure value corresponds
to greater impatience, and a higher health or behavior measure value corresponds to healthier behavior. Panel A shows the
impatience index and its five components. Panel B shows the predicted index and its three components. Panel C shows the
Simple CTB index and its two components. The Simple CTB index is the average of preferences for option (A) in the following
two scenarios: 1. In exchange for 500 INR in 8 days, walk (A) 30 minutes today and 60 minutes in one week, or (B) 60 minutes
today and 20 minutes in one week; 2. In exchange for 500 INR in 8 days, walk (A) 20 minutes today and 60 minutes in one week,
or (B) 60 minutes today and 20 minutes in one week. Panel D shows the chose commitment index and its two components. The
chose commitment index is defined as the average of preferring the Time Bundled contract in each of the following questions:
“Which program would you prefer: The Weekly Recharge Program with a condition of 5 days, or the Basic Weekly Recharge
Program with no condition?” and “Which program would you prefer: the Program with a minimum weekly condition of 4 days,
or the Basic Weekly Program with no condition?”

Daily steps are from the phase-in period pedometer data. Daily exercise is self-reported. The health index is as in Table 4. The
vices index includes an individual’s daily cigarette, alcohol, and areca nut usage. The healthy diet index includes an individual’s
daily number of wheat, vegetable, and rice; spoonfuls of sugar; fruit, junk food, and sweets intake; and whether one avoids
unhealthy foods. Data are at the individual level and include the full sample. Significance levels: * 10%, ** 5%, *** 1%.



Appendix Table A.2: Missing Pedometer Data During the Intervention Period

Dep. variable: No Steps data Reason no steps data Reason no data from Fitbit
. . Mid-
Did not wear  No data from Lost data Immediate intervention Other
Fitbit Fitbit entire period withdrawal TVELLO reasons
withdrawal
(1) (2) (3) (4) (5) (6) (7)
Incentives -0.0140 -0.0287** 0.0155 -0.00203 0.00571 0.0166** -0.00471
[0.0174] [0.0142] [0.0124] [0.00511] [0.00731] [0.00694] [0.00594]
Monitoring mean .19 .15 .047 .0049 .0099 .012 .02
# Individuals 2,607 2,559 2,607 2,607 2,607 2,607 2,607
# Observations 218,988 205,732 218,988 218,988 218,988 218,988 218,988

Notes: Each observation is an individual x day. The sample includes Incentives and Monitoring. Missing data have two sources:
pedometer non-wearing (i.e., steps = 0) (column 2) or failure to retrieve pedometer data (column 3). Columns 2 + 3 = column
1 except column 2 conditions on there not being missing data (for consistency with our main step analyses, results are similar
without this restriction), while columns 1 and 3 do not. Columns 4-7 summarize the reasons pedometer data in column 3 were
missing. Controls are the same as in Table 2. Significance levels: * 10%, ** 5%, *** 1%.

Appendix Table A.3: Threshold Treatments Increase Cost-Effectiveness Relative to Base Case, With Similar
Increases Among Those Who Are More and Less Impatient

Sample defined by impatience indices

Full sample Below-median Above-median Below-median Above-median
(actual) (actual) (predicted) (predicted)
Treatment group (1) (2) (3) (4) (5)
Base Case 0.050 0.050 0.050 0.050 0.050
Threshold 0.056 0.056 0.057 0.057 0.056
4-Day Threshold 0.055 0.055 0.056 0.056 0.055
5-Day Threshold 0.059 0.059 0.059 0.059 0.058

Notes: The table displays the cost-effectiveness of different treatment groups (in rows) and different samples (in columns). Cost-
effectiveness equals average compliance divided by the average payment per day, in units of days complied per INR. The sample
includes Base Case and Threshold (Threshold pools 4- and 5-day Thresholds). We test for differences in cost-effectiveness using
a mathematically equivalent test for differences in the fraction of days complied on which participants earned payment, shown
in column 4 of Table 2 and Figure 2b.



Appendix Table A.4: Threshold Heterogeneity Results are Similar Among Naive Individuals

Dependent variable: Exceeded step target (x100)
(1) (2) 3) (4) ()
Impatience x Threshold 2.99 3.94 2.76 6.8 8.07*
[-2.56, 8.55]  [-7.09,14.97] [-1.31, 6.76] [-1.31, 14.88] [0.14, 16.01]
Threshold -5.29* -6.79* -3.97* -6.5%* -8.50***
[-10.89, 0.32] [-14.72,1.14] [-7.98,0.07] [-11.14,-1.37] [-14.19, -2.80]
Impatience -3.11* -6.70 -1.56 -5.15* -4.06

[-6.69, 0.47] [-14.84,1.44] [-4.51,1.52] [-11.18, 0.17] [-9.73, 1.62]

Above-median  Predicted Above-median

Impatience measure: Impatlence impatience impatience predicted Simple CTB
index . . .
index index index
Sample: Late Late Full Full Full
Base Case mean 51.7 51.7 50.6 50.6 50.6
# Individuals 496 496 977 977 977
# Observations 39,562 39,562 78,096 78,096 78,096

Notes: This table is the same as Table 3 but limited to the subsample of participants who did not demand commitment (that
is they did not prefer both the 4-day and 5-day threshold contract relative to the base case contract). Controls are the same as
in Table 2. 95% confidence intervals are shown in brackets. For columns 1, 2, and 5, confidence intervals are based on standard
errors clustered at the individual level. For columns 3 and 4, confidence intervals are constructed using bootstrap, with bootstrap
draws clustered at the individual level; see the notes to Table 3 for a detailed description of the bootstrap procedure. Data are
at the individual x day level. The sample includes Base Case and Threshold. Significance levels: * 10%, ** 5%, *** 1%.



Appendix Table A.5: Thresholds Are Similarly Cost-Effective Among Those with Higher Impatience

Dependent variable: Earned payment when exceeded target
(1) (2) (3) (4) () (6)

Impatience x Threshold -0.00625  -0.0109 0.00386 0.0115 0.0202*  -6.96e-05
[-0.02, 0.01] [-0.04,0.02] [-0.01, 0.01] [-0.01, 0.03] [-0.00, 0.04] [-0.02, 0.02]

Threshold 201145 -0.109%*  -0.115%%  -0.119%**  -0.127"*  -0.115"*
[-0.13, -0.10] [-0.13,-0.09] [-0.13, -0.10] [-0.13, -0.10] [-0.14, -0.11] [-0.13, -0.10]
Impatience 0.00208  0.00544  -0.000834  -0.00275  -0.00233  0.00483*

[-0.00, 0.01] [-0.00,0.01] [-0.00, 0.00] [-0.01, 0.00] [-0.01, 0.00] [-0.00, 0.01]

Above- . Above-
. . Predicted .
. Impatience median . . median Chose .
Impatience measure: . . . impatience . . Simple CTB
index impatience . predicted commitment

. index .

index index
Sample: Late Late Full Full Full Full
Base Case mean 1 1 1 1 1 1
# Individuals 1,007 1,007 1,846 1,846 1,681 1,844
# Observations 42,830 42,830 79,248 79,248 71,525 79,150

Notes: This table shows heterogeneity in the impact of Threshold on the fraction of days on which participants received payment,
conditional on meeting the step target, by different measures of impatience. A higher level of this outcome indicates lower cost-
effectiveness among treatment groups that received the same payment per day (all groups except Small Payment). The impatience
measure changes across columns. Controls are the same as in Table 2. 95% confidence intervals are shown in brackets. For
columns 1-2 and 5-6, confidence intervals are based on standard errors clustered at the individual level. For columns 3 and
4, confidence intervals are constructed using bootstrap, with bootstrap draws clustered at the individual level; see the notes to
Table 3 for a detailed description of the bootstrap procedure. Data are at the individual x day level. The sample includes Base
Case and Threshold. Significance levels: * 10%, ** 5%, *** 1%.

Appendix Table A.6: The Effects of Incentives Persist After the Intervention Ends

Post-intervention

Dependent variable:  Exceeded step target Daily steps Daily steps (if > 0)
(1) (2) (3)
Incentives 0.071*** 537.2** 648.3***
[0.01] [220.90] [195.82]
No incentives mean 0.156 4,674 6,773
# Individuals 1,122 1,122 1,122
# Observations 91,756 91,756 62,858

Note: This table shows the average treatment effect of Incentives relative to Control and Monitoring (pooled) during the “post-
intervention period” (i.e., the 12 weeks after the intervention ended). Each observation is a person-day. Columns 1 and 2 include
all days, and column 3 only includes days where the participant wore the pedometer (i.e., had step count > 0). Controls are the
same as in Table 2. The number of individuals differs from the total number recruited for the post-intervention period because
roughly 11% of participants withdrew immediately. The likelihood of immediate withdrawal is not significantly different between

the incentive and comparison groups. Standard errors, in brackets, are clustered at the individual level. Significance levels: *
10%, ** 5%, *** 1%.



B Theoretical Predictions Appendix

We begin by presenting the formal model setup and assumptions in Section B.1. In Sec-
tions B.2 and B.3, we describe behavior under time-separable linear contracts and time-bundled
contracts, respectively. Sections B.4 and B.5 present the formal mathematical results (labeled
propositions) underlying our two key testable predictions regarding behavior in time-bundled rel-
ative to linear contracts. Section B.6 briefly analyzes the effects of payment frequency. Finally,
Section B.7 considers the implications of adding a discounted health benefit to the model.

B.1 Full Model SetUp

Each day, an individual chooses whether to complete a binary action. Define w; as an indicator
for whether the individual complies (i.e., completes the action) on day t.

Incentive Contract Structure and Compliance We consider a principal who designs con-
tracts to incentivize individuals for compliance over a sequence of T' days. We call this sequence
of days the payment period and index its days t =1,...,T.

Let m; be the payment made by the principal to the individual on day t. Within each payment
period, payments are delivered on day 7" only and depend on the individual’s compliance decisions
from day 1 through 7' of the payment period.

Define compliance, the expected fraction of days on which the individual complies, as C' =
%E[Z; wy] and the expected per-day payment as P = 1E[my]. Define cost-effectiveness as
compliance divided by expected per-day payment, C/P.

The Principal’s Objective: Effectiveness We assume that the principal aims to maximize
effectiveness, defined as the expected per-day benefit to the principal from compliance less the
expected payment to agents. Maximizing effectiveness is analogous to the standard contract
theory approach of maximizing output net of wage payments.?® For the definition to be operable,
we need to take a stand on the expected benefit function. We assume the expected benefit is linear
in compliance, equal to AC' for some A\ > 0. This simplifying assumption is reasonable in our
empirical setting since the estimated marginal health benefit of days of exercise is approximately
linear (Warburton et al., 2006; Banach et al., 2023). With linear benefits, effectiveness becomes
AC — P.

We want to compare the effectiveness of different contracts even when we do not know A.
Rewriting effectiveness as C' </\ — ﬁ) shows that (assuming effectiveness is positive) one con-
tract is more effective than another if it has strictly larger compliance and weakly larger cost-
effectiveness, or weakly larger compliance and strictly larger cost-effectiveness.

Agent Utility Agent utility depends on the payments they receive from the principal and the
cost of the effort of complying (if they comply), as captured by the following reduced-form utility

Z dDm, — (5(t)wtet] , (8)
t=0

function:
U=E

46This objective is often used in practice. For example, health policymakers and insurance companies often
want to maximize the total health benefits of a program relative to its costs.



where e, is the effort cost of complying on day ¢, §®) is the discount factor over effort ¢ days
in the future, and d® is the discount factor over payments received ¢ days in the future (for
notational simplicity, we denote 6) as § and dV) as d). Both ¢® < 1 and d® < 1, with
60 = d® = 1. Neither 6® nor d*) are necessarily exponential functions of ¢; we assume only
that they are weakly decreasing in t. We assume utility is linear in payments, which is likely a
good approximation in our setting, as payments are small relative to overall consumption.
Importantly, this reduced-form utility function differentiates the discount factor over pay-
ments, d®), from the discount factor over effort, 6. The specification is consistent with a
standard model of utility with a single structural discount factor over consumption and effort
(e.g., Augenblick et al., 2015). In that case, §®) is the structural discount factor, while d(*)
depends on the availability of borrowing and savings. For example, in perfect credit markets,

individuals should discount future payments at the interest rate r, and so d® = (ﬁ)t

Time-Inconsistency and Sophistication Individuals will have time-inconsistent preferences
either if 6® or d® are non-exponential functions of ¢, or if d¥) # §®). Among time-inconsistent
agents, we follow O’Donoghue and Rabin (1999a) in distinguishing sophisticates, who are aware
of their discount factors (over both effort and money), from naifs, who “believe [their] future
selves’ preferences will be identical to [their|] current self’s.” Thus, letting w;; be the agent’s
prediction on day j about her compliance on day ¢ > j, sophisticates accurately predict how
their future selves will behave (w; ; = w;), while naifs may not.*”

Effort Costs Let e; be identically (but not necessarily independently) distributed across days,
with the marginal distribution of e; given by continuous cumulative distribution function (CDF)
F(-). Individuals know the joint distribution of effort costs in advance but do not observe the
realization of e; until day t. e; can be negative, as agents may comply without payment.

Agent Problem Given the notation and assumptions above, we can express the agent’s prob-
lem as follows. On day t, the agent chooses compliance, w;, to maximize expected discounted
payments net of effort costs:

T
d(T_t)mT — Z 5(j_t)wj’tej
Jj=t+1

max E
’th{O,l}

617"76t7w1a'-7wt] — W€y, (9)

where the expectation over future discounted payment and future discounted effort depends on
the history of effort costs (ei,..,e;) and compliance decisions (wy, .., w;) through time ¢, and
where w;; represents the agent’s prediction on day ¢ about her compliance on day j.

Denoting E [d(T*t)mT - Z]T:Hl 5(j*t)wj,tej‘ €1, .0y €, W1, .., wt} as Vi(w;), the agent will thus
choose to set w; =1 (i.e., comply on day t) if the following holds:

Vi(0) < Vi(1) — e (10)

That is, on day t, the agent complies if the continuation value of complying net of the effort cost

4TWith domain-specific discounting, naivete can stem from misunderstanding how the future self will either (a)
value current effort relative to money, or (b) discount effort or money further in the future.



is greater than the continuation value of not complying.

B.2 Time-Separable Linear Contracts (the Base Case)
We now solve for compliance and effectiveness under the base case contract. The contract is
linear, paying m per day of compliance:

T
m]%ase Case _ mzwt- (11>
t=1
Agents comply on day t if the discounted payment outweighs the effort cost:
e < dTPm. (12)

Expected payment per period P is then mC'. As a result, effectiveness is (A — m)C. Cost-
effectiveness, C'/ P, is simply % for any linear contract with positive compliance.

Observation 1. In a time-separable contract, holding all else constant, neither compliance,
cost-effectiveness, nor effectiveness depend on §(*) 48

B.3 Time-Bundled Contracts

Time-bundled contracts contain at least one period in which the payment for future compli-
ance is increasing in current compliance. We focus on a threshold time-bundled contract, where
there is a minimum threshold level of compliance K.%° In a threshold contract, if the participant
complies on fewer than K days in the payment period, no incentive is received. If they comply
on at least K days, payment is a linear function of the number of days of compliance, with a
rate of m’ per day. Total payment in the threshold contract is thus:

T . T
y Dhreshold __ {m/ Zt:l wy if (thl wy > K)
T —

(13)
0 otherwise.

In the following two subsections, we theoretically examine the effect, relative to the Base
Case, of adding a threshold while maintaining the same payment period length. Our results
rest on the fact that, unlike in the Base Case, compliance, cost-effectiveness, and effectiveness in
threshold contracts depends critically upon the discount factor over effort.

B.4 Thresholds versus Linear: Comparative Statics in the Effort Discount Rate

In this section, we present a series of propositions that provide the theoretical underpinning for
Prediction 1 from Section 2.3. The prediction is that the lower is §*), the higher are compliance
and effectiveness in a threshold relative to time-separable contract. We have already seen that
in time-separable contracts, compliance and effectiveness are flat in 6¢) (Observation 1). The
propositions demonstrate that in contrast, both compliance and effectiveness in time-bundled
threshold contracts tend to decrease in 6.

Specifically, Proposition 1 examines threshold contracts with K = T (i.e., where one must
comply on all days to receive payment). It shows that, for all T, regardless of the effort cost
distribution, compliance is weakly decreasing in 6®).

*8In linear contracts, compliance is 5IE {Zthl wt} =1 23:1 F(d"=m), which is not directly related to §(*).

0ur predictions hold for other types of time-bundled contracts in many circumstances.
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To gain tractability to examine threshold effectiveness and threshold contracts with K < T,
we then make assumptions about the effort cost distribution. Proposition 2 examines effective-
ness when K =T = 2 and shows that, under relatively general conditions, effectiveness in the
threshold contract is weakly decreasing in §. Proposition 3 shows that, if costs are perfectly posi-
tively correlated over time, both compliance and effectiveness under the threshold are decreasing
in 6® for any K < T and any 7. Finally, Proposition 4 examines a simplified model where costs
are binary and known from day 1, K = 2 and T' = 3. We show that compliance and effectiveness
are higher when §® is lower.

The propositions together suggest that Prediction 1 holds in many empirically-relevant con-
ditions, including when either (a) K is high relative to T',Y or (b) costs are positively correlated
across periods. Both (a) and (b) hold in our empirical setting: our experiment uses relatively
high levels of K relative to T', and costs are positively correlated across days.

Proposition 1 (7' = K, Threshold Compliance and Impatience Over Effort). Let T' > 1. Fiz
all parameters other than §®. Take any threshold contract with threshold level K = T; denote

the threshold payment M. Compliance in the threshold contract is weakly decreasing in 8% for
allt <T —1.

Proof. We provide the proof here for T' = 2. The proof for T" > 2 is in Appendix H.1.

Recall that the condition for complying on day 1 is to comply if e; < Vi(1) — V1(0) (equation
(10)). Let wy; be the agent’s prediction on day j about her compliance on day t > j. With the
threshold contract, we have that:

‘/1(1) — ‘/1(0) =K [(dM — 562)’LU271|61,UJ1 = 1] —E [—(56210271|€1,w1 = 0] (14)

We examine this expression separately for sophisticates and naifs.
For sophisticates, who accurately predict their own future behavior, wy[“*=! = 1{e; < M}
and wy 1|7 = 1{e; < 0}. Thus:

Vi(l) — ‘/1(0) =E [(dM — 562)w271|€1,’w1 == 1] —E [—562w271|61,w1 - 0]
=E[(dM — deg)1{es < M} + dexl{es < 0}|eq] (15)

We show that this is weakly decreasing in § by showing that the argument (dM — deg)1{ey <
M} + deal{ey < 0} is weakly decreasing in ¢ for all values of es. There are two cases:
1. ey > 0: In this case, (dM —deq)1{es < M}+desl{es < 0} = (dM —dez)1{es < M}, which
is weakly decreasing in 9.
2. e9 < 0: In this case, (dM — des)1{es < M} + desl{es < 0} = (dM — dea) + dey = dM,
which is invariant to d.

Since equation (15) is weakly decreasing in d, day 1 compliance is decreasing in §. The same
is true for day 2 compliance, since wy = 1 if both w; = 1 and e; < M (or if e5 < 0), and

50T hresholds where K /T is very low may not always be better for impatient naifs than patient people because
they include more days where current and future effort are substitutes, which can cause naifs to procrastinate.
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wy is weakly decreasing in 0. Thus, compliance in the threshold contract is decreasing in ¢§ for
sophisticates.

We now turn to naifs. For naifs, who think their day 2 selves will share their day 1 preferences,
wo 1 |“*=t = 1{dey < dM} and wq;1|“*=% = 1{dey < 0}. Thus:

Vi(l) — ‘/1(0) =K [(dM — (562)w271|€1,w1 = 1] —E [—66210271’61,11)1 = O]
=E [(dM — 562)]]_{562 < dM} + (562]]_{(562 < O}|61]
= E [max{dM — dey, 0} + deal{es < 0}|eq] (16)

Again, we show that this is decreasing in § by showing that the argument, max{dM — dey, 0} +
dex1{ey < 0}, is weakly decreasing in ¢ for all values of e;. There are two cases:

1. eo > 0: In this case, max{dM — Jey,0} + des1{es < 0} = max{dM — deq,0}, which is
weakly decreasing in 0.

2. e3 < 0: In this case, for u = —ey > 0, we have max{dM — dey,0} + dexl{es < 0} =
max{dM + ou,0} — du = (dM + du) — du = dM which is invariant to 9.

Since equation (16) is weakly decreasing in §, day 1 compliance (and hence day 2 and total
compliance) are also decreasing in ¢ for naifs. O

We now examine effectiveness when T" = K. We examine the case where T" = 2 and, to
gain tractability, make a reasonable assumption on the cost function, assuming that es is weakly
increasing in ey, in a first order stochastic dominance sense.’! This assumption flexibly accom-
modates the range from IID to perfect positive correlation, just ruling out negative correlation.
Under this assumption, we show that effectiveness is weakly decreasing in ¢ as long as there is
not “too much” inframarginal behavior. When there is too much inframarginal behavior, not
only will the effectiveness prediction not hold but incentives cease to be a cost-effective approach.

Proposition 2 (7' = 2, K = 2, Threshold Effectiveness and Impatience Over Effort). Let T = 2.
Let ey be weakly increasing in ey, in a first order stochastic dominance sense. Fix all parameters
other than 8. Take any threshold contract with threshold level K = 2; denote the threshold
payment M. As long as there is not “too much” inframarginal behavior,’? the effectiveness of the
threshold contract is weakly decreasing in 6.

Proof. We first show that, if costs are positive, cost-effectiveness in the threshold is not increasing
in 0. Because Proposition 1 showed that compliance is decreasing in ¢, this establishes that
effectiveness is decreasing in 6 when costs are positive. We then show sufficient conditions for
threshold effectiveness to decrease in 9 when costs can be negative.

L F,, e, () is weakly decreasing in e; for all z, with F,, ., () the conditional CDF of e, given e;.

52See equation (20) for the exact condition. The intuition for why high levels of inframarginal behavior (com-
bined with low ﬁ) can flip the effectiveness prediction is as follows. If there is inframarginal behavior, then the
principal effectively gets “free” compliance if people comply on day 2 only and not day 1. As we will show, lower
0 increases compliance by making people more likely to comply on day 1. The benefit is extra compliance and
the cost is extra payment. The cost will be particularly large if there is a lot of inframarginal behavior on day
2, because now the principal has to pay out for all of the day 2’s on which day 1 compliance was induced, which
the principal used to get for free.
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To simplify notation, let e* be the agent’s cutoff value for complying in period 1, such that
agents comply in period 1 if e; < e*. From equations (15) and (16), we know that the value of
e* will depend on the agent’s sophistication and, importantly, decrease in §.

With our new notation, we can write the compliance decisions as:

w, = ]1{61 < 6*}
Wy = wlﬂ{eg < M} + (]_ — U}l):ﬂ_{eg < O}
= wl]l{O < e < M} + ]].{62 < O}

A Special Case: Positive Costs We first examine the restricted case where e; > 0 and
es > 0 and show that, in that case, C'/ P is not increasing in 0. In that case, wy = wyw,. Therefore

we have:
1 E[w1 + U)Q] 1 E[w1 + wlwg] 1 E[U}l] 1 E[wl]
P = N By ~ M By M (E[wm] + 1) = (]E[wl]lE[w2|w1 -t 1>
1 1
“r (Bt "

Consider the first term, B . To show this is not increasing in §, we show that E[ws|w; =

1
1] = E[1{ey < M}|w; = 1] i;UQ\lvugalgly increasing in §. Call this expression pj. If costs were 11D,
then p5 = F(M), which is independent of 6. To see that pj is also weakly increasing in § under
our more general assumption that ey is weakly increasing in ey, note that higher § means that
wy = 1 will be associated with lower values of e; (since e* is decreasing in ¢). This implies lower
values of ey conditional on w; = 1, since we assume that ey is weakly increasing in e;. Lower
values of ey then mean that p5 = Elws|w; = 1] will be weakly higher. Hence, p} is weakly
increasing in § and the first term is weakly decreasing in 6. Thus, we have shown that, with
positive costs, C'/ P is weakly decreasing in 0.

General Case Instead of using cost-effectiveness as a means to prove the result for effec-
tiveness, we turn to the expression for effectiveness directly: A\C' — P. We show the conditions
under which it is weakly increasing in e*, and hence weakly decreasing in 9.

First, we rewrite the expression for effectiveness under the threshold given what we know
about C' and P. (For notational simplicity, we examine 2(AC' — P) instead of \C' — P.)

2(AC — P) = AE[w; + we] — ME[wyw,]
=A(F(e) + Eu 1{0 < ea < M} + 1{es < 0}]) = ME[w;1{ey < M}]
=A(F(e") +E[l{e; < e }1{0 < ey < M} + 1{ex < 0}]) — ME[1L{e; < e"}1{es < M }]
= A (F(e") + Prob(e; <e*,0 < ey < M)+ Prob(es < 0)) — MProb(e; < e*,ea < M).
(18)

We now take a derivative with respect to e*. Let g(e*) = Prob(e; < e*,e5 € S), where S is
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some set. It is straightforward to show that ¢’(e*) = f(e*) Prob(ey € S|e; = €*).5 Thus, we have

d
de*

Hence, a sufficient condition for effectiveness to increase in e* (and decrease in 9) is:

[2(AC = P)] = A[f(e") + f(e")Prob(0 < es < Mley = €e*)] — M f(e*)Prob(ey < M|e; =€)

A1+ Prob(0 < eg < Mle; =e*)) > MProb(e; < Mle; =€) (19)

or
A
M(l + Prob(0 < ea < Mle; = €*)) > Prob(ex < 0le; = €*) + Prob(0 < ey < M|e; =€)
or

Prob(ey < 0le; =€) < A + <i — 1> Prob(0 < eg < M|ey = e")). (20)
M M

If A > M, condition (20) will always hold. More broadly, the condition will be more likely to

hold the greater A relative to M. The condition essentially guarantees that there not be “too

much” inframarginal behavior, which generally decreases the efficacy of incentives. For example,

when A\ > M /2, which is a reasonable condition as it guarantees that the payment to the agent

for two days of compliance is less than the benefits to the principal, a sufficient condition is

Prob(ey < 0ley = e*) < Prob(ey > Mle; = €7).

We have thus showed that, as long as there is not “too much” inframarginal behavior (i.e, as
long as equation (20) holds), the effectiveness of a threshold contract is decreasing in d. ]

We now turn to examine threshold contracts with K < T". To gain tractability, we begin with
the case where costs are perfectly correlated across periods, showing that both compliance and
effectiveness under the threshold are increasing in impatience for any threshold level K < T

Proposition 3 (Perfect Correlation, Threshold Effectiveness and Impatience over Effort). Let
there be perfect correlation in costs across periods (e; = ey = e for all t,t'). For simplicity, if
§® < 1 for any t, let S < 1 for allt > 0. Fix all parameters other than 6® for somet < T —1.
Take any threshold contract with threshold level K < T. Compliance and effectiveness in the

threshold contract will be weakly decreasing in 5®).
Proof. See Appendix H.1. m

To make the problem more tractable when costs are not perfectly correlated, we now consider
a simplified model where T' = 3, K = 2, costs take on only two values (high or low), discount
factors are exponential, and agents observe all future cost realizations on day 1. Again, threshold
compliance and effectiveness are higher among those who are more impatient over effort.

53To show this, note that
gle* +¢e)—g(e*) = Proble* <ep <e*+e€ep€8)=Prob(e’ <e; <e*+e)Probles € Sle* <e; <e*+e¢)
= (F(e"+¢€)— F(e)) Prob(ez € Sle* <e1 <e* +¢).

Dividing by € gives us: g(e*“i_g(e*) = (F(E*JFEZ_F(G*))Prob(eg € Sle* < ey <e* +e¢€). Letting € go to 0 and using
the definition of the derivative gives that g’(e*) = f(e*) Prob(ez € S|e; = €*).
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Proposition 4. Let T' = 3. Let the cost of effort on each day be binary, taking on either a
“high value” (eg) or a “low value” (er), with ey > er. Let agents observe the full sequence of
costs e1,ez,e3 on day 1. Let ) = &' (i.e., let the discount factor over effort be exponential)
and let d®) = 1. Fiz all parameters other than 6. Consider a threshold contract with K = 2,
where the agent must thus comply on at least 2 days in order to receive payment. Compliance
and effectiveness in the threshold contract are weakly higher for someone with a discount factor
0 < 1 than for someone with discount factor 6 = 1.

Proof. See Appendix H.1. n

For sophisticates, we can also show a stronger result. In simulations with most realistic cost
distributions, this stronger result goes through for naifs as well.

Proposition 5. Let T = 3. Let costs be weakly positive and let agents observe the full sequence
of costs e1, eq,e3 on day 1. Let ) = 6 (i.e., let the discount factor over effort be exponential)
and let dY = 1. Fiz all parameters other than 8. Consider a threshold contract with K = 2, where
the agent must thus comply on at least 2 days in order to receive payment. For sophisticates,
compliance and effectiveness in the threshold contract are weakly decreasing in the discount factor

J.
Proof. See Appendix H.1. O

B.5 Overall Effectiveness of Thresholds versus the Base Case

While Prediction 1 speaks to the heterogeneity in the performance of threshold relative to
separable contracts by 6, it is also important from a policy perspective to understand which
type of contract performs better for any given level of §). The propositions in this section
provide the theoretical underpinning for Prediction 2, which, while less general than Prediction
1, addresses this question. Specifically, Prediction 2 says that, under certain conditions, the most
effective time-bundled threshold contract is more effective than the most effective linear contract
if the discount factor over effort is sufficiently low, and less effective if the discount factor over
effort is high.

Making some additional assumptions for tractability, we compare both optimized threshold
and separable linear contracts, and threshold and linear contracts offering the same payment
per day (as in our experiment),’ paying particular attention to how the relative effectiveness of
thresholds depends on ¢§. For simplicity, we assume that 7" = 2 and that K = 2 and denote the
threshold payment as M (i.e., M = 2m/) throughout the section.

Our first proposition (Proposition 6) examines the relative performance of the contracts in
the limit as ¢ goes to 0 under very general assumptions. It shows that, for sufficiently low ¢,
for any linear contract, there exists a threshold contract that achieves substantially higher cost-
effectiveness with relatively little—and potentially even no—loss in compliance. In contrast,
for any linear contract, one can always construct another linear contract with substantially

54In many empirical applications, constructing the optimal contract is not feasible as it requires knowledge of
both the discount rate and the distribution of costs.
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higher cost-effectiveness by decreasing the payment amount, but the loss in compliance may be
arbitrarily large.

The next four propositions (Propositions 7a-8b) examine the full range of §, not just the case
where ¢ is sufficiently low. While we make additional assumptions on the effort cost distributions
for tractability, the propositions demonstrate that thresholds can be effective for those who are
impatient over effort in the two limiting cases of perfectly correlated and IID effort costs. 11D
effort costs is a common assumption in the literature (e.g., Garon et al., 2015). In each case,
we begin with a testable comparison between threshold and linear contracts that offer the same
payment per day before moving to more abstract comparisons that teach us about whether
the optimal threshold contract or the optimal linear contract is more effective (and how that
relationship depends on §).5°
Proposition 6. Let d =1 and T = 2. Fix all parameters other than 0, and take a linear contract
that induces compliance C' > 0.

(a) If agents are naive and ey is weakly increasing in ey, in a first order stochastic dominance
sense,then for sufficiently small §, there exists a threshold contract with K = 2 that has at least
two times higher cost-effectiveness (and 1 + % times higher cost-effectiveness if costs are 1ID)
and that generates compliance % of the linear contract.

(b) If agents are sophisticated and costs are IID, then for sufficiently small §, there exists a
threshold contract with K = 2 that has at least 1 + C' times higher cost-effectiveness and that

generates compliance at least % of the linear contract.

Proof. See Appendix H.2. O

The potential improvements from threshold contracts demonstrated by Proposition 6 are
quantitatively large. For example, when costs are IID and agents are naive with sufficiently low
0, for a linear contract that generates C' = .9, there exists a threshold contract that generates
95% as much compliance but for less than half the cost.

Proposition 7a (Perfect Correlation, M = 2m). Let T = 2. Fiz all parameters other than §.
Consider a linear contract with payment m and a threshold contract with payment 2m. Then,
regardless of agent type, the threshold contract is more effective than the linear contract if 6 <
2d — 1. If 6 > 2d — 1, then the linear contract may be more effective.

Proof. See Appendix H.2. m

Proposition 7b (Perfect Correlation, Optimal Contracts). Let T = 2. Fiz all parameters
other than o, and take any linear contract that induces compliance C > 0. Let there be perfect

correlation in costs across days (e; = ez ). Then, regardless of agent type, there exists a threshold
d

+6

cost-effectiveness than the linear contract. Hence, if § < 2d — 1, the most effective contract will

always be a threshold contract.

contract that induces compliance of at least C' and that has approximately 2 times greater

55Predictions about optimal contracts are hard to test since most policymakers do not have sufficient information
about the cost function and § to solve for the optimal contracts.
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Proof. See Appendix H.2. m

Proposition 8a (IID Uniform, M = 2m). Let d = 1. Fix all parameters other than ¢. Let costs
be independently drawn each day from a uniform[0,1] distribution. Take any threshold contract
M

paying M < 2 and compare it with the linear contract paying m = =

(a) If M < 1, the threshold contract is always more cost-effective, but whether it has higher
compliance (and hence whether it is more effective) depends on §. Define % as the cutoft value
for naifs and 2 — W as the cutoff value for sophisticates. If § is less than the cutoff value for
a given type, then the threshold contract is more effective, as it generates greater compliance.

(b) If 1 < M < 2,5¢ then the threshold contract is more effective.
Proof. See Appendix H.2. n

Proposition 8b (IID Uniform, Optimal Contracts). Let d = 1. Fiz all parameters other than §.
Let costs be independently drawn each day from a uniform/[0,1] distribution. Whether the most
effective threshold contract is more effective than the most effective linear contract depends on &
as well as A\, the principal’s marginal return to compliance. For a wide and plausible range of
values of \,57 there exists a cutoff value of & such that the threshold contract is more effective
when § is below the cutoff, and the linear contract is more effective when § is above the cutoff.
For the remaining values of A, either the threshold contract is always more effective, or the linear
contract is always more effective, but in either case the effectiveness of the threshold relative to
linear is decreasing in 9.

Proof. See Appendix H.2. O

B.6 Payment Frequency

In this subsection, we first prove Prediction 3 from Section 2.4. Next, we present and prove
a related prediction (Prediction 4) that follows Kaur et al. (2015) in showing an additional way
to use empirical data to make inferences about the discount factor over payments, which we use
in Section 5.4.

Before showing its proof, recall that Prediction 3 is the following: If agents are impatient
over financial payments (d®) < 1), then the compliance and effectiveness of the base case linear
contract are weakly increasing in the payment frequency. If agents are patient over financial
payments (d®) = 1), then payment frequency does not affect compliance or effectiveness.

Proof. Equation (12) implies that, in a linear contract, C' = %Zthl F(d™Ym). Compliance is
thus increasing in the discount factor over payment d7—9. If agents are “impatient,” then d(*—%
is weakly decreasing in the delay to payment T'—t¢. Increasing payment frequency then decreases
the average delay to payment, which weakly increases compliance. If agents are patient, then the
discount factor is 1 irrespective of the delay to payment and increasing payment frequency has no
effect on compliance. Effectiveness follows the same pattern as compliance since cost-effectiveness
is invariant to payment frequency (it is always %) O]

56Note that the principal would never pay M > 2 since M = 2 achieves 100% compliance regardless of .
57See proof in Appendix H.2 for specific ranges for both naifs and sophisticates.

17



Prediction 4 (Payday Effects). If the discount factor over payments d®) is decreasing in t, then
the probability of complying in the base case linear contract increases as the payday approaches.
If the discount factor over payments d® is constant in t, then the probability of complying is
constant as the payday approaches.

Proof. Recall that, on day ¢, agents comply if e, < dT~9m. As the payment date approaches, the
time to payment T — ¢ decreases. If d(7~" is decreasing, this increases d7~* and hence increases
the likelihood that e; < d79m. If dT—Y is flat, then the likelihood that e; < dT~“m remains

constant. O

B.7 Modeling a Health Benefit to Compliance

Our model excludes a long-term health benefit of walking. In this section, we show that our
theoretical predictions are robust to this change under a range of reasonable conditions: (1) with
domain-specific discount factors over health and effort, or—even with a single discount factor for
health and effort—(2) a small discounted health benefit relative to the discounted daily incentive
payment, or (3) more periods of effort required to meet the threshold under the contract.

These conditions appear reasonable in our setting. (1) Empirical work suggests that domain
specific discount factors for health and effort are likely. People tend to discount health more than
money (Chapman and Elstein, 1995; Chapman, 1996; Hardisty and Weber, 2009), and people
discount health gains more sharply than both losses in the health domain and gains in other
domains (Hardisty and Weber, 2009; Chapman, 1996). (2) Even if people do discount health and
effort with the same discount factor, the health benefit is much further in the future than the
effort and payment we model, and so its discounted value is likely small. (3) The 4-day and 5-day
thresholds used in our contracts are much higher than the 2-day thresholds that we examine in
depth theoretically.

We first show how adding a future health benefit of compliance, b, impacts our predictions
about behavior in linear vs. threshold contracts in a simple case where people discount health
and effort with a single constant discount factor. We then briefly discuss how alternative, and
arguably more realistic, specifications of the discount factor over health will dampen (or even
eliminate) the impact of the health benefit to compliance on our predictions.

B.7.1 Predictions with One Discount Factor for Health and Effort

For simplicity, we restrict attention to the case where b is discounted with a simple quasi-
hyperbolic discount factor that is identical to the discount factor over effort, 6¢) = § if t > 0.
We further restrict the discount factor over money, d®, to be 1.

Compliance in Linear Contract Participants now comply on day j if the discounted pay-
ment and discounted benefit outweigh the effort cost:

Compliance is F/(m + 6b), with F'(-) the effort cost CDF. Compliance in the linear contract,
and compliance without a contract, are thus no longer independent of §: they increase in 6.
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Relative Compliance in Threshold Contract The relationship between ) and behavior
under threshold contracts is now more complex. We discuss the implications of adding b for
Prediction 1 and then Prediction 2 in turn. Specifically, Prediction 1-—that compliance and
effectiveness in threshold relative to linear contracts are decreasing in the discount factor over
effort—should still hold provided that: (a) the threshold payment m’ is large relative to the
future benefit of compliance b, or (b) a large number of periods of effort are required to meet
the threshold (i.e., large K, which requires large T'). Similarly, Prediction 2 can still hold: the
discount factor over effort can still be pivotal to the relative effectiveness of threshold relative to
linear contracts. Appendix H.3 presents the formal mathematical propositions underlying this
discussion.

Prediction 1 with Discounted Benefit Prediction 1 is that compliance and effective-
ness in threshold relative to linear contracts tend to decrease in §(t). Adding b complicates
this prediction and its underlying propositions (for simplicity, we focus here on the compliance
implications). For example, without b, compliance in a threshold contract with K = 7' is weakly
decreasing in 6*) regardless of the cost distribution or other parameters (Proposition 1). With
b, whether threshold compliance is weakly decreasing in §) now depends on parameters such as
the cost distribution, the threshold payment m’, and the threshold level K.

Simulation results show that two factors increase the likelihood that Prediction 1 holds: (a) a
high threshold payment m’ relative to the benefit b, and (b) a large number of periods until the
threshold is reached K. We demonstrate these ideas more rigorously in the propositions presented
in Appendix H.3, which for tractability assume perfect correlation in costs across periods.

First, Proposition 9 shows that, for a threshold contract with threshold level T'= K, the sign
of the derivative of compliance with respect to § depends on the value of the daily threshold
payment m’ relative to % When m' > %, compliance in the threshold contract decreases in
0, as it does in the model without b. This implies that compliance in the threshold relative to
linear contract also decreases in § (i.e., that Prediction 1 holds) since compliance in the linear
2= is more likely to hold (a) the larger is m/
relative to b, and (b) the larger is K, demonstrating the importance of these two factors.

_b
K—1°

positive—making the derivative of relative compliance (compliance in the threshold relative to

contract is increasing in §. The expression m’ >

In contrast, when m' < the derivative of threshold compliance with respect to ¢ is
linear contract) ambiguous, as the derivative of linear compliance is also positive. Which deriva-
tive is more positive will depend on parameter values. To provide some results in this case,
Proposition 10 makes further assumptions about the cost distribution (e.g., uniform costs across
people), and shows that for high enough §, relative compliance again tends to decrease in 4.%®
Simulation results support the findings from this simplified model.

Prediction 2 with Discounted Benefit Prediction 2 concerns the level of threshold rel-
ative to linear compliance, not just their comparative static in . Namely it states that 6 can be
pivotal to the relative effectiveness of threshold and linear contracts: when ¢ is sufficiently low,

8Relative compliance also tends to decrease in & for a wider range of § among naifs than sophisticates—a
finding backed up by simulation results as well.
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threshold contracts can be more effective than linear, whereas when 9§ is sufficiently high, linear
can be more effective. Simulation results suggest that, even after adding a b term, under param-
eter assumptions that support Prediction 1, d can also be pivotal to the relative effectiveness of
threshold and linear contracts in models. To demonstrate this idea more rigorously, Proposition
11 shows that, in a simplified model with perfect correlation in costs and T = 2, a threshold
contract offering the same per-day payment as a linear has the same compliance and effectiveness
as the linear when ¢ = 1, but weakly higher compliance and effectiveness when § < 1.

B.7.2 Alternative Health Discounting Models

While we cannot speak to all potential models, several other reasonable models for discounted
benefits reduce the impact of b on our predictions. In particular, the assumption that 6® = ¢
produces a particularly large impact for three reasons: it assumes perfect correlation between
discounting over the short- and long-run, it applies the same level of discounting in both the
short- and long-run, and it applies the same discount rate to both effort costs and health benefits.
Relaxing any of these assumptions mitigates the impact of b on our predictions.

Domain-Specific Discount Factors If discount factors are domain-specific across effort
and health, then adding b does not change the results in Section 2. Specifically, if b is discounted
by a health-specific discount factor other than 6®, the addition of b would leave our predictions
unchanged.

More Flexible Quasi-Hyperbolic Discounting In practice, while our contracts incen-
tivize effort in the near future, health benefits of compliance are realized far in the future (e.g.,
years rather than days). This is a critical distinction under a quasi-hyperbolic or “beta-delta”
discount factor, where §¢) = 8t for some 6§ < 1. These conditions mitigate the impact of b for
two reasons.

First, the magnitude of the discounted benefit of compliance will fade if it is further in the
future: §®b = B6'b approaches 0 for large enough t. As demonstrated above, the discounted
benefit has a smaller impact on our predictions if its value is smaller. Second, while discounting
over near-term effort would be primarily driven by the quasi-hyperbolic S term, discounting over
future health benefits would depend more on the exponential  term. This separation brings the
comparative statics with respect to the short-run effort discount factor (holding all else constant)
closer to the model without b.

More generally, the more people discount events far in the future (conditional on their short-
run discount rates) and/or the lower the correlation between short and long-run discount rates,
the smaller the impact of b on the comparative statics with respect to the short-run effort discount
factor (holding all else constant). At the extremes, if short and long-run discount factors are
uncorrelated or if discounted benefits of compliance approach zero, the situation resembles the
domain-specific case above, leaving our predictions unchanged.
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C Measuring the Effort and Payment Discount Factors

This section provides additional detail on measurements of impatience in our sample. We
first describe how we validate the impatience index—our primary measure of effort discounting—
using an incentivized effort task. We then present multiple estimates of the discount factors over
effort and payment from our experimental context, showing substantial discounting of effort but
not of payment. Finally, we show that there is limited correlation between the discount factors
over effort and payment.

C.1 Validating the Impatience Index

We begin by describing the incentivized effort task data used for the validation exercise, along
with other data collected. Next, we describe two effort discount rate measures obtained from
these data. Third, we use these measures to validate our impatience index.

C.1.1 Data Collection in the Validation Sample

We validate our impatience index using a separate sample of 71 people who are very similar
to our experimental sample (hereafter: the “validation sample”).”® The validation sample was
randomly selected from a later evaluation of a similar incentive program for exercise (Dizon-Ross
and Zucker, 2025) with nearly identical recruitment criteria,®® and observable characteristics are
balanced across the validation sample and experimental sample: walking levels, demographic
characteristics, BMI, etc., are statistically indistinguishable (Appendix Table F.15).

In the validation sample, we collected the same impatience index described in this study and
incentivized two tasks to measure impatience over effort and recharges, respectively.

Effort Task Respondents were incentivized to perform an effort task, which we call the “Effort
Choice by Date” task, following the methodology of Augenblick (2018) and Augenblick and Rabin
(2019), which John and Orkin (2022) previously adapted to a field setting. The task was to call
into a toll-free automated phone line, listen to a useless 30-second recording, and answer a simple
question to confirm that they listened. On the survey date (day 0), individuals chose how many
calls to complete at time ¢ for a piece rate w, where ¢ is 0 (i.e., the same day), 1, 7, or 8 days from
the time of the decision, and the piece rate is INR 10, 6, 2, or 0.°1 One choice was then randomly
selected for implementation, and respondents received both the piece rate for the implemented
choice as well as an additional 100 INR if they completed all the tasks they chose (in addition
to one “mandatory task”). We refer to the measures we construct from these data as effort
1mpatience measures.

Patterns in the data indicate that respondents understood the exercise. For example, the
average number of tasks chosen increases with the piece rate, with respondents choosing an
average of 5.6, 7.1, 7.6, and 8.0 tasks when the piece rates were 0, 2, 6, and 10 INR, respectively.
Our field team also reported limited respondent misunderstanding.

59The sample size is comparable to the number of people who completed choices in the two seminal papers
measuring impatience with effort tasks: 99 in Augenblick (2018) and 100 in Augenblick and Rabin (2019).

60Both studies targeted participants from Coimbatore, Tamil Nadu, using public screening camps as the primary
recruitment tool, and both focused on individuals aged 30-65 who were literate, comfortable using mobile phones,
capable of receiving mobile recharge payments, and had or were at high risk of lifestyle disease. However, the
later study enrolled participants with high blood pressure in addition to high blood sugar.

61'We include a 0 INR piece rate following guidance from John and Orkin (2022) that it helped their model
converge. However, our structural model does not converge with the 0 INR piece rate choice, so we exclude it
when estimating the structural parameters.
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Recharge Choices A secondary goal for the validation sample was to assess the relationship of
the impatience index with recharge impatience. To do so, we measure impatience over recharges
with a multiple price list (MPL) (Andreoni and Sprenger, 2012a; John and Orkin, 2022). Par-
ticipants made 10 choices between receiving a recharge today and a later date (either 7 and 14
days from today). For simplicity, the recharge today was always 50 INR, and the later recharges
were larger whole numbers: 60, 70, 90, 100, and 150 INR. One choice from the MPL was also
randomly selected for implementation.

The MPL choices are not ideal for estimating a structural recharge discount factor: the later
payment amounts are all meaningfully larger than the earlier payment (we cannot distinguish
between one-week discount factors in the range from % = 0.83 to 1), and, as with all MPLs,
any mistrust in receiving the payment will push participants toward earlier payment and bias
implied discount factors downwards (Halevy, 2008; Andreoni and Sprenger, 2012b). Instead, we
construct a reduced-form recharge impatience measure as the proportion of choices where the

individual chose the smaller recharge on the sooner date.

C.1.2 Structural and Reduced-Form Effort Impatience Measures

The data from the effort task are consistent with positive discounting of future effort with
some present bias. Consistent with positive discounting, the number of tasks chosen on days
with ¢t > 0 are all significantly greater than on t = 0. (Specifically, participants chose 7.4, 7.0
and 7.5 tasks on days 1, 7, and 8, respectively, and only 6.4 tasks on day 0.) Consistent with
present bias, the biggest jump in task allocations appears between “today” and “tomorrow”.

We thus parameterize a constant discount factor for all future days: §®) = §op if ¢ > 0. This
is equivalent to a § — ¢ model in which 6 = 1. We use the effort task data to construct two
measures, one structural and one reduced-form, for this parameter.

Structural Measure and Evidence Our structural estimation follows John and Orkin (2022).%2
(The estimating equation is in the notes to Table C.1.) We structurally estimate gy at the group
level. As in John and Orkin (2022), individual-level structural estimates converge for less than
half of our sample.

Column 1 of Table C.1 shows that, in the full validation sample, we estimate a dgp of 0.572,
which is significantly different from 1 and suggests a high degree of effort impatience. In column
2, we follow Augenblick and Rabin (2019) and remove “problematic” individuals with limited
effort choice variation or effort choices that are not primarily monotonic in wage offers.%® The
discount factor estimate is similar and still significantly different from 1.

Reduced-Form Measure and Evidence Our reduced-form measure is based on the excess
number of tasks chosen on future dates relative to day 0 at a given piece rate, following Augenblick
(2018) and Augenblick and Rabin (2019). Specifically, for all task allocations made on future
days (t > 0) at piece rate w, we construct a measure at the individual x choice level equal to
the tasks allocated on day ¢ minus the tasks allocated on day 0 at the same piece rate w. People
who are more impatient (lower dgp) will choose more tasks on future days than today, and thus
have higher average values of this measure.

62John and Orkin (2022) assumes quasilinear utility and a power effort cost function following Augenblick
(2018), and includes a non-monetary per-task reward s in addition to the piece rate following DellaVigna and
Pope (2018).

63We remove 28 of 71 respondents in a field setting; Augenblick and Rabin (2019) remove 28 of 100 in a
lab setting for the same reasons. Our removal rates are not significantly different for those with below- vs.
above-median impatience index.
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Appendix Table C.1: Structural Estimates of the Effort Discount Factor

Below-median Above-median
Full validation sample impatience sample impatience sample
(1) (2) (3) (4) (5) (6)
dom 0.572 0.556 0.996 0.996 0.176 0.367
[0.132] [0.153] [0.009] [0.007) [0.156] [0.208]
P-value: dgp =1 0.001 0.004 0.674 0.597 <0.001 0.002
P-value: dqm = 005" 0.001 0.004 <0.001 0.002
P-value: dgn = 58?}"’9 <0.001 0.063 <0.001 0.002
Changers + Changers + Changers +
Sample All Monotone All Monotone All Monotone
# Individuals 71 43 32 24 39 19
# Observations 852 516 384 228 468 228

Notes: This table displays structural estimates of the effort discount factor, dgm, in the validation sample,
estimated using data from the Effort Choice by Date task of Augenblick (2018) using an estimation approach
similar to John and Orkin (2022). The optimal allocation of effort is given by: e* = argmax(s + dV) - ¢ -
w)-e— 5(0(%67), where ¢ is the time of effort provision, v captures the convex cost of effort, s is a parameter

that captures the non-monetary reward for each task, w is the monetary piece rate, d('') captures the monetary
discounting of the payment in 11 days, and ¢ is a slope parameter. We parametrize 6() = don (equivalent to
a quasihyperbolic model with 6 = 1) and d) =1 and estimate s, @, 0o, and y. We present results using
the full validation sample and the subsamples with below- and above-median impatience index, with or without
inclusion restrictions from choice patterns. Columns 1, 3, and 5 have no inclusion restriction; columns 2, 4, and
6 restrict to individuals who changed their effort choice at least once and had at most 1 choice non-monotonicity
in payment levels.

Overall, participants chose to complete 13% fewer tasks in the present than the future, sug-
gesting meaningful effort discounting. The result is similar if we again remove problematic
individuals: the restricted sample allocates 15% fewer tasks in the present than the future. Our
results mimic Augenblick (2018) and Augenblick and Rabin (2019) which find that participants
choose to complete 16% and 10-12% fewer tasks in the present than the future, respectively.

C.1.3 The Impatience Index Correlates with Effort Impatience Measures

In this section, we show that our impatience index correlates with the incentivized effort
impatience measures in the validation sample. In contrast, it does not correlate with recharge
impatience. Overall, this provides evidence that the impatience index proxies for impatience in
the effort, but not payment, domain.

Correlation with Effort Impatience Measures Columns 3-6 of Table C.1 show that struc-
tural estimates of dgy are substantially higher among those with lower impatience index. Specif-
ically, among individuals with below-median impatience index, our estimate of dgp is 0.996 and
statistically indistinguishable from 1 (column 3). In contrast, we estimate that dgp is 0.176 for
those with above-median impatience (column 5). We can reject equality of this estimate with 1
and with the corresponding estimate of dgp for those with below-median impatience. Columns
2, 4, and 6 show similar results after removing problematic respondents: our estimates of dgn
are again significantly different for those with above- and below-median impatience index.
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We summarize the reduced-form effort impatience measure separately for those with above-
and below-median impatience index in Figure C.1(a). The above-median impatience sample has
substantially higher average values of the reduced-form effort impatience measure: they allocate
an average of 1.3 more tasks to future dates than today across piece rates, while those with
below-median impatience index allocate only 0.4 more tasks to future days.

Appendix Figure C.1: Higher Impatience Index Predicts Higher Effort Impatience but Not Higher
Recharge Impatience
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Notes: Data come from the validation sample and are at the individual level. Panel (a) displays the average
difference between the number of tasks chosen on all future dates minus the number of tasks chosen on the survey
day (for the same payment amount) separately for the below- and above-median impatience index samples. In
Panel (b), we display the average proportion of recharge MPL choices where the individual chose to get a smaller
recharge today rather than a larger recharge in the future separately for the below- and above-median impatience
index samples.

To test the significance of this difference, we estimate the following regression:
Ef fortImpatience;., = By + P1Impatiencelndex; + Poliow + Tw + Tt + Eitw (22)

where Ef fortImpatience;,, is the reduced-form effort impatience measure for individual i al-
locating tasks on day t at piece rate w, Impatiencelndex; is either the impatience index or an
indicator for having an above-median impatience index, and ;o is the number of tasks chosen
by individual ¢ at piece rate w on day 0; controlling for this allows the effort impatience measure
to vary with the overall number of chosen tasks and improves precision.%* 7, and 7, are fixed
effects for the piece rate and task day, respectively. The coefficient of interest is (.

Consistent with Figure C.1, Column 1 of Table C.2 shows that the difference in reduced-form
effort impatience between those with above- and below-median impatience index is roughly 1.0
task, significant at the 10% level. Column 2 shows that the relationship is even stronger excluding

64Define %;, as the number of tasks chosen by individual i on day t for piece rate w.  Since
Ef fortImpatience;t, = Yitw — Yiow, the coefficients from this regression are exactly equivalent to a regres-
sion with y;z, as the dependent variable that includes the same controls. The specification in equation (22)
allows the mean value of the dependent variable to be comparable to Figure C.1.
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problematic individuals: the gap is 1.7 tasks, significant at the 5% level. Columns 3 and 4 show
qualitatively similar but less precise patterns with the impatience index as the regressor.

Appendix Table C.2: Impatience Index Correlates With Effort (But Not Recharge) Impatience

Effort impatience Recharge impatience

Future tasks - day 0 tasks Chose earlier date

(1) (2) (3) (4) (5) (6) (7) (8)

Above-median

impatience index 1.000*  1.708** -0.0457  -0.0397
[0.513] [0.798] [0.102] [0.109]
Impatience index 0.763 2.666* -0.0425  -0.0559
[0.629] [1.490] [0.0911]  [0.114]
P-value:
Impatience 0.055 0.038 0.229 0.081 0.655 0.716 0.642 0.625
Changers Changers
+ + No vio- No vio-
Sample All Mono- All Mono- Al lations All lations
tone tone
Dep. var. mean
(below-median
impatience) 0.445 0.596 0.445 0.596 0.469 0.455 0.469 0.455
Correlation (dep var,
Impatience index) 0.15 0.19 0.13 0.25 -0.05 -0.05 -0.05 -0.06
# Individuals 71 43 71 43 71 64 71 64
# Observations 852 516 852 516 710 640 710 640

Notes: This table shows the relationship between the effort and recharge impatience measures and the impatience
index in the validation sample. Each observation is an individual x effort or recharge choice. The dependent
variable in columns 14 is the difference between the tasks allocated in the choice and the tasks allocated on day
0 (the survey date) for the same piece rate; controls include fixed effects for the piece rate and task day, as well
as the number of tasks chosen for that same piece rate on day 0. The dependent variable in columns 5-8 is an
indicator for choosing recharges today rather than in the future; controls include fixed effects for how many weeks
in the future the individual will be paid for the later recharge option (either 1 or 2 weeks) and for the relevant
payment amount. The “Changers + Monotone” sample restricts to individuals who changed their effort choice
at least once and had fewer than two choice non-monotonicities in payment levels. The “No violations” sample
represents people who do not switch multiple times on either price list. The regressor in columns 1, 2, 5 and
6 is an above-median impatience index dummy, while in columns 3, 4, 7 and 8 the regressor is the continuous
index. Correlations shown at the bottom of each column are between the individual-level average of the dependent
variable and the version of the impatience index used in that column. Significance levels: * 10%, ** 5%, *** 1%.

Excluding problematic individuals, the magnitudes of the correlations between effort impa-
tience and the impatience index are relatively high for the (noisy) domain of effort impatience—
0.3 and 0.2 for the continuous and binary indices, respectively. In comparison, Augenblick et al.
(2015) and Augenblick (2018) find correlations of 0.2 and 0-0.2 between effort impatience esti-
mates and demand for commitment or qualitative discounting questions, respectively.
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Lack of Correlation with Recharge Impatience Measure Figure C.1(b) summarizes the
recharge impatience measure separately for those with above- and below-median impatience
index. Recharge impatience (i.e., choosing a smaller, sooner recharge over a larger, later recharge)
is very similar across the subsamples; in fact, those with above-median impatience index have
slightly lower recharge impatience. Columns 5 and 7 of Table C.2 confirm that there is no
meaningful or significant relationship between recharge impatience and the impatience index
using regression analysis. Columns 6 and 8 replicate the results without problematic respondents.

C.2 Additional Estimates of the Discount Factors Over Effort and Payment

In this section, we present two estimates of the discount factor over payment (recharges),
and one additional estimate of the discount factor over effort, all from our main experimental
sample. We then summarize these estimates alongside the effort discount factor estimated in
the validation sample (the Section C.1.2 estimate based on the Effort Choice by Date data).
While both estimates of the discount factor over effort are meaningfully below 1, both payment
discount factor estimates are close to 1 and significantly higher than either effort discount factor
estimate. We begin by describing the additional estimation procedures.

“Simple CTB” Estimates of the Discount Factors Over Effort and Payment Following Au-
genblick et al. (2015), we estimate the discount factors for effort and money using the “Simple
CTB” choices in each domain described in Section 4.2. Our primary specifications parametrize
each discount factor as a single quasihyperbolic discount factor on future events (e.g., 6®) = don)
but we estimate exponential parameterizations for robustness (e.g., 6®) = 57%13).65

Paycycle Estimates of the Discount Factor Over Payment Since impatience over payment will
lead effort to increase as the payday approaches, one can use the pattern of effort over the pay
cycle to estimate the payment discount factor. We follow Kaur et al. (2015), which calculates the
discount factor using the elasticity of walking to payment and the pattern of effort as the payday
approaches. We calculate the payment discount factor with the equation dQLH —1= %%
where ¢ is the elasticity of walking to payment, w; is compliance in period t, day T is payday,
and days t < T all occur before payday. We calculate the percentage increase in compliance on
payday, % from the estimated “payday spike” in the base case group (column 1 of Appendix
Table F.10), and we estimate ¢ from the compliance response to the payment variation between

the small payment and base case groups.

Comparing the Discount Factors over Effort and Payment Figure C.2 shows the pay-
ment discount factor estimates from both the Simple Recharge CTB and the paycycle effects, as
well as the effort discount factors estimated from the Simple Effort CTB and the Effort Choice
by Date. In all cases, the figure presents the estimates with the discount factors parametrized
as a single discount factor (dgx) applied to all future periods.

CiFwi ) —
Cttktw2

lngi%f)]lhg ail (1 + r) where ¢; is money in the earlier period, ¢;1x is money in the later period, w; and we
captures background consumption, and r is the interest rate for each choice. The estimating equation for the
discount factor over effort is similar: ¢; and ¢4 are replaced by e; and e;4 ) (minutes of walking on days ¢ and
t+k), wy and wy are background walking effort (10 minutes), and 1+ captures the marginal rate of substitution
between sooner and later effort. Following Augenblick et al. (2015), we choose w1 = we = w, as a function of
the base recharge consumption or base walking effort (we set the w’s at 50% of the base level for recharges and
walking, so w =50 INR and w =10 minutes of walking, respectively), but the results are robust to a range of
values from 25% to 200% of the base level.

65The quasihyperbolic CTB discount factor over recharges is estimated with the equation hl(

26



The estimates of the payment discount factor are both near 1, with the payday effect estimate
greater than (but not statistically significantly different from) 1, and the CTB estimate close to 1
(0.962) but significantly different from it. In contrast, both estimates of the effort discount factor
are substantially smaller, at 0.572 from the validation sample and 0.845 from the Simple CTB in
our main sample. Both are significantly less than either estimate of the payment discount factor
(p-values for tests of equality are in the notes for Figure C.2.)

Appendix Figure C.2: The Discount Factors Over Effort Are Significantly Lower Than the
Discount Factors Over Money
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Notes: This figure presents four structural estimates of the discount factors over effort (blue bars) and payment
(orange bars). From left to right, the estimates come from the Simple Effort CTB data from the experimental
sample, the Effort Choice by Date data from the validation sample, the pay cycle method in the experimental
sample, and the Simple Recharge CTB data from the experimental sample. The discount factor is parameterized
as a single quasihyperbolic discount factor on the future (§) = dgm or d®) = dgom). The p-values for tests
of equality between the effort discount factor (6gp) from the Effort Choice by Date methodology and the two
monetary discount factors (dgy) estimated via the Simple Recharge CTB and payday effects are 0.041 and 0.051,
respectively. The p-values for tests of equality between the effort discount factor (dgz) from the Simple Effort
CTB and the two monetary discount factors (dgg) estimated via Simple Recharge CTB and payday effects are
both <0.001. The respective samples for bars 1, 2, 3, and 4 include 852 choices of 71 individuals, 6,380 choices
of 3,190 individuals, 71,672 days of 890 individuals, and 16,146 choices of 2,307 individuals.

Results are similar if we estimate exponential discount factors. We estimate daily exponential
effort discount factors of 0.976 and 0.950 using Simple Effort CTB and Effort Choice by Date,
respectively. Both are significantly less than 1 and significantly less than either estimate of the
exponential payment discount factor (1.009 and 0.992 for Pay Cycle and Simple Recharge CTB
estimates, respectively).

C.3 Measures of Effort and Recharge Impatience Are Uncorrelated

This section summarizes two types of evidence from our setting suggesting that discount
factors over effort and recharge are relatively uncorrelated. First, survey measures of effort and
recharge impatience are uncorrelated. Second, measures of effort impatience do not correlate
with pay cycle effects.
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Appendix Table C.3: No Correlation Between Measures of Impatience over Effort and Recharges

Direct measure Proxies for recharge impatience
S(i;{ng;fa?TB Tzi?)tii\ele yeNsiiitlgye’s Prefeis daily Ifl)ézfciflsy # Individuals
ge) balance talk time (=1) (=-1)
(1) 2) ©)) 4) ) (6)

Impatience index 0.004 0.032 -0.068 -0.038 0.034 1740
Predicted impatience Index 0.000 0.021 -0.014 -0.005 -0.003 3192
Chose commitment -0.006 0.009 -0.001 0.005 0.010 2871
Simple CTB 0.006 -0.011 -0.037 0.001 0.041 3190

Notes: This table displays the correlations in our experimental sample between our various measures of im-
patience in the effort domain (in the rows) and measures and proxies for impatience in the recharge domain
(in columns). The “Simple CTB (Recharge)” measure is the average of the share of money allocated to today
from the questions used in the Simple Recharge CTB. Proxies for recharge impatience in columns 2—-5 were
all measured at baseline. For columns 4 and 5: we asked participants whether they preferred daily, weekly, or
monthly payments, and “Prefers Daily” (“Prefers Monthly”) is an indicator that their most preferred frequency
was daily (monthly). We normalize all impatience variables so that a higher value corresponds to greater im-
patience. Data are at the individual level. The sample in each row is the subset of participants we have each
impatience measure for. Significance levels: * 10%, ** 5%, *** 1%.

Table C.3 shows that there is no significant or meaningful correlation between any of the
measures of impatience over effort and impatience over payment collected in the experimental
sample. Similarly, we find that the correlation of the individual-level averages of the recharge
impatience and effort impatience measures in the validation sample is only -0.05, which is sta-
tistically indistinguishable from 0 (p-value = 0.66).

As discussed in Section C.2, pay cycle effects also measure impatience over payments. Thus,
we can test whether participants’ impatience over payment relates to our measures of impatience
over effort by testing whether effort impatience measures predict pay cycle effects.

Panel A of Appendix Figure F.2 shows that there are no meaningful payday spikes even
among those with above-median impatience index. Moreover, the patterns across the pay cycle
are very similar for those with below-median impatience, depicted in Panel B. Results are similar
for the other measures of effort impatience (i.e., the predicted impatience index, demand for
commitment, and simple CTB). Regression analysis confirms that there are no large or significant
differences in pay cycle effects across any measure of effort impatience.
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D Distributional Impacts of Thresholds

This section assesses the effect of thresholds on the distributions of weekly and intervention-
average compliance. We first assess whether thresholds decrease intermediate effort just below
the threshold. Panels (a) and (b) of Figure D.1 show histograms at the individual x week level
of the number of days the individual met their step target in that week, for the 4-day or 5-day
threshold group, respectively, relative to Base Case and Monitoring (confidence intervals are
relative to Monitoring). Indeed, the threshold contracts do modestly decrease effort just below
the threshold: the prevalence of walking 3 or 4 days is lower in 5-Day Threshold than either
Base Case (p-value <0.001) or Monitoring (p-value = 0.008), and the prevalence of walking 2 or
3 days is lower in 4-Day Threshold than either reference group (p-values <0.001 for both Base
Case and Monitoring).%® Figure D.2 shows similar patterns for the subsets of people with above-
and below-median impatience, showing that the overall distributional patterns we see are not
predominantly explained by impatience.

Percent
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Appendix Figure D.1: Thresholds Modestly Decrease Compliance Right Below the Threshold

Notes: Figures show histograms of the number of days a participant exceeded the step target each week during the
intervention period in the Base Case, 4-Day or 5-Day Threshold, and Monitoring. Data are at the respondent-
week level. Confidence intervals represent a test of equality between Monitoring and each other group from
regressions with the same controls as Table 2 except for day-of-week fixed effects (because data are weekly).

However, the magnitude of these differences are relatively small (especially compared to the
differences from Monitoring), leading to only slight differences between Base Case and Threshold
in the overall distribution of weekly compliance. Specifically, Panels (a) and (b) of Figure D.3
show the cumulative distribution functions (CDFs) of weekly compliance in 4-Day and 5-Day
Threshold, respectively, relative to Base Case and Monitoring. While the distributions of weekly
compliance in Base Case and both threshold groups all differ markedly from the distribution in
Monitoring, the differences between Base Case and the threshold groups are small. Panels (¢) and
(d) of Figure D.3 shows similar results for the distribution of individual-level (instead of individual

66Notably, neither threshold increases the likelihood of walking exactly the threshold number of days. Our
model suggests this may reflect that the contracts pay for above-threshold compliance (e.g., the 4-day threshold
pays for the 5th day of compliance). Additional explanations outside of the model include habit formation or
that it is easier to schedule walking every day in a given week than on a subset of days.
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Appendix Figure D.2: Thresholds Modestly Decrease Compliance Right Below the Threshold

Notes: As in Figure D.1, Figures show histograms of the number of days a participant exceeded the step target
each week during the intervention period in the Base Case, 4-Day or 5-Day Threshold, and Monitoring, but here
we split the sample into below-median impatience index in Panels (a) and (c), and above-median impatience
index in Panels (b) and (d). Data are at the respondent-week level. Confidence intervals represent a test of

equality between Monitoring and each other group from regressions with the same controls as Table 2 except for
day-of-week fixed effects (because data are weekly).

x week-level) compliance. Quantile regressions reveal no significant differences between the
threshold groups and Base Case in the 25th, 50th, or 75th percentiles of the distributions of either
individual x week-level or individual-level compliance (see Appendix Table F.7). Kolmogorov-
Smirnov (KS) tests for the equivalence of the individual-level distributions also fail to reject the

null of equal distributions (p-values 0.238 and 0.852 for the 4- and 5-Day Threshold, respectively,
relative to Base Case).
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Appendix Figure D.3: Threshold and Base Case Have Similar Compliance Distributions

Notes: This figure shows the cumulative distribution functions (CDFs) of the distributions of weekly compliance
(i.e., the number of days the individual exceeded the step target in a week) in Panels (a) and (b), and intervention-
average compliance (i.e., the percentage of days the individual exceeded the step target during the intervention
period) in Panels (c) and (d). All CDF's are plotted separately by treatment group for the monitoring, base case,
4-day (Panels (a) and (c)), and 5-day (Panels (b) and (d)) threshold groups. For Panels (a) and (b), data are
at the individual x week level, limited to weeks where the individual has at least 4 days of data. For Panels (c)
and (d), data are at the individual level, limited to individuals who had at least 21 days of data over the 12-week
intervention period. Both weekly and intervention-average compliance are residualized using the same controls
as in Table 2 except that we do not include day-of-week fixed effects because data are not at the day level.
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E Predicting Impatience with Policy Variables

This appendix provides proof of concept that a policymaker could use hard-to-manipulate
observable characteristics to predict impatience and effectively target the threshold contract.

Our Section 5.3 results suggest that a policymaker could improve our program’s effectiveness
by targeting threshold contracts only to more impatient individuals. However, impatience is
challenging to observe; even were policymakers to field surveys on impatience, participants might
game their responses to avoid a specific contract—especially a financially dominated one.

To address this concern, we construct a “policy prediction” of impatience: a prediction of the
impatience index using demographics (e.g., age, labor force participation) and medical informa-
tion (e.g., HbAlc, fatigue) that health policymakers would likely have access to. We show that
there is significant heterogeneity in the effect of the threshold by the policy prediction. Hence,
the policy prediction could be used to personalize contract assignment.

To prevent overfitting, we use a split sample approach. First, in a randomly-selected training
sample, we fit a LASSO model to predict the impatience index with the variables listed in the
Table E.1 notes. We then use the model to predict impatience out of sample for all other partici-
pants (the “regression sample”). Finally, in the regression sample, we estimate the heterogeneity
in Threshold performance by the policy prediction using equation (6). To sufficiently power this
regression, we allocate 2/3 of participants to the regression sample.

The results, in Table E.1, are similar to Table 3: Threshold has a higher treatment effect
among people with higher predicted impatience. This suggests that personalizing thresholds
using a policy prediction could significantly improve the effectiveness of incentives at scale.

Appendix Table E.1: Threshold Effect Varies with Policy Prediction of Impatience

Dependent variable: Exceeded step target
(1) (2)
Impatience x Threshold 0.03** 0.06**
[0.00, 0.06] [0.00, 0.12]
Threshold -0.01 -0.03**
[-0.04, 0.02] [-0.07, -0.00]
Impatience -0.02** -0.05**
[-0.04, -0.00] [-0.09, -0.01]
. . . Above-median policy
Impatience measure: Policy prediction ..
prediction
Base Case mean .502 .502
# Individuals 1,969 1,969
# Observations 157,946 157,946

Notes: This table replicates Table 3 with an impatience index predicted out-of-sample with the following variables
(and their interactions with above-median age, gender, and individual and household income): age; gender; labor
participation; personal and household monthly income; household size; HbAlc; RBS; systolic and diastolic BP;
BMI,; waist circumference; walking speed; diagnosed diabetic or hypertensive; overweight; owns home; number of
rooms and running water in home; has a bank account; hired help; number of scooters, cars, computers, smart-
phones, and mobile phones; mobile balance; hours of work on a weekday; consumes alcohol and cigarettes/bidis;
has foot ulcer, rapid deterioration in eyesight, and pain or numbness in legs or feet. Significance levels: * 10%,
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F Additional Tables and Figures

A.Threshold X Chose commitment
No additional controls I
Baseline steps (mean)
Baseline steps (sd)
Baseline step target compliance (FEs) f
Scheduling uncertainty
Risk aversion f
Health risk index
Blood sugar index I
Age I
Monthly personal income f
Education (above-median)
Mobile balance
Yesterday's talk time f
Prefer daily payment (=1)
Prefer monthly payment (=-1)
Height

Weight

Gender

All controls f

B.Threshold X Simple CTB
No additional controls
Baseline steps (mean)
Baseline steps (sd)

Baseline step target compliance (FES)
Scheduling uncertainty

Risk aversion

Health risk index

Blood sugar index

Age

Monthly personal income
Education (above-median)
Mobile balance

Yesterday's talk time

Prefer daily payment (=1)
Prefer monthly payment (=-1)
Height

Weight

Gender

All controls

T T T |
-10 -5 0 5 10

Appendix Figure F.1: Threshold Heterogeneity in Choosing Threshold and Choosing to Walk
Later Is Robust to a Variety of Controls

Notes: This figure replicates Figure 3 using different impatience measures. Panel A uses demand for commitment
and Panel B uses simple CTB. See the notes to Table 3 for more detail on these impatience measures. 95%
confidence intervals are based on standard errors clustered at the individual level. All other details are the same
as in Figure 3; see Figure 3 notes for more details.
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Appendix Figure F.2: No Heterogeneity by Impatience in Compliance Pattern Across the Pay-
cycle
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6 5 4 3 2 1 0 6 5 4 3 2 1 0

Days Before Payday Days Before Payday
l Monitoring ——e—— Base Case] l Monitoring ~——e—— Base Case]
(a) Above Median Impatience Index (b) Below Median Impatience Index

Notes: The figures show the probability of exceeding the daily 10,000-step target for the base case relative to
the monitoring group, according to days remaining until payday. Each Panel is limited to above/below-median
values of the impatience index. Effects control for payday day-of-week fixed effects, day-of-week fixed effects,
day-of-week relative to survey day-of-week fixed effects, and the same controls as in Table 2. The shaded area
represents a collection of confidence intervals from tests of equality within each daily period between the incentive
and monitoring groups from regressions with the same controls as in Table 2. p-values for the test that the payday
spikes are equal across above/below-median samples for each impatience measure are: Impatience index: 0.462;
Predicted impatience index: 0.803; Chose commitment: 0.647; Simple CTB: 0.100.
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Appendix Table F.1: Participants Understood Their Assigned Contracts

Contract Type Question % Correct
At Contract First Any
Launch Call  Call
Base Case
n=902 How many recharges would you receive on (payment day of week) if you 0.99 0.99 1.00
walked 10,000 steps on exactly 1 day over the period (payment day of
week) to (payment day of week—1)?
How many times over the course of this week would you receive recharges 1.00 1.00 1.00
if you walked 10,000 steps on exactly 5 days over the period (payment
day of week) to (payment day of week—1)?
What is the minimum number of days that you need to walk to get a - 0.90 0.95
4-Day Threshold recharee?
n=794 8¢’
How many recharges would you receive at the end of this week if you 0.93 0.98 1.00
walked 10,000 steps on exactly 1 day this week?
How many recharges would you receive at the end of this week if you 0.99 0.99 1.00
walked 10, 000 steps on exactly 4 days this week?
How many recharges would you receive at the end of this week if you 0.98 1.00 1.00
walked 10,000 steps on exactly 6 days this week?
5-Day Threshold What is ?the minimum number of days that you need to walk to get a - 0.88 0.93
recharge?
n=312
How many recharges would you receive at the end of this week if you 0.91 0.96 0.99
walked 10,000 steps on exactly 1 day this week?
How many recharges would you receive at the end of this week if you 0.98 0.99 0.99
walked 10,000 steps on exactly 5 days this week?
How many recharges would you receive at the end of this week if you 0.99 0.99 0.99
walked 10, 000 steps on exactly 6 days this week?
Dail How many times over the course of this week would you receive recharges 1.00 0.98 1.00
nfi6y6 if you walked 10,000 steps on exactly 1 day 7
How many times over the course of this week would you receive recharges - 0.99 0.99
if you walked 10,000 steps on exactly 5 days 7
Monthl How many recharges would you receive on (payment day of week) if 0.99 0.99 1.00
no_n;; 6 4y you walked 10,000 steps on exactly 1 day over this week ?
How many recharges would you receive on (payment day of week) if 1.00 1.00 1.00
you walked 10,000 steps on exactly 5 days in this week ?
. How do you report your steps to us? 1.00 0.99 1.00
Monitoring
n=203
How large is the Fitbit wearing bonus? - 0.78 0.99

Notes: This table shows the share of participants who correctly answered questions about their contract. Participants were initially
asked these questions when contracts were first explained (“At Contract Launch”). Questions were asked again over the phone at a
later date (“First Call”). Those who answered questions incorrectly were asked again in two subsequent follow-up calls. The “Any
Call” column represents the proportion of participants who got the questions right at any of these phone calls. Some questions were
not asked at the initial contract launch phase. Each participant in the monthly, base case, and threshold groups was always paid on

the same day of the week, which is labeled “payment day of week”.



Appendix Table F.2: Threshold Heterogeneity Results are Robust to Ways of Constructing the
“Chose Commitment” and “Simple CTB” Measures

Dependent variable: Exceeded step target (x100)
Impatience measure: Chose commitment Simple CTB

Average Either Both 4-Day 5-Day Average Either Both

(1) 2 3) (4) (5) (6) (7 (8)
Impatience x Threshold 6.06™* 5.31* 5.74** 6.32"* 4.75 4.70* 5.16* 3.82
[0.18,11.94] [-0.33,10.95] [0.07,11.41] [0.16, 12.48] [-3.55, 13.05] [-0.84, 10.25] [-0.27, 10.60] [-1.60, 9.25]

Base Case mean 49.9 49.8 49.9 50 49.8 50.2 50.2 50.2
# Individuals 1,798 1,809 1,798 1,523 1,097 1,967 1,967 1,967
# Observations 144,099 145,005 144,099 122,277 87,990 157,799 157,799 157,799

Notes: This table shows robustness of results in columns 5 and 6 of Table 3 to different ways of constructing the
Chose Commitment and Simple CTB variables. For Chose Commitment, “average” is the main specification in
Table 3 and is the average of preference for 4-day and 5-day threshold contracts versus the linear contract. “Ei-
ther” means preferring either 4-day or 5-day threshold, and “Both” means preferring both threshold contracts.
“4-day” and “5-day” only look at the preference for 4-day and 5-day threshold respectively. For “Simple CTB”,
“Average” is the main specification and is the average between choosing to walk more earlier in two CTB-style
walking choices, “Either” means choosing to walk earlier in either choice and “Both” means choosing to walk
earlier in both choices. Controls are the same as in Table 2. The sample includes the base case and threshold
groups. Data are at the individual x day level. 95% confidence intervals, in brackets, are constructed using
standard errors clustered at the individual level. Significance levels: * 10%, ** 5%, *** 1%.

Appendix Table F.3: Lee Bounds on the Impacts of Incentives on Exercise

Lost data Withdrew

Definition of missing: No steps Did I%Ot. No da.Lta. entire immedi- Mid—period Other
data wear Fitbit from Fitbit period ately withdrawal reasons
(1) (2) ®3) (4) (5) (6) (7)
A. Daily steps
Regression estimate 1269 1269 1338 1338 1338 1338 1338
(conditional on nonmissing data) [245] [245] [261] [261] [261] [261] [261]
Lee lower bound 1053 882 1230 1315 1297 1226 1303
[290] [234] 268 [242) [280] [218] [288]
Lee upper bound 1426 1571 1572 1351 1430 1581 1358
[349] [306] [312] [243] [288] [213] [285]
B. Met 10k step target
Regression estimate 0.223 0.223 0.205 0.205 0.205 0.205 0.205
(conditional on nonmissing data) [0.024] [0.024] [0.022] [0.022] [0.022] [0.022] [0.022]
Lee lower bound 0.215 0.208 0.200 0.204 0.203 0.200 0.204
[0.024] [0.025] [0.022] [0.025] [0.021] [0.026] [0.021]
Lee upper bound 0.232 0.242 0.216 0.206 0.209 0.217 0.206
[0.033] [0.025] [0.023] [0.024] [0.019] [0.026] [0.022]
# Individuals 2,607 2,559 2,607 2,568 2,598 2,561 2,566
# Observations 218,988 205,732 218,988 206,488 209,008 211,551 206,320

Notes: This table reports regression estimates and Lee bounds estimates (accounting for different types of
missing pedometer data) of the effect of Incentives relative to Monitoring on exercise during the intervention
period. Standard errors in parentheses. The regression estimates and Lee bounds condition on data not being
missing, using different definitions of missing data in each column. Regression estimates are not comparable to
those reported in Table 2 because each column conditions on the “type of missing” indicator in the first row
being equal to 0 and does not include controls. Data are at the individual x day level.
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Appendix Table F.4: Summaries From Minute-Level Pedometer Data

Incentives Monitoring I-M p-value: I=M
(1) (2) 3) (4)

A. Activity (by minute)
Average daily activity 213 197 17 0.001
Average steps per minute 41 38 3 0.001

B. Time of day
Average start time 07:11 07:16 5 0.441
Average end time 20:49 20:50 1 0.742

C. High step counts per minute (share)

Steps > 242 0 0 0
Steps > 150 0 0 0 0.322
# Individuals 2,368 200

Notes: This table presents various statistics at the respondent x minute level in the incentive and monitoring
groups for the days on which minute-by-minute data were available (typically 10 days of minute-wise data prior
to each sync). “Average daily activity” is the average number of minutes in which a step was recorded each day.
“Average steps per minute” is the average steps per minute in which at least one step was recorded. Average
start /end time is the average time the first/last step was recorded by the Fitbit on that day. The “High step
counts per minute (share)” variables are the share of days on which we recorded steps-per-minute over the stated
thresholds. High step count thresholds (242 and 150) were determined based on the average number of steps
an individual takes when running at 5 mph and 8 mph, respectively. Only one individual’s minute-by-minute
data coincide with jogging at a pace greater than 5 miles per hour, and only for a total of 15 minutes over one
day in the intervention period.

Appendix Table F.5: HbAlc and RBS Independently Predict One Another

Dependent variable:  Endline HbAlc FEndline RBS
(1) (2)

Baseline HbAlc (SDs) 0.60*** 0.33**
[0.045] [0.057]

Baseline RBS (SDs) 0.25%* 0.37%
[0.044] [0.055]

# Individuals 560 561

Notes: This table reports estimates from regressing standardized HbAlc (column 1) and standardized RBS
(column 2) at endline on standardized HbAlc and standardized RBS at baseline. Standard errors in parentheses.
The sample is the control group only. Data are at the individual level. No additional controls are included.
Significance levels: * 10%, ** 5%, *** 1%
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Appendix Table F.6: Table 2 Results Robust to Different Controls

No controls Stratum fixed effects Lasso-selected controls
Dail Earned Dail Earned Dail Earned
Exceeded . ally payment  Exceeded . ally payment  Exceeded . ally payment
Dependent variable: Step Dtally steps when Step ]3:3,11}‘7 StepS when Step ]::;ally StepS when
target Steps (if > 0) target target steps (if > 0) target target Steps (if > 0) target
met met met
(1) (2) 3) (4) 5) (6) (7) (8) ) (10) (11) (12)
A. Pooled incentives
Incentives 0.205*** 1337.6***  1271.4**  0.950*** 0.200*** 1263.7**  1158.0"**  0.952*** 0.196*** 1287.1%%*  1144.2***  (0.952***
[0.0224] [261.1] [246.1] [0.00231] [0.0185] [208.7] [188.1] [0.00309] [0.0180] [211.4] [190.3] [0.00282]
B. Unpooled incentives
Base Case 0.208*** 1356.6***  1208.8*** 1.000*** 0.210%** 1386.2***  1199.1*** 1.006*** 0.207*** 1411.4*  1197.0*** 1.005%**
[0.0241] [277.0] [258.6] [1.62¢-13] [0.0201] [222.0] [199.4] [0.00267] [0.0196] [225.0] [201.8] [0.00223]
Threshold 0.207*** 1337.9***  1315.2***  (0.890*** 0.198*** 12147 1139.8**  (.892*** 0.194*** 1238.0***  1125.3***  (0.892***
[0.0240] [277.1] [259.3] [0.00505] [0.0199] [220.8] [198.0] [0.00547] [0.0194] [223.2] [200.3] [0.00533]
Daily 0.207*** 1202.7*  1363.9*** 1.000*** 0.200%** 1120.7%%*  1279.2*** 1.003*** 0.199*** 1126.7%**  1245.0*** 1.003***
[0.0345] [389.5] [346.0] [2.02e-13] [0.0303] [331.0] [277.3] [0.00365] [0.0302] [332.2] [279.2] [0.00296]
Monthly 0.198*** 1568.6™**  1482.3*** 1.000*** 0.177*** 1265. 7% 1174.2*** 1.002*** 0.179*** 1302.6™*  1152.4*** 1.000%**
[0.0348] [393.8] [365.4] [3.52e-13] [0.0288] [307.4] [270.2] [0.00335] [0.0281] [311.0] [272.3] [0.00271]
Small Payment 0.147*** 820.5 658.5 1.000*** 0.137*** 728.1% 549.8 1.000*** 0.128*** 740.7* 510.6 0.999***
[0.0485] [524.0] [477.9] [5.58e-14] [0.0383] [386.1] [334.9] [0.00499] [0.0382] [381.0] [331.3] [0.00417]
p-value for Base Case vs
Daily 0.981 0.634 0.571 . 0.706 0.347 0.725 0.335 0.786 0.314 0.834 0.563
Monthly 0.758 0.519 0.359 . 0.180 0.634 0.909 0.161 0.266 0.671 0.839 0.022
Threshold 0.982 0.914 0.479 <0.001 0.357 0.212 0.617 <0.001 0.354 0.210 0.548 <0.001
Small Payment 0.175 0.261 0.199 . 0.038 0.057 0.028 0.200 0.027 0.047 0.018 0.154
Monitoring mean 0.294 6,774 7,986 0 0.294 6,774 7,986 0 0.294 6,774 7,986 0
# Individuals 2,559 2,559 2,557 2,394 2,559 2,559 2,557 2,394 2,559 2,559 2,557 2,394
# Observations 205,732 205,732 180,018 99,406 205,732 205,732 180,018 99,406 205,732 205,732 180,018 99,406

Notes: This table replicates the Table 2 estimates with different sets of controls. Columns 1-4 do not use controls, columns 5-8 use the same controls
as in 2 along with stratum fixed effects, and columns 9-12 use controls selected by double-LASSO. We allow LASSO to select from the following list of
controls: female, age, age squared, weight, weight squared, indicator for missing weight, height, height squared, indicator for missing height, yearmonth
and day of week fixed effects. In addition, column 9 controls for the number of days in phase-in the target was met, its square, and an SMS treatment
indicator. Columns 10-12 control for average baseline steps, average baseline steps squared, an indicator for missing baseline steps, and an SMS treatment
indicator. See the notes for Table 2 for more information. Significance levels: * 10%, ** 5%, *** 1%.



Appendix Table F.7: Quantile Regression Estimates Show That the Linear and Threshold
Contracts Similarly Impact the Distribution of Individual-Level and Weekly Compliance

Share of days met step target
in intervention period

Share of days met

Dependent variable: step target in week

Percentile: 25 50 75 25 50 75
(1) (2) 3) (4) () (6)
5-Day Threshold 0.108***  0.238***  0.353***  0.105***  0.228"**  (0.351***
[0.024] [0.031] [0.047] [0.020] [0.035] [0.053]
4-Day Threshold 0.093***  0.206***  0.323"*  0.092***  0.214*"*  0.327***
[0.021] [0.026] [0.044] [0.017] [0.025] [0.051]
Base Case 0.116™*  0.245***  0.336***  0.111**  0.246™"*  0.328***
[0.020] [0.025] [0.042] [0.016] [0.024] [0.051]
p-value: 5-Day vs 4-Day A48 .28 .29 .46 .69 .25
p-value: 5-Day vs Base Case 0.705 0.791 0.523 0.712 0.575 0.266
p-value: 4-Day vs Base Case 0.201 0.105 0.560 0.152 0.157 0.948
Monitoring mean 0.292 0.469 0.723 0.294 0.523 0.801
# Individuals 2,133 2,133 2,133 2,168 2,168 2,168
# Observations 2,133 2,133 2,133 24,864 24,864 24,864

Notes: This table shows quantile regressions where the dependent variable is the share of days a participant
met their step target in a given week (columns 1-3) or during the intervention period (columns 4-6). Data in
columns 1-3 are at the individual x week level; in columns 4-6 they are at the individual level. The sample
includes the base case, threshold, and monitoring groups. Controls are the same as in Table 2, except that,
because the data are not at the individual x day level, we do not include day-of-week fixed effects. Also, in
columns 1-3 we include year-month fixed effects for the first year-month of the intervention period, and in

columns 4-6, we include year-month fixed effects for the first year-month of the week. Significance levels: *
10%, ** 5%, *** 1%.

Appendix Table F.8: Threshold Heterogeneity in Chose Commitment Is Robust to Ways of
Handling “No Preference” Responses

Dependent variable: Exceeded step target (x100)

Excluding no  No preference  No preference  No preference

preference as Threshold as Base Case as separate
(1) (2) (3) (4)
Impatience x Threshold 6.06™* 5.67* 5.52* 6.13**
[0.18, 11.94] [0.06, 11.29] [-0.12, 11.16] [0.25, 12.02]
Base Case mean 49.9 50.2 50.2 50.2
# Individuals 1,798 1,969 1,969 1,969
# Observations 144,099 157,946 157,946 157,946

Notes: This table shows robustness of results in column 5 of Table 3 to different ways of handling participants
with no preference between the 4- or 5-day threshold and base case contract. Column 1 uses the same spec-
ification as in column 5 of Table 3 by counting no preference as missing. Column 2 counts no preference as
choosing Threshold and column 3 counts no preference as choosing Base Case. Column 4 counts no preference
as a separate group by adding a dummy and its interaction with the indicator for threshold treatment. Controls
are as in Table 2. 95% confidence intervals, in brac)lsqés, are constructed using standard errors clustered at
the individual level. Data are at the individual x day tevel. The sample includes the threshold and base case
groups. Significance levels: * 10%, ** 5%, *** 1%.



Appendix Table F.9: Threshold Heterogeneity Results Similar with Steps as Outcome or When
Analyze Threshold Groups Separately

Above- . Above-
. . Predicted .
. Impatience median . . median Chose .
Impatience measure: . . . impatience . . Simple CTB
index impatience . predicted commitment
. index .
index index
(1) (2) (3) (4) (5) (6)
A. Dependent variable = steps
Impatience x Threshold 289 576 238* 521** 580* 157
[ -89, 667] [-167,1319] [ -36, 538] [ 22, 1166] [-9, 1168] [-400, 715]
Threshold -143 -401 -166 -360** -457** -253
[-513, 228] [-925, 124] [-471, 121] [-704, -28] [-876, -37] [-658, 151]
Impatience -209 -444 -229** -549*** -248 -41
[-473, 54] [-989, 101] [-454, -25] [-1079, -187] [-671, 175] [-444, 362]
Base Case mean 8,098 8,098 8,131 8,131 8,091 8,131
B. Dependent variable = exceeded step target (x100)
Impatience x 5-Day Threshold 3.52% 6.00 3.66™* 7.29%** 6.10* 3.76
[-0.54, 7.57]  [-2.04,14.04]  [0.70,6.73]  [2.14,15.46]  [-0.33, 12.52]  [-2.28, 9.80]
5-Day Threshold -1.72 -4.31 -1.71 -4.42* -4.92%* -3.79*
[-5.71, 2.27] [-9.94,1.32] [-4.64, 1.46] [-8.37,-0.97] [-9.46, -0.39] [-8.05, 0.46]
Impatience x 4-Day Threshold 5.00 7.95 1.76 2.51 6.20 7.10%
[1.05, 11.06]  [-3.14,19.03]  [-2.13,5.77]  [-5.46, 11.13]  [-2.50, 14.90]  [-1.05, 15.25]
4-Day Threshold -0.14 -3.71 0.17 -0.84 -2.81 -3.76
[-5.66, 5.39] [-11.19,3.78] [-3.92, 4.66] [-5.78, 4.37] [-8.88, 3.27] [-9.93, 2.41]
Impatience -2.97* -5.03* -2.39** -5.32%* -2.37 -2.68
[-5.46, -0.48] [-10.45,0.39] [-4.52,-0.54] [-10.84,-1.99] [-6.66, 1.91] [-6.73, 1.37]
Base Case mean 50.4 50.4 50.2 50.2 49.9 50.2
# Individuals 1,075 1,075 1,969 1,969 1,798 1,967
# Observations 86,215 86,215 157,946 157,946 144,099 157,799

Notes: Panel A shows that the Threshold heterogeneity reported in Table 3 is robust to using daily steps as the
outcome. Panel B shows heterogeneity in the 4- and 5-day threshold treatments by impatience. The impatience
measure changes across columns; its units in columns 1 and 3 are standard deviations. The sample includes
the base case and threshold groups only. Specifications in columns 1 and 2 include only participants who were
enrolled after we started measuring the impatience index; columns 3-6 include everyone. Threshold pools 4-
and 5-day Thresholds. 95% confidence intervals are shown in brackets. For columns 1-2 and 5-6, confidence
intervals are based on standard errors clustered at the individual level. For columns 3 and 4, which use the
predicted impatience index, confidence intervals are constructed using bootstrap, with bootstrap draws clustered
at the individual level. See the notes to Table 3 for a detailed description of the bootstrap procedure. Controls
are the same as in Table 2. Data are at the individual x day level. Significance levels: * 10%, ** 5%, *** 1%.
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Appendix Table F.10: Walking Does Not Vary Significantly Across the Pay Cycle

Dependent variable: Exceeded step target (x100)
Payment frequency: Weekly Monthly
(1) (2) (3) (4) (5)
Days before payday 0.11 0.11
[0.09] [0.09]
Payday -0.63 -0.63
[0.55] [0.55]
Payweek -0.12
[1.02]
Sample mean 50.19 50.19 50.19 50.19 49.28
# Individuals 890 890 890 890 163
# Observations 71,672 71,672 71,672 71,672 13,333

Notes: The columns show the effect of days until payday on the probability of meeting the step target in the base
case and monthly groups; the sample in columns 1 and 2 is restricted to the base case group, and the sample in
columns 3-5 is restricted to the monthly group. We control for payday day-of-week fixed effects, day-of-week
fixed effects, day-of-week relative to launch survey day-of-week fixed effects, a day-of-contract-period time trend,
and the same controls as in Table 2. Data are at the individual x day level. Standard errors, in brackets, are
clustered at the individual level. Significance levels: * 10%, ** 5%, *** 1%.

Appendix Table F.11: Effect of Incentives on BMI, Blood Pressure, and Waist Circumference

Above-median

Sample: Full sample effects baseline blood sugar effects
Body mass Mean Waist cir- Body mass Mean Waist cir-
index arterial BP cumference index arterial BP cumference
(1) (2) (3) (4) (5) (6)
Incentives -0.0525 0.0884 -0.211 0.0195 -0.0811 -0.275
[0.0409] [0.426] [0.284] [0.0570] [0.605] [0.396]
Monitoring 0.0657 1.121 -0.0352 0.00127 -0.478 0.345
[0.0838] [0.739] [0.438] [0.0830] [1.083] [0.590]
Above- Above- Above-
Sample Full Full Full median median median
blood sugar blood sugar blood sugar
Control mean 26.45 103.02 94.44 26.09 103.96 94.57
# Individuals 3,058 3,056 3,059 1,527 1,529 1,525

Notes: This table shows the effect of incentives on the endline components of the health risk index not included
in Table 4. Columns 4-6 restricts to the above-median blood sugar index sample. The blood sugar index is
constructed as in Table 4. Controls are as described in Table 4 notes. The sample includes the incentive,
monitoring, and control groups. Data are at the individual level. Standard errors are in brackets. Significance
levels: * 10%, ** 5%, *** 1%.
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Appendix Table F.12: Impacts of Incentives on Health, Robustness to Different Controls

Full sample effects Above-median baseline blood sugar sample effects
Blood Random  Health risk Blood Random  Health risk
sugar index HbAlc blood sugar index sugar index HbAlc blood sugar index
(1) (2) (3) (4) (5) (6) (7) (®)
Panel A. No controls
Incentives -0.044 -0.068 -5.53 -0.055 -0.092* -0.15 -11.4* -0.13**
[0.043] [0.11] [4.37] [0.047] [0.053] [0.14] [6.12] [0.060]
Monitoring 0.0073 -0.078 4.62 0.058 -0.070 -0.30 -1.35 -0.11
[0.074] [0.19] [7.94] [0.078] [0.088] [0.22] [10.8] [0.10]
p-value: I =M 0.435 0.952 0.153 0.102 0.770 0.463 0.294 0.803
Control mean 0.00 8.44 193.83 0.00 0.64 10.09 248.26 0.45
# Individuals 3,067 3,066 3,067 3,068 1,530 1,529 1,530 1,531

Panel B. Stratum fixed effects

Incentives -0.05* -0.07 -6.70* -0.05* -0.10** 0.13 -14.01%* -0.09**
[0.03] [0.07] [3.44] [0.03] [0.05] [0.12] [5.85] [0.04]
Monitoring -0.02 -0.14 2.10 0.02 -0.06 -0.31 -0.24 -0.05
[0.05] [0.12] [6.36] [0.04] [0.08] [0.19] [10.37] [0.07]
pvalue: T=M  0.492 0.515 0.124 0.120 0.576 0.278 0.138 0.546
Control mean 0.00 8.44 193.83 0.00 0.64 10.09 248.26 0.45
# Individuals 3,067 3,066 3,067 3,068 1,530 1,529 1,530 1,531

Panel C. Lasso-selected controls

Incentives -0.05** -0.08 -6.04* -0.05* -0.10** -0.15 1195 -0.08**
[0.03] 0.07] [3.52] [0.02] [0.05] [0.12] [5.90] [0.04]
Monitoring -0.03 -0.14 1.29 0.01 -0.07 -0.33* 0.85 -0.05
[0.05] [0.12] [6.61] [0.04] [0.08] [0.20] [10.48] [0.07]
pvalue: I=M 0517 0.573 0.220 0.129 0.631 0.306 0.170 0.553
Control mean 0.00 8.44 193.83 0.00 0.64 10.09 248.26 0.45
# Individuals 3,067 3,066 3,067 3,068 1,530 1,529 1,530 1,531

Notes: This table reports the results of the specifications displayed in Table 4 with different controls. Panel A include no controls,
Panel B include the same controls as 4 along with stratum fixed effects, Panel C include controls selected by double-LASSO. We
allow LASSO to select from the following list of controls: female, age, age squared, weight, weight squared, weight missing indicator,
height, height squared, height missing indicator, completed endline survey indicator, and date and hour of endline completion fixed
effects. Panel C also control for the baseline value of the outcome (or index components for indices), along with an SMS treatment
indicator. Standard errors are in brackets. Data are at the individual level. The sample includes the incentive, monitoring, and
control groups. p-value: I = M is the p-value for incentives vs monitoring. See Table 4 for more information on outcome variables
and controls. Significance levels: * 10%, ** 5%, *** 1%.



Appendix Table F.13: Impact of Incentives on Fitness and Mental Health

A. Mental Health Mental Less
health hFelt 0 [;ess Peaceful ~ Energy  Less blue Lefi harm to
index appy ervous wo social life

(1) (2) (3) (4) (5) (6) (7) (8)

Incentives 0.095** 0.088* 0.026 0.054 0.062 0.016 0.090** 0.053
[0.045] [0.045] [0.044] [0.047] [0.048] [0.044] [0.042] [0.032]

Monitoring 0.16** 0.074 0.13 0.095 0.032 0.13* 0.17** 0.049
[0.073] [0.075] [0.077] [0.083] [0.082] [0.075] [0.066] [0.053]

p-value: M =1 0.34 0.82 0.14 0.59 0.68 0.09 0.14 0.93

Control mean 0.00 3.06 3.48 3.35 3.30 3.86 4.40 4.71

# Individuals 3,068 3,068 3,068 3,068 3,068 3,068 3,068 3,068

B. Fitness

Fitness time trial index

Seconds to walk 4m

Seconds for 5 sit-stands

(1) (2) (3)
Incentives 0.024 0.042 -0.10
[0.045] [0.043] [0.12]
Monitoring 0.069 0.080 -0.088
[0.077] [0.076] [0.19]
p-value: M =1 0.50 0.57 0.94
Control mean 0.00 3.88 13.18
# Individuals 2,890 2,825 2,793

Notes: The Mental health index averages the values of seven questions adapted from RAND’s 36-Item Short
Form Survey. A large value of the Fitness time trial index indicates low fitness. The sample includes the
incentive, monitoring, and control groups. Controls are the same as described in the Table 4 notes, along with
the same set of additional controls described in the Table F.14 notes. Robust standard errors are in brackets.
Data are at the individual level. Significance levels: * 10%, ** 5%, *** 1%.
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Appendix Table F.14: Impacts of Incentives on Diet and Addictive Consumption

A. Healthy diet

Negative
Meals Negative Negative  Avoid
Health Negative of
S Wheat with Servings g of of sweets un-
diet : of rice . spoons
. meals vegeta-  of fruit junkfood . yester-  healthy
index meals . sugar in
bles pieces coffec day) food

(1) (2) 3) (4) ®) (6) (7) ®) )

Incentives 0.052 0.028 0.060** 0.038 0.029 -0.020 -0.019 -0.028 0.0037
[0.044] [0.029] [0.030] [0.035] [0.033] [0.066] [0.047] [0.038] [0.018]
Monitoring 0.023 0.019 0.082 0.062 -0.0068 0.13 -0.026 -0.048 -0.040
[0.085] [0.053] [0.054] [0.062] [0.060] [0.10] [0.081] [0.082] [0.033]
p-value: M =1 0.71 0.85 0.66 0.68 0.51 0.08 0.92 0.80 0.14
Control mean 0.00 0.49 0.58 0.53 -2.34 -0.91 -1.12 -0.35 0.83
# Individuals 3,068 3,068 3,068 3,068 3,068 3,068 3,068 3,068 3,068

B. Addictive consumption

Addlctnfe gf)od Average daily areca Average daily Avgage daily
consumption index alcohol cigarettes
(1) (2) () (4)
Incentives -0.014 0.034 -0.036 -0.056
[0.037] [0.037] [0.028] [0.095]
Monitoring -0.0036 0.015 -0.016 -0.018
[0.060] [0.068] [0.038] [0.14]
p-value: M =1 0.85 0.76 0.46 0.77
Control mean 0.00 0.13 0.11 1.02
# Individuals 3,068 3,068 3,068 3,068

Notes: The Healthy Diet Index is composed of the average values of eight diet questions, standardized by their
average and standard deviation in the control group; a larger value indicates a healthier diet. The Addictive
Good Consumption Index is an index created by the average self-reported daily consumption of areca, alcoholic
drinks, and cigarettes, standardized by their average and standard deviation in the control group; a larger
value indicates higher consumption. The omitted category is Control. All specifications control for the baseline
value of the dependent variable (or index components for indices), the baseline value of the dependent variable
squared (or index components squared for indices), an SMS treatment indicator, and the following controls: age,
weight, height, gender, and their second-order polynomials, as well as endline completion date, hour of endline
completion, and dummy for late completion. Standard errors, in brackets, are clustered at the individual level.

The sample includes the incentive, monitoring, and control groups. Data are at the individual level. Significance
levels: * 10%, ** 5%, *** 1%.
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Appendix Table F.15: Main Sample and Validation Sample Have Similar Characteristics

Main sample  Validation sample  p-value  Norm. Diff.

(1) (2) (3) (4)
A. Demographics
Age 49.56 50.55 0.331 -0.120
(8.51) (7.98)
Female (=1) 0.42 0.41 0.815 0.028
(0.49) (0.50)
Labor force participation (=1) 0.74 0.75 0.963 -0.006
(0.44) (0.44)
Household size 3.91 3.73 0.370 0.126
(1.62) (1.08)
B. Health
Overweight (=1) 0.61 0.65 0.513 -0.079
(0.49) (0.48)
BMI 26.42 27.06 0.226 -0.131
(4.34) (5.31)
Systolic BP (mmHg) 133.38 135.83 0.290 -0.134
(19.16) (17.21)
Diastolic BP (mmHg) 88.48 91.17 0.045 -0.246
(11.10) (10.76)
C. Walking - phase-in
Exceeded step target (=1) 0.25 0.21 0.321 0.116
(0.32) (0.34)
Average daily steps 7004.04 6539.98 0.331 0.119
(3981.43) (3837.98)
F-test for joint orthogonality
p-value 0.48

Sample size
Number of individuals 3232 71

Notes: Means are reported for each variable and standard deviations are in parentheses. Main sample is
our primary experimental sample. Validation sample is the sample used to validate our impatience index as
described in Appendix C. Norm. Diff. is normalized differences. All variables are as in Table 1. The number
of individuals with pedometer data differs from the total number of individuals because a few participants
withdrew immediately. The F-statistic is obtained by running regressions with all characteristics. Data are at
the individual level.
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G Misreporting Steps, Confusion, and Suspensions

Procedures to Curb Misreporting Because incentive payments were determined by self-
reported data and not pedometer data, we implemented a number of checks to ensure integrity
of step reporting. Within each 28-day sync period, respondents who incorrectly over-reported
meeting a 10k step target on more than 25% of days were flagged for cheating and suspended
from receiving recharges for 7 days, and those who over-reported on 10-25% of days were flagged
for cheating but only given a warning. Those who were flagged for cheating more than once
were terminated from the program. Fewer than 5% of Incentive participants were suspended
for cheating and only 1 was terminated (Table G.1)

During the intervention, we also attempted to flag participants who appeared to be confused
about how to read their pedometers or report properly. We flagged those whose reported steps
were either more than 10% higher than their pedometer steps or more than 15% lower than
their pedometer steps on 40% of days as “confused” (unless their misreporting was indicative
of cheating). Those who were flagged received a refresher from the surveyors on how to use
the step-reporting system. We did not require pedometer and reported steps to match exactly
because our pedometers record daily steps until midnight, but respondents typically reported
their daily steps before midnight. As a result, we expected pedometer and reported steps to
diverge slightly, either because respondents continued to walk after reporting their steps or
because respondents (incorrectly) estimated the number of additional steps they would take
post-reporting, and reported that amount instead.

We also took measures to encourage regular reporting for all groups. We offered a 50 INR
“pedometer wearing and reporting bonus” to participants during the pre-intervention period
if they wore the pedometer and reported steps on 80% of days to ensure that all participants
were familiar with the step reporting system. At contract launch, we also briefly encouraged all
but Control participants to report steps regularly during the intervention period, and offered a
larger 200 INR pedometer wearing and reporting bonus for wearing and reporting during the
intervention period. Finally, if participants did not report for a number of consecutive days, we
would send them a text message reminder to report.

Rates of Misreporting and Confusion Our analysis only uses pedometer data (not
reported data), so misreporting would not bias our conclusions. However, it is still interesting
to examine the prevalence of misreporting. The prevalence of misreporting, defined as reporting
steps above 10,000 when the pedometer itself records fewer than 10,000 steps, is less than
5% and, interestingly, balanced across incentive and monitoring groups (column 1 of Table
G.2). The balance with the monitoring group, who had no incentives to over-report, suggests
that over-reporting was mainly unintentional participant mistakes. The incentive group also

appeared to put more effort into making correct step reports, with fewer divergences in either
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the positive or the negative directions (columns 2-4 of Table G.2).

Appendix Table G.1: Summary Statistics on Audits and Suspensions

Count Share
Incentives Monitoring Incentives Monitoring
(1) (2) 3) (4)
Shared Fitbit ever 3 0 0.004 0.000
Suspended for cheating 100 N/A 0.042 N/A
Terminated for cheating 1 N/A 0.000 N/A
Total: 2,404 203 0.92 0.08

Notes: We randomly audited around 1,000 individuals from both the incentive and monitoring groups to look
for evidence of pedometer sharing. The first row in columns 3 and 4 is conditional on being audited.

Appendix Table G.2: Misreporting, Confusion and Cheating by Treatment Group

Variable type: Reporting Confusion
. ] Incorrectly reported Over-reported or Over-reported by at Under-reported by
Dependent variable: over 10k steps under-reported least 10% at least 15%
1) (2) ®3) (4)

Incentives 0.0079 -0.081*** -0.059*** -0.022**
[0.01] [0.02] [0.02] [0.01]

Monitoring mean 0.049 0.272 0.167 0.104

# Individuals 2,542 2,542 2,542 2,542

# Observations 173,131 173,131 173,131 173,131

Notes: Each observation is a respondent x day. Column 2 shows whether a respondent over-reported by at least
10% or under-reported by at least 15%. The omitted group is the monitoring group. Controls are the same as
Table 2. Standard errors, in brackets, are clustered at the individual level. The sample includes the incentive
and monitoring groups. Significance levels: * 10%, ** 5%, *** 1%.
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H Theoretical Predictions: Additional Proofs

H.1 Proofs of Section B.4 Propositions
We begin by proving Proposition 1 for 7" > 2. We then prove Propositions 3, 4, and 5.

Proposition 1 (7' = K, Threshold Compliance and Impatience Over Effort). Let T'> 1. Fix
all parameters other than 8. Take any threshold contract with threshold level K = T; denote
the threshold payment M. Compliance in the threshold contract will be weakly decreasing in 6@

forallt <T —1.

Proof. Let Vt(Jl) be the value of being on day ¢ having complied on all previous days 1 through
t — 1, where the value is evaluated from the perspective of the agent on day j <t. Let V;f?) be
the value of being on day ¢ having not complied on at least one of the previous days 1 through
t—1, again evaluated from the day j perspective. And let V;S_O) = V;(]l ) —th;)). Correspondingly,
let wy (e, 1) be the compliance decision on day t if the person has effort cost e; and has complied
on all prior days, and let w;(e;, 0) be the compliance decision on day ¢ if the person has effort
cost e; and has not complied on all prior days. If the person has complied on all previous days,
we thus have that day ¢ compliance is as follows:

1 ife, < V(9
’ 1) = t+1,t 23
wier, 1) { 0 otherwise (23)

and as follows if the person has not complied on all previous days

1 if€t<0

24
0 otherwise (24)

w(et, 0) = {

We look at naifs first and then sophisticates. For both types, we begin by examining day
T and then use the day T result to show results for days t < T. On day 7j, naifs think that,
on day T, conditional on complying on days 1 through 7" — 1, their day-T" self will comply if
8T Ner < dT=DM, or equivalently if dT=IM — §T=Dep > 0. Their value if they comply is
the discounted payment net of discounted effort costs, d7=)M — §T=Der. Hence, we have
Vi) =E [(dT M - 6T Der) 1{dTIM - 6T Der > 0}len,...,e5] , j=1,...,T
=E [max{d(T*j)M — 0T ep, 0} ey, . .. ,ej} ,j=1,...,T (25)
They also think that, on any day t including 7T, if they haven’t complied on all days through
t — 1, they will comply if 6¢~9e, < 0, which is equivalent to e; < 0, which yields
VO =E[-6Ded{e, < 0}er,....e5] , j=1,...,¢ (26)

t?j

As a result, we have that:
VT(E_O) = E [max{d" M — 6" er,0} + 6" Derl{er < 0}ey,. .., e (27)

To show that this expectation is decreasing in 67 =7), we show that the argument, max{d" =) M —
§TDep, 0} + 6T Derpl{er < 0}, is decreasing in § for all values of er. Consider two cases:
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1. Case 1: er > 0. In this case,
max{d T M — 6T Dep, 0} + 6T Derpl{er < 0} = max{dTI M — 6T es, 0},

which is decreasing in 677,
2. Case 2: er < 0 In this case, letting u = —ep > 0, we have
max{dT =M — 6T Dep, 0} + 6T Derl{er < 0}
B max{dT =DM + §TDy, 0} — §TDy if ep #0
dT=9) M if er=0
— J(T9) M,
which is invariant to 677,

Thus, max{d"=IM — 6T Der, 0} + 5T Derl{er < 0} is weakly decreasing in 679 for all e,
and so, by taking expectations, equation (27) must also be decreasing in 67—,
In addition, on day j, naifs think that, conditional on having complied on days 1 through

t — 1, they will comply on day t > j, if §¢7)e, < Vt(jf?) So, for t <T — 1 we have:

v = [( (100 _ 5(t_j)et) 1 {(5(t_j)et < Vt(j;?)} ler, .. .,ej] =1t
=E [max{\/;(j;?) — 6 e, 0} e, ..., ej] L, J=1,...,t
Combined with equation (26) this yields:

VtS_O) =F [max{‘/;(j;?) — 5t De, 0} + 6 e, 1{6 e, < 0}les, ... ,6]} ,Jj=1,...,t (28)

Equations (27) and (28) thus recursively define all of the V;fjl-_o) for any t < T and j < t.
Since we already showed that V:F(}j_o) is weakly decreasing in 677 for all j < T (equation (27)),
we can then use reverse induction from ¢ = T, ..., j using equations (27) and (28) to see that

thjlfo) is decreasing in all 677, ... 8¢9 for any t < T and j < t.57

6"We make the induction hypothesis that Vt(jl_ ?) is weakly decreasing in 6(Y),... 8 and show that, under
this hypothesis, th;fo) is also weakly decreasing in 61, ..., 5®). Since we have already shown that V:,(«};O)
is decreasing in all 61, ..., §(T=1  the result then follows. To show that Vt(j_o) is weakly decreasing in all
s ... 8+ we show that the argument of equation (28), max{Vt(_i;g) — 0=y, 0} +60De, 1{60¢ e, < 0},
is decreasing in 6(*=7) for all e,. Again there are two cases:

1. Case 1: e; > 0. In this case,
maX{Vt(j;?) — 60 Dep, 0} 4+ 6D 1{e, < 0} = max{‘/;gi;?) — ¢ Der 0},

which is weakly decreasing in 6*=7) under the induction hypothesis.

2. Case 2: e; < 0 In this case, letting u = —e; > 0, we have
max{Vt(_i;g) — 6t Deq, 0} + 6% De 1 {e; < 0} = maX{Vt(i;?) + 80y, 0} — ¢y = V(liq)

which is again weakly decreasing in 6(*~7) under the induction hypothesis.
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The fact that V;E]l-fo) is decreasing in all 679 ... 8¢9 for any t < T and j < t shows

that day ¢ compliance is also weakly decreasing in all §(7=% ... §® since one complies on
day t if e, < V;(jl_ ? ) (equation (23)). Hence, overall compliance C' from days 1,..., T, is weakly
decreasing in 6V, ..., 6"V for naifs.

Sophisticates know that, conditional on complying on all prior days, on day T they will
comply if e < M. Thus, equation (27) becomes:

VT(}[O) =K [(d(T_j)M — (5(T_j)eT) 1{er < M} + (5(T_j)eT]1{eT < O}‘el, . ,ej] j=1,....T
(29)

This is weakly decreasing in 8" %) since the argument is weakly decreasing in §Z=7) for all ey
1. e > 0: In this case, (d(T*j)M - 5(T*j)eT) 1{er < M} + 6T epl{er < 0} =
(dT=DM — §TDer) 1 {er < M}, which is weakly decreasing in 679
2. er < 0: In this case, (d7"DM — 6T er) 1{er < M} + 0T Derl{er < 0} =
(dT=DM — 6T Der) + 6T Ver = dT=9 M, which is invariant to 679,

Thus, VT(}J._O) is weakly decreasing in 677,
Sophisticates also know that, on day t < T — 1, if they have complied on all previous days,
they will comply if e; < Vt(jf ,? ) and so equation (28) becomes:

VD B [(V0 = 56 1 e < VED) 4 8Pt < 0)fr, )] =1t
(30)

Since we showed above that VT(}]._O) is weakly decreasing in 6("7) for all j < T, one can thus
use equation (30) and the same reverse induction argument as for naifs to show this implies
that V;E]l-_o) is decreasing in all §"=9) ... 6¢9) for all j < t < T.%% By the same argument
used for naifs, this then implies overall compliance C' is weakly decreasing in 6, ..., §T=1 for
sophisticates. O

Proposition 3 (Perfect Correlation, Threshold Effectiveness and Impatience Over Effort). Let
there be perfect correlation in costs across periods (e, = ey = e for all t,t'). For simplicity, let
8O <1 for allt >0 if S < 1 for any t. Fiz all parameters other than 6% for somet <T —1.

68 Again the induction hypothesis is that Vt(ifg) is weakly decreasing in 6(V),...,6®. One can then use
equation (30) to show that this implies that \QE;_O) is weakly decreasing in 61, ..., §(*) because the argument,

(‘/tgl_g) - 5<t—j)et) 1 {et < Vt(Jil_Jo)} 4+ 6t=De 1{e; < 0}, is weakly decreasing in 6, ..., 6® for all e;. There

are two cases::

1. e; > 0: In this case, (Vt(i;?) _ 5(t—j)et) 1 {et < Vt(i;;))} +0te1{e, < 0} =

(Vt(il_ ?) — =g )et> 1 {et < Vt(jl_ ?)} , which is weakly decreasing in 6~7) under the induction hypothesis.

2. e; < 0: In this case, (Vt(_&;;’) _ 5(t—j)et> 1 {et < Vt(il*?)} +6t=De1{er <0} = Vt(i;?), which is weakly
decreasing in 6*=7) under the induction hypothesis.

)

Since we have already shown that VT(’lj_O is weakly decreasing in 6(V),...,8(T=1 the result is thus shown.
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Take any threshold contract with threshold level K < T. Compliance and effectiveness in the
threshold contract will be weakly decreasing in §®).

Proof. We first examine compliance and then examine effectiveness.

To gain intuition for the compliance result, first think about a person who is fully patient
over both effort and payment: 6® = 1 and d® = 1 for all t. That person will comply on all
days if e < m/ (with m’ the per-day reward in the threshold contract) and on no days if e > m/.
In contrast, we now show that when people are impatient over effort, they often will comply
even when e > m/.

When people are impatient, there are two cases. The first (less interesting) case is where it
would be worthwhile for the agent to comply on at least K days in a separable contract paying
m': e < dT=E+Dm/ In that case, the threshold does not “bind” and the person just complies
on all days ¢ for which e < dT~m’. Compliance is just like in the separable contract paying
m’ and is invariant to 6.

The second (interesting) case is where the agent would not comply on at least K days in a
separable contract paying m’ (e > dT=E+D) /! ) and so the threshold “binds.” In this case, note
that agents will never comply more than K days total.®

A naif who is impatient over effort (i.e., for whom §®) < 1 for all £ > 0) will never comply
before day T'— K + 1 (i.e., before the last K days). In period T"— K + 1, the naif will comply

ifonday T'— K + 1:

T
o s IEE e < gD Ko/ (31)
t=T—K+1

Compliance on day T'— K + 1 is thus decreasing in 6% for all ¢ from 1 to K. If the naif complies
on day T'— K + 1, the naif will then comply on all future days. Hence, compliance is decreasing

in 6@ for all ¢ from 1 to K.
A sophisticate who is impatient over effort will always comply when a naif with the same
discount rates would. In addition, the sophisticate may comply before the last K days as well.”
To formalize the sophisticate’s conditions for compliance, consider all combinations of size
K taken from the days 1 through 7". There will be (;‘C) such combinations.”™ Order each com-
bination chronologically and index the ordered days as days j = 1, ..., K with values t; through
ty (e.g., if the combination is day 1 and day 3, then ¢; = 1 and t; = 3). A sophisticate will
comply exactly K times if, for any of the (17;) combinations, all of the following K constraints

690nce people have reached the threshold, they will only comply on the other days if they would have complied
on those days for a piece rate of m’ and, since the agent would not have complied K days in a separable contract
pay m’, there will be no additional days that satisfy that criterion after they have reached the threshold.

"OFor example, take the case where T = 3 and K = 2. There may be cases where the individual would not
find it worthwhile to comply on day 2, since (1 +6™))e > 2dm/, but would find it worthwhile to comply on day
1, since (1 + 6(2))6 < 2dm’. In that case, the sophisticate would comply on days 1 and 3.

"'Tn our example with 7' = 3 and K = 2, the combinations would be 1,3 and 2, 3.
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hold:

Z §ti—tx) e < dT=t6) [/ (32)

Since any of these constraints is weakly more likely to hold the lower any §%~*) the result is
thus shown for sophisticates as well.

Having shown that compliance in the threshold contract is weakly decreasing in 6, we now
just need to show that cost-effectiveness is not increasing in 6® and the effectiveness result
follows. To show this, we note that, in the perfect correlation case, regardless of 6, any agent
who complies on at least one day will always follow through to reach the threshold and achieve
payment. Payments will thus be m’C and cost-effectiveness will thus be # regardless of the
discount factors. This is invariant to 6®. m

Proposition 4. Let T' = 3. Let the cost of effort on each day be binary, taking on either a
“high value” (ey ) or a “low value” (er ), with ey > ey. Let agents observe the full sequence of
costs 1, e, e3 on day 1. Let 6 = 6 (i.c., let the discount factor over effort be exponential)
and let dY) = 1. Fiz all parameters other than 6. Consider a threshold contract with K = 2,
where the agent must thus comply on at least 2 days in order to receive payment. Compliance
and effectiveness in the threshold contract are weakly higher for someone with a discount factor
0 < 1 than for someone with discount factor 6 = 1.

Proof. We first consider different values of ey and e;. First, if ey < m/, then Zle w; = 3 for
all § and so the prediction trivially goes through. Second, if e;, > m/, then 2?:1 w; = 0 for
0 = 1. However, some people with § < 1 may walk in at least one period due to the standard
cost-bundling effect (e.g., if they have costs of e; every period and if e; + de;, < 2m/, then
they would walk twice). Thus, the prediction goes through in that case as well. We thus have
proved the prediction in the cases where ey < m' and e;, > m’ and so we next consider the
cases where ey > m/ and e;, < m/.

To prove the prediction, we examine all 8 potential sequences of costs and prove it separately
for each case. Note that we only consider the cases where ey > m’ and e;, < m’.

1. Cases 1 and 2: ey, er,er and ey, epy,ey. Since in these cases, costs are constant across
periods, the prediction goes through by using the same arguments as in the proof for the
case when costs are perfectly correlated across periods (Proposition 7b).

2. Case 3: ey, ey, er: Again, neither sophisticates nor naifs walk in period 1 but both walk
in period 2 and period 3 if ey + dep, < 2m’ (note that by the assumptions above, since
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er, < m/, they will always follow-through so there is no follow-through constraint). Thus
total compliance is decreasing in 0.

3. Case 4: ey, e, ey. Again, nobody walks in period 1. Sophisticates walk in periods 2 and
ifer +deg < 2m’ and eg < 2m’. Naifs walk in period 2 if ey +dey < 2m’ and in period
3 if they’ve walked in period 2 and ey < 2m/. Again, total compliance is decreasing in 9.

4. Case 5: ey, ey, ey. Sophisticates walk in period 1 if e, + 6%ey < 2m/ and they know they
will follow through (ey < 2m/). Naifs walk in period 1 if ey, + 6%ey < 2m/. Neither type
walks in period 2 since ey > m/. Both types walk in period 3 if they walked in period 1
and ey < 2m’. Again total compliance is thus decreasing in ¢.

5. Cases 6, 7, and 8: ey, ey, er; er,er,ey; and ey, er,er. All people, regardless of §, walk
in the two periods where the cost is ey, since e;, + ey, < 2m’. Nobody walks in the period
where the cost is ey since they know they will walk in the other periods and ey > m/.
Thus, the prediction (trivially) holds.

To prove the effectiveness part of the result, we examine sophisticates first and then naifs and
show that cost-effectiveness is non-increasing in 0 for both types. Sophisticates will always get
paid for every day they comply. Thus, regardless of 4, if compliance is non-0, cost-effectiveness
will be %, and hence non-increasing in . In contrast with sophisticates, naifs can sometimes
not receive payment for a day on which they comply. In case 4, naifs will walk on day 2 if
er + dex < 2m’ but not walk on day 3—and hence not be paid—if ey > 2m’. Those two
conditions are more likely to hold in conjunction the lower is §. Similarly in case 5, naifs will
walk on day 1 if e 482 < 2m/ but not receive payment if e > 2m/, which is again more likely to
occur the lower is d. Since having days of compliance that the principal does not have to pay for
increases cost-effectiveness, this means that the lower is J, the weakly higher cost-effectiveness
is for naifs.

Hence, since we have shown that compliance is decreasing in § whereas cost-effectiveness is
non-increasing (and in particular, flat for sophisticates and weakly decreasing for naifs), then

we have shown that effectiveness is also weakly decreasing in 6.
O

For sophisticates, we can also show a stronger result. In simulations with most realistic cost
distributions, this stronger result goes through for naifs as well.

Proposition 5. Let T' = 3. Let costs be weakly positive and let agents observe the full sequence
of costs ey, ey, e3 on day 1. Let 6 = 6 (i.e., let the discount factor over effort be exponential)
and let dY = 1. Fiz all parameters other than 6. Consider a threshold contract with K =
2, where the agent must thus comply on at least 2 days in order to receive payment. For
sophisticates, compliance and effectiveness in the threshold contract are weakly decreasing in
the discount factor §.

Proof. We begin by examining compliance and then turn to effectiveness. For the compliance

¢

result, we first define some useful notation. Let X; be the “walking stock” coming into period
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t (i.e., sum from period 1 to period ¢ — 1 of whether the person complied X; = Z:;} w;). Let
wy(X;) be a dummy for whether the person complies in period ¢ as a function of the walking
stock coming into period t.

To examine compliance, we work backward. In period 3, behavior will depend on the walking
stock Xjs:

w3(2) = ]1{63 < m'}
ws(1) = 1{ez < 2m'}
w3(0) = ]1{63 < O}
We show that the prediction holds by showing that it holds under all potential cases for es.

Case 1: m/ <e3 <2m’ In this case, walking in period 3 is

Note that this implies the person will never walk three times. Walking in period 2 is
w2(1) = ]]_{62 S (563}
wo(0) = 1{es + deg < 2m'}.

In period 1, consider two cases:

1. ey + deg < 2m/: she knows she will walk at least twice, and the only question is whether
to walk now or later. If e; < min{des, 0%e3}, then she will walk in period 1; if not, then
she will wait and walk in periods 2 and 3. Either way, she walks twice.

2. ey+dez > 2m': she knows she will not walk later, so she will walk if e; +min{dey, 6%e3} <

2m/’.

Thus we can see that when m’ < e3 < 2m/, overall compliance is as follows:

2 if eg + deg < 2m' OR ey + omin{es, dez} < 2m/
Days walked =

0 otherwise.

Thus, compliance is obviously decreasing in §.

Case 2: e3 > 2m’ In this case, the person will never walk in period 3 regardless of the walking
stock. Thus, overall compliance is as follows:

2 if e; + dey < 2m’ AND ey < 2m/

Days walked =
0 otherwise.

This is again decreasing in 9.
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Case 3: e3 <m’ In this case, walking in period 3 is

There are two cases to consider for es:

1. eo <m/': in this case (for 6 < 1), discount rates do not matter since the person will walk
regardless in periods 2 and 3. Then they walk in period 1 if e; < m/.

2. e; > m’: in this case, the person will not walk in period 2 with walking stock 1. Thus,
the maximum the person will ever walk is two periods (the first or the second and then
the third).

2 if (eg + 0%e3 < 2m/ & ez < 2m’) or (eq + dez < 2m’ & ez < 2m/)

Days walked =
0 otherwise.

Thus days walked is again weakly decreasing in 9.

Thus, we have shown the compliance portion of the result, as we have shown that compliance
is weakly decreasing in ¢ for all potential values of es.

To prove the effectiveness part of the result, note that sophisticates will always get paid for
every day they comply. Thus, regardless of ¢, if compliance is non-0, cost-effectiveness will be
%. Hence, since compliance is decreasing in § whereas cost-effectiveness is non-increasing, then

effectiveness is also decreasing in 0.
O

H.2 Proofs of Section B.5 Propositions

We now provide the proofs for Propositions 6-8b.

Proposition 6. Let d =1 and T = 2. Fiz all parameters other than 0, and take a linear contract that

induces compliance C > 0.

(a) If agents are naive and ey is weakly increasing in ey, in a first order stochastic dominance sense,”

then for sufficiently small &, there exists a threshold contract with K = 2 that has at least two times

higher cost-effectiveness (and 1+ % times higher cost-effectiveness if costs are 1ID) and that generates

compliance % of the linear contract.

(b) If agents are sophisticated and costs are IID, then for sufficiently small 0, there exists a threshold

contract with K = 2 that has at least 1+C' times higher cost-effectiveness and that generates compliance

1+C
2

at least of the linear contract.

Proof. Take a linear contract with payment m that induces compliance C' > 0. Equation (12) implies
that compliance in a linear contract is C' = = Zthl F(d™=Ym), which simplifies to C' = F(m)when
dT=% =1 . Recall that the cost-effectiveness of a linear contract is L (see Section B.2).

"2Note that this assumption flexibly accommodates the range from IID to perfect positive correlation, just
ruling out negative correlation.
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(a) Naifs: Consider a threshold contract that pays M = m+e. On day 1, the naive agent thinks that,
conditional on complying on day 1, she will comply on day 2 if des < M. The perceived probability of

day 2 compliance conditional on day 1 compliance is F62|el(m3‘5). For 6 ~ 0, I, (mgLa) ~ 1. Hence,
for § ~ 0, on day 1, the naive agent will comply if e; +0 E[ea|e1] < m+¢; the probability of effort on day
1 thus approaches F'(m) as 6 — 0, — 0. Conditional on complying on day 1, the probability of compli-
ance on day 2 then approaches Fg, ¢, <, (m). This is equal to F'(m) if costs are IID and is weakly greater
than F(m) under our more general assumption that ey is weakly increasing in e;. Overall compliance
is thus equal to 0.5(F(m) + F(m)Feyje, <m(m)) = 0.5(C + CFyje,<m(m)) = 0.5C(1 + C). Expected
payment per period then approaches 0.5mF (m)Fe,jc; <m(m) = 0.5mCFe, e, < (m). Cost-effectiveness

thus approaches % (1 + 5 )) > 2/m. This means the contract generates compliance of at least

e2|el<m(m

(1+ C)/2 times that of the linear contract and has at least 2 times higher cost-effectiveness. If costs
are [ID, Fe, ¢, <m(m) = F(m) = C, and so cost-effectiveness approaches L (1+ 1), whichis1+1/C
times larger than the cost-effectiveness of the linear contract.

(b) Sophisticates with IID costs: Now consider a threshold contract that pays M = m/p’ + ¢ for p/
defined as a fixed point to F(m/p’) = p’. The intermediate value theorem tells us that such a solution
exists for p’ € [C, 1] because F is continuous, F(m/1) <1, and F(m/C) > F(m) = C.

Under this threshold contract, conditional on working in the first period, the probability of working
in the second period is F(M) = F(m/p' +¢) > F(m/p') = p/, with F(M) ~ p’ for ¢ ~ 0. Hence,
the expected payment conditional on working in the first period is M F(M) > %p’ = m, with this
payment approximately m for € ~ 0. Therefore, for § ~ 0, the probability of effort in the first period
is at least C'= F'(m), and approaches F'(m) for ¢ — 0,6 — 0.

Taking ¢ — 0 and then § — 0: Total compliance in this contract is approximately %(F (m) +
F(m)F(M)) = 3C(1 +p'), with 2C(1 +p') > LC(1 + C) since p’ > C. Payment per period is
approximately %M Cp', with C the probability of working in the first period and p’ the probability of
working in the second period conditional on working in the first period; we have %M Cp ~ %%Cp' =
$mC. Hence, cost-effectiveness is approximately (3C(1+p'))/(3mC) = (1+p')/m > (1+C)/m. O

Proposition 7a (Perfect Correlation, M = 2m). Let T = 2. Fizx all parameters other than 6. Consider
a linear contract with payment m and a threshold contract with payment 2m. Then, regardless of agent
type, the threshold contract is more effective than the linear contract if 6 < 2d—1. If § > 2d — 1, then
the linear contract may be more effective.

Proof. As before, with perfect correlation, the agent takes effort either in both periods or in neither
of a threshold contract. Thus the cost-effectiveness of the threshold contract will be 1/m and is thus
the same as the cost-effectiveness of the linear contract. Therefore, whichever contract has higher
compliance will be more effective. On day 1 of the linear, the agent complies if e; < dm, and on
day 2 if e < m, and so compliance in the linear contract is 3 (F(dm)+ F(m)) < F(m). In the
threshold contract, on day 1 (and consequently day 2) the agent complies if e;(1 + §)d2m, and so
compliance is F' (%m). Thus, if %m > m (i.e., if 6 < 2d — 1), the threshold contract has higher
compliance (and hence effectiveness) than the linear. If that is not true, then the linear could have

higher effectiveness. 0

Proposition 7b (Perfect Correlation). Let T' = 2. Fix all parameters other than §, and take any
linear contract that induces compliance C' > 0. Let there be perfect correlation in costs across days
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(e1 = e2). Then, regardless of agent type, there exists a threshold contract that induces compliance of
d
1+6
Hence, if § < 2d — 1, the most effective contract will always be a threshold contract.

at least C' and that has approrimately 2 times greater cost-effectiveness than the linear contract.

Proof. With perfect correlation, the agent takes effort either in both periods or in neither of a threshold
contract. Therefore, as long as the agent ever exerts effort, the cost-effectiveness is equal to 2 divided
by the threshold payment.
Suppose a linear contract paying m induces C' > 0 and has cost-effectiveness % Note that, because
C = 1(F(dm) + F(m)), this implies that F(m) > C.
Consider a threshold contract with payment M = m%‘s. Note that this contract will have cost
d d

effectiveness of QW’ which is 2 149)

(and consequently day 2), the agent complies under the threshold contract if e;(1 4 0) < dM (where

times the cost-effectiveness of the linear contract. On day 1

the left side comes from the fact that e; = es). With payment M = ml%“s, the agent thus complies if
e1 < m. Thus, the threshold contract achieves compliance of F'(m) > C. O

Proposition 8a (IID Uniform, M = 2m). Let d = 1. Fiz all parameters other than 6. Let costs be
independently drawn each day from a uniform[0,1] distribution. Take any threshold contract paying
M < 2 and compare it with the linear contract paying m = %

(a) If M < 1, the threshold contract is always more cost-effective, but whether it has higher compliance
(and hence whether it is more effective) depends on 6. There is a type-specific “cutoff value” such that
if 0 is less than the cutoff value for a given type, then the threshold contract is more effective, as it
generates greater compliance.

(b) If 1 < M < 2,™ then the threshold contract is more effective.

Proof. Note that we take the general solution for compliance and payments for threshold contracts
from the proof for Proposition 8b.
For a linear contract with payment level %, we have:

M
C="=—
2
M2
P="—
4
c 2
P M
M M2
E=)——-"—
2 4

Now we consider multiple cases for what the threshold contract compliance and payments would
be depending on the parameters.
(a) 0 < M < 1 We begin with naifs and then move to sophisticates. For naifs, there are two cases:

Case 1: M < ¢ for Naifs In this case, Elesles < M /5] = 3%, giving that
M M  M?

= (M=055)5 =55

"3Note that the principal would never pay M > 2 since M = 2 achieves 100% compliance regardless of 6.
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Thus,

Thus, cost-effectiveness is:

and effectiveness is: ) 5 .
M M M

EF =5\ —++—

[ 25 % }

The threshold has higher cost-effectiveness if:

2 < 1+ M

M M?

This holds if 2M < 1 + M which is always true for M < 1. Thus, the threshold is always more
cost-effective in this case.

The threshold has higher compliance if:

which simplifies to

This expression is not satisfied because M < §. Therefore, in this case, the threshold has lower
compliance, and may have lower effectiveness. In fact, for M < §, whether the threshold has higher
effectiveness depends on A, the principal’s marginal return to compliance: the higher A, the more likely
the threshold is to have higher effectiveness. Thus, in this range of relatively large 6 we are above
the cutoff value for naif types, and it is possible that the threshold will have either higher or lower
effectiveness.

Case 2: § < M for Naifs Because M > Jes,

et = E[(M — des)1{M — dey > 0}] = E[M — e] = M — 6/2

Thus,
C = 5HM-6/2) 1+ M)
P = .5(M—6§/2)M?
giving cost-effectiveness of
c_1+M
P M2

and effectiveness of
E = 5XM —6§/2)(1 4+ M) — .5(M — 6/2)M>.
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The cost-effectiveness of the threshold contract is the same as in case 1, and so the threshold
contract is again always more cost-effective.
Compliance of the threshold contract is higher than in the linear if:

0
SM < 5(M — 5)(1 + M)
which simplifies to:

M<(M—§)(1+M)

M<M(1+M)—§(1+M)

5
M<M+M2—§(1+M)

)
0<M2—§(1—|—M)

g(1+M) < M?

2M?
1+ M

o<

Note that, for M < 1, it is always true that % < M.
Hence we can see that % is the cutoff value for naifs. For naifs, if § < % and M < 1, the
threshold will always be more effective than the linear contract.

For sophisticates, there is just one case:

Case 3: M < 1 for Sophisticates In this case,

ef = (M — 5]\24) M = M?*(1-6/2)

Thus,
C = 5(M*+M*(1-4/2)
P = 5(MYH(1-6/2)
Thus, cost-effectiveness is:
g 1+ M
P M2

The cost-effectiveness of the threshold contract is the same as in cases 1 and 2, and so, again, the
threshold is always more cost-effective.
The compliance of the threshold contract is higher if:

BSM < 5(M? + M?)(1-6/2)
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which holds if all of the following hold:

1< (M+ M?)(1-6/2)
1
M + M?

0<2—

<1—-0/2

M + M?2

Thus, the cutoff value for sophisticates is 2 — W Ifé<2-— the threshold contract is

2
M
more effective. For larger §, the linear contract may be more effective.

(b) 1 < M < 2 Here naifs and sophisticates behave the same and there are two cases.

Case 4: 1< M <1+ 5/2 In this case, because M > des and M > e
el =M—§/2
Because M —§/2 < 1,

C = (M-65/2

P = 5M(M-4§/2)
giving
c_2
P M

This is the same cost-effectiveness as the linear contract. Hence, whichever contract has higher
compliance will have higher effectiveness. Threshold compliance will be higher if:

M/2 < (M-46/2)
§/2 < M/2
6 < M

which is always true assuming that 6 < 1, since M > 1. Hence the threshold is always more effective.

Case 5: 14+6/2 < M < 2 Again, because M > deg and M > ey

e1=M-4/2
Because M —6/2 > 1,
cC =1
P = o5M
giving
c 2
P M

60



which is again the same as the cost-effectiveness of the linear contract. Hence, the threshold will have
higher effectiveness if it has higher compliance, which is true if

M/2 <1,
which will always be the case for M < 2. Hence, the threshold is always more effective. O

Proposition 8b (IID Uniform, Optimal Contracts). Let d = 1. Fix all parameters other than 0. Let
costs be independently drawn each day from a uniform[0,1] distribution. Whether the most effective
threshold contract is more effective than the most effective linear contract depends on § as well as X,
the principal’s marginal return to compliance. For a wide and plausible range of values of \,”* there
exists a “cutoff” value of § such that the threshold contract is more effective when § is below the cutoff,
and the linear contract is more effective when § is above the cutoff. For the remaining values of A,
either the threshold contract is always more effective, or the linear contract is always more effective,
but in either case the effectiveness of the threshold relative to linear is decreasing in §.

Proof. We begin with a more precise statement of the result, before proceeding to prove the result.
Specifically, the following describes how the effectiveness of optimal threshold contract relative to the
optimal linear one depends on the value of § in different ranges of A values:

(a) Naifs for 0 < A < 0.225, and naifs and sophisticates for 0.225 < A < 1 and 3 < A < 2+ V2.
In these cases, there is a “cutoff” value of § such that the threshold contract is more effective
when ¢ is below the cutoff, and the linear contract is more effective when ¢ is above the cutoff.

(b) Naifs and Sophisticates for 1 < A < 3. In this case, the threshold contract is more effective than
the linear contract for all §, with the gap decreasing in .

(c) Sophisticates for A < 0.225 and naifs and sophisticates for A > 2 + /2. In this case, the linear
contract is always more effective, with the gap increasing in 4.

To prove the result, we begin by calculating the optimal linear and threshold contracts. For both,
we proceed in two steps: we first solve for the compliance, effectiveness, and cost-effectiveness of any
given linear or threshold contract, and then we solve for the optimal contract. Finally, we compare
the optimal linear and threshold contracts within different ranges of .

Linear Contract Compliance and Effectiveness: Consider a linear contract with payment
level % Substituting this into the formulas from Section 2, we have the following values for compliance,
daily payment, cost-effectiveness, and effectiveness, respectively:

M
C==
2
2
p_ M
4
c 2
P M
M M2
E=)\——-"—
2 4

74 See the beginning of the proof for specific ranges for both naifs and sophisticates.



Optimal Linear Contract: We want to choose the payment level to maximize contract effec-
tiveness. The first-order condition for maximizing effectiveness is:

9B A _M_ o
oM 2 2

Denoting the arg max as M™*, the payment level in the optimal linear contract is thus:
ML* =\

and the effectiveness of the optimal linear contract (which we will denote as EX*) is:

EL* :)\ML* B ML*2
2 4
A
T T2 4
)\2
4

Threshold Contract Compliance and Effectiveness: We begin by solving for compliance,
payments, and effectiveness in a two period threshold contract with payment level M. In the two-
period IID threshold case, the agent complies in period 2 if they complied in period 1 and ey < M.
Moreover, equation (10) implies that the agent will comply in period 1 if:

e < E[(M — 562)w271|w1 = 1]. (33)

Let ef = E[(M — dez)wz 1|wy = 1] be the maximum effort cost that results in compliance. For
naifs, for whom wg 1|(“1=1 = 1{M — dey > 0},

E[(M — §e2)1{M — ey > 0}]
E[M — deg|dea < M| x Prob(dea < M)
= (M —dElez|ez < M/S])F (M)

e

For sophisticates, for whom ws |(*1=Y = 1{M — ey > 0},

el = E[(M — dea)1{M — ez > 0}]
E[M — dez|ea < M| x Prob(ea < M)
= (M — §Eleslea < M])F(M)

Compliance and payments are functions of ej:

C = 5[F(e]) + F(e])F(M)]
P = 5MF(ej)F(M)

Effectiveness depends on the size of M and §. When 0 < M < 1, we explore two cases for naifs
and a single case for sophisticates based on the relative size of §.:
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Case 1: 0 < M < é < 1 for Naifs In this case, Elesles < M/5] = 2%, giving the following

values for ej, C, and P :

. M M
€1 (M_dﬁ)?
M2
TS
M? M3
¢ 5[%%5}
M4
P —_ .5%

Thus, cost-effectiveness and effectiveness, respectively, are:

¢ _1+M
P M2
and ) 5 .
M M M
E=05\—+4—|—-5—
g [25+25} QY

Case 2: 0 < 0 < M < 1 for Naifs In this case, because M > dey, the value e] is:
el = E[(M — de2)1{M — ey > 0}] = E[M — dea] = M — /2
This yields compliance and payments of:

C = 5(M—5/2)(1+ M)
P = .5(M—§/2)M?

This gives cost-effectiveness and effectiveness, respectively, of:

¢_1+M
P M2

and
E = 5 XM —6§/2)(1 4+ M) — .5(M —6/2)M?.

Case 3: 0 < M < 1 for Sophisticates In this case, the value e] is:
M
ef = (M - 52> M = M?*(1-6/2)

So compliance and payments are:

Q
|

B(M? + M?)(1—-6/2)
P = 5MYH1-5/2)
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and cost-effectiveness and effectiveness, respectively, are:

C 14+M
P M2

and
E = 5\M? + M3)(1—-5/2) — .5(M* (1 —§/2).

For larger values of M, such that 1 < M < 2, naifs and sophisticates behave the same way. We
consider two more cases.

Case 4: 1 < M < 1+ /2 for Naifs and Sophisticates In this case, because M > dey and
M > eg, the value e] is:
e1=M-4/2

Furthermore, because M — §/2 < 1, compliance and payments are:

C = (M-5/2)
P = 5M(M-5/2)

giving cost-effectiveness and effectiveness, respectively, of
c_2
P M
and
E=XM-46/2)— .5M(M —6/2).

Case 5: 1+ 6/2 < M < 2 for Naifs and Sophisticates Again, because M > dey and
M > es, the value e] is:
e1=M-4/2

Because in this case M — §/2 > 1, compliance and payments are:

c =1
P = O5M

giving cost-effectiveness and effectiveness, respectively, of

c_2
P M
and
E=)\— 5M.

Having solved for compliance, payments, and effectiveness for naifs and sophisticates and for all M
between 0 and 2, we now derive the payment level of the optimal threshold contract, which we denote
as M™%, and its effectiveness, which we denote as ET*. We first consider sophisticates and then naifs.
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Optimal threshold contract for sophisticates:

Aggregating cases 3-5 above, we have that effectiveness for sophisticates is as follows:

B(1—6/2) ( MM?*+ M%) —M*Y) if M<1
E={ XM —5/2)— M?/2+6M/4 if 1<M<1+6/2
A— M/2 if 1+8/2<M

The derivative of effectiveness with respect to the payment level M is:

op B5(1—6/2) (A2M +3M?) —4M?) if M <1
W: )\—M+(5/4 1f1§M<1+5/2
—1/2 if 1+6/2<M

The payment level of the optimal threshold contract, M™*, will set this derivative equal to zero.
Note that if 1+0/2 < M, it follows that g—]\Fj[ < 0 (since M = 1+ 6/2 achieves full compliance). Hence,
MT* is always smaller than 1+ §/2. However, the exact value of M7* depends on the value of \. We
consider three cases, (A) - (C).

Case A: A\ >1+4§/4
In this case, we have that %IISMQH/Q =A-M+6/4>0for1 <M < 1+§/2. In addition,
g—ﬁ|M<1 = 5(1 — §/2) (\(2M + 3M?) — 4M?) is always positive.”” Combined with the fact that
gTJZ|M>1+6/2 < 0, the optimal payment is:

MT*|)\>1+6/4 =1 + 6/2
and the effectiveness of the optimal threshold contract is
ET 1 )2
=A—.5-4/4

Case B: A<1—-§/4
In this case, g—ﬁ|1§M<1+6/2 =A—M+4/4<0foralll <M <1+§/2. Recall that g—ﬁ|M>1+5/2 <0
in all cases. Hence 3—5|M >1 < 0, which implies that the optimum must have M < 1.

We hence set the g—]\E/I|M <l =0, which yields:

S—EWG = .5(1—6/2) (\2M + 3M?) —4M?) =0

which implies

A2M +3M?) —4M3 =0

"5This is because, given A > 1, the function A(2M + 3M?) — 4M? increases at M = 0 and is never 0 in (0,1].
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or that
M2+ 3M) —4M? =0

The solution to this quadratic is:

3 9 1
M=XS+/=+=
)\<8+ 64+2/\>

This M falls in the region M < 1 whenever A < 2. When A > 2, 2£|M<1 > ( for all M < 1, which

(combined with the fact that g—ﬁ]M >1 < 0) implies that the optimal M must be at the “kink point”

where M=1:
MT*|)\<176/4 &A>4/5 _

Note that having A > % while A < 1 —§/4 implies a relatively low 0.
Thus we have:

MT*|>\<1—6/4: A<%+ 6%—1—%) if A<4/5&N<1—-4/4

1 if A >4/5&A<1—6/4

This implies that maximized effectiveness when \ < 4/5 is:

BT P10 EASS 51 5/2) (A(M2 + M?) — M) M=A(REras)

2
1 3 1 32 3 15 1 32 1 32
= (2 5)<8+8 9+)\>)\<4+)\<16+16(9 A>+8 9+A>>

When A\ > 4/5, maximized effectiveness is:

A<1—6/4 & A\>4/5 _ )\(M B 5/2) N M2/2 + 5M/4‘M:1

=A1-8/2)—1/2+6/4
= A—1/2 - 8(\/2 — 1/4)

ET* |

Note that both of these are decreasing in ¢ (where the latter holds because A\/2 —1/4 > 0 when
A>4/5.

Case C: 1 —6/4 < A < 1+§/4 In this case, we have that J&[1SM<I+0/2 = X — N +§/4 = 0
somewhere in the region of 1 < M < 1+ §/2—that is, there is a local max in this region.

There are two subcases.

Subcase C(i): 1 -§/4<A<1+d/4and A >4/5
If A >4/5, then g—fl|M<1 > (0, which means that the optimum must be the local max in the region of
1<M<1+46/2.

We thus solve for this local maximum by finding the M at which g—ﬁ\lgM <1H9/2 5 0
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which implies that
M*=X+4§/4

which means that

ET*‘1_5/4<>\<1+6/4 & A>4/5 _ )\(M* . 5/2> _ M*2/2 4 5M*/4
=AA+6/4—03/2) — (A +6/4)*/2 4+ 5(N+5/4) /4
= A2 N5/4—N2/2 = N5/4 —62/324+ N5 /4 + 6%/16

= \2/2 — \5/4 + 6%/32

Note again that this is decreasing in ¢ for all A > 4/5 and § < 1.7

Subcase C(ii): 1 —d§/4<A<1+d/4and A <4/5
In this case, there are two local maxima: one when M < 1 and one when 1 < M < 14 6/2. The global
maximum thus is the larger of those two values:

ET* = max{)\2/2 — \3/4 + 62/32,

2
1 3 1 32 15 1 32 1 32
— (92— 4z oz 314 4 - [g_22 - o2
16( 5)<8+8 9+)\>)\<+)\<16+16<9 )\>+8 9—1—)\))}

We next aggregate the cases into a single solution for the effectiveness of the most effective threshold
for sophisticates as a function of §. We then compare the most effective threshold and linear contracts
as ¢ changes. However, the solution function depends on .

Threshold vs. Linear Effectiveness with \ > 4/5.

When A > 4/5, we aggregate the effectiveness function of the optimal threshold contract from
cases A-C as:

A—=1/2—=6(\/2—-1/4) if A<1—-4/4
ET*P24/5 - A2/2 — N5 /4 + 62/32 if 1-90/4<A<1+4/4
A—5—-4/4 if A>1+4/4.

We can rewrite effectiveness more transparently as a function of §. If 4/5 < XA < 1, we have:

pre_ [AT1/2-00/2-1/4) i 5 <41 =)
S\ AZ/2-N5/4462/32 i 6> 4(1—))

and if 1 < A, we have

BT _ N2/2 —\6/4+0%/32 if § >4\ —1)
A—.5—65/4 if §<4(A—1)

"6This is because the function —\/4 + §/16 is negative for all A > 4/5 as long as § < 16/5.
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Note that each of these functions is continuous in §. Moreover, because each segment is decreasing
in 4, we achieve the important result: % < 0. That is, the effectiveness of the most effective
threshold contract is decreasing in 4.

Now we compare the effectiveness of the optimal threshold and linear contracts in the region
A > 4/5. First consider the case where 4/5 < A < 1. For § < 4(1 — \), ET* > E* would require
o> %, but this value is greater than 4(1—\) for 4/5 < XA < 1. So the linear contract is always
more effective if § < 4(1 — X). For § > 4(1 — \), in order for ET* > EL* = \2/4, it would require
that A\2/2 — A\6/4 +62/32 > X2/4 or § < (4 — 2v/2)\. Since (4 — 2v2)\ > 1 if X > 4_;ﬂ ~ 0.85, the
threshold contract will always be more effective for A > 0.85 and § > 4(1 — A). And then for A < 0.85,
which contract is more effective depends on the exact value of 6.

In case where A > 1, if § > 4(\ — 1), ET* > EX* would require § < (4 — 21/2)), which is always
true for A > 1. If § < 4(A—1), ET* > EX* would require § < —\2 44\ —2. This holds for all § € [0, 1]
if A <3, for some § if 3< )\ <2+ 2, and no § if A > 2+ 2.

Threshold vs. Linear Effectiveness with A\ < 4/5 Now, we write the effectiveness of the

optimal threshold contract as a function of A and § when \ < 4/5.

2
Let g(A):%<§+§,/9+3—5> A3 <4+/\(}—2+1—16(— —%)+§,/9+%>).Thenwe have

(2—-6)E(N) if A\<1—9/4
max{(2 —8)EN),A2/2 — N5 /4 + 52/32} if 1—-0/4<\

ET*|)\<4/5. _

or equivalently:

(2-08)eN) if §<4(1-\)

ET*|)\<4/5. —
max{(Z —8)EN),A2/2 — N6 /4 + 62/32} if 41-X)<$§

If A\ < 0.75, then § < 4(1 — \) and so we have the ET* = (2 — §) £(\). This function is continuous
and decreasing in 9.
Threshold effectiveness will in this case be higher than linear if

(2 —8)E(N) > \?/4.
This implies that threshold effectiveness is higher if

)\2

5<2—4§(/\).

Since the function 2 — %&) is negative for A < 0.225, the linear contract is always more effective
for this range of A. For A > 0.225, there is a cutoff value for § where the optimal threshold contract
is more effective for § below the threshold.

If 0.75 < A < 0.8, we need some additional analysis on the function E7*. Both (2 — §) £()\) and
A2/2 — M\§/4 + 62/32 are continuous for § € [0,1], and ET* is continuous at § = 4(1 — \) since
(2—8)&(N) > A2/2—X6/4+62/32 at 6 = 4(1 — A). Also the maximum of two continuous functions is
continuous, so ET* is continuous in §. Then if ET* > E* when 6 = 0 and ET* < EL* when § = 1,
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there is some threshold value of ¢ for which the linear and threshold contracts will have the same
effectiveness, and above that the threshold will have higher effectiveness and below that the linear
will. This is true as long as A > 0.225, which holds for all A in this interval. So again there is a cutoff
value for § below which the threshold contract is more effective.

Optimal threshold contract for naifs: Again using the formulas from the proof of Proposition
8a, we have that effectiveness is as follows:

SANM —6§/2)(1+ M) — 5(M —6/2)M? if § <M <1
E=qMNM~-6§/2)— M?/2+5M/4 if 1<M<1+6/2
A—M/2 if 1+06/2<M

The derivative of effectiveness w.r.t. M is hence:

0.51 A+ 3L2] - A2 if M <6
OF ) —0.5M? +0.5M(1+ M)+ 0.5M(—(6/2) + M) — M(—(6/2) + M) if § <M <1
OM ) A— M 16/4 it 1< M <145/2
~1/2 if 14+6/2<M

Note that this is the same as sophisticates when M > 1.

Again we derive the payment and effectiveness of the optimal contract based on the value of A.
We consider two cases, (D) and (E).

Case D: A > 4/5
When A > 4/5, g—ﬁ > 0 for all M <9, and we have the following cases:

o If \ > }:g:g?i, g—ﬁ > (0 for all M < 1 and the sophisticate results go through. Note that

A > % implies A > 1 —§/4.

. If)\<1—%,>\< %. g—fl < 0 for M > 1 and also for some M € (4,1), so there is an

optimum in (J,1) and it is global, so the sophisticate results go through as well.

eIf1-9 <A< %ﬁﬁ
the global optimum is the maximum between the two. Also threshold efficiency is decreasing in
d for a given A, and increasing in A for a given §. Also, at A = 4/5, there is a cutoff value of
0 when linear contract becomes more effective. So we can let § = %, and solve for the A
value such that E7* = EZ*, and the solution is A = 0.81. So there is a cutoff value of § for when

linear contract becomes more effective if A < 0.81; otherwise the threshold contract is always

there are two local optima, one in (d,1) and another in [1,1 + 3), so

more effective.

Case E: A <4/5
From the discussion of sophisticates, we know in this case that if A < 1 —¢/4, the optimum will have
M < 1;if 1 —6/4 < X < 4/5, there will be another local optimum in [1,1 + 6/2), and the global
optimum will be the maximum between the two. Explicitly, in case A < 1 — §/4, we have

3AHy/ 22420
T e if M* <6

AL6/244/A2—Loatars 82
/ 2 L 9f M* >0

3
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A6/24+1 /A= Lor3at

3 9
Let 6* = L/ 12

5 . This turns out to be the solution for § = B , S0 we have
3+ 22422 . .
M* o P} if 6 2 )
) a2 /a-leagsar el
[V Loif 5 <o
So
M*Q M*3 M*4 .

BSAM* —§/2)(1 + M*) — 5(M* —§/2)M*? if § < §*

When 1-§/4 < X\ < 4/5, there is another optimum at M = A+4§/4 € [1,14J/2). For simplicity, let
E; = .5\ [MT; + MTSS] — ML By = SA(M*—8/2)(14+M*)— 5(M*—6/2)M*2, and E3 = 1A -2 &
which is A\(M — §/2) — M?/2 + 6 M /4 evaluated at A\ + §/4. We have

BT maX{El,Eg} if § > 6"
| max{E, B3} if § <6

We know that ET* is continuous in § since the maximum of a function is continuous in the parameter
if it is maximized on a compact domain, and in this case we are considering M € [0,1 + 6/2]. So we
can compare ET* and EX* by analyzing their values at § = 0 and 6 = 1. If ET* < E™* at one endpoint
and ET* > EL* at another, we can conclude that there is a cutoff 6 where threshold contract becomes
more effective beyond.

If § =0, then E = 0.5A(M — 6/2)(1 + M) — 0.5(M — §/2)M?. This function is maximized on
the region from 0 < M < 1 (e, 9 = 0) when M = 1 (3+2X+ V&7 + 12X = 200+ 43%). The
corresponding maximized value of effectiveness is greater than the effectiveness of the optimal linear
contract, A2/4, when 6 = 0, for all A > 0.

If § =1, then F = max{E, E3}, which is less than the effectiveness of the optimal linear contract,
A2 /4 for all \.

Hence, we have that maximized effectiveness from the threshold is greater than maximized effec-
tiveness from the linear, ET* > EL* when 6 = 0, while the opposite is true, ET* < EL* when ¢ = 1.
Since maximized effectiveness is continuous in 8,7 this implies that there is a cutoff 6 for which the

effectiveness of the optimal threshold is the same as the effectiveness of the optimal linear, and that
the effectiveness of the optimal threshold is above the linear for § below the threshold (and vice verse
for § above the threshold).

O

H.3 Supporting Propositions for Section B.7 Discussion

We now present and prove the propositions described in Section B.7.

Proposition 9 (Adding discounted health benefit). Let d® =§ for all t > 1 and let dV = 1 for
all t. Let there be perfect correlation in costs across days. In addition, assume that, in addition to a
present cost, compliance has a future benefit b that the participant discounts with the discount factor

""This follows because .5\ [4 + 37| — 53 = 5A(M — 6/2)(1+ M) — 5(M — 6/2)M? when M = 6.
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over effort, §. Fix all parameters other than . Take any threshold contract with threshold level K =T
and threshold payment m'T. Take any linear contract with daily payment m < m/T.

(a) If m" > %,78 compliance in the threshold contract is decreasing in 6. Because compliance in
the linear compliance is increasing in d, compliance in the threshold relative to linear contract

is decreasing in 9.

(b) If % >m' > 17(1T—5),79 then compliance in the threshold contract is increasing in 0. Whether

compliance in the threshold relative to linear contract is decreasing or increasing in & depends
on the parameters of the cost distribution.

Proof. For notational simplicity, denote the threshold payment m'T as M. In period 1, the participant
will comply if (a) the present discounted benefits outweigh costs, and (b) they expect to follow-through
in all future periods. In period 1, condition (a) requires:

e—0b+ (T'—1)(de —db) < M (34)
e+0(T—1)e<dTb+ M (35)
0Tb+ M (36)

CSTrT-1)e

In period j, condition (a) requires:

e—0b+ (T — j)(de — 0b) < M (37)

e+0(T—jle<do(T—j+1)b+M (38)
S(T—j+1)b+M

T+ (T - ) %)

Because people sink costs as they go but the marginal incentive M remains constant, under relatively
broad conditions, people will be more likely to want to comply (i.e., condition (a) will be more likely
to hold) if j increases. Specifically, condition (a) will hold in period j + 1 if it holds in period j as long
as M > b(1 — §).80

Thus, assuming M > b(1—¢), compliance will be 100% if e < %, and 0% otherwise. For the
b(l—é))

remainder of the proof, for simplicity, we thus assume M > b(1—6) (or, alternatively, that m > ==

"8Equivalently, if m’ > ﬁ, since T = K.

"Equivalently, if ﬁ >m' > @. The final case, where m’ < @, is more complex to analyze as
participants no longer necessarily comply in all periods if they comply in the first.

80 We show here that the threshold from equation 39 for period j will be less than the corresponding threshold

for period j 4+ 1 if M > b(1 — §). That is, we want to show that the following inequality holds if M > b(1 — §):

T —j+0b+M _ 8T —j)b+ M
1+ (T—j)6 1+(T—j—1)8

Since 0 < 0 <1 and j < T, both denominators are positive, and so this becomes:
BT —7+Db+ M1+ (T —57—1)08 <[6(T—75b+ M][1+ (T —35)d] (40)
Expanding the left side of equation 40:
(T -7+ 1)b+ ML+ (T—j— 1)
=0T —j+1b+0*(T—j+1)(T—5—1)b+M+MT—j—1)5
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and hence parts (a) and (b) of the proposition only address the case where M > b(1 — §).

Defining
0Tb+ M

) = —————
1(9) 1+ (T -1)6
as the cutoff value as a function of §, we first check whether the cutoff value is increasing or decreasing
in 9.
Using the quotient rule:
To- 1+ (T —1)0] = [6Tb+ M]- (T —1)

O [+ (T = 1)o] (41)

Expanding the numerator:

Tb[1 4 (T —1)8] — [0Tb + M|(T — 1) (42)
=Tb+TH(T —1)5 — 6TH(T —1) — M(T — 1) (43)
= Tb+ T?*b6 — Tbh6 — 6T?b + 6Tb — M(T — 1) (44)
=Tb— M(T —1) (45)
Therefore:
f’((S):Tb_M(T_l) (46)

1+ (T —1)d]?

For f'(9) < 0, we require the numerator to be negative (as the denominator is always positive):

Tb— M(T—1) <0 (47)

Expanding the right side of equation 40:

[0(T = j)b+ M][1 + (T — j)d]
=8(T — §)b+6*(T — j)*b+ M + M(T — j)o

Substituting back into equation 40:
S(T—§+10)b+6*(T—5+1)(T—j—1)b+M+MT—j—1)5
<8(T — )b+ 6*(T — §)*b+ M + M(T — j)§
Rearranging and cancelling like terms:

OB((T =5 +1) = (T = )] + (T = j + 1)(T = j = 1) = (T = 5)]
+MS[(T—5—1)—(T—4)]<0
Simplifying:
Sb+8*[(T—j+1)(T—j—1)— (T —5)*—Ms<0
To compute the quadratic term, (T —j + 1)(T —j — 1) — (T — j)?, set u = T — j for clarity. Then we have
(u+D(u—1)—u? =u?-1—-u?>=—1.

Substituting back in, our inequality becomes: §b — §2b — M§ < 0, or, since § > 0, b — §b — M < 0, which is
equivalent to b(1 — ) < M.
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This is equivalent to:

T
M>——0 4
>T—1 (48)

or alternatively, representing M in terms of the per-period payment m’ (M = m/T), we have
m o> —. (49)

So, if m' > %, the derivative of the cutoff—and hence the derivative of threshold compliance—
with respect to ¢ is negative. Since the derivative of linear compliance with respect to ¢ is positive,
then the derivative of compliance in the threshold relative to linear contract is also negative. In
contrast, if m’ < %, the derivative of threshold compliance, like linear compliance, is negative, and
so the derivative of relative compliance is ambiguous, dependent on parameters.

O

Proposition 10 (Adding discounted health benefit, T=2). Let T = 2 and let d = 1. Fix all parameters
other than 6. Let there be perfect correlation in costs across days. In addition, assume that, in addition
to a present cost, compliance has a future benefit b that the participant discounts with the discount factor
over effort, 5. Take a threshold contract with threshold level K = 2 and payment level m'. Compare it
with a linear contract with payment level m, with m < Tm'. We refer to compliance in the threshold

contract relative to the linear contract as “relative compliance.” Then:
(a) If m' > b, relative compliance is strictly decreasing in ¢ for all cost distributions.

(b) Additionally, if costs are uniformly distributed across people U[0,e], with & > Tm’' + b8 then:

(i) For sophisticates: If m' > b(ljfé), then relative compliance is strictly decreasing in . If
m' < b(lT_é), then relative compliance is flat in 6.

b(2—(5+1)%)
A

(ii) For naifs: If m’ >
b(2—(5+1)2 - . ) . ) .
( (T+ ?) < b(lT 6), relative compliance is decreasing over a larger range of § for naifs

., b(2—(5+1)2 . . . L
than sophisticates. If m' < %v then relative compliance is increasing in 6.

, then relative compliance is strictly decreasing in §. Since

Threshold Contract For notational simplicity, we denote the threshold payment 2m’ as
M. We work backwards. On day 2:
Proof. o If wy =1, the participant will comply if e < 6b+ M.

e If wy = 0, the participant will comply if e < §b.
On day 1, the participant will comply if both:

(a) The discounted costs are less than the discounted benefits, e(14+d) < 26b+ M, which is equivalent

v 26b + M
—_ 50
146 (50)
(b) they think their future self will follow-through. They think their future self will follow-through
if:

81This is for tractability, and guarantees that no participant will have an 100% likelihood of complying in any
period. Further, note that for this and all expressions in the Proposition, T can be replaced with K since they
are assumed to be equal.
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— Sophisticates: e < 6b+ M.
— Naifs: de < 6b+ M, which holds whenever equation 50 holds.??

Sophisticates thus comply in periods 1 and 2 if both (a) e < 2 M and (b) e < db+ M, and so

1+9
their compliance is 100% if e < min { 2(?1-%1)\/517 5bj;M} and 0% otherwise.
Naifs thus comply in period 1 if e < QinéV[ and in period 2 if both e < 2511’;:5\4 and e < 6b+ M.
Given these compliance conditions, it is useful to know the conditions under which 25&*{5‘4 is greater
than or less than db + M: osh 4 M
4 ?
—— <o+ M
(1+9)
?
(26b+ M) < (6b+ M)(1 +9)
?
(260 + M) < 6b+ M + 6%+ 6M
?
26b < 6b+ 6°b + 6M
?
b < 8%+ oM
?
b<dob+ M (51)
?
b(l1—6) <M (52)
Thus, e < 25117:5\4 implies that e < b+ M as long as M > b(1 — §). Thus, when M > b(1 — ¢), for
both sophisticates and naifs, e < 2‘?15\/[ will be the single binding constraint. That is, participants

will comply in both periods if e < 2?15\/[ holds and not otherwise. We thus analyze results first for

the case where M > b(1 — 0) before returning to the case where M < b(1 — ).

Case 1: M > b(1 —9)

In this case, compliance is 100% if e < 25&'5\/[ and 0% otherwise. Defining f(9) = 2511’:5\/[ as the

cutoff value as a function of d, we first check when the cutoff value is increasing or decreasing in 9,

i.e., whether f/(§) is positive or negative.
Using the quotient rule:

(1+6)(2b) — (26b + M)(1)

7'6) = o (53)
2b + 20b — 200 — M
== (1+0)2 (54)
2b— M
BETIE (55)

Since (14 d)? > 0 for all § > 0, the sign of the derivative is determined by (2b — M):

82Tf e < &b, then the person complies in all periods without incentives and so both equations hold. If e > §b,
then they sink costs as they go and so the period 2 equation will hold whenever the period 1 equation holds.

74



o If M < 2b, then f'(5) > 0.
e If M > 2b, then f/(4) < 0.

Case la: M > 2b

Thus, if M > 2b, f'(§) < 0 and the cutoff value is decreasing with §. That means compliance in
the threshold will be decreasing with 4. Since we showed above that compliance in the linear contract
is increasing with 4, this shows that compliance in the threshold relative to linear is decreasing with
d, thus proving part (a) of the proposition. This finding also follows directly from Proposition 9.

Case 1b: 2b> M > b(1 — )

In this case, compliance is increasing with §, and so one must make distributional assumptions to
determine whether compliance in the threshold relative to linear contracts is increasing or decreasing
with 4.

We assume for tractability that costs are uniformly distributed across people U[0,€], with & > M +b.
Note that this implies that & > 2EM gince M + b > 284+M - Ag such, since threshold compliance is

140 1+6
db+m
= -

100% when e < 2511’16]” , threshold compliance is 2(‘1513:5])\;[ . In contrast, linear compliance is

Thus, compliance in the threshold relative to linear contract is:

206+ M Ob+m

(1+0)e e (56)
The derivative of this w.r.t. ¢ is:
D (20b+M  Sb+mY _ 2b(1+6)e—(20b+ M)e b (57)
96 \ (1+9)e e B (1+ 6)2e? e
20+ 200 —26b— M b
- (140)2 I (58)
26—-M b
T (1+0)2 e (59)
26— M —b(1+6)?
B (1+0)2%e (60)
_ 2b— M —b—2b6 — bs? (61)
N (1490)%e
b— M — 2b§ — bs>
N (1+0)% (62)

We examine the conditions under which the derivative is negative. Since &€ > 0 and (1+9)? > 0, the
denominator is always positive. Therefore, the derivative is negative when the numerator is negative:
b— M —2b5 —b5* <0

which means when:

b6% 4 2b6 4 (M —b) > 0 (63)

When M > b, all terms in the expression are positive (since 6 > 0, b > 0, and M — b > 0),
making the expression always positive. Therefore, the derivative is always negative when M > b (our
maintained assumption in Case 1b).
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When M < b, this expression may not be always positive. To solve for the transition point, we
use the quadratic formula:

_ —2b+ \/4b% — 4b(M — b)

4
0 2b (64)
—2b £ V4b?2 4 4b2 — 4bM
- v - (65)
—2b+ v/8b? — 4bM
= % (66)
—2b 4+ 24/2b%2 — bM
= (67)
2b
26 — M
=1+ (68)
b
Since 0 < § < 1, we'’re interested in the solution: § = —1 + %%M. Moreover, for the derivative
to be negative, we need:
26 — M
6> —1+ 5 (69)

This condition always holds when M > b(1 — §) (which is true for Case 1b).%3
This means that throughout Case 1b, the derivative of relative compliance in ¢ is negative.

Case 2: M < b(1 —9), for Sophisticates and Naifs, Respectively

We now turn to the cases where M < b(1 — §). Since the threshold compliance conditions differ
for naifs and sophisticates when M < b(1 — J), we analyze sophisticates and naifs in turn. In both
cases, we maintain the assumption we made in Case 1b regarding uniform costs.

Case 2a: M < b(1 —§) for Sophisticates
For sophisticates, under our distributional assumptions, compliance in the threshold relative to
linear contract is:

20b+M Sb+M) db+m
(1+d)e’ e é

e

Moreover, equation 52 showed that, when M < b(1—9) (as is the case in Case 2), then min { 2(?1—):5])\/5[7 &He:M } =
Sb+M

e
Thus, relative compliance is:

ob+M db+m M-—m
e e e

8M > b(1 — §) implies that 6 > = Hence to show that equation 69 holds when M > b(1 — §), we can

show that % > -1+ w. To do so, let z = %, which gives w =1+ x. We want to compare:

?
-1+Vlitz<zx

This is true when /1 + z < 1 4+ x, which is always true for x > 0. Since x = % > 0 for M < b, we have:

-1+ w < %, as desired.
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Taking the derivative:

d | M—-—m
da[ : ]—0

e

Therefore, in this range, the function is constant with respect to J.

Case 2b: M < b(1 —¢) for Naifs

Recall from our original discussion of thresholds that naifs comply in period 1 if e <
in period 2 if both e < 2511715\/[ and e < b+ M.

As a result, naif compliance under the threshold is:

F (22N (o5 4050 (64 arfe < 20T
146 I

20b4+M

11s  and

1+0

larger than 251bi5]\4. When M < b(1 —§), we showed above that b+ M < 251&;%1\/[ (equation 52).

In this case, F’ ((5() + M ‘e < z‘slbiy ) = If ((;5%}?) 84 and so compliance is:

Moreover, the value of the F ((51) + M !e < M) term hinges on whether §b + M is smaller or

I <25b+M

F M 26b + M
05405 00 E MY o (2004 M
1+

F () e

Bringing in our uniform distributional assumption, this becomes:

)+umw%+ﬂn (71)

2b+ M M
0.5<5b+ > 05ﬂ%;—

(1+0)e

And relative compliance under thresholds relative to linear becomes:

0.5 (26()—1—]\/[) B '55b—2M

(1+d)e

Note that this relative compliance function (when ¢ < b_TM) is just twice the relative compliance

function when § > I’_TM from equation 56; thus the derivatives in ¢ have the same sign. In the Case
2a section, equation 69 showed us that the derivative is negative when:

20— M
b

o> -1+

And positive when:
2b— M

0 < —1
<+b

25b+ M
P(e<8b+M AND e<23bEM)

P(e< 261171»61&1 )

84This is because, by definition: P(e < 8b+ M’e < 25{’1’5”) -

H%+M<@ﬂﬂmmp@§%+MAmw<@ﬁQ:P@§%+Mymamw,

26b+ M\  Ple<6b+M)  F(5b+ M) (70)

€< 144 ) 2664 M \ 25b+ M
+ +
P(€< 1+5) F( 1+6>

P(e§5b+M
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Since we're analyzing a case where M < b, then —1 + 4/ Qb;M will always fall between 0 and 1.

Moreover, when M < b, we also have that —1 + \/%%M < (’_TM, so there will always be regions in

case 2b when the derivative is positive and regions where it is negative. Specifically:

e When § > —1+ Qb;M —or equivalently, when M > b (2 —(0+ 1)2)— relative compliance
is decreasing in §.

e When § < —1 44/ Qb;M —or equivalently, when M < b (2 —(0+ 1)2)— relative compliance
is increasing in .

O]

Proposition 11 (Adding discounted health benefit, main effect, T'= 2, m’ = m). Let T = 2 and
let d = 1. Fix all parameters other than §. Take any threshold contract with threshold level K = 2.
Consider a linear contract with payment m and a threshold contract with per-period payment m. Let
there be perfect correlation in costs across days 1 and 2. Finally, assume that compliance has a future
benefit b (in addition to a cost) that the participant discounts by o.

(a) If 6 = 1, the threshold and linear contract will have the same compliance and effectiveness.

(b) If 6 < 1, the threshold contract will have weakly higher compliance and effectiveness than the linear.

Proof. Under the linear contract, each participant complies in each period if e < §b + m.
Under the threshold contract, on day 2:

e If wy =1, the participant will comply if e < b 4 2m.
e If wy = 0, the participant will comply if e < §b.
On day 1, the participant will comply if

(a) e(1+ ) < 20b+ 2m, which is equivalent to e < ﬁ(éb +m), and

(b) They think their future self will follow-through, which requires the following for sophisticates
and naifs:

— Sophisticates: e < b + 2m.
— Naifs: de < 6b + 2m, which holds whenever condition (b) holds.®

Case 1: § = 1. If § = 1, in both the linear and threshold contracts, the compliance conditions
simplify to complying in both periods if e + b < m and not otherwise. Therefore compliance in the
contracts is the same; moreover, since the payment will be 2m in both cases for full compliance and
0 otherwise, the effectiveness is also the same.

Case 2: ) < 1. However, if § < 1, the participant may comply in the threshold contract even if
they would not comply in the linear.

In particular, if the linear compliance condition holds (e < db + m), then both conditions (a) and
(b) will hold as well—a participant will never comply in the linear but not the threshold.

However, they may comply in the threshold even if the linear compliance condition does not hold
(e > 6b+ m), as conditions (a) and (b) may still hold.

That is, if e > db + m, it is still possible for (a) e < ﬁ(éb + 2m), and (b) e < b+ 2m or
e < b+ 2m. This is because (a) (lia) (0b+2m) > 6b+m when § < 1, and (b) both 6b+ 2m > db+m

851f e < &b, then the person complies in all periods without incentives and so both equations hold. If e > db,
then they sink costs as they go and so the period 2 equation will hold whenever the period 1 equation holds.

78



and b+ %m > 0b 4+ m as well.

Thus, compliance for both sophisticates and naifs will be weakly larger under the threshold contract
than linear (and strictly larger when there are some cost realizations e that satisfy b+ m < e <
min{ﬁ(6b+ 2m), 0b+2m} for sophisticates or 0b+m < e < min{ﬁ(éb+ 2m), b+ 2m} for naifs).

Moreover, cost-effectiveness is the same for sophisticates in the threshold and linear contracts
(both pay 2m for 2 days of compliance), and weakly lower for naifs in the threshold contract (because
occasionally they will comply in the first period and not receive payment).

Hence, compliance and effectiveness are weakly higher in the threshold than linear when § < 1.
O
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I CTB Time Preference Measurement

We adapted the convex time budget (CTB) methodology of Andreoni and Sprenger (2012a)
to try to measure time preferences in two domains, walking and mobile recharges. Unfortu-
nately, it did not work for either domain. As a result, we do not use the full CTB measures
for analysis and instead use the simple versions of CTB described in Section 4.2. In Section 1.1
we summarize why we believe our full CTB measurement was not a reliable measure of time
preferences in this setting. In Section 1.2 we briefly summarize evidence that the Simple CTB
measures worked better. Section 1.3 further expands upon section 1.1 and provides additional
evidence.

1.1 Performance of the Full CTB

We believe our implementation of the full CTB methodology of Andreoni and Sprenger
(2012a) was unsuccessful because respondents did not understand it. The complex methodology
was difficult to explain to our participants, who had limited familiarity with screens, sliders, or
complicated exercises. Due to survey length constraints, we also included fewer questions (and
gave less practice) than previous laboratory studies.

A number of patterns in the data suggest that participant understanding was limited. First,
law of demand violations are far more common than in previous studies.®® As shown in Table
I.1, a markedly large 57% of the sample violated the law of demand at least once. In comparison,
only 16% of participants in Augenblick et al. (2015) violated the law of demand at least once
despite 16 opportunities to do so (relative to just two opportunities in our study).

Appendix Table I.1: Law of Demand Violations in Effort Allocations

# of violators % of sample
(1) (2)
Violates 0/7 1,318 41.3
Violates 7/14 1,493 46.8
Violates at least once 1,805 56.6
Violates both 1,006 31.5
Total: 3,192 100

Notes: This table summarizes law of demand violations in the full CTB in the recharge domain.
Violators allocate more steps to the future date when we increase the interest rate from 1 to 1.25.
We varied the exchange rate for two questions: today versus 7 days from now, and 7 versus 14 days;
rows 1 and 2 show violations for these two questions separately and row 3 and 4 show percentages
of people who violated at least once or both.

Second, the CTB estimates do not correlate with any of the behaviors one would expect

86We can only examine law of demand violations in the effort domain because we did not include exchange
rate variation in the recharge domain, so cannot estimate the demand curve.
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them to. The CTB estimates in the steps/effort domain do not correlate with exercise and
health, and the estimates in the recharge domain do not correlate consistently with our proxies
for impatience over recharges (e.g., balances).

Finally, there are a number of other problems with the full CTB data, such as low follow-
through on the incentivized activity and low convergence of the parameters. We describe these
issues in more depth in Section 1.3.

For all of these reasons, we do not think our C'TB estimates are a reliable measure of discount
rates in this setting and do not use them for analysis.

1.2 Performance of the Simple CTB

The Simple CTB measures seem to have performed better than the full CTB exercise.
For example, only 18% of the participants had any law-of-demand violations in these simpler
questions, much lower than the 57% in the full CTB, even though participants had the same
number of opportunities for violations in both question sets. The 18% estimate is much closer
to the 16% found in Augenblick et al. (2015). The percent of future-biased choices (19%) is
also closer to what is found in Augenblick et al. (2015) (which finds 17%) than to the higher
estimates from the full CTB (26%).

Note that these estimates come from the performance of the simple CTB over recharges but
not over effort; given the specific questions we asked in the effort domain, we cannot calculate
law of demand violations nor future bias, so we cannot compare the measures on that front.
However, as shown in Table A.1, the simple CTB over effort correlates in the expected direction
with exercise (i.e., people who look more impatient under the simple CTB have lower steps). In
contrast, the full CTB estimates do not correlate in the expected direction with any behaviors.
Hence, the simple CTB still appears to be the better measure for our context.

1.3 Implementation of the Full CTB

We first discuss the methodology used for the full CTB. We then show that the full CTB
measures do not correlate with the behaviors that we would expect. Finally, we describe
additional problems with the full CTB implementation.

1.3.1 Estimation Methodology

Our full CTB uses the full CTB methodology of Augenblick et al. (2015). In each CTB
choice in our full CTB module, the participant is asked to allocate a fixed budget of either steps
or mobile recharges between a “sooner” and a “later” date using a slider bar. In particular,
each choice allows the respondent to choose an allocation of consumption on the sooner and
later dates, ¢, ¢sy that satisfies the budget constraint

1
ct + ;ch =m (72)
where the sooner date ¢, the later date t 4+ k, the interest rate r, and the budget m change
between each choice. A sample slider screen allowing for such choices is shown in Figure I.1.
We asked participants to make six allocations in the recharge domain, and eight allocations
in the step domain, as summarized in Table [.2. We assume a time-separable and good-separable
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Recha ge today Re ‘H“gg for 5th day

oice 1: Exchange Rate: 1:1

Recharge today Recharge 1or srd day

70 Ch 2: Exchange Rate! 2 82
! ®
Recharge today Recharge for 2nd day
70 Choic Exchange Rate 2 82
! ®
Recharge today Recharge for 1st day
70 Cl e 4: Exchange Rate: 2 82
! ®

Appendix Figure I.1: Sample Decision Screen for Mobile Recharges

Notes: In this example, the interest rate, r, is 1.25; the total budget, m, is 140; the “sooner” date is Today; and
the “later” date decreases from 5 days from today in the first choice to 1 day from today in the final choice.
The sliders are shown positioned at the choice (¢; = 70, cpy = 82).

CRRA utility function with quasihyperbolic discounting®”. In the domain of recharges, indi-
viduals will then seek to maximize utility,

1 o 1 o
U (Ct, Ct+k) = a (Ct - W) + Béka (Ct+k - CU) (73)
and in the step domain, individuals will seek to minimize costs of effort
]‘ [0 1 (0%
C (et cran) = o (¢ +w)™ + 55ka (Ctrn + w) (74)

The variation in consumption choices as the budget constraint varies identify the time
preference parameters—in particular, the daily discount factor J and the present-bias parameter
f—as well as the concavity or convexity of preferences . Due to budget and time constraints,
we had to keep the module short and so did not implement interest rate variation for the
recharge tradeoffs, only for the step tradeoffs. Thus « is identified for the effort estimation
only, not the recharge one; for the recharge estimation, we calibrate o using the estimate of «
from Augenblick et al. (2015) in the financial payment domain.

We recover individual-level structural estimates of time preference and concavity parameters
from the allocations (¢, ¢iyx) using a two-limit Tobit specification of the intertemporal Euler

87Unlike in Appendix C.2 where the quasihyperbolic discounting model we used only has one parameter dg g
or dgm, here we use both 3 and ¢ since we estimated them simultaneously.
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condition following Augenblick et al. (2015).

log ( Gt ) = log(p) li—o + log(d)k S log (1) (75)

Cryr +w a—1 a—1 a—1
Details on the estimation strategy can be found in the Online Appendix of Augenblick

et al. (2015). Because our predictions concern overall impatience, not whether an individual is
time-consistent, on the time preference side, we want one single summary measure capturing
impatience. To do so, we estimate two different variants. In one, we set § = 1 for everyone at
the estimation stage and simply estimate ¢ at the individual level. In the second, we estimate
the equation as above, allowing both  and ¢ to vary at the individual level, and use # x ¢ as
our measure of individual-level impatience. In both estimation procedures, we allow « to vary
at the individual-level in the steps domain, since we considered individual-level convexity of the
step function to be an important potential confound.®® However, the results we describe next
are similar if we do not allow « to vary at the individual-level for steps.

Appendix Table 1.2: CTB Allocation Parameters

Summary of convex time budget allocations

Questionno. ¢t k r  Recharge domain Step domain
1 T 7T 1 X X
2 0o 7 1 X X
3 0 5 1 X X
4 0 3 1 X X
5 0 2 1 X X
6 0 1 1 X X
7 7T 7 125 X
8 0 7 125 X

Notes: This table summarizes the parameters of the six CTB allocations made over recharges, and the eight
CTB allocations made over steps.

Our CTB environment builds on a number of features from previous studies. First, the
choices are made after the one-week phase-in period in which all participants have pedometers
and report their daily steps, ensuring that participants are familiar with the costs of walking.
This allows for meaningful allocations of steps between sooner and later dates. Second, the
responses are designed to be incentive compatible; all respondents were informed that we would
implement their choice from a randomly selected survey question. We set the probabilities such
that for most respondents the randomly selected survey question was a multiple price list of

88Indeed, when we estimate impatience (e.g., §) but do not allow « to vary, that estimated & correlates as
strongly with « as it does with the § estimated allowing « to vary, suggesting that convexity is an important
confound indeed.
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lotteries over money (which measures risk preferences), but for a few a CTB allocation was
selected. Because the allocations might have interfered with any walking program offered, we
excluded the 40 respondents who were randomly selected to receive one of their allocations from
the experimental sample.®¥ To try to ensure that participants complete the allocated steps, we
offer a large cash completion bonus of 500 INR in the step domain if the allocation is selected
to be implemented, and the steps are completed as allocated, with the bonus to be delivered
15 days from the date of the survey (which is 1 day after the latest “later” day used).

We also take a number of precautions to avoid various potential confounds, including con-
founds reflecting fixed costs or benefits of taking an action, or confounds due to the time of day
of measurement.” However, we were not able to address one potential confound to our esti-
mates of time-preferences across individuals fully: variation across people in the cost of walking
over time, or in the benefit of receiving a recharge over time. For example, an individual with
a particularly busy week after the time-preference survey, and therefore relatively high costs to
steps in the near-term relative to the distant future, will appear to be particularly impatient
over steps in our data (he will wish to put off walking). An individual with a relatively free
week just after the time-preference survey will instead appear particularly forward-looking (he
will not wish to put off walking). The same concerns can also arise with recharges.

1.3.2 CTB Estimates: Problems with Convergence and Lack of Correlation
Table 1.3 displays the summary statistics as well as the convergence statistics. The CTB
parameter estimates themselves are not robust and are inconsistent with typical priors. First,
we do not have estimates for a large, endogenous share of the sample. The estimates do not
converge (i.e., we are unable to estimate discount rate parameters) for 38 to 44% of the sample

89This means we have CTB data from a total of 3,232 people: the 3,192 in the experimental sample plus the
40 selected to receive “real-stakes” allocations. In this section we exclude the “real-stakes” observations but the
results are similar if we include them.

99To avoid confounds related to fixed costs or benefits, such as the effort of wearing a pedometer or the
psychological benefit of receiving a free recharge, we include minimum allocations on both sooner and later
days in each domain. The minimum allocations were chosen to be high enough that any fixed costs would be
included (e.g. one could not easily achieve the minimums by simply shaking the pedometer) but low enough to
avoid corner solutions. In the step domain, this required a modification of the CTB methodology: individual-
specific minimum allocations. Our step allocations also featured individual-specific total step budgets m, which
were chosen to be large enough that achieving them would require some effort beyond simply wearing the
pedometer but small enough that participants would certainly achieve them in exchange for the completion
bonus. Specifically, minimum steps on each day are calculated as ix—o, and the total step budget m is X + 2%,
respectively, where X € {3000,4000,5000} is the element closest to the participant’s average daily walking
during the phase-in period. That is, minimum steps are one of 300, 400, or 500 on each day, and the total step
budget is one of 3,600, 4,800, or 6,000. To avoid confounding impatience with the time of day that the baseline
time-preference survey was administered (which could influence the desirability of walking and/or recharges
delivered in the next 24 hours), as well as to capture heterogeneity in time preferences including any present-
bias for very short beta-windows, we required that all walking on any date be conducted within a 2 hour period,
which was chosen to start at the time immediately after the time-preference survey would end (e.g., if the survey
ended at 4pm, the time period for any day’s walking would be 5-7pm). The short window could potentially bias
our overall measures of impatience downwards, as uncertainty about future schedules in a short time window
could lead participants to want to get their walking done early when they had more certainty over their schedule.
However, our primary purpose was to capture heterogeneity in time-preferences, and we considered the potential
loss in validity of aggregate time preference estimates to be worth the ability to capture heterogeneity in time
preferences in the time frames near to the present.
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in the recharge domain, and 23 to 44% of the sample in the steps domain. Moreover, many of
the participants with estimates that converge in the effort domain have an estimated a < 1,
which violates the first order conditions for estimation and is often associated with non-sensible
0 and [ estimates. When we exclude these estimates, we are left with estimates for only 34
to 38% of the sample in the effort domain. Second, we have a high rate of negative estimated
discount rates: 42% for steps and 61% for recharges. This is more than the usual rate of
negative individual-level estimates.

Appendix Table [.3: Summary Statistics For CTB Parameters

Full sample a>1

Parameters estimated: I51) ) 519 0

(1) (2) (3) (4)
A. Effort
Beta 2.079 - 1.590 -
Delta 0.843 0.998 1.015 0.999
Alpha 0.775 0.729 1.708 1.575
% of sample: 77.3 56.4 34.1 38.0
# Individuals: 2,466 1,799 1,088 1,213
B. Recharges
Beta 0.972 - - -
Delta 0.990 0.996 - -
% of sample: 56.1 62.4 - -
# Individuals: 1,789 1,991 - -

Notes: This table displays means and convergence rates of individual-level CTB parameters in both the effort
and recharge domains. Columns 1-2 display average values for the parameters from the full sample of individuals
with parameters that converged. In the effort domain, in columns 3 - 4, we ignore all individuals whose estimated
alpha was below 1, as handled similarly in Andreoni and Sprenger (2012a), as that is inconsistent with the first
order conditions. We winsorize all parameters at the top and bottom 1 percentiles. We allow « to vary at
the individual level in the effort domain, and in the recharge domain, we calibrate o to be 0.975, which is the
estimated value in Augenblick et al. (2015). Delta is estimated by allowing § to vary at the individual level and
setting 8 to 1. Beta-delta is estimating by allowing both § and 3 to vary. We derive these two parameters from
an estimation that allows § and 8 to vary at the individual level. Significance levels: * 10%, ** 5%, *** 1%.

Tables 1.4 and 1.5 show that the estimated CTB parameters do not correlate in the expected
direction with measured behaviors. In particular, Table 1.4 shows that the CTB estimates in
the steps/effort domain do not correlate with exercise and health,”! and Table 1.5 shows that

91Table 1.4 shows the correlations when we exclude the effort estimates from participants with estimated
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the estimates in the recharge domain do not correlate with recharge balances, usage, or credit
constraint proxies. The CTB measures do correlate at the 1% level with our measure of marginal
propensity to consume recharges, but the correlations go in opposite directions for the two CTB
measures (J from an estimation setting § = 1 vs. d estimated allowing both parameters to
vary) so is likely noise.

Appendix Table I.4: CTB Estimates of Discount Factors Over Steps Do Not Correlate With
Measured Behaviors

Covariate type: Baseline exercise Baseline indices
. Daily Daily Health Negative o1ty 4
Dependent variable: exercise . vices . ‘s
steps . index . diet index  Individuals
(min) index
Delta -0.019 0.009 -0.040 0.011 0.027 1,213
Beta-delta 0.016 0.018 0.014 0.010 0.027 1,086

Notes: This table displays the correlations between CTB parameters in the effort domain and a few baseline health
covariates. We normalize impatience variables so that a higher value corresponds to greater impatience, and we
normalize health outcomes so that higher values correspond to healthier outcomes. All CTB parameters have been
winsorized at the top and bottom 1 percentile to remove outliers. Delta is measured from an estimation that allows §
and « to vary at the individual level, while excluding 8. Beta-delta is a measure of beta times the average delta over
one week. We estimate the two parameters by allowing 3, d, and « to vary at the individual level. Significance levels:

*10%, ** 5%, *** 1%.

Appendix Table I.5: CTB Estimates of Discount Factors Over Recharges Do Not Correlate
With Other Proxies for Impatience Over Recharges

Covariate type: Recharge variables Credit constraint proxies

Negative Negative Prefers Negative Negative

. . , Prefers monthly #
Dependent variable: mobile yesterday’s . monthly wealth L
. daily (=1) . household Individuals
balance talk time (=1) index .
income

Delta 0.026 0.013 -0.141%* 0.045 -0.010 -0.008 1,836
Beta-delta -0.002 -0.022 0.145%** -0.019 -0.015 0.033 1,652

Notes: This table displays the correlations between CTB parameters in the recharge domain and baseline measures
that should be related to credit constraints and discount rates over recharges. We normalize impatience variables so
that a higher value corresponds to greater impatience, and we normalize the proxies so that higher values correspond
to higher expected discount rates; hence, the prediction is that coefficients should be positive. All CTB parameters
have been winsorized at the top and bottom 1 percentile to remove outliers. We use two main estimation specifications,
and to identify parameters, we calibrate o to be 0.975, the value of a estimated in Augenblick et al. (2015). Delta is
estimated by allowing § to vary at the individual level and excluding 5. Beta-delta is a measure of the average delta
over one week multiplied by beta. We derive these two parameters from an estimation that allows § and S to vary at
the individual level. Significance levels: * 10%, ** 5%, *** 1%.

a < 1, but the results are similar when we include all estimates together.
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1.3.3 Additional Problems With the Full CTB Data

Finally, we provide more detail on other problems with the Full CTB, in addition to the
law of demand violations, the lack of convergence, and the lack of correlation described earlier.

First, in the effort task, there was low follow-through on the incentivized activity: fewer
than 50% of participants selected to complete the step task did so despite large rewards (500
INR) for completion. While this partly reflects a logistical glitch (we failed to give respondents
intended reminder calls the day before their activity), the lack of follow-through may also in-
dicate a lack of respondent understanding. Regardless, the poor follow-through is problematic
methodologically: identification requires that, when participants make their allocation deci-
sions, they think they will follow-through with certainty, which seems unrealistic given how few
followed through in practice.

Second, respondents on average allocated more steps to today than the future even when
the interest rate was 1:1. Although they could be future-biased, the following other potential
explanations are concerning for interpretation: respondents were confused; they saw steps as
consumption instead of a cost (violating the first order conditions underlying estimation); or
uncertainty over future walking costs and schedules led participants to want to finish steps
sooner, which would confound discount rate estimates with risk aversion and uncertainty.

Third, day-specific shocks appear to be important in practice. 19% of respondents’ alloca-
tions of steps to the sooner date are neither monotonically weakly increasing nor monotonically
weakly decreasing across questions which feature the same sooner date (today) but a mono-
tonically decreasing later date (questions 2-6). These allocations cannot be rationalized with a
discount rate that is either weakly decreasing or increasing with lag length without day-specific
utility shocks. The same holds for 24% of respondents in the recharge domain. These types of
shocks would also confound estimation.
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J Monitoring Treatment Impacts on Walking

The health results suggest that the monitoring treatment had limited impact, although the
results are somewhat imprecise. Did the monitoring treatment not affect exercise, or were the
exercise impacts too small to translate into measurable health impacts? We now present an
analysis of the effects of monitoring on exercise. Because we do not have pedometer walking
data from the control group, we use a before-after design. We find that monitoring alone has
limited impact on overall steps. Monitoring does however change the distribution of steps,
increasing the share of days on which participants met the 10,000-step target but decreasing
the steps taken on other days for a null effect on total exercise.

Our before-after design compares pedometer-measured walking in the monitoring group
during the phase-in period (during which we had not given participants a walking goal and
just told them to walk the same as they normally do) to their behavior during the intervention
period. This strategy will be biased either in the presence of within-person time trends in
walking, or if the phase-in period directly affects walking behavior. We control for year-month
fixed effects to help address time trends, but the latter concern is more difficult, as the phase-in
period likely did increase walking above normal, either because of Hawthorne effects or because
participants received a pedometer and a step-reporting system, which are two of the elements
of the monitoring treatment itself (the other three remaining that we can still evaluate are (a)
a daily 10,000 step goal, (b) positive feedback for meeting the step goal through SMS messages
and the step-reporting system, and (c) periodic walking summaries). Thus, we consider a pre-
post comparison of walking in the monitoring group to be a lower bound of the monitoring
program treatment effect.

One can visualize the variation used for our pre-post estimate in Figure A.2, Panels (a) and
(b). Walking increases immediately during the intervention period for the monitoring group,
although the effects decay over time.

We next estimate the pre-post monitoring effect controlling for date effects. In order to
increase the precision of our estimated year-month fixed effects, we include the incentive group
in the regression as well since that group is much larger. We thus estimate the following
difference-in-differences regression using data from both the intervention and phase-in periods
for the incentive and monitoring groups:

Y =« + ByIntervention Period;, + Baincentives; + Ps(Intervention Period; X incentives;)

+ Xy + o, + it (76)

where y;; are daily pedometer outcomes measured during both the phase-in and the intervention
period, Intervention Period;; is an indicator for whether individual 7 has been randomized into
their contract at time ¢, incentives; is an indicator for whether 7 is in an incentive treatment
group, X; is a vector of individual-specific controls, and p,, is a vector of month fixed effects.
The coefficient 5;—the coefficient of interest—is the pre-post difference in pedometer outcomes
within the monitoring group (controlling for aggregate time effects).

Table J.1 presents the results. Column 3 shows that the monitoring group achieves the
10,000-step target on approximately 6% more days in the intervention period than in the phase-
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in period, an effect significant at the 1% level and equal to roughly 30% of the estimated impact
of incentives. In contrast, the estimated effect on steps is very small in magnitude, varies across
specifications, and is in fact sometimes negative (columns 4-6). Thus, the monitoring treatment,
if anything, appears to do more to make walking consistent across days than it does to increase
total steps.

Appendix Table J.1: Impacts of Monitoring (Pre-Post) and Incentives (Difference-In-
Differences) on Exercise Outcomes

Achieved 10K steps Daily steps
(1) (2) (3) (4) (5) (6)
Incentives 0.012 0.013 0.012 66.7 66.4 48.9
[0.024] [0.024] [0.014] [268.1] [266.9] [112.3]
Intervention period 0.057*** 0.073*** 0.064*** -130.4 108.0 -18.5
[0.020] [0.020] [0.020] [237.8] [240.8] [234.1]
Intervention period X 0.19*** 0.19*** 0.19*** 1270.9*** 1258.9*** 1212.7***
Incentives [0.021] [0.021] [0.021] [248.6] [249.2] [243.4]
Year-month FEs No Yes Yes No Yes Yes
Individual controls No No Yes No No Yes
Monitoring phase-in mean .24 24 .24 6,904.8 6,904.8 6,904.8
# Individuals 2,604 2,604 2,604 2,604 2,604 2,604
Observations 221,214 221,214 221,214 221,214 221,214 221,214

Notes: This table shows coefficient estimates from regressions of the form specified in equation (76). The
outcomes are from daily panel data from the pedometers. Standard errors, in brackets, are clustered at the
individual level. Individual controls are the same as Table 2. The omitted category is Monitoring in the phase-in
period. The coeflicient in the second row, on Intervention Period;;, corresponds to the pre-post estimate of
the Monitoring effect. Significance levels: * 10%, ** 5%, *** 1%.
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