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Abstract 

 
Regulating specific inputs into health and safety production functions is unlikely to be effective 
when optimizing consumers can compensate in other ways. This paper examines the implications 
of this principle in the context of economic policies targeted at reducing obesity. Well-established 
cross-sectional and time-series correlations between average body weight and eating out have 
convinced many researchers and policymakers that restaurants are a leading cause of obesity in 
the United States.  But a basic identification problem challenges these conclusions: does greater 
availability of restaurants cause obesity, or do preferences for greater food consumption lead to 
an increase in restaurant density?  To answer this question, we design a natural experiment in 
which we exploit exogenous variation in the effective price of restaurants and examine the impact 
on consumers’ body mass.  We use the presence of Interstate Highways in rural areas as an 
instrument for the supply of restaurants.  The instrument strongly predicts restaurant access and 
frequency of consumption, and robustness tests support its validity.  The results find no evidence 
of a causal link between restaurants and obesity, and the estimates are precise enough to rule out 
any meaningful effect.  Analysis of food intake micro data suggests that although consumers eat 
larger meals at restaurants than at home (even after accounting for selection), they offset these 
calories at other times of day.  We conclude that public health policies targeting restaurants are 
unlikely to reduce obesity but could negatively affect consumer welfare. 
 
JEL codes: D12, H25, I12, I18 
 
Keywords: economics of regulation, health production, obesity, fat tax

                                                 
* We thank David Card, Carlos Dobkin, Michael Greenstone, Alex Mas, Amalia Miller, Enrico Moretti, 
Kathryn Shaw, May Wang, and seminar participants at Northwestern University, the NBER Summer 
Institute, Stanford University, Tel Aviv University, and UC Berkeley for helpful comments.  Ellen Kersten, 
David Reynoso, Tammie Vu, and Kristie Wood provided excellent research assistance.  We appreciate the 
cooperation of the Departments of Health of Arkansas, Colorado, Iowa, Kansas, Maine, Missouri, North 
Dakota, Nebraska, Oklahoma, Utah, and Vermont in providing the confidential data used in this study; their 
cooperation does not imply endorsement of the conclusions of this paper.  We are also grateful to an 
anonymous police department for assistance in collecting data on motor vehicle speed. 



 
 “There's nobody at McDonald’s shoving fries in your mouth.” 

Bonnie Modugno, McDonald’s Chief Nutritionist1

 
 
 
 
1. Introduction 

 

Obesity is the second leading underlying cause of death in the United States, and obesity rates 

have been growing rapidly in recent years (Mokdad et al. 2004).  Whereas 15 percent of 

Americans were obese in 1980 (defined as having a body mass index of at least 30), 34 percent 

were obese in 2004 (CDC 2007).  The time series of obesity rates in the United States, plotted in 

Figure 1 (solid line), reveals that the rate of increase over the past quarter-century has been 

substantially greater than during the preceding two decades.  Medical research has linked obesity 

to diabetes, heart disease, stroke, and certain cancers.  Treating these diseases is expensive; health 

care spending attributed to obesity reached $78.5 billion in 1998 and continues to grow 

(Finkelstein et al. 2003).  Although obesity is a serious and growing problem, its causes are not 

well understood. 

 

One popular idea among public health advocates is that eating fast food causes obesity.2  Fast 

food – and restaurant food in general – has high caloric content, and the standard portion sizes 

served are relatively large (Young and Nestle 2002).  Concerned policymakers are turning to new 

regulations on restaurants in efforts to fight obesity.  For example, in response to high obesity 

rates in low-income neighborhoods, the Los Angeles City Council unanimously approved a law 

on July 29, 2008, banning the opening of new fast-food restaurants in a 32-square mile area 

containing 500,000 residents (Abdollah 2007; Hennessy-Fiske and Zahniser 2008).  If large 

portions and effective marketing (presentation and pricing) lead people to eat more when they go 

to restaurants than when they eat at home, then these regulations may be effective.  But it is not 

obvious that the empirical link between eating at restaurants and obesity is causal.  If consumers’ 

lifestyles are increasingly conducive to excess energy intake and positive energy balance, the 

increasing prevalence of restaurants may simply reflect a greater demand for calories. 

 

                                                 
1 San Francisco Chronicle, March 7, 2004. 
2 Other hypotheses include changes in food prices, increasingly sedentary lifestyles, and technological 
change in food production (Lakdawalla and Philipson 2002; Cutler, Glaeser, and Shapiro 2003; 
Lakdawalla, Philipson, and Bhattacharya 2005; Bleich et al. 2007). 
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The case against restaurants centers on well-known correlations showing that the frequency of 

eating out is positively associated with greater fat, sodium, and total energy intake, as well as 

with greater body fat.  These correlations have been established using a broad range of data sets 

and study populations (for examples, see Clemens et al. 1999; McCrory et al. 1999; Binkley et al. 

2000; French et al. 2000; Kant and Graubard 2004; Maddock 2004; Babey et al. 2008).  

Furthermore, the number of restaurants and the prevalence of obesity have been rising for a 

number of decades.  In addition to the obesity rate, Figure 1 shows the growth of restaurant 

density in the United States over the past half-century (dashed line).  The close correspondence 

between these series has led some researchers to propose that there is a connection between these 

trends.  Chou, Grossman, and Saffer (2004) present state-year correlations that suggest the growth 

in restaurant density accounts for as much as 65 percent of the rise in the percentage of 

Americans who are obese.  Despite some evidence contradicting these findings (Simmons et al. 

2005; Jeffery et al. 2006), there appears to be broad consensus among the health policy 

community that greater availability of restaurants increases body weight (U.S. Surgeon General 

2001; Mello, Studdert, and Brennan 2006; Becker 2007).3

 

But simple correlations between restaurants and overeating may conflate the impact of changes in 

supply and demand.  People choose where and how much to eat, leaving restaurant consumption 

correlated with other dietary practices associated with weight gain (Newby et al. 2003; Paeratakul 

et al. 2003).  A key question is whether the growth in the number of establishments and in portion 

sizes is contributing to the obesity epidemic, or whether these changes merely reflect consumer 

preferences.  Whether or not consumers maximize utility in the classical sense, surely some 

increase in the prevalence of restaurants and portion sizes is driven by secular increases in time 

costs and consumers’ demand for calories.  To the extent that changes in preferences are leading 

consumers to eat out more, regulating restaurants may only lead consumers to shift consumption 

to other sources rather than to reduce total caloric intake. 

 

We present a simple neoclassical model of an optimizing consumer that shows that a rational 

agent who consumes excess calories at a restaurant will cut back on other caloric intake.  An 

implication of this framework is that eating at restaurants may have little or no causal impact on 

                                                 
3 In fact, many public health advocates have moved to design policies aimed at reducing the impact of 
restaurants on obesity, even while they acknowledge that such a link has not been proven (for example, see 
Keystone 2006). 

 2



obesity.  The model suggests that consumers’ preference for high caloric intake may explain the 

observed correlations between restaurant eating and obesity. 

 

To assess the nature of the connection between restaurants and obesity, we design a natural 

experiment in which we exploit exogenous variation in the effective price of restaurants (due to 

the different costs to consumers of traveling to a restaurant) and examine the impact on 

consumers’ body mass.  In rural areas, Interstate Highways provide a shock to the supply of 

restaurants that is uncorrelated with consumer demand.  To serve the large market of highway 

travelers passing through, a disproportionate number of restaurants locate immediately adjacent to 

these highways.  For residents of these communities, we find that the highway boosts the supply 

of restaurants (and reduces the travel cost associated with visiting a restaurant) in a manner that is 

plausibly uncorrelated with demand or general health practices.  Using original survey data based 

on a smaller sample, we show that differences in travel costs generate large differences in fast-

food consumption.  To uncover the causal effect of restaurants on obesity, we then compare the 

prevalence of obesity in communities located immediately adjacent to Interstate Highways with 

the prevalence of obesity in communities located slightly farther away. 

 

The estimates suggest that restaurants have little effect on obesity.  The distributions of BMI in 

highway and non-highway areas are virtually identical, and point estimates of the causal effect of 

restaurants on the prevalence of obesity are close to zero and precise enough to rule out any 

meaningful effects.  But given that a typical restaurant meal contains more calories than a home-

cooked meal, why does lowering restaurant prices not increase obesity?  Our neoclassical model 

of a rational consumer points to two characteristics of consumer preferences: desired caloric 

intake and satiation.  We examine food intake data collected by the U.S. Department of 

Agriculture and confirm these effects.  First, there is selection bias in who eats at restaurants; 

people who eat at restaurants also consume more calories than other consumers when they eat at 

home.  Second, people who eat relatively large portions in restaurants tend to reduce their calorie 

consumption at other times during the day.  After accounting for these factors, we find that the 

existence of restaurants increases BMI by only 0.2 BMI points for the typical obese consumer. 

 

Our results indicate that policies focused on reducing caloric intake at restaurants are unlikely to 

substantially reduce obesity.  The results also have broader implications for obesity policy and 

general health and safety regulation.  Economic theory implies that regulating specific inputs in 

the health production function may not improve outcomes if consumers can compensate in other 
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ways.  This proposition is supported by economic studies in a variety of empirical settings.  For 

example, Peltzman (1975) contends that mandating automobile safety devices does not reduce 

traffic fatalities because motorists respond by driving less carefully.  More recently, Adda and 

Cornaglia (2006) have argued that smokers react to cigarette taxes by smoking fewer cigarettes 

more intensively.  In the case of obesity, consumers have access to multiple sources of cheap 

calories.  Restricting a single source – such as restaurants – is therefore unlikely to affect obesity, 

as our findings confirm.  This mechanism may also underlie the apparent failure of so many 

interventions targeted at reducing obesity (Kolata 2006). Despite their ineffectiveness, such 

policies have the potential to generate considerable deadweight loss.  We measure the potential 

deadweight loss of policies targeted at restaurants and find it to be as high as $33 billion annually. 

 

The remainder of the paper is organized as follows.  Section 2 develops a model of caloric intake 

for an optimizing consumer facing the option of eating at home or at a restaurant.  The model 

shows that an optimizing consumer will compensate for larger portion sizes at restaurants by 

eating less at other times.  In this scenario, OLS estimates of the relationship between restaurants 

and caloric intake are likely to give misleading results.  Section 3 describes the data we use in our 

study.  Section 4 describes our quasi-experimental methodology and presents the main results 

using both graphical and regression analyses.  These results imply that eating out has little to no 

causal effect on obesity.  Section 5 explores and rules out three alternative interpretations of our 

results.  Section 6 discusses the causal mechanisms that might explain why restaurants do not 

affect obesity and presents evidence of inter-meal calorie offsetting.  Based on these results, 

Section 7 analyzes the welfare effects of a potential restaurant “sin tax,” and Section 8 concludes.  

 

2. Theoretical framework 

 

Obesity may be the consequence of lifetime-utility-maximizing consumers making informed 

decisions about eating and exercising.  But self-control issues are also likely to lead some 

consumers to overeat (Cutler et al. 2003).  While food brings immediate gratification, the health 

costs of over-consumption occur in the future.  If consumer preferences are time inconsistent, 

then regulation aimed at decreasing obesity may benefit at-risk individuals.  The goal of this 

paper is not to evaluate how time inconsistency affects the optimality of decisions regarding 

caloric intake.  Rather, taking reducing obesity as a public policy objective, this paper aims to 
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evaluate whether regulations focused on raising the effective price of restaurants are likely to 

succeed in reducing obesity.4

 

Recognizing that consumers are optimizing agents reveals other characteristics of consumer 

preferences that are likely to undermine the efficacy of these regulations.  To illustrate these 

challenges for public policy, we present a simple model of an optimizing consumer’s decision 

about how much to eat.  For simplicity, we abstract away from issues related to time 

inconsistency and focus on the impact of neoclassical characteristics of consumer preferences that 

are present even in a static model.  This modeling approach is similar to that used by Jeitschko 

and Pecchenino (2006), who argue that the socially optimal size of restaurant meals is larger than 

the size of the average home-cooked meal – even though the larger portion size leads some 

consumers to overeat.  Our model is also related to the dynamic theory of weight management 

developed by Lakdawalla and Philipson (2002), which also models food intake by an optimizing 

consumer.  While they use a dynamic model to examine how changes in average food prices, 

income, and physical activity affect steady-state weight, we use a simpler static model to illustrate 

how changes in the relative prices of specific foods affect total food consumption.  Our 

conclusions extend to the dynamic weight-management framework. 

 

Consider a rational agent who chooses how many calories to consume during each of two periods 

– mealtime (c1) and snack-time (c2).  Meals can be consumed either at home or at a restaurant.  

Eating at home costs the agent p1H per calorie consumed as well as a fixed cost f1H, representing 

the time it takes to prepare the meal.  Some days the agent is busier than others, and f1H is a 

random variable drawn daily from a support of [0,∞).  Alternatively, the agent can eat out during 

mealtime.  Eating at a restaurant costs the agent f1R for a set quantity of food k, including the price 

of the meal and the time cost of traveling to and from the restaurant.  Eating at snack-time costs 

the agent p2 per calorie. 

 

For simplicity, suppose calories consumed at a restaurant are perfect substitutes for calories 

consumed at home and that the agent has quasi-linear preferences in caloric consumption and 

another composite good x (Jeitschko and Pecchenino 2006):5

                                                 
4 A strong argument in favor of government intervention is that the costs of treating obesity are not fully 
internalized by consumers. Finkelstein et al. (2003) estimate that Medicare and Medicaid alone spent $37.6 
billion covering obesity-related illnesses in 1998 ($55.6 billion in 2007 dollars, inflated with CPI Medical 
Care Services index). 
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U = u (c1H + c1R , c2) + x    (1) 

 

Caloric intake at mealtime is a substitute for caloric intake at snack-time in the sense that eating 

more at mealtime decreases the marginal utility of eating more at snack-time and vice versa, 

< 0.  Suppose that the consumer’s income Y is great enough that she consumes a positive 

amount of the composite good.  An optimizing consumer chooses how much to eat to maximize 

her utility subject to her budget constraint: 

21ccu

 

Y – I(c1H > 0)(f1H + p1H c1H) – I(c1R > 0)(f1R) – p2 c2 – x ≥ 0   (2) 

 

Following Young and Nestle (2002), assume that restaurant portion sizes are relatively large (i.e., 

larger than the agent would choose to eat at home, k > c1H*).  Depending on idiosyncratic 

circumstances on a particular day (her draw of f1H), the agent will eat the meal either at home or 

at a restaurant, but not in both places.  Let c1H* and c2*(H) denote the chosen levels of caloric 

consumption at mealtime and snack-time, respectively, when the agent eats the meal at home, and 

let c1R* and c2*(R) denote the chosen levels of caloric consumption when the agent eats the meal 

at a restaurant.  Three results immediately follow from this framework. 

 

Result 1: c1R* > c1H*.  On days when the agent eats at a restaurant, she eats more at mealtime than 

on days when she prepares the meal at home.  The agent eats more at a restaurant because the 

marginal cost of additional caloric intake is lower than at home.6  At a restaurant, the fixed 

pricing scheme leads the agent not to internalize marginal production costs; she eats until she 

either finishes the portion, c1R* = k, or is completely satiated, = 0.  At home, she stops eating 

sooner, when marginal utility equals marginal cost, = p

∗
Rc

u
1

∗
Rc

u
1

1H.  The agent “overeats” in 

restaurants in the sense that she consumes calories for which her marginal utility exceeds the 

marginal production cost. 

                                                                                                                                                 
5 Quasi-linear preferences are a plausible assumption for a consumer whose income is sufficiently large and 
for whom food is only a small part of his total budget. 
6 For simplicity, we do not model explicitly the agent’s option to save unconsumed food purchased from 
the restaurant for other meals or snacks.  Implicitly, this sort of transfer between meals is one form of 
calorie offsetting addressed by Result 2, and it works to undermine a causal effect of restaurant portion size 
on obesity.  Nevertheless, to the extent that physically transferring food between meals is costly (for 
example, if food quality is reduced or if there is a chance of spoilage), this sort of direct offsetting is 
unlikely to be complete. 
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Result 2: c2*(R) < c2*(H).  On days when the agent eats at a restaurant, she eats less at snack-time 

than on days when she eats the meal at home.  At snack-time, the agent eats until marginal utility 

equals marginal cost, = p∗
2c

u 2.  Because calories at mealtime and snack-time are substitutes, 

< 0, the agent compensates for the larger portions at restaurants by consuming less 

throughout the rest of the day.  Adding together calories consumed at mealtime and snack-time, 

total caloric intake is not necessarily greater on days when the agent eats at a restaurant.  In this 

framework, decreasing the price of restaurant food, f

21ccu

1R, makes the agent more likely to eat at a 

restaurant, which increases consumption at that meal but may or may not increase total caloric 

intake. 

 

Result 3: Total caloric intake depends on u(·).  Even if food prices are constant across the 

population, total caloric intake varies from person to person, depending on the agent’s 

preferences.  Variation in consumer preferences for caloric intake may lead some individuals to 

eat more than others – whether they are eating at a restaurant or at home.  If consumers with a 

preference for high caloric intake patronize restaurants more frequently than others, the empirical 

association of restaurants and obesity may not reflect a causal relationship. 

 

Whether restaurants actually increase obesity is an empirical question, and OLS estimates of the 

relationship between restaurants and obesity are likely to give misleading results.  It is possible 

that access to large portions with low marginal costs at restaurants leads people to overeat.  On 

the other hand, if rational consumers compensate for large restaurant portions by eating less 

elsewhere, raising restaurants’ effective prices may have no impact on total caloric intake or 

obesity.  The empirical analysis that follows addresses this important question. 

 

3. Data and Descriptive Statistics 

 

The obesity data used in this study come from a confidential extract of the Behavioral Risk Factor 

Surveillance System (BRFSS).  BRFSS is an ongoing, large-scale telephone survey that 

interviews hundreds of thousands of individuals each year regarding their health behaviors.7  In 

                                                 
7 BRFSS randomly samples phone numbers using a disproportionate stratified sample method.  Within each 
household, individuals over the age of 18 are randomly selected for interviews.  Business and nonworking 
phone numbers are omitted (BRFSS Operational and User’s Guide 2006). 
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addition to questions about demographic characteristics and health behaviors, BRFSS asks each 

individual to report his or her weight and height. 

 

Two features of BRFSS are important for our study.  First, BRFSS generally oversamples less 

populous states.  Since our analysis focuses on rural areas, this sampling frame works to our 

advantage.  Second, although consolidated BRFSS data are publicly available from the Centers 

for Disease Control (CDC), CDC does not release geographic identifiers at a finer level than the 

county.  To complete our study, we therefore approached 23 State Departments of Health and 

requested confidential BRFSS extracts that include a much finer geographic identifier: telephone 

area code and exchange (i.e., the first 6 digits of a 10-digit telephone number).8  Ultimately, 11 

states – Arkansas, Colorado, Iowa, Kansas, Maine, Missouri, North Dakota, Nebraska, 

Oklahoma, Utah, and Vermont – cooperated with our requests.  Sample years vary by state and 

overall cover 1990 to 2005.  

 

Our measures of obesity include body mass index (BMI) – defined as weight in kilograms 

divided by height in meters squared – and overweight and obese indicators that equal unity if 

BMI is greater than 25 or 30, respectively.  These measures are standard in the obesity literature, 

and the obese indicator is of particular interest because mortality risk increases as BMI exceeds 

30 (Adams et al. 2006).  Data on height and weight in the BRFSS are self-reported.  Although 

some respondents may misreport this information, Cawley (1999) and Ezzati et al. (2006) find the 

degree of misreporting to be minimal, and there is no reason to suspect that misreporting would 

be more or less prevalent in rural towns adjacent to Interstate Highways (our instrument for 

restaurant proximity) than in other nearby towns. 

 

Restaurant establishment data are from the United States Census ZIP Code Business Patterns.  

These data include counts of full-service (“sit-down”) and limited-service (“fast-food”) 

restaurants for every ZIP code in the United States.9  Fast-food restaurants are usually busiest at 

lunchtime, and their most popular menu type is hamburgers (43 percent of sales), followed by 

pizza (13 percent), sandwich/sub shop (10 percent), chicken (9 percent), and Mexican (8 percent) 

(U.S. Census Bureau 2005).  A majority of these establishments (65 percent of sales) operate 

                                                 
8 Prospective states were chosen on two criteria intended to maximize the usable number of observations: 
the BRFSS sampling rate and the number of towns that qualified for our research design. 
9 The distinction between full-service and limited-service restaurants is based on the timing of payment: in 
full-service restaurants, the customer pays after eating; in limited-service restaurants, the customer pays 
before eating. 
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under a trade name.  U.S. sales at McDonald’s, the largest chain, totaled almost $29 billion in 

2007 – over three times more than its closest rival (Technomic 2008).   Other fast-food chains 

with over $5 billion in U.S. sales include Burger King, Subway, Wendy’s, Taco Bell, and KFC.  

Sit-down restaurants, on the other hand, are usually busiest at dinnertime, rarely operate under a 

trade name (12 percent of sales), and tend to serve “American” food (47 percent).  The largest 

“sit-down” chains include Pizza Hut, Applebee’s, Chili’s, and Olive Garden.  The average price 

of a sit-down meal is more than twice that of fast food – $12.30 versus $5.51, excluding tax and 

tip (U.S. Census Bureau 2005). 

 

Because the restaurant data are identified by ZIP code and the obesity data are identified by 

telephone exchange, it is impossible to create an exact link between the two data sets.10  Instead, 

our analysis relies on two-sample-instrumental-variables techniques, which use separate samples 

to estimate the effect of the instrument on each of the two endogenous variables, obesity and 

restaurant access.  The link between the two data sets thus runs through the instrument, proximity 

to an Interstate Highway. 

 

Table 1 presents summary statistics for our data sets.  The first two columns present unweighted 

means and standard deviations for the analytic sample, which consists of all telephone exchanges 

or ZIP codes in cooperating states located less than 10 miles from an Interstate Highway, more 

than 30 miles from an urban area, and with a population density of less than 80 persons per 

square mile.  Our analysis focuses on rural areas because the population density in urban areas 

guarantees that almost everyone has easy access to one or more restaurants.11  (We also present 

estimates for a smaller sample of rural areas that have population density of less than 40 persons 

per square mile; the results are qualitatively unchanged.)  The last set of columns in Table 1 

present the same statistics for the full national sample. 

 

Panel A, based on BRFSS data, reveals that mean BMI, percent overweight, and percent obese in 

the analytic sample closely match national averages.  However, the analytic sample is slightly 

                                                 
10 Though both measures are geographically precise, telephone exchange is the finer of the two.  There are 
approximately 35,000 ZIP codes and 130,000 telephone exchanges in the U.S.  However, the differential in 
geographic area is not as large as it appears, since telephone exchanges in urban areas can overlap whereas 
ZIP codes do not. 
11 The 80 persons per square mile threshold was chosen because it represents the 10th percentile of the 
population density distribution.  The 10th percentile corresponds to the percentage of the U.S. population 
living in non-metro counties with urban populations of less than 20,000 (U.S. Department of Agriculture 
2004).  Our results are robust to alternative threshold values, including lowering the threshold to 40-persons 
per square mile (reported below) and other variations in the parameters (reported in Appendix Figure A1). 
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older and somewhat less educated than the national sample.  Panel B, based on Census data, 

shows that the rural analytic sample has fewer minorities and a lower average income than the 

national sample.  The analytic sample also has substantially fewer restaurants per ZIP code than 

the national sample, primarily because the average population per ZIP code is much lower. 

 

4. Restaurant Proximity and Body Mass 

 

Our goal is to measure the causal effect of restaurant prices on body mass.  For individual i living 

in town j during year t, we can write the relationship between restaurant prices and body mass as 

bijt = β0 + β1pjt + ηt + εijt,    (3) 

where bijt is individual i’s BMI, pjt is the restaurant price, ηt are time effects, and εijt contains 

unobserved determinants of BMI that vary at both the time and individual levels.12  We define pjt 

comprehensively to include not only menu prices, service charges, and taxes, but also travel and 

time costs.  It is the latter that we observe in our data, and our analysis focuses on this source of 

price variation. 

 

An analysis that assumes pjt is exogenously determined is unattractive.  Both restaurants and 

people choose where to locate, so restaurant availability is likely to be correlated with potential 

BMI outcomes at the individual level (Waldfogel 2006).  Furthermore, since the BMI data are 

coded by telephone exchange and the restaurant data are coded by ZIP code, combining bijt and pjt 

in a single sample is infeasible.  We address these issues by finding an instrument zj that satisfies 

two essential properties: First, it affects restaurant availability, and second, it is uncorrelated with 

other determinants of potential BMI outcomes, εijt. 

 

Our instrument, zj, exploits the location of Interstate Highways in rural areas as a natural 

experiment.  We compare two groups of small towns: those directly adjacent to an Interstate 

Highway (0-5 miles away) and those slightly farther from an Interstate (5-10 miles away).13  For 

                                                 
12 Although the equation is linear with constant coefficients, these assumptions are not necessary for the 
estimates to have a legitimate causal interpretation.  If pst were randomly assigned, then β1 would be a 
weighted average of individual causal effects along the causal response function (Angrist and Imbens 
1995). 
13 Because of confidentiality concerns, some states (Iowa and Kansas) were only willing to release 
categorical distance variables, rather than a continuous distance variable.  Before examining the first-stage 
or reduced-form regressions, we chose 5 miles as the relevant cutoff for the highway distance variable and 
requested the data based on that cutoff.  We made this choice because the average ZIP code is 80 square 
miles, corresponding to a circle with a 5-mile radius.  On average, a ZIP code whose centroid is within 5 
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convenience, we refer to these two sets of towns as “adjacent” and “nonadjacent,” respectively.  

The Interstate Highways were designed in the 1940s “to connect by routes, direct as practical, the 

principal metropolitan areas, cities, and industrial centers” of the United States (U.S. Department 

of Transportation 2002).14  As an unintended consequence, the highways lowered transportation 

costs for rural towns that happened to lie on highway routes running between major cities.  By 

using straight-line distance to the highway in constructing our instrument, we identify an 

exogenous source of variation in highway access.  We show that this variation is sufficient to 

generate substantial differences in restaurant access and frequency of fast-food consumption.  We 

avoid using distance to the nearest highway exit in constructing the instrument because the 

placement of exits is likely endogenously determined by town characteristics (nevertheless, our 

results are robust to either measure).15

 

Previous work has studied the effects of highways on rural county-level economic outcomes 

(Chandra and Thompson 2000; Michaels 2008).  These studies conclude that highways can affect 

county-level economic outcomes.  To avoid this problem, our study uses a much finer level of 

geographic detail – ZIP codes and telephone exchange areas.16  This geographic detail enables us 

to limit our sample to ZIP codes and exchanges whose centers lie within 10 miles of an Interstate 

Highway.  We therefore expect – and find – no systematic differences in economic outcomes 

between the two groups of towns in our sample.17

                                                                                                                                                 
miles of an Interstate is thus likely to contain that Interstate.  Our results are robust to alternative cutoff 
values, as shown in Appendix Figure A1. 
14 The other two goals of the Interstate System were to aid national defense and to connect, at suitable 
border points, major routes to Canada and Mexico. 
15 We draw the distinction between highway exits and highway placement because of large differences in 
their associated costs.  Highway exits can be added at little cost to through drivers, but relocating a 
highway to run through an entirely different town is costly in terms of both construction costs and travel 
time for through drivers.  In fact, all stretches of Interstate Highways that we examine in this study have 
had no major re-routings since their original construction, and no new Interstates were added in any of our 
study areas during the study period.  Nevertheless, our results are unchanged if we use distance to the 
nearest highway exit as the instrument rather than distance to the nearest highway.  The first stage is of 
identical magnitude and statistically significant, and the reduced-form relationship between obesity and 
distance to the nearest highway exit is economically and statistically insignificant for all three of our 
obesity measures.  However, the sample size decreases because we must exclude Iowa and Kansas because 
of the confidentiality issues (see note 13).  
16 The average U.S. county contains approximately 1,030 square miles while the average U.S. ZIP code 
contains approximately 80 square miles (U.S. Census Bureau 2002a,b). 
17 In contrast to the ZIP code-level data analyzed in our study, we expect and find statistically and 
economically significant county-level differences in demographic variables between counties with 
highways and counties without highways.  This remains true even if we focus only on counties that contain 
highways and estimate the relationship between total highway exits and demographic factors that predict 
obesity.  Nevertheless, to demonstrate the robustness of our results, we explore the relationship between 
obesity and highway exits at the county level as suggested in a recent working paper by Dunn (2008).  
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4.1.  First-Stage Relation 

 

For a large group of individuals – through travelers on Interstate Highways – adjacent towns 

represent a more convenient service option than nonadjacent towns that are even slightly farther 

away.  Since these individuals have many choices along their route of travel, their demand is 

highly elastic with respect to distance from the highway.  Proximity to an Interstate thereby 

produces a positive shock to the supply of restaurants in towns adjacent to Interstates, relative to 

towns that are not immediately adjacent, for a reason that is independent of local demand.  In a 

comparison of the two sets of towns, ZIP codes located 0 to 5 miles from Interstates are 

approximately 38 percent (19 percentage points) more likely to have restaurants than ZIP codes 

located 5 to 10 miles from Interstates.  This is true for both fast-food and full-service restaurants. 

 

Figure 2 plots the distribution of distance to the nearest restaurant for adjacent and nonadjacent 

ZIP codes.  For ZIP codes without restaurants, we use the distance to the nearest ZIP code with a 

restaurant.18  But of course the average distance for residents of ZIP codes that contain restaurants 

is not zero.  We calculate the distribution of the distance from each Census block to the nearest 

restaurant for a stratified random sample of 21 ZIP codes that contain restaurants (see Appendix 

A1 for details).   Residents of these ZIP codes live, on average, 2.5 miles from their nearest 

restaurant.  To construct Figure 2, we sample (with replacement) from the empirical distribution 

of restaurant distance for each sample ZIP code that contains a restaurant. 

 

Figure 2 shows that the distance to the nearest restaurant is much lower for residents of ZIP codes 

that are adjacent to an Interstate Highway than for residents of nonadjacent ZIP codes.  Most 

residents of adjacent ZIP codes live 0 to 5 miles from the nearest restaurant, whereas residents of 

                                                                                                                                                 
Specifically, we regress BMI on county Interstate exits and a large set of covariates using county-level 
BRFSS data.  We find that the relationship between BMI and highway exits in the pooled 1996-2005 
BRFSS data set is statistically and economically insignificant.  Furthermore, when estimating the results 
separately by year, the relationship is statistically insignificant in every year except 2005, when the 
relationship is marginally significant (2005 is the one year of data analyzed in Dunn 2008).  The null 
relationship is also robust to a wide range of sample restrictions and specifications, including detailed 
controls for demographic characteristics, county population density, and county economic indicators (all 
results are available from the authors upon request).  We thus conclude that, even at the county level, there 
is no relationship between BMI and restaurants when using Interstate Highways as an instrument. 
18 Appendix A1 presents calculations of the exact distance from each Census block to the nearest restaurant 
for a stratified random sample of 11 ZIP codes not containing restaurants.  This analysis confirms that the 
distance measures used are generally accurate representations of the distance from the nearest restaurant for 
the average resident of the ZIP code. 
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nonadjacent ZIP codes are more likely to live 5 to 15 miles away.  These distances correspond to 

additional roundtrip travel times of 10 to 40 minutes.19  Given the extensive evidence in 

economics and marketing that even small distances can have large effects on shopping patterns 

(e.g., McFadden 1974; Blaylock 1989; Chiou 2008), these distances represent a sizable barrier to 

restaurant access.   

 

Regression analyses confirm the statistical significance of the relationship between highway 

proximity and restaurant availability.  Table 2 reports first-stage results for a variety of restaurant 

availability measures.  Column (1) presents results for the full analytic sample.  To illustrate that 

the estimates are not sensitive to a particular cutoff for population density, we report results in 

Column (2) for a smaller sample that includes only areas with less than 40 people per square mile 

(versus less than 80 in the full sample).  Proximity to an Interstate Highway has a positive and 

significant effect on restaurant availability in all regressions, regardless of the measure or choice 

of sample. 

 

The first row of Table 2 shows estimates of the impact of Interstate proximity on the distance to 

the nearest ZIP code with a restaurant.  The results indicate that ZIP codes adjacent to Interstates 

are, on average, 1.50 miles closer to the nearest ZIP code with a restaurant than ZIP codes farther 

from Interstates.  This effect is highly significant; the t-statistic of 3.9 corresponds to a first-stage 

F-statistic of 15.6.  Although 1.50 miles may not seem far, it is important to note that this effect 

primarily operates through the differential in ZIP codes containing any restaurants.  Proximity to 

an Interstate makes a ZIP code more likely to have a restaurant, reducing the average distance to 

the nearest ZIP code with a restaurant from 10.2 miles to 2.5 miles.20  Thus, although the majority 

of the sample is unaffected, those that are affected have much lower travel costs.  (Section 5.3 

presents analysis verifying the accuracy of our ZIP code-level distance measures.)  

 

Our instrumental variables results focus on travel distance as the relevant measure of restaurant 

access because it has a direct economic interpretation.  Nevertheless, other estimates, reported in 

                                                 
19 In theory, travel times may be overstated if individuals work in restaurant-dense areas and eat out near 
work.  Nevertheless, we demonstrate in Section 5.1 that highway proximity (the instrument) has a large, 
statistically significant effect on the frequency of fast-food consumption.  Furthermore, results presented in 
Table 3 show that the effects of highway proximity on obesity are similar for individuals who are employed 
and those who are not employed. 
20 In the terminology of Angrist, Imbens, and Rubin (1996), these ZIP codes are the “compliers.”  This 
group accounts for 18.9 percent of towns in distant ZIP codes.  Differences in group means do not exactly 
equal reported regression coefficients because regressions include state fixed effects. 
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Table 2, show that the relationship between Interstate proximity and restaurant availability is 

robust across different measures.  ZIP codes adjacent to Interstates are 17.5 percentage points 

more likely to contain at least one restaurant (t = 4.2).  This effect holds for both full-service and 

limited-service (fast-food) restaurants.21  Although the effect for full-service restaurants is larger 

in raw percentage point terms (19.6 percentage point increase versus 15.4 percentage point 

increase), the effect for limited-service restaurants is larger in proportional terms (45.6 percent 

increase versus 57.9 percent increase).  ZIP codes adjacent to Interstates also have a greater 

density of restaurants, as measured by restaurants per capita. 

 

The effect of interest for public policy is the response in BMI to changes in total restaurant price.  

We translate the distance measure reported in the first row of Table 2 into a price measure using 

conservative estimates of vehicle operating costs and travel time valuation.  (See Appendix A2 

for a description of the methodology.)  We estimate total travel costs, including both vehicle 

operating costs and travel time, at 70.1 cents per mile.  The last row of Table 2 indicates that the 

average cost differential in restaurant access for ZIP codes adjacent to Interstates versus ZIP 

codes farther from Interstates is $2.10.22  As explained above, this effect operates through the 

differential in ZIP codes containing any restaurants.  Proximity to an Interstate reduces the total 

restaurant price by an average of $10.80 for areas that would not have a restaurant if not for the 

highway.  This figure corresponds to almost twice the average menu price of a fast-food meal and 

to 88 percent of the average menu price of a sit-down restaurant meal. 

 

4.2.  Reduced-Form Relation 

 

Figure 3 presents the distribution of BMI for towns adjacent to an Interstate and towns farther 

from an Interstate.  The two distributions match up exactly, implying that restaurants have no 

discernable effect on obesity.  The tight correspondence between the two distributions also 

suggests that unobserved factors that affect BMI are balanced across both groups of towns.  If 

such factors were not balanced, they would have to exactly offset not only the effect of 

restaurants on mean BMI, but also the effect of restaurants at every quantile of the BMI 

distribution.  This effect would likely be heterogeneous, so it would take a complex and 

                                                 
21 The determining factor in whether a restaurant is classified as full-service or limited-service is whether 
the customer pays prior to eating or after eating.  For example, McDonald’s is limited-service and Denny’s 
is full-service. 
22 We compute this number by doubling the coefficient in the first row of Table 2 (to reflect round-trip 
travel) and multiplying it by 70.1 cents per mile. 
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improbably distributed set of confounders to exactly offset it.  Nevertheless, we analyze an 

observable set of BMI predictors in Section 5.2 and confirm that adjacent and nonadjacent towns 

are comparable across factors that predict BMI. 

 

Table 3 reports regression coefficients measuring the reduced-form effect of Interstate proximity 

on body mass.  The first row shows estimates of the impact of Interstate proximity on an obese 

indicator (BMI > 30), the second row shows estimates of the impact on an overweight indicator 

(BMI > 25), and the third row shows estimates of the impact on BMI.23  Column (1) reports 

estimates from the full analytic sample and includes controls for state-by-year fixed effects but no 

other covariates.24  The regressions are precisely estimated.  The estimated coefficient from the 

obese regression indicates that proximity to a highway has no significant effect on the probability 

of being obese.  In fact, the point estimate is negative (-0.1 percentage points).  Estimates from 

the overweight and BMI regressions also show that proximity to highways does not affect body 

weight; the BMI coefficient is statistically insignificant and implies that Interstate proximity 

increases BMI by only 0.002 points.25  Interstate proximity also has no economically or 

statistically significant effect on Type II obesity (BMI > 35) or severe obesity (BMI > 40);  

results available from authors upon request). 

 

The reduced-form results are robust to various adjustments to the econometric specification.  

Column (2) reports results from regressions that contain no state or year fixed effects.  The 

coefficients are close to those reported in Column (1) and remain statistically indistinguishable 

from zero.26  Retaining state-by-year fixed effects does however make the estimates more precise.  

Column (3) presents results from regressions that contain state-by-year fixed effects but are 

estimated on a smaller sample that is not missing observations for a large set of economic 

variables (which are included as controls in subsequent specifications).  The coefficients are 

insignificant and remain close to those reported in Columns (1) and (2).  Column (4) presents 

results from regressions that add flexible controls for age, education, marital status, employment 

status, and gender.  The addition of controls has little effect on the coefficients; they increase 

                                                 
23 The first measure is usually of most interest to public health practitioners because mortality risk does not 
increase substantially until BMI crosses the threshold of 30. 
24 Including county fixed effects is infeasible because some states only report the distance to the Interstate 
Highway – rather than the exact location of the telephone exchange – in an effort to preserve the anonymity 
of survey respondents. 
25 Specifying BMI in logs, rather than levels, also generates a regression coefficient that is close to zero 
(0.0001) and statistically insignificant. 
26 Although the coefficient in the BMI regression is an order of magnitude greater than the estimate 
reported in Column (1), this increase represents less than 0.005 standard deviations of BMI. 
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slightly (less than 0.01 standard deviations in all cases) from the estimates reported in Column 

(3), but they remain close to zero and statistically insignificant.  Column (5) estimates the same 

model as Column (4) but reduces the sample to include only individuals in the most sparsely 

populated areas (40 people per square mile or less).27  The results again indicate that proximity to 

highways has no effect on obesity.  There is also no evidence of effects for any demographic 

subgroup.  Estimating models separately by gender, age, education, or income yields 

economically and statistically insignificant results in all cases (see Appendix Table A1 for 

detailed results). 

 

4.3.  Instrumental Variables Results 

 

Because information on obesity (the outcome) and restaurant access (the endogenous right-hand 

variable) are not contained in the same sample, estimation via the traditional instrumental 

variables technique is infeasible.  Instead, we apply the Two-Sample Two-Stage Least Squares 

estimator (TS2SLS) discussed in Inoue and Solon (2005), a variant of the two-sample 

instrumental variables strategy used by Angrist (1990) and Angrist and Krueger (1992).  The 

first-stage estimating equation is: 

djst = π0 + π1zjst + χst + ujst    (4) 

where djst is distance to the nearest ZIP code with a restaurant from ZIP code j in state s and year 

t, zjst is an indicator for proximity to an Interstate, χst are state-by-year fixed effects, and ujst is the 

least squares residual.  The results for this regression are reported in Table 2, Column (1).  

 

We implement the TS2SLS estimator by applying the coefficient estimates from equation (4) – 

estimated using data from ZIP Code Business Patterns – to predict the value of djst for 

observations in the BRFSS data:  
ˆ d jst = ˆ π 0 + ˆ π 1z jst + ˆ χ st .     (5) 

We then run the second-stage regression 

bijst = β0 + β1
ˆ d jst + λst + εijst    (6) 

to estimate the effect of distance to the nearest restaurant on BMI.28  The standard errors are 

adjusted to reflect the fact that the first-stage coefficients are estimated rather than known (Inoue 

and Solon 2005, p. 6).29

                                                 
27 This sample corresponds to the first-stage regressions reported in Table 2, Column (2). 
28 Note that we do not include covariates in either regression (other than state-by-year effects) because the 
same set of covariates is not available in both samples.  If we were to include covariates in the second stage 
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We make several conservative assumptions that lead  to overstate the effect of restaurant 

proximity on BMI.  First, we assume that the entire differential in restaurant access operates 

through distance to the nearest restaurant.  However, the results in Table 2 indicate that Interstate 

proximity also has a positive effect on restaurant density, potentially increasing the variety of 

restaurants available to consumers.  By ignoring this channel, we overstate the true effects of 

restaurant proximity on BMI.  Second, we use relatively low estimates of vehicle operating costs 

when translating distance measures into travel cost measures – this is equivalent to 

underestimating the first-stage coefficient, π

ˆ β 1

1, when we measure restaurant access by travel cost 

instead of by distance. 

 

An alternative expression for the TS2SLS estimate makes it clear that these assumptions bias the 

magnitude of  upwards, overstating the impact of restaurant prices on obesity.  Because the 

model is exactly identified, the TS2SLS estimates are directly implied by the ratio of the reduced-

form and first-stage estimates.  Let  be the coefficient obtained from estimating the reduced 

form equation:  

ˆ β 1

1α̂

                                                                                                                                                 
but not the first stage, the second-stage coefficient estimates would be inconsistent.  The reduced-form 
results in Table 3, however, indicate that the addition of covariates has no significant effect on the 
relationship between highway proximity and obesity.  Furthermore, in Appendix Table A2 we limit our 
sample to individuals for whom we know the exact ZIP code of residence.  This restriction allows us to 
estimate conventional 2SLS models.  Our results remain unchanged (precisely estimated null effects for all 
obesity outcomes), and including covariates in these models has no meaningful impact on the estimated 
coefficients. 
29 An additional complication arises due to the two-sample nature of the TS2SLS estimator.  Since TS2SLS 
uses two samples, the sample upon which the first stage is estimated will not exactly match the sample 
upon which the reduced form is estimated.  Because BRFSS respondents are not necessarily evenly 
distributed across ZIP codes, a given ZIP code can appear at different frequencies in the two samples.  To 
check the sensitivity of our results to this issue, we weight each ZIP code in the first-stage sample by the 
expected frequency at which it occurs in the reduced-form sample.  We must weight by the expected 
frequency rather than the exact frequency because some telephone exchanges (the geographic identifier for 
many observations in the reduced-form sample) map into multiple ZIP codes (the geographic identifier in 
the first-stage sample).  Nevertheless, the expected frequency is measured with a high degree of accuracy in 
most cases.  For states in which we have telephone exchange or ZIP code information (85 percent of cases), 
we can identify the ZIP code of residence with 100 percent confidence in 67 percent of cases, 90 percent or 
better confidence in 84 percent of cases, and 80 percent or better confidence in 93 percent of cases.  
Weighting each ZIP code in the first-stage sample by the expected frequency at which it occurs in the 
reduced-form sample has a minimal effect on the first-stage coefficient – the effect of highway proximity 
on distance to the nearest restaurant changes from 1.50 miles to 1.37 miles.  For transparency, we report the 
unweighted TS2SLS models, but incorporating the weighted first stage does not affect the reported 
TS2SLS coefficients (the induced change is less than rounding error) and has a minimal affect on the 
standard errors.  We further explore this issue in Appendix Table A2 by limiting our sample to individuals 
for whom we know the exact ZIP code of residence.  This restriction allows us to estimate conventional 
2SLS models, and our conclusions remain unchanged. 
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bikst = α0 + α1zkst + φst + vikst    (7) 

where bikst is the BMI of person i in telephone exchange k of state s in year t, zkst is an indicator 

for proximity to an Interstate, φst are state-by-year fixed effects, and vikst is the least squares 

residual.  The results for this regression are reported in Table 3, Column (1).  Because the model 

is exactly identified, the TS2SLS estimate is: 

ˆ β 1 =
ˆ α 1
ˆ π 1

.      (8) 

By underestimating π1, we therefore ensure that our estimates of the effect of restaurant prices on 

obesity are, if anything, too large. 

 

Table 4 presents TS2SLS results for the effect of restaurant access on obesity.  Column (1) 

reports estimates for regressions using the full analytic sample.  Shifting one mile closer to a 

restaurant is associated with a 0.1 percentage point reduction in the probability of being obese, a 

0.5 percentage point reduction in the probability of being overweight, and a 0.001 point increase 

in BMI.  All of these effects are statistically and economically insignificant.  Panel B presents the 

estimated effects of decreasing restaurant prices by one dollar.  These estimates utilize the per-

mile driving costs described above (and detailed in Appendix A2).  For example, the effect on 

BMI of decreasing restaurant prices by one dollar is  

(0.0014 BMI per mile) / (2 * 0.701 dollars per mile) = 0.001 BMI per dollar.30

Lowering restaurant access costs by one dollar is associated with no increase in the probability of 

being obese and a 0.001 point increase in BMI.  All effects are statistically insignificant and 

correspond to changes of less than 0.01 standard deviations in the respective outcomes. 

 

The remaining columns in Table 4 report TS2SLS results for alternative samples.  Column (2) 

presents estimates for the smaller sample that contains only areas with 40 people per square mile 

or less.  All of the estimated coefficients are statistically insignificant with negative point 

estimates, reinforcing the conclusion that cheaper access to restaurants does not increase obesity.  

Column (3) presents estimates for the sub-sample of individuals who are not employed.  Some 

employed persons who live in areas without easy access to restaurants may commute to areas that 

have easier access to restaurants.  For these individuals, we may overestimate the cost of eating 

out.  To address this possibility, we re-estimate the TS2SLS coefficients for the sub-sample of 

individuals who are not employed.  In each regression, the coefficient in Column (3) is less than 

the coefficient in Column (1), indicating that access to restaurants at work is not confounding our 
                                                 
30 The scaling factor of 2 in the denominator is present to account for the roundtrip nature of the trips. 
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results.  Column (4) presents estimates for a sample of individuals who are both not employed 

and live in areas with less than 40 residents per square mile.  Again, all coefficients remain 

statistically insignificant with negative point estimates. 

 

5. Analysis of Alternative Interpretations 

 

The clear null relationship between Interstate proximity and body mass suggests that the 

availability of restaurants does not affect obesity.  However, there are three alternative 

explanations for the null relationship that merit consideration.  First, although Interstate proximity 

correlates with restaurant availability, it is possible that the instrument has no effect on the 

frequency of restaurant consumption (formally, this is equivalent to an absence of the necessary 

first-stage relationship).  Second, residents of towns adjacent to the highway may differ from 

residents in nonadjacent towns along dimensions that affect body mass.  In that case, it is possible 

that a positive effect of restaurants on body mass is masked by negative effects of other factors on 

body mass (formally, this is equivalent to a failure of the IV exclusion restriction).  Finally, subtle 

forms of measurement error may attenuate the reduced form relationship between body mass and 

Interstate proximity in spite of a significant relationship between restaurant access and Interstate 

proximity.  In this section, we analyze all three possibilities in turn. 

 

5.1.  Does Highway Proximity Increase Restaurant Consumption? 

 

The first-stage relation estimated in Section 4.1 demonstrates that residents of nonadjacent towns 

live significantly farther from their nearest restaurant than residents of adjacent towns.  Does this 

difference actually affect restaurant consumption?  Restaurant demand, for example, might be 

highly inelastic with respect to travel distance, or optimizing consumers might choose to eat in a 

restaurant on days when they already travel to restaurant towns for other reasons.  To validate the 

first-stage relationship between highway proximity and fast-food consumption, we conducted an 

original survey in a rural area that is representative of our study population.  We surveyed 

customers at every fast-food restaurant lying within a 3,000 square-mile corridor of Interstate 5 in 

northern California.  These data reveal that restaurant proximity indeed has a strong effect on 

frequency of consumption. 

 

The area of northern California that we analyze is approximately two-thirds the size of 

Connecticut.  Centered on Interstate 5 (I-5) between Dunnigan and Corning, CA, the study area is 
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approximately 80 miles long and 40 miles wide, and contains 23 fast-food restaurants, including 

McDonald’s, Burger King, Carl’s Jr., Jack in the Box, Taco Bell, Kentucky Fried Chicken, 

Quiznos, and Subway.  We chose this area because it was the only continuous Interstate corridor 

with comparable population density to our main analytic sample located within a 200-mile radius 

of either Berkeley, CA, or Evanston, IL.31  Over 11 nonconsecutive days in June and July 2008, 

we approached 2,040 customers at all of these 23 restaurants and asked for their town and ZIP 

code of residence.32  Ninety-three percent of those approached responded to our short oral survey. 

 

Using these data and ZIP code populations from the US Census, we estimate the relative 

frequency of fast-food consumption for each ZIP code in the study area.  The sampling scheme 

for these data is different than for the Census or BRFSS data since we sample at the point of 

consumption (the restaurant) rather than at the point of residence (the ZIP code or telephone 

exchange area).  Nevertheless, because we sample from the entire universe of restaurants in the 

study area, both schemes should produce similar estimates of per capita fast-food consumption 

(up to sampling error).  As an example, suppose that we wish to measure the number of 

California residents and Nevada residents attending the 2009 Annual Meeting of the American 

Economic Association (AEA) in San Francisco.  One alternative would be to telephone a random 

sample of California and Nevada residents and ask, “Did you register for and attend the 2009 

AEA Annual Meeting?”  The other alternative would be to stand at the AEA registration desk and 

ask each person who registers, “What state are you from?”  Both alternatives are valid and would 

yield the same answer asymptotically.  Logistically, however, in both the AEA scenario and our 

actual survey, it is far less expensive to gather an equivalent number of observations using a 

direct customer survey than a telephone survey.  For this reason, we conduct a direct customer 

survey.  The two methods will produce different results only if we fail to capture a representative 

sample of the universe of restaurants, either spatially or temporally.  (In the AEA scenario, the 

direct survey might fail if it only covered one of multiple registration desks or if it only sampled 

conference attendees from 8 a.m. to 12 p.m.; these issues would result in bias if California and 

Nevada residents were more or less likely to use a particular registration desk or to arrive in the 

afternoon.)  Robustness checks, described below, indicate that neither of these issues affects our 

results. 

 

                                                 
31 The population density of the three counties containing the corridor is 19 persons per square mile.  The 
population density of the areas containing our main analytic sample is 25 persons per square mile. 
32 When surveying a given restaurant, we covered all possible entrances, including drive-throughs, and 
approached every customer entering the restaurant.  Employees were not surveyed. 
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Table 5 presents summary statistics for the survey area and for the main analytic sample used in 

Section 4.  The survey area is more racially diverse, younger, less educated, and less wealthy than 

the average ZIP code in our BRFSS sample.  Because the effect of highways on obesity does not 

vary by demographic group (see Appendix Table A1), we do not expect these differences to bias 

our conclusions.  ZIP codes in the survey area are also 10 to 16 percentage points more likely to 

contain some type of restaurant than the average ZIP code in our main study. 

 

The first-stage relationship between highway proximity and restaurant access is roughly similar in 

the survey area and in our main study.  For example, highway proximity increases the likelihood 

of having a restaurant by 21 percentage points in the survey area and 17.5 percentage points in 

our main analytic sample.  Highway proximity reduces the average distance to travel to the 

nearest restaurant by 2.05 miles in the survey area and 1.50 miles in our main analytic sample. 

 

The survey data indicate that restaurants located in towns adjacent to the highway are much more 

likely to serve long-distance travelers than restaurants located in nonadjacent towns.  Fifty 

percent of customers in adjacent restaurants live more than one hour from the restaurant (as 

measured by Google Maps), compared to only 17 percent of customers in nonadjacent 

restaurants.  This differential is statistically significant (t = 6.8) and supports the idea that 

restaurant density is greater adjacent to highways because these areas have greater demand from 

highway travelers passing through. 

 

The relationship between the frequency of fast-food consumption and highway proximity is 

economically and statistically significant.  Residents of towns located 0 to 5 miles from I-5 visit 

restaurants at a rate of 128 daily visits per 1,000 residents.33  Residents of towns located 5 to 10 

miles from I-5 visit restaurants at a rate of 68 daily visits per 1,000 residents.34  This 47 percent 

decrease in frequency of fast-food consumption is highly significant (t = 8.4) and robust to the 

                                                 
33 To convert our survey results to daily visit rates, we multiply by the ratio of business hours divided by 
surveyed hours.  Business hours are assumed to start at 7 a.m. and end at 10 p.m., while surveyed hours 
began at 11 a.m. and ended by 8 p.m.  If the average store is busier during the afternoon and evening than 
during the morning and late at night, then daily rates may be overstated.  However, because the same 
multiplication factor is applied to the results from all towns, the conclusions of this section (which focus on 
relative comparisons between towns) are unaffected by the choice of multiplier. 
34 In theory, households in off-highway ZIP codes could send a single household member to bring back 
food for multiple household members.  In this case, the number of people visiting fast-food restaurants 
from these ZIP codes would appear to be low, but the number of parties (i.e., distinct groups of customers) 
visiting fast-food restaurants from these ZIP codes would not appear to be low.  Our data cast doubt on this 
possibility: the relative differential between highway and non-highway ZIP codes is identical if we perform 
the analysis using parties per 1,000 residents instead of people per 1,000 residents. 

 21



choice of sampling weights.35  The relationship between fast-food consumption and restaurant 

proximity is also strong and statistically significant.  Residents of towns that contain a fast-food 

restaurant visit restaurants at a rate of 127 daily visits per 1,000 residents, while residents of 

towns that do not contain a fast-food restaurant visit restaurants at a rate of 39 daily visits per 

1,000 residents (t = 14.1). 

 

Panel A of Table 6 reports the fast-food visit rate per 1,000 residents disaggregated by highway 

proximity and restaurant proximity.  All differences between any two quadrants in Panel A of 

Table 6 are statistically significant.  The fast-food visit rate for residents of adjacent towns that 

contain fast-food restaurants is 137 daily visits per 1,000 residents, whereas the fast-food visit 

rate for residents of nonadjacent towns that contain fast-food restaurants is 95 daily visits per 

1,000 residents.  Restaurant proximity is associated with greater restaurant consumption: both 

figures are significantly higher than the fast-food visit rate for residents of adjacent towns that do 

not contain fast-food restaurants (71 daily visits per 1,000 residents).  Nevertheless, even when 

focusing on towns with no restaurants, highway residents visit fast-food restaurants more 

frequently than off-highway residents, presumably because living on the highway provides 

quicker access to towns with fast-food restaurants.  The fast-food visit rate for residents of 

nonadjacent towns that do not contain fast-food restaurants is just 18 daily visits per 1,000 

residents.  Overall, the figures in Table 6 demonstrate that both restaurant and highway proximity 

are highly correlated with frequency of restaurant consumption. 

 

As discussed above, our sampling scheme may overstate the correlation between highway 

proximity and fast-food consumption if we fail to capture the universe of fast-food restaurants, 

either temporally or spatially.  Temporally, we may fail to appropriately measure the universe of 

restaurant consumption if relative visit rates differ throughout the day, because we only sample 

from the beginning of lunchtime until the end of dinnertime (11 a.m. through 8 p.m.).  If off-

highway residents eat a disproportionate number of their fast-food meals during breakfast hours, 

then we may be overstating the relationship between highway proximity and fast-food 

consumption.  Breakfast accounts for 11 percent of fast-food meals (U.S. Census Bureau 2005, p. 

69).  We assess the robustness of our results by assuming that off-highway residents consume 
                                                 
35 Each fast-food restaurant is sampled on at least one weekday and one weekend day, but logistical 
constraints led some restaurants to be sampled for longer durations than others.  The sampling weights 
account for these differences by reweighting the data in proportion to the inverse of the hours surveyed per 
restaurant.  The results are not sensitive to the exact choice of weights.  For example, even when making no 
adjustments at all for sampling duration, we find that fast-food consumption decreases by 41 percent in 
nonadjacent towns relative to adjacent towns. 
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fast-food breakfasts at double the implied rate from our survey.  Under this assumption, the fast-

food consumption rate of off-highway residents is still 41 percent lower than that of on-highway 

residents.36

 

In the spatial dimension, we may fail to capture the universe of fast-food restaurant consumption 

because we do not sample every fast-food restaurant in the state of California.  Instead, the 

estimates reported above assume that consumers do not travel more than 20 minutes to obtain fast 

food (more precisely, there is no difference in consumption rates between on- and off-highway 

residents at that distance).  For residents of the ZIP codes analyzed in Table 6, the minimum 

driving time to a non-surveyed fast-food restaurant ranges from 21 minutes to 48 minutes.  We 

check the sensitivity of our results to the 20-minute cutoff by re-estimating them on samples in 

which we further restrict the minimum driving time to a non-surveyed fast-food restaurant.  If 

patronage of non-surveyed restaurants is driving the on-highway/off-highway consumption 

differential, then we should expect the differential to narrow as we further restrict the minimum 

driving time. Instead, we observe the opposite pattern. 

 

When restricting the sample to ZIP codes in which residents must drive at least 30 minutes to 

reach the nearest non-surveyed fast-food restaurant, the frequency of fast-food consumption of 

off-highway residents is 52 percent lower than that of on-highway residents (t = 5.4).  The 

disaggregated results are presented in Panel B of Table 6.  When restricting the sample to ZIP 

codes in which residents must drive at least 40 minutes to reach the nearest non-surveyed fast-

food restaurant, the frequency of fast-food consumption of off-highway residents is 91 percent 

lower than that of on-highway residents.  The disaggregated results, reported in Panel C of Table 

6, reveal that the large differential between on-highway and off-highway fast-food consumption 

arises because the off-highway sample now has no ZIP codes that contain restaurants.37  

Restricting the sample to residents who live very far from the nearest non-surveyed restaurant 

                                                 
36 Our survey implies that off-highway residents consume fast food at 53 percent of the rate of on-highway 
residents.  Doubling this figure for breakfast implies that off-highway residents consume fast-food 
breakfasts at 2*0.53 = 106 percent of on-highway residents.  Because breakfasts comprise 11 percent of 
fast-food meals, the relative fast-food consumption rate of off-highway versus on-highway residents is 
0.53*(89 percent of meals) + 1.06*(11 percent of meals) = 0.59. 
37 To maintain a reasonable sample size, we expand the off-highway group in Panel C to contain all ZIP 
codes between 5 to 20 miles from I-5.  Limiting the sample to ZIP codes between 5 to 10 miles generates 
qualitatively similar results. 

 23



indicates that a failure to capture the entire universe of restaurants is not leading us to overstate 

the correlation between highway proximity and fast-food consumption.38

 

Overall, the results from the fast-food consumption survey suggest that residents in ZIP codes 

located 5 to 10 miles from the highway may consume fast food at only half the rate of residents in 

ZIP codes located 0 to 5 miles from the highway.  The implied demand response to a one dollar 

change in travel costs is similar to existing estimates of the demand response to a one dollar 

change in menu prices (Park et al. 1996; Piggott 2003).39  Even if the exact magnitudes estimated 

from the survey data do not generalize to our main analytic sample, the strong economic and 

statistical significance of the survey results verify that highway proximity indeed induces 

meaningful changes in fast-food consumption. 

 

5.2.  Can Residential Sorting across Towns Explain the Results? 

 

There is little theoretical reason to believe that proximity to Interstate Highways in the range we 

examine is correlated with the determinants of body mass.  Small towns that lie directly adjacent 

to Interstates do so only by historical accident, and all towns in our sample enjoy the lower 

transportation costs associated with easy access to highways (Chandra and Thompson 2000; 

Michaels 2008).  Nevertheless, in principle people can choose where to live: individuals with a 

preference for eating out might choose to live in towns adjacent to Interstates, and these 

individuals may have higher or lower unobserved determinants of BMI, εijt. 

 

                                                 
38 Another possibility is that consumers in towns without fast-food restaurants perfectly substitute 
consumption to local full-service restaurants.  However, 89 percent of towns without fast-food restaurants 
in the restricted sample also lack full-service restaurants.  Trimming the sample to exclude residents of 
towns that lack fast-food restaurants but contain full-service restaurants indicates that highway proximity 
reduces fast-food consumption by 60 percent (t = 7.1).  In this sample, we can be confident that consumers 
in towns with no fast food are not substituting consumption to either non-surveyed fast-food restaurants or 
to local full-service restaurants.  It thus appears likely that on-highway residents are consuming not only 
more fast food than off-highway residents, but more total restaurant food as well. 
39 Using our travel cost estimate of 70.1 cents per mile, the survey results suggest that a $2.87 change in 
travel costs reduces fast-food consumption by 47 percent (the $2.87 figure is computed as 70.1 cents per 
mile * 2.05 miles extra travel distance each direction * 2 directions = $2.87).  This implies that a one dollar 
increase in travel costs reduces fast-food consumption by 16.4 percent.  For comparison, estimates from the 
literature suggest that a one dollar increase in menu prices reduces fast-food consumption by approximately 
18 percent.  Park et al. (1996) estimate an own-price demand elasticity of −1 for restaurant food.  The 
average fast-food meal menu price is $5.51 (U.S. Census Bureau 2005), so a one dollar increase in menu 
prices (18.1 percent) should reduce fast-food consumption by approximately 18 percent.) 
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The BMI distributions plotted in Figure 3 indicate that it is very unlikely that selective sorting of 

individuals into highway towns offsets a positive effect of restaurants on body mass.  Since the 

BMI distributions of the adjacent towns and the nonadjacent towns match up exactly, any positive 

restaurant effect must be offset not just at the mean, but also at every quantile of the BMI 

distribution.  The probability of this occurring is very low.  To confirm that unobserved factors 

are not offsetting a positive effect from restaurants, however, we also analyze a wide range of 

covariates from disaggregated Census and BRFSS data.  These analyses, reported in Figure 4 and 

Tables 7 and 8, show no evidence that people sort themselves according to proximity to an 

Interstate.  Given that all observable characteristics are balanced, it is likely that unobservable 

characteristics are balanced as well. 

 

Using BRFSS data, Figure 4 plots the distribution of an index of predicted BMI for both groups 

of towns.  The index consists of the fitted values from a regression of BMI on a set of observed 

covariates: gender, a quadratic in age, indicators for educational attainment, employment, 

unemployment, and marital status, and a full set of state-by-year fixed effects.  This index 

summarizes all of the covariates, weighting them in relation to their correlation with BMI, and 

provides a more powerful test of covariate balance than examining each covariate individually.40  

The plot in Figure 4 reveals that risk factors for BMI are balanced across the adjacent and distant 

towns – the two distributions match up precisely.  This balance occurs without controlling for any 

covariates – not even state or year dummies – suggesting that our research design successfully 

approximates a randomized experiment.41

 

Table 7 presents regression coefficients quantifying the relationship between demographic 

characteristics and both restaurant availability and Interstate proximity using ZIP code-level 

extracts from the 2000 U.S. Census of Population and Housing.  Each estimate represents the 

results of a separate regression and controls for a full set of state-by-year fixed effects.  The first 

column reports the coefficients from regressions that run different dependent variables on an 

indicator that is unity if a ZIP code contains any restaurants and zero otherwise.  This sample 

contains all ZIP codes in the states that we study.  ZIP codes with restaurants contain a 

disproportionate number of females and minorities, and their residents tend to be better educated 
                                                 
40 Statistical tests of each covariate individually also find no significant differences between individuals 
residing in adjacent and nonadjacent towns. 
41 To demonstrate that the BMI risk index has predictive power, Appendix Figure A2 plots the BMI 
distributions for individuals with a predicted BMI of less than 25 (predicted normal weight) and individuals 
with a predicted BMI of greater than 25 (predicted overweight).  As expected, individuals predicted to be 
overweight are substantially heavier than individuals predicted to be normal weight. 
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with higher incomes.  These estimates are statistically significant, with t-statistics ranging from 

9.0 to 20.3.  The results indicate that an OLS analysis – regressing BMI on restaurant availability 

using all ZIP codes – would likely yield misleading estimates of the causal effects of restaurant 

availability. 

 

The second column of Table 7 reports the coefficients from a series of regressions running the 

same dependent variables on the instrument, proximity to an Interstate Highway.  This sample 

contains only rural ZIP codes lying within 10 miles of an Interstate Highway (the analytic 

sample).  In contrast to the first column, no regression returns a statistically significant 

coefficient.  More important, the lack of statistical significance occurs because of a sharp drop in 

the magnitude of the coefficients, not because of an increase in the standard errors.42  Relative to 

the first column, coefficient magnitudes decrease by factors ranging from 3 to 94 times, with an 

average decrease in magnitude of 27.9 times.  Overall, important demographic characteristics 

seem to be well balanced across areas that are adjacent and nonadjacent to Interstate Highways. 

 

Table 8 presents similar results using individual-level BRFSS data.  These results reinforce the 

conclusion that the instrument is uncorrelated with other determinants of BMI.  The “BMI Risk 

Index” consists of the fitted values from a regression of BMI on a set of observed covariates, as 

defined above in the context of Figure 4.  The effect of the instrument on the BMI Risk Index is 

statistically and economically insignificant; the coefficient of -0.038 corresponds to less than 0.01 

standard deviations of BMI.  The “Obese Risk Index” and the “Overweight Risk Index” are 

constructed similarly to the BMI Risk Index, but the covariates are used to predict obese status or 

overweight status rather than BMI.  There is no statistically or economically significant 

relationship between either index and proximity to an Interstate Highway. 

 

Some states included additional variables in the BRFSS extracts they provided us.  We do not 

include these variables when estimating the BMI, Obese, or Overweight Risk Indices because 

doing so would severely reduce our sample size.  However, individual tests for each variable also 

support the validity of our identification strategy.  Regression estimates for these additional 

variables are presented in the last four rows of Table 8.  There is no significant relationship 

between proximity to an Interstate and average income or smoking rates.  More important, 

individuals living in towns adjacent to and nonadjacent to an Interstate have similar desired 

                                                 
42 In fact, all but one of the coefficients in Column (2) would be statistically insignificant even when using 
the smaller standard errors from Column (1). 
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weights and exercise with similar frequency.  Based on these analyses, we conclude that there is 

no evidence of selection across adjacent and nonadjacent towns.   

 

5.3.  Can Measurement Error Explain the Results? 

 

Our instrument assigns location using the centroid of a restaurant’s or individual’s ZIP code.  

This coding implies that actual distance to the Interstate Highway or to the nearest restaurant is 

measured with error.  This measurement error has different implications, however, for distance to 

the Interstate Highway than it does for distance to the nearest restaurant.  In the case of distance 

to the Interstate Highway, the measurement error does not affect the interpretation of the TS2SLS 

estimates as long as the first stage induces a statistically and economically significant change in 

restaurant access.43  The first-stage estimates and the fast-food survey results leave little doubt 

that the instrument as coded is correlated with differences in restaurant access. 

 

In the case of distance to the nearest restaurant, two features of our data could cause us to 

mismeasure the relationship between restaurant access and the instrument as coded.  First, we 

assign distance to the nearest restaurant based on the ZIP code where a resident lives rather than 

the actual distance from his or her house.  This fact could cause us to overstate (or understate) the 

true average distance to the nearest restaurant for residents of any given ZIP code, exaggerating 

(or attenuating) our TS2SLS results.  Second, some of the BRFSS data are identified by telephone 

exchange rather than ZIP code.  In principle this should reduce measurement error in much of the 

reduced-form sample because telephone exchanges are typically assigned to smaller geographic 

areas than ZIP codes, but in practice a small number of telephone exchanges also map into 

multiple ZIP codes.  We analyze both of these issues in this section. 

 

To check the accuracy of our ZIP code-level distance measures, we conduct a detailed analysis of 

32 randomly sampled ZIP codes.  This sample is stratified by state and contains 11 ZIP codes 

without restaurants and 21 ZIP codes with restaurants.  The unit of observation in this analysis is 

the Census block.  Census blocks are geographically precise – the 32 ZIP codes contain a total of 

                                                 
43 Imagine that we can measure the endogenous regressor – distance for individual i to his or her nearest 
restaurant – with perfect accuracy.  The fact that distance to the Interstate Highway might be measured with 
error is then irrelevant as long as the instrument as coded induces a significant change in distance to the 
nearest restaurant, as it does in our case (the two sufficient conditions for a valid instrument – that it be 
correlated with the endogenous regressor and uncorrelated with unobserved factors that affect BMI – are 
met).  Measurement error in distance to the Interstate would only become relevant if it were so large as to 
eliminate any significant effect of the instrument on the endogenous regressor. 
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6,096 Census blocks.  For each Census block, we compute the distance to the nearest restaurant 

along the United States road network.44  We then calculate the average distance to the nearest 

restaurant for the residents of each ZIP code as a population-weighted average of the distances for 

each Census block within the ZIP code. 

 

For the 11 ZIP codes without restaurants, the average road-network centroid-to-centroid distance 

to the nearest ZIP code containing a restaurant is 9.6 miles (standard error of 1.2 miles).  Using 

the Census block data, we compute an actual average distance of 8.8 miles to the nearest ZIP 

code containing a restaurant (standard error of 0.6 miles).  In spite of the small size of this 

sample, the two estimates differ by less than 10 percent.  We cannot reject equality of the two 

estimates, and even differences of 20 percent would be too small to affect our conclusion that 

restaurants have minimal impact on obesity.45  We conclude that the ZIP code-level distance 

calculations are reasonably accurate. 

  

The Census block analysis indicates that measurement error at the ZIP code level is not 

generating our null result.  For some BRFSS observations, however, location is assigned using 

telephone exchange rather than ZIP code.  To check whether this assignment procedure attenuates 

our reduced-form results, we estimate the reduced-form relationship between highway proximity 

and obesity using only individuals for whom we observe the correct ZIP code with complete 

accuracy.  Approximately 60 percent of our BRFSS sample meets this condition.  The results 

confirm that there is no relationship between Interstate proximity and obesity.  For example, 

regressing an obese indicator on Interstate proximity (the instrument) generates a coefficient of 

0.013 (standard error of 0.012); regressing an overweight indicator on Interstate proximity 

generates a coefficient of -0.006 (standard error of 0.014); and regressing BMI on Interstate 

proximity generates a coefficient of 0.11 (standard error of 0.17).46  These coefficients are 

economically and statistically insignificant – in each case the coefficient’s magnitude is less than 

0.03 standard deviations of the dependent variable.  2SLS estimates from this sample also reveal 

                                                 
44 We identify restaurant locations using the Yahoo! Yellow Pages.  Distances along the United States road 
network are computed using ArcGIS.  
45 If our first-stage estimates were overstated by 20 percent, then the estimated TS2SLS coefficient would 
be 17 percent too low (see equation (8)).  Increasing the TS2SLS coefficient by 17 percent would imply 
that decreasing restaurant prices by one dollar increases body mass by only 0.0012 BMI points, which is 
still less than 0.001 standard deviations. 
46 All regressions contain state-by-year fixed effects.  The corresponding full sample estimates are in 
Column (1) of Table 3. 
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no economically or statistically significant effect of restaurant access on any measure of obesity 

(see Appendix Table A2). 

 

In summation, no form of measurement error can explain our conclusion that restaurants have 

little or no effect on obesity. 

 

6. Why don’t restaurants affect obesity? 

 

Given the established correlation between eating out and obesity, as well as the simple fact that 

restaurant portions have grown markedly over the past several decades, it may appear surprising 

that restaurant access has no causal effect on obesity.  To reconcile these facts, this section 

presents analysis of the causal mechanisms behind the limited effect of restaurant consumption on 

obesity.  As illustrated by the theoretical framework developed above, there are two possible 

reasons why varying the effective price of restaurants would not affect body weight.  First, after 

accounting for selection based on caloric demand, individuals may not consume substantially 

more calories when they eat out than they do at home.  Second, even if people do consume more 

calories at restaurants, they may offset the additional restaurant consumption by eating less during 

the rest of the day.  To explore the empirical relevance of these potential mechanisms, we 

examine food intake data collected by the U.S. Department of Agriculture. 

 

The food intake data come from the Continuing Survey of Food Intake by Individuals, conducted 

from 1994 to 1996.  These data include detailed information about all of the food items consumed 

by several thousand adults over two nonconsecutive days.  We focus our analysis on obese and 

overweight individuals who live outside of metropolitan areas because they are more 

representative of the subjects in our natural experiment.47  We also drop a small number of 

observations with obvious coding errors, leaving an analytic sample of 854 individuals.  Some 

individuals in nutrition studies likely underreport the amount of food they eat (Bingham 1987; 

Mertz et al. 1991; Schoeller 1990).  Because our analysis is based on relative comparisons of 

between-individual and within-individual estimators, the presence of some underreporting is 

unlikely to affect our conclusions.  

 

                                                 
47 Expanding the sample to include all geographic areas or non-overweight individuals leads to similar 
conclusions (see note 54).  Expanding the sample in both dimensions increases the sample size to 5,713 
individuals. 
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Respondents reported eating at a restaurant about once every three days.  On days when survey 

respondents reported eating “more than usual,” they were asked to explain why.  The most 

popular reasons for eating more than usual were a social occasion or special day (5.4 percent of 

days) and because they were hungrier (1.3 percent of days).  On only five out of every 1,000 days 

did people report eating more because they had eaten at a restaurant.  These responses suggest 

that eating out does not actually increase daily caloric intake.  We examine the food intake micro 

data to explore whether selection and/or offsetting can explain why intake does not increase. 

 

We conduct two types of analyses using the food intake micro data.  First, we examine how 

caloric intake differs for meals eaten at restaurants and meals eaten at home.  Then, we examine 

how caloric intake changes on days in which individuals eat at a restaurant rather than exclusively 

at home.  As our theoretical model implies, these two quantities may not be equal if individuals 

can substitute calories inter-temporally throughout the day.  In particular, if individuals engage in 

this type of compensatory behavior, we expect restaurants to have a larger effect on calories 

consumed at a given meal than they do on calories consumed throughout the day. 

 

Table 9 presents coefficient estimates from the regression 

cit = τ0 + τ1rit + Xitθ + wjt,    (9) 

where cit is calories consumed by individual i during meal or day t, rit is a binary indicator for 

whether the individual eats at a restaurant during meal or day t, Xit is a set of controls that 

includes indicators for lunch, dinner, and the day of the week, and wjt is the least squares residual.  

The sample includes days in which individuals eat either zero, one, or two meals at a restaurant.48

 

Panel A reports results from the meal-level analysis.  The sample ate 16.3 percent of their meals 

at restaurants (Column 1).  Column (2) presents results from a between-individual estimator, 

which uses between-individual variation in restaurant dining to estimate the effect of restaurants 

on caloric intake.  On average, individuals who eat at restaurants consume 339 more calories per 

meal than individuals who do not.  This estimate is statistically significant and sizeable: the 
                                                 
48 While our theoretical model allows an individual to eat at a restaurant once per day, there are days when 
people eat out more than once.  In an extension of the model where we allow restaurant consumption in 
both periods of the day, we find that when an individual chooses to eat multiple meals at restaurants in a 
given day, daily caloric intake rises, and substitution takes place between adjacent days rather than between 
meals during the same day.  This effect is even stronger if an individual eats all meals (breakfast, lunch, 
and dinner) at a restaurant.  Since we do not have food intake data for consecutive days, we limit the 
empirical analysis to days on which individuals eat out once, twice, or not at all – these days comprise 99.3 
percent of the sample.  Our ultimate conclusions about selection and compensatory behavior also hold in an 
analysis that includes all days (see note 54). 
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average restaurant meal contains 85 percent more calories than the average home-cooked meal.  

If assigned a causal interpretation, an increase of 339 calories per restaurant-meal would imply 

that the existence of restaurants increases BMI by approximately 1.7 points (Column 3).49  Many 

of the findings in the public health literature linking restaurants and obesity rely on this sort of 

cross-sectional variation (e.g., Clemens et al. 1999; McCrory et al. 1999; Binkley et al. 2000; 

French et al. 2000; Kant and Graubard 2004). 

 

But some of the observed relationship between restaurants and caloric intake across individuals 

may be due to selection – people who frequent restaurants may eat more than those who do not, 

even when they are not eating out.  To address this possibility, Column (4) presents results for a 

model that includes individual fixed effects.  These results use within-individual variation in 

restaurant dining to estimate the effect of restaurants on caloric intake.  On average, when a given 

individual eats out, he consumes 238 more calories per meal than when he eats at home.50  If 

assigned a causal interpretation, an increase of 238 calories per restaurant meal would imply that 

the existence of restaurants increases BMI by approximately 1.2 points (Column 5).51

 

While the fixed-effects estimate controls for the type of selection described above, it does not 

capture any compensatory reductions that may occur at other meals or at snack-time.52  Both the 

between and fixed-effects estimates are therefore upwardly biased estimates of the effect of 

restaurant meals on total caloric intake – the between estimate because of selection and the fixed-

                                                 
49 A one calorie increase, repeated every day in perpetuity, raises steady-state weight by approximately 0.08 
pounds (Cutler, Glaeser, and Shapiro 2003).  This calculation is based on calibrations from the medical 
literature that account for calories burned through basal metabolism, physical activity, and the thermic 
effect (Schofield, Schofield, and James 1985; Whitney and Cataldo 1983).  Banning restaurants entirely 
might therefore reduce average weight by 10.9 pounds (that is, 338.8 calories per meal * 16.3 percent of 
meals at restaurants * 2.48 meals per day * 0.08 pounds per steady-state calorie).  For a person of average 
height (5 feet, 7 inches), 10.9 pounds corresponds to 1.7 BMI points. 
50 All estimates in Panel A rely upon individuals’ assignment of food items to specific meals.  This measure 
is subjective and may confound the results if individuals group food items into meals differently at 
restaurants than they do at home.  We explore the sensitivity of the results by instead assigning food items 
to meals using the time at which the item was consumed.  Items consumed from midnight to 11 a.m. are 
assigned to “breakfast,” items consumed from 11 a.m. to 4 p.m. are assigned to “lunch,” and items 
consumed from 4 p.m. to midnight are assigned to “dinner.”  Regressions using this meal assignment (not 
shown) produce results qualitatively similar to those in Panel A. 
51 Banning restaurants entirely would reduce average weight by 7.7 pounds (that is, 237.6 calories per meal 
* 16.3 percent of meals at restaurants * 2.48 meals per day * 0.08 pounds per steady-state calorie).  For a 
person of average height (5 feet, 7 inches), 7.7 pounds corresponds to 1.2 BMI points. 
52 The between estimates, in contrast, do capture compensatory behavior at other meals (but not snacks) 
within the same day, because all meals are effectively averaged to the individual level before the cross-
sectional comparisons are made. 

 31



effects estimate because it does not capture compensatory behavior.  Accurately measuring the 

effect of restaurants on total caloric intake requires a daily-level analysis. 

 

Panel B of Table 9 applies the same econometric models to data measured at the daily level rather 

than the meal level.  If calories consumed throughout the day are substitutes, then our theoretical 

model suggests that people will compensate for larger portions at restaurants by consuming less 

throughout the rest of the day.  Consistent with this prediction, the coefficient in the daily-level 

fixed-effects regression is substantially less than the corresponding estimate at the meal level.  In 

fact, eating out increases intake over the entire day by only 35 calories – compared to an average 

daily caloric intake of 2,062 calories.  Column (5) translates the coefficient into the long-term 

effect on BMI – an increase of 35 calories per restaurant meal implies that the existence of 

restaurants increases BMI by less than 0.2 points.53  This effect is statistically insignificant and 

represents a decline of almost 90 percent from the between-individual meal-level estimate.  The 

result suggests that, although individuals tend to eat more at restaurants, they compensate to a 

substantial degree by eating less throughout the rest of the day.  Meal-level estimates therefore 

overestimate the net effect of restaurants on total caloric intake. 

 

The between-individual coefficient, presented in Column (2), is significantly larger than the 

fixed-effects coefficient (214 versus 35), implying that individuals who frequent restaurants also 

eat more at home.  This difference suggests that selection may explain why a number of 

observational studies have found a link between caloric intake and food away from home.  Of 

course, even with individual fixed effects, the decision to eat at a restaurant is not exogenous.  

Given the size of restaurant portions, we suspect that consumers tend to eat at restaurants on days 

when they are especially hungry.  The 35-calorie-per-meal fixed-effects estimate therefore 

represents an upper bound and implies that restaurant meals do not have a substantive causal 

effect on total caloric intake. 

 

The food intake results suggest that banning restaurants entirely would reduce BMI by less than 

0.2 points.  This effect is economically insignificant – it represents 0.03 standard deviations of 

BMI.  Banning restaurants entirely, however, is an unrealistic policy.  More practical public 

policies would have even smaller effects; for example, reducing restaurant consumption by 25 

                                                 
53 Banning restaurants entirely would reduce average weight by 1.1 pounds (that is, 34.6 calories per meal * 
0.408 restaurant meals per day * 0.08 pounds per daily steady-state calorie).  For a person of average height 
(5 feet, 7 inches), 1.1 pounds corresponds to 0.2 BMI points. 
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percent would reduce BMI by less than 0.05 points.  These estimates are close to zero, closely 

matching the BMI effects from the natural experiment presented above in Table 4.54  

 

Consumer calorie offsetting has also been shown to be a robust feature of food intake in 

controlled laboratory and field experiments in which individuals are offered meals of varying 

caloric content.  Those offered more caloric meals tend to compensate by eating less later in the 

day, while those offered less caloric meals compensate by eating more later in the day (Foltin et 

al. 1990; Foltin et al. 1992; Lawton et al. 1998).  These behaviors may be rooted in physiological 

mechanisms identified by the medical literature on the epidemiology of obesity (see, for example, 

Cummings and Schwartz 2003).  The human body is understood to have a physiological system 

that regulates body weight in a manner analogous to that by which a thermostat controls ambient 

temperature.  Each individual’s target body weight is determined by a combination of genetic and 

environmental factors, and the body’s weight regulation system, known as energy homeostasis, 

triggers compensatory changes in appetite and energy expenditure that resist weight changes 

outside a narrow range around the target.  In this model, people with higher weight targets may 

eat out more to satisfy their greater demand for calories, but the causal physiological response to 

eating a large meal at a restaurant – holding constant an individual’s target weight  – is to offset 

those additional calories in other ways. 

 

7. Policy implications 

 

The results presented above suggest that access to restaurants has no appreciable causal effect on 

BMI or the prevalence of obese individuals.  All point estimates are close to zero, precisely 

estimated, and statistically insignificant.  These findings suggest that policies targeted at 

restaurants are unlikely to lower the prevalence of obesity.  Nevertheless, such policies have 

recently been put forward in many jurisdictions.  Proposals include zoning regulations that limit 

the number of fast-food restaurants – enacted in Los Angeles and under consideration in New 

York City – and restaurant “fat taxes” – proposed by public health officials and city leaders in the 

                                                 
54 This conclusion is robust to various analytical extensions.  When an individual eats out multiple times in 
the same day, there is less scope for compensatory behavior at the daily level (see note 48).  Replicating the 
analysis including days on which individuals eat out three times or more implies that a 25 percent decrease 
in restaurant consumption could reduce BMI by 0.06 points.  This effect is almost identical to the effect 
reported above.  Expanding the sample to include urban and suburban consumers also generates similar 
conclusions.  Estimates from this sample imply that reducing restaurant consumption by 25 percent might 
reduce BMI by 0.10 points.  This effect is larger than the effect reported above, but it remains trivial in 
magnitude and is statistically indistinguishable from the results of our natural experiment. 
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United States, New Zealand, and Great Britain (Claridge 2003; Whiteside 2004; Crowley 2005; 

Fernandez 2006; Abdollah 2007).   

 

Here we consider the effects of the most ambitious proposal, a hypothetical restaurant “fat tax.” 

Existing “sin taxes” on alcohol and tobacco vary by state; the median tax is 2.1 percent for beer 

and 48.3 percent for cigarettes (Boon 2007; Tax Foundation 2007; U.S. Department of Labor 

2007).55  We therefore consider a restaurant tax of 50 percent to be at the upper limit of a 

plausible “fat tax.”  Since the average restaurant meal costs $7.94 (excluding tax and tip), a 50 

percent tax would imply an increase of $3.97 in the average meal price (U.S. Census Bureau 

2005, p. 12).56

 

The point estimates from the first column of Table 4 imply that a 50 percent ($3.97) increase in 

restaurant prices would have no effect on the probability of being overweight or obese and would 

reduce BMI by only 0.004 points on average.  Even if the true effect were one standard error 

greater than the estimated coefficient, a 50 percent tax would reduce the probability of being 

overweight or obese by only 0.8 percentage points and decrease average BMI by 0.24 points.  

These effects correspond to 0.02 standard deviations of the obese and overweight indicators and 

0.05 standard deviations of BMI.  Thus, even when combining the strongest feasible policy with 

coefficient values substantially larger than those present in our data, there is still only a small 

decrease in the prevalence of obesity. 

 

Although a restaurant “fat tax” would have little effect on obesity, it could produce substantial 

deadweight loss.  Here we estimate the costs of such a tax and compare them to the upper range 

of the potential health benefits (medical cost avoidance).  To compute the welfare costs, we need 

to know the own-price elasticity of demand for restaurants.  Table 10 reports the deadweight loss 

associated with a 50 percent tax under three different restaurant own-price elasticities of demand 

that fall within the range suggested by the literature: -0.5, -1.0, and -2.0 (Park et al. 1996; Piggott 

2003).  Using a constant elasticity demand curve, the value of consumer welfare lost ranges from 

                                                 
55 The cigarette tax includes both federal and state taxes.  There is no federal tax on alcohol. 
56 This price may seem low.  It is important to note that it excludes tax and tip and includes fast-food meals, 
which make up the majority of restaurant meals served.  The average full-service restaurant meal is $12.30, 
excluding tax and tip. 
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$99.4 billion to $134.1 billion per year, and the total deadweight loss ranges from $12.3 billion to 

$33.1 billion per year.57

 

The point estimates from our natural experiment (presented in Section 4) imply that a restaurant 

tax would not reduce the prevalence of obese or overweight individuals, so the cost-benefit ratio 

of such a policy would be infinite.  To confirm that the costs are substantially higher than the 

benefits under any reasonable scenario, we compute an optimistic estimate of the potential 

benefits of the restaurant tax to compare to the deadweight loss.  Specifically, we assume that the 

effect of restaurant prices on body mass is one standard error greater than our point estimate in 

Table 4.  In that scenario, a 50 percent tax would reduce the prevalence of overweight and obese 

individuals by 0.8 percentage points from the 66 percent of Americans who were obese or 

overweight in 2004.  Using results from Finkelstein et al. (2003), a 0.8 percentage point decrease 

in the prevalence of obese and overweight individuals would reduce covered medical 

expenditures by $1.4 billion (reported in the second-to-last column of Table 10).58  The last 

column of Table 10 combines this estimate of the benefits with estimates of the deadweight loss 

from the previous paragraph to compute the ratio of the welfare costs to the potential benefits 

associated with a 50 percent restaurant tax.  In all cases, the costs dominate the benefits, and the 

cost-benefit ratio ranges from 8.8-to-1 to 23.6-to-1. 

 

While the deadweight loss associated with a tax policy is substantial, the deadweight loss 

associated with a zoning policy against restaurants, such as those adopted in Los Angeles and 

proposed in New York City, is likely even greater.  With a tax policy, the government recaptures 

all of the out-of-pocket price increase from consumers.  But with zoning regulations, only part of 

the effective price increase is recaptured by nearby firms while the rest is dissipated in increased 

                                                 
57 Because the compensated demand curve is unobservable, we integrate the area under the uncompensated 
demand curve between $7.94 (the average restaurant price) and $11.91 (the counterfactual price under a 50 
percent tax) to compute the amount of consumer welfare lost.  We specify the demand curve as ln(q) = a – 
ε ⋅ ln(p), where ε is the own-price elasticity of demand, and a is determined by the 2002 equilibrium of p = 
$7.94 and q = $37.57 billion.  Because spending on food away from home accounts for only 2 percent of 
national income, income effects are likely negligible, and the uncompensated demand curve provides a 
reasonable approximation of consumer welfare lost (Hines 1999). 
58 Finkelstein et al. (2003) estimate that private insurers, Medicare, and Medicaid spent $65.7 billion 
covering overweight- and obesity-related illnesses in 1998 ($97.2 billion in 2007 dollars, inflated using the 
CPI Medical Care Services index).  The prevalence of obese and overweight individuals was 53.6 percent 
in 1998, implying total costs of $1.8 billion per percentage point (2007 dollars).  We exclude out-of-pocket 
costs in this calculation because those costs are likely already internalized by consumers.  Nevertheless, this 
number may overstate the relevant savings if employers discriminate against obese individuals because 
they have higher health care costs.  In this scenario, some costs paid by insurers would already be 
internalized by consumers. 
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time and fuel expenditures by consumers who must travel farther to their nearest restaurant and 

wait in longer lines when they arrive. 

 

 8. Conclusion 

 

Many policymakers and public health advocates design policies intended to reduce the impact of 

restaurants on obesity, even while they acknowledge that convincing evidence of such a link has 

proven to be elusive.  For example, the Food and Drug Administration recently organized a forum 

in which participants proposed implementable solutions to the challenge of obesity in the context 

of away-from-home foods, even while the organizers cautioned that “there does not exist a 

conclusive body of evidence establishing a causal link between the availability or consumption of 

away-from-home foods and obesity” (Keystone 2006, p.6). 

 

Our findings indicate that the causal link between the availability of restaurant foods and obesity 

is minimal at best.  Exploiting variation in the distance to the nearest restaurant due to Interstate 

Highway proximity shows that restaurant access and restaurant consumption have no significant 

effects on BMI, obesity, or overweight status.  These results are precisely estimated and robust to 

different specifications and samples.  Translating the distance measure into an economic cost, 

point estimates imply that a 50 percent reduction in restaurant prices would have no positive 

effect on the prevalence of obese individuals.  Similar conclusions hold with respect to BMI and 

the prevalence of overweight individuals. 

 

Detailed analyses of food intake data reveal that, although restaurant meals are associated with 

greater caloric intake, many of these additional calories are offset by reductions in eating 

throughout the rest of the day.  We also find evidence of selection – individuals that frequent 

restaurants also eat more when they eat at home.  Furthermore when eating at home, obese 

individuals consume almost 30 percent of their calories in the form of “junk food.”59  Because 

obese individuals consume so many calories from nutritionally deficient sources at home, it may 

not be surprising that replacing restaurant consumption with home consumption does not improve 

health (as measured by BMI).  These facts indicate that previous research demonstrating positive 

                                                 
59 In this calculation, “junk food” includes ice cream, processed cheese, bacon, baked sweets (such as 
muffins, cakes, cookies, and pastries), crackers, potato chips and fries, candies, soft drinks, and beer.  The 
estimate is based on the 1994-1996 Continuing Survey of Food Intake by Individuals. 
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between-individual correlations between eating out and obesity or caloric intake may be 

confounded by a lack of exogenous variation in restaurant consumption.  

 

Although the results from our natural experiment apply directly to rural consumers, there are 

indications that the central conclusions are likely to generalize to urban consumers as well.  As 

illustrated in Table 1, our analytic sample is similar to the national sample in terms of BMI and 

obesity prevalence.  And though residents of rural areas are slightly older and less educated than 

urban residents, we find that restaurants have no effect on obesity for any demographic 

subpopulation in our sample defined by gender, age, education, or income (see Appendix Table 

A1).  The lack of an effect among any of these subgroups suggests that our estimates may 

generalize to out-of-sample populations with different demographic characteristics.  Furthermore, 

the mechanisms of sample selection and calorie offsetting that we document in Section 6 to 

explain our findings hold empirically for urban consumers as well as rural consumers. 

 

Our results are also consistent with recent findings that focus on specific subpopulations.  Currie 

et al. (2008) examine the correlation between fast-food restaurant openings and body weight 

among 9th grade schoolchildren and pregnant women in four states.  Among these subpopulations, 

they find a negligible relationship between fast-food restaurants and obesity.60   

 

Our results, combined with work in the context of traffic safety (Peltzman 1975) and tobacco 

(Adda and Cornaglia 2006), suggest that regulating specific inputs into the health and safety 

production functions can be ineffective when optimizing consumers can compensate in other 

ways.  Although restaurants conveniently deliver calories at a low marginal cost, they are only 

one source among many.61  While taxing restaurant meals might cause obese consumers to 

change where they eat, our results suggest that a tax would be unlikely to affect their underlying 

tendency to overeat.  The same principle would apply to other targeted obesity interventions as 

well.  For example, two recent large-scale, multi-state randomized trials of school-based 
                                                 
60 Currie et al. have no data on fast-food consumption, making direct comparisons with our results difficult.  
Nevertheless, their preferred specifications imply that the complete elimination of fast-food restaurants 
from all school neighborhoods might change obesity rates among 9th graders by +0.6 percentage points 
(from a base rate of 32.9 percent; an increase of approximately 0.01 standard deviations), and the complete 
elimination of fast-food restaurants from the average pregnant woman’s neighborhood might change her 
BMI by -0.007 points (approximately 0.001 standard deviations).  Because fast-food restaurant openings 
may be correlated with increases in demand for unhealthy food, we interpret these small estimates as upper 
bounds on the causal relationship between fast-food and obesity for the studied subpopulations. 
61 The relative price of food is at a historic low (Lakdawalla and Philipson 2002), and inexpensive snack 
foods are prevalent (Cutler et al. 2003).  Bleich et al. (2007) show that food is so readily available in 
developed countries that consumers are literally throwing it away at increasing rates. 
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programs that improved the nutritional content of cafeteria meals found no effect on student 

weight (Nader et al. 1999; Caballero et al. 2003).  One principal investigator noted, in retrospect, 

that the intervention could not control what the children ate outside of school (Kolata 2006).  

Future research and policy proposals may find greater success if they are designed to account for 

the optimizing behavior of the targeted subjects. 
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Appendix 

 

A1. Detailed Analysis of Distance to Nearest Restaurant 

 

We conduct a detailed analysis of 32 randomly sampled ZIP codes with two objectives: (1) to 

check the accuracy of our ZIP code-level distance measure (see Section 5.3) and (2) to estimate 

the average distance to a restaurant when a ZIP code contains a restaurant.  The ZIP code detail 

sample is stratified by state and contains 11 ZIP codes without restaurants and 21 ZIP codes with 

restaurants.  The unit of observation in this analysis is the Census block; these 32 ZIP codes 

contain a total of 6,096 Census blocks. 

 

For each Census block, we compute the distance to the nearest restaurant (in the Yahoo! Yellow 

Pages) along the United States road network using ArcGIS.  We also record driving time to the 

nearest restaurant using posted speed limits, inflating these speed limits by 30 percent to account 

for speeding.  Finally, we calculate the average distance (and driving time) to the nearest 

restaurant for each ZIP code as a population-weighted average of the distances for each Census 

block within the ZIP code. 

 

The sample of 21 ZIP codes with restaurants reports an average distance of 2.5 miles to the 

nearest restaurant.  This estimate is precisely estimated (standard error of 0.3 miles).  We use this 

figure and the underlying distribution to estimate the average distance to the nearest restaurant for 

residents of ZIP codes containing a restaurant and to construct Figure 2. 

 

A2. Travel Cost Valuation 

 

Consumer travel costs include both vehicle operating costs and the opportunity cost of time spent 

in transit.  Our estimates of vehicle operating costs come from annual publications of American 

Automobile Association: Your Driving Costs.  We include per mile gasoline, maintenance, and 

depreciation costs.  We exclude tire wear and expected accident costs from our calculations.  

Under these assumptions, we compute vehicle operating costs at 31.7 cents per mile during our 

sample period.62  This estimate is likely conservative – for example, the IRS Standard Mileage 

Rate during the same period was 28 percent higher (40.7 cents per mile). 

                                                 
62 All values in this section are expressed in 2007 dollars.  Costs are computed as weighted averages from 
1990 to 2005, with each year weighted by the number of observations that it contributes to our analytic 
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To estimate time costs, we follow Ashenfelter and Greenstone (2004) and use average hourly 

wages to approximate the value of travel time.  Based on estimates from the Occupational 

Employment Statistics survey (U.S. Department of Labor 2008), the average wage in rural areas 

of our sample states is $14.91 per hour, or 38.4 cents per mile.63 We thus estimate that the 

average marginal cost of travel for rural consumers is 70.1 cents per mile – the sum of vehicle 

operating costs and time costs.64   

 

To benchmark our estimate of travel time valuation using an independent source, we collected an 

original data set of automobile speeds on an unobstructed rural roadway.65  Based on these 

speeds, we measure the degree to which rural drivers trade off travel time reductions for increased 

gasoline consumption, and find an estimate similar to that using wages.  Our data consist of a 

sample of 200 vehicles surveyed on East Pacheco Boulevard between Los Banos, California, and 

Chowchilla, California, on October 22, 2007.  The speed limit on this rural four-lane roadway is 

65 mph, and its location makes it unlikely to be used by drivers traveling between the major 

metropolitan areas of San Francisco, Los Angeles, and Sacramento.  Vehicles were randomly 

surveyed by a radar-qualified officer from a major San Francisco Bay Area police department 

using a U.S. Radar Phantom handheld unit (accurate to +/- 0.1 mph).66  We arranged for the 

survey vehicle to be invisible from the roadway, so that drivers would not modify their speed in 

response to seeing the survey vehicle.67   

 

The median driver’s speed on this rural roadway was 73 mph.68  At speeds in excess of 60 miles 

per hour (mph), fuel economy declines at an average of 1.5 percent per 1 mph (Davis and Diegel 

                                                                                                                                                 
sample.  Including tire wear and expected accident costs would increase the estimated costs by 
approximately 40 percent. 
63 We convert the travel time valuation of $14.91 per hour to 38.4 cents per mile using an average speed of 
38.9 miles per hour, which is 30 percent greater than the average posted speed limit in our detailed sample 
of ZIP codes described in Appendix A1.   
64 This estimate is consistent with estimates from Chiou (forthcoming) for how far a rural consumer is 
willing to travel to save one dollar on a DVD purchase. 
65 Lam and Small (2001) use the revealed preferences of southern California toll lane users to estimate an 
average travel time valuation of $29.28 per hour, but these results are estimated from urban commuters and 
may not generalize to rural, non-work trips. 
66 A cosine correction of 1.02 was applied to adjust for the exact angle at which the vehicles were surveyed. 
67 To the extent that any drivers with radar detectors slowed down from their preferred speed, our estimates 
understate the true valuation of travel time. 
68 The maximum speed was 94 mph. 
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2007).69  The average driver therefore trades off 4.01 gallons of gasoline for each hour of time 

savings when traveling at 73 mph.70  With local regular unleaded gas priced at $3.30 per gallon at 

the time of the survey, the median driver traded gas for travel time savings at a rate of 4.01 

gallons/hour * $3.30/gallon = $13.23 per hour.  Other speed quantiles also demonstrated a high 

valuation of time.  The 90th and 75th speed percentiles demonstrated implied time valuations of 

$15.90 and $14.62 per hour respectively, while the 25th and 10th speed percentiles demonstrated 

implied time valuations of $11.93 and $11.20 per hour respectively. 

 

While the speed data provide a useful robustness check, these estimates rely on a number of 

assumptions.  First, the drivers must understand the trade-off between travel time reductions and 

higher gasoline consumption.  Second, the estimate does not account for the increased probability 

of receiving a speeding citation.  Third, it does not account for the greater risk of injury or death 

that drivers face when traveling at higher speeds.  Nevertheless, the estimates suggest that the 

average rural wage provides a plausible estimate of rural motorists’ value of travel time. 

 

                                                 
69 This fact underlies the passage of the 55 mph national speed limit in 1974, an energy conserving measure 
enacted in response to rising oil prices. 
70 At 73 mph, increasing speed by 1 mph to 74 mph reduces the time needed to travel 73 miles by 0.0135 
hours (49 seconds), but significantly increases fuel consumption.  The fleet average EPA highway mileage 
over the last decade is 23.0 mpg (U.S. EPA 2007).  Assuming this is a reasonable estimate for fuel 
consumption at 65 mph, then average fuel consumption at 73 mph is approximately 20.2 mpg (based on 
fuel economy declining by 1.5 percent per 1 mph).  At 20.2 mpg, increasing speed from 73 mph to 74 mph 
raises the amount of gas needed to travel 73 miles by 0.0542 gallons.  On the margin, therefore, gas is 
exchanged for travel time at 0.0542 gallons/0.0135 hours = 4.01 gallons/hour when traveling at 73 mph. 
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Figure 1. Obesity Rates and Restaurant Density, 1960-2004

This figure plots the obesity rate and restaurant density in the United States from 1960 through 
2004.  The obesity rates are age-adjusted estimates for the percent of adults aged 20 to 74 with 
body mass index greater than or equal to 30, based on the National Health and Nutrition 
Examination Survey (Flegal et al. 2002; CDC 2007).  The restaurant density rates are the number 
of full-service and limited-service restaurant establishments per thousand square miles, reported 
by the Economic Census.



Figure 2. Distribution of Distance to Nearest Restaurant in 
Towns Adjacent and Nonadjacent to Interstate Highways

This figure plots the distribution of distance to the nearest restaurant for towns that are adjacent 
and nonadjacent to Interstate Highways. For ZIP codes without restaurants, we use distance to the 
nearest ZIP code with a restaurant.   For ZIP codes with restaurants, we sample (with 
replacement) from the empirical distribution of distance to the nearest restaurant for each Census 
block in a stratified random sample of 21 ZIP codes (see Appendix A1 for details).  Residents of 
adjacent towns are likely to live 0 to 5 miles from the nearest restaurant, whereas residents of 
nonadjacent towns are more likely to live 5 to 15 miles away.  These distances correspond to 
additional roundtrip travel times of 10 to 40 minutes.



Figure 3. Distribution of Body Mass Index in Towns 
Adjacent and Nonadjacent to Interstate Highways

This figure plots the distribution of body mass index (BMI) for residents of towns that are 
adjacent and nonadjacent to Interstate Highways. While residents of adjacent towns have greater 
access to restaurants (see Figure 1; Table 4) and eat more fast-food (see Table 10), they have 
similar body mass to residents of nonadjacent towns.  The two distributions match up almost 
exactly, implying that restaurants have no discernable effect on obesity at any quantile of the BMI 
distribution.



Figure 4. Distribution of BMI Risk in Towns 
Adjacent and Nonadjacent to Interstate Highways

This figure plots the distribution of an index of predicted BMI for residents of towns that are 
adjacent and nonadjacent to Interstate Highways. The index consists of the fitted values from a 
regression of BMI on a set of observed characteristics: gender, a quadratic in age, indicators for 
educational attainment, employment, unemployment, and marital status, and a full set of state-by-
year fixed effects. The two distributions match up almost exactly, implying that the risk factors 
for BMI are balanced across adjacent and distant towns.  This balance occurs without controlling 
for any covariates – not even state or year dummies – suggesting that our research design 
successfully approximates a randomized experiment.
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Appendix Figure A1. Robustness of Highway Analysis to Alternative Specifications:
Distribution of Body Mass Index in Towns Adjacent and Nonadjacent to Interstate Highways

Distance: 0-2.5 miles vs. 2.5-10 miles Distance: 0-5 miles vs. 5-20 miles

Distance: 0-10 miles vs. 10-30 miles Distance: 0-20 miles vs. 20-40 miles

Population density < 40 people / mile2 Population density < 160 people / mile2

This figure examines the robustness of Figure 2 to alternative specifications for highway proximity and population density. 
The results suggest that there is no relationship between highway (and restaurant) proximity and body mass; in every 
specification, the distributions of body mass among residents of adjacent and nonadjacent towns match up almost exactly.



Appendix Figure A2. Distribution of Body Mass Index for Individuals 
Predicted to Be Normal Weight versus Overweight by the BMI Risk Index

This figure plots the distribution of BMI for individuals with a predicted BMI of less than 25 
(predicted to be normal weight) and greater than 25 (predicted to be overweight) using the BMI 
risk index depicted in Figure 3. Individuals predicted to be overweight are substantially heavier 
than individuals predicted to be normal weight, implying that the BMI risk index has predictive 
power.



Mean Std Deviation Sample Size Mean Std Deviation Sample Size

Panel A:  Individual-Level BRFSS Data

BMI 26.57 5.24 13,470 26.49 5.39 2,608,980

Overweight (BMI ≥ 25) 0.58 0.49 13,470 0.56 0.50 2,608,980

Obese (BMI ≥ 30) 0.21 0.41 13,470 0.19 0.40 2,608,980

Female 0.58 0.49 13,470 0.59 0.49 2,608,980

Age 50.6 17.7 13,429 48.2 17.3 2,597,839

Employed 0.61 0.49 13,458 0.61 0.49 2,602,142

College 0.51 0.50 12,237 0.57 0.49 2,604,957

Panel B:  ZIP Code-Level Census Data

White 0.93 0.10 551 0.83 0.21 39,960

College 0.43 0.13 551 0.46 0.17 39,917

Median HH Income $34,689 $7,728 551 $39,676 $16,715 40,021

Any Restaurant 0.61 0.49 551 0.78 0.41 40,021

Any Full Service Restaurant 0.55 0.50 551 0.74 0.44 40,021

Any Limited Service Restaurant 0.36 0.48 551 0.64 0.48 40,021

Number Full Service Restaurants 2.38 4.83 551 9.45 15.83 40,021

Number Limited Service Restaurants 1.64 3.51 551 8.36 12.84 40,021

Table 1: Summary Statistics

Analytic Sample National Sample

Note: This table reports unweighted summary statistics for the analytic sample and the full national sample. The analytic sample consists of all telephone
exchanges or ZIP codes in Arkansas, Colorado, Iowa, Kansas, Maine, Missouri, North Dakota, Nebraska, Oklahoma, Utah, and Vermont that are located less than
10 miles from an Interstate Highway, more than 30 miles from an urban area, and have a population density of less than 80 persons per square mile. The data in
Panel A are from the BRFSS, and the standard deviations are calculated at the individual level. The data in Panel B are from the Census, and the standard
deviations are calculated at the ZIP code level.



(1) (2)

Dependent Variable
i)  Miles to nearest ZIP with restaurant -1.50 -1.38

(0.39) (0.45)

ii)  Any Restaurant 0.175 0.165
(0.042) (0.047)

iii)  Any Full-Service Restaurant 0.196 0.188
(0.042) (0.046)

iv)  Any Limited-Service Restauarant 0.154 0.131
(0.040) (0.043)

v)  Restaurants per 1,000 people 0.55 0.63
(0.19) (0.21)

vi)  Travel Cost -$2.10 -$1.94
(0.55) (0.64)

Sample:
Population Density Cutoff (People per Sq Mile) 80 40
Number of ZIP Codes 551 460

Table 2: First-Stage Effect of Interstate Proximity on Restaurant Access

Note: In this table, each coefficient represents a separate regression. The reported coefficients are
from regressions of the indicated dependent variables on an indicator for whether the respondent's
ZIP code is adjacent to an Interstate Highway. All regressions contain state-by-year fixed effects;
robust standard errors are reported in parentheses. The results indicate that residents of ZIP codes
adjacent to Interstates have greater access to restaurants -- in any number of dimensions -- than do
residents of nonadjacent ZIP codes.



(1) (2) (3) (4) (5)

Dependent Variable
i)  Obese -0.001 0.000 0.000 0.002 0.000
    (BMI ≥ 30) (0.009) (0.010) (0.009) (0.009) (0.011)

ii)  Overweight -0.007 -0.004 -0.007 -0.003 0.001
    (BMI ≥ 25) (0.011) (0.012) (0.011) (0.011) (0.012)

iii)  BMI 0.002 0.026 0.010 0.047 -0.003
(0.127) (0.143) (0.133) (0.124) (0.136)

State-by-Year Effects Yes No Yes Yes Yes
Covariates No No No Yes Yes

Sample:
Population Density Cutoff 80 80 80 80 40
    (People per Sq Mile) 
Observations 13,470 13,470 12,175 12,175 7,956

Table 3: Reduced Form Effect of Interstate Proximity on Obesity

Note: In this table, each coefficient represents a separate regression. The reported coefficients are from regressions
of the indicated dependent variables on an indicator for whether the respondent's telephone prefix is adjacent to an
Interstate Highway and a set of controls. Where indicated, the controls include state-by-year fixed effects and/or the
following covariates: gender, a quadratic in age, and indicators for educational attainment, employment,
unemployment, and marital status. Standard errors corrected for within-prefix correlation in the error term are
reported in parentheses. The results, which are precisely estimated, indicate that proximity to highways does not
affect average body weight.



(1) (2) (3) (4)

Panel A: Effect of Being One Mile Closer to a Restaurant on:

Dependent Variable
i)  Obese -0.001 -0.004 -0.008 -0.015
    (BMI ≥ 30) (0.006) (0.008) (0.009) (0.013)

ii)  Overweight -0.005 -0.004 -0.008 -0.005
    (BMI ≥ 25) (0.007) (0.009) (0.011) (0.014)

iii)  BMI 0.001 -0.074 -0.006 -0.055
(0.085) (0.102) (0.126) (0.163)

Panel B: Effect of Lowering Restaurant Prices by $1 on:

Dependent Variable

i)  Obese 0.000 -0.003 -0.005 -0.010
    (BMI ≥ 30) (0.004) (0.006) (0.007) (0.009)

ii)  Overweight -0.003 -0.003 -0.006 -0.003
    (BMI ≥ 25) (0.005) (0.006) (0.008) (0.010)

iii)  BMI 0.001 -0.053 -0.005 -0.039
(0.060) (0.073) (0.090) (0.116)

Sample:
Population Density Cutoff 80 40 80 40
    (People per Sq Mile) 
Observations 13,470 8,575 5,208 3,368

Table 4: Effect of Restaurant Access on Obesity (TS2SLS Models)

Note: This tables reports estimates from two-sample two-stage least squares regressions. Each estimate represents
a different combination of dependent variable, sample, and econometric specification for the effect of restaurant
access. All estimates control for state-by-year fixed effects and use an indicator for proximity to an Interstate
Highway as an instrument for restaurant access. Standard errors corrected for within-prefix correlation in the error
term are reported in parentheses. The results, which are precisely estimated, indicate that reducing the cost of
visiting restaurants does not affect average body weight.

All Individuals Not Employed



Mean Std Deviation Sample Size Mean Std Deviation Sample Size

White 0.69 0.19 26 0.93 0.10 551

Under 21 0.35 0.06 26 0.31 0.05 551

Over 65 0.12 0.04 26 0.16 0.05 551

College 0.36 0.12 25 0.43 0.13 551

Median HH Income $31,653 $9,243 26 $34,689 $7,728 551

Any Restaurant 0.77 0.43 26 0.61 0.49 551

Any Full-Service Restaurant 0.65 0.49 26 0.55 0.50 551

Any Limited-Service Restaurant 0.46 0.51 26 0.36 0.48 551

Number of Full-Service Restaurants 2.85 3.90 26 2.38 4.83 551

Number of Limited-Service Restaura 2.04 3.01 26 1.64 3.51 551

Table 5: Summary Statistics

Northern California Study Area Main Analytic Sample

Note: This table reports unweighted summary statistics for the rural northern California survey area (used in Section 5.1) and the main analytic
sample (used in Section 4). The rural northern California survey area consists of the 26 ZIP codes lying within 20 miles of the I-5 corridor from
Dunnigan to Corning, CA. The analytic sample consists of all ZIP codes in Arkansas, Colorado, Iowa, Kansas, Maine, Missouri, North Dakota,
Nebraska, Oklahoma, Utah, and Vermont that are located less than 10 miles from an Interstate Highway, more than 30 miles from an urban area,
and have a population density of less than 80 persons per square mile. All data are from the Census, and standard deviations are calculated at the
ZIP code level.



Restaurant No Restaurant

Panel A: At Least 20 Mins to Nearest Non-Surveyed Restaurant

Distance from highway
0 - 5 miles 137.3 71.0

(5.5) (9.4)

5 - 10 miles 95.2 17.9
(7.8) (4.7)

Panel B: At Least 30 Mins to Nearest Non-Surveyed Restaurant

Distance from highway
0 - 5 miles 157.6 138.1

(11.7) (28.1)

5 - 10 miles 89.7 5.5
(12.5) (6.2)

Panel C: At Least 40 Mins to Nearest Non-Surveyed Restaurant

Distance from highway
0 - 5 miles 157.6 138.1

(11.7) (28.1)

5 - 20 miles N/A 13.3
(7.0)

Note: In this table, each number represents the average number of daily visits to fast-food
restaurants per 1,000 residents. Numbers in the "Restaurant" column correspond to residents
living in ZIP codes that contain a fast-food restaurant. Numbers in the "No Restaurant" column
correspond to residents living in ZIP codes without a fast-food restaurant. Numbers in the rows
correspond to residents living in ZIP codes that lie within the indicated number of miles from the
highway. Standard errors are reported in parentheses. The results indicate that both restaurant
and highway proximity are highly correlated with the frequency of restaurant consumption.

Table 6: Average Number of Daily Visits to Fast-Food Restaurants per 1,000 Residents

Restaurant in ZIP Code



Near Restaurant Near Interstate

Dependent Variable
i)  Percent Male -0.009 -0.003

(0.001) (0.002)

ii)  Percent White -0.039 -0.001
(0.003) (0.007)

iii)  Percent under 21 -0.0015 -0.0001
(0.0015) (0.0038)

iv)  Percent over 65 -0.0017 -0.0004
(0.0014) (0.0037)

v)  Percent with Some College 0.061 0.002
    or More (0.003) (0.009)

vi)  Median Household Income 2,736 29
(253) (593)

State-by-year fixed effects Yes Yes

Sample:
Description Full sample Analytic sample
Number of ZIP codes 7,105 551

Table 7: ZIP Code-Level Covariate Balance

Note: In this table, each coefficient represents a separate regression; rows corresponds to different
dependent variables, and columns correspond to different samples of ZIP codes and regression
specifications. All regressions contain state-by-year fixed effects, and robust standard errors are
reported in parentheses. In the first column ("Near Restaurant"), the reported coefficients are from
regressions on an indicator variable for whether a ZIP code contains one or more restaurants; estimates
in this column are based on a full sample of ZIP codes in the states represented in the analytic sample.
The results indicate that the characteristics of ZIP codes with restaurants are different than the
characteristics of restaurants without restaurants, suggesting that an OLS analysis – regressing BMI on
restaurant availability using all ZIP codes – would likely yield misleading estimates of the causal
effects of restaurant availability. In the second column ("Near Interstate"), the reported coefficients are
from regressions on an indicator variable for whether a ZIP code is adjacent to an Interstate Highway;
estimates in this column are based on the analytic sample (defined in the note to Table 1). In contrast
to the first column, no regression returns a statistically significant coefficient; the results suggest that
demographic characteristics seem to be well balanced across areas that are adjacent and nonadjacent to
Interstate Highways.



Coefficient Sample Size

Dependent Variable
i)  BMI Risk Index -0.038 12,797

(0.029)

ii)  Obese (BMI ≥ 30) -0.0019 12,797
     Risk Index (0.0016)

iii)  Overweight (BMI ≥ 25) -0.0037 12,797
     Risk Index (0.0031)

iv)  Average Income ($) -482 10,560
(936)

v)  Ever Smoked -0.019 9,180
(0.012)

vi)  Desired Weight (in kg) -0.280 4,154
(0.425)

vii)  Exercised in Last Month 0.012 6,731
(0.016)

State-by-year fixed effects Yes

Table 8: Individual-Level Covariate Balance

Note: In this table, each coefficient represents a separate regression. The reported coefficients are
from regressions of the indicated dependent variables on an indicator for whether the respondent's
telephone prefix is adjacent to an Interstate Highway. All regressions contain state-by-year fixed
effects. Standard errors corrected for within-prefix correlation in the error term are reported in
parentheses. BMI (overweight, underweight) risk index consists of the fitted values from a
regression of BMI (overweight, underweight) on a set of observed covariates: gender, a quadratic
in age, indicators for educational attainment, employment, unemployment, and marital status, and
a full set of state-by-year fixed effects. There is no statistically or economically significant
relationship between any of these variables and proximity to an Interstate Highway.



Calories
Long-run 

BMI Effect Calories
Long-run 

BMI Effect
(1) (2) (3) (4) (5) (6)

Panel A: Meal-Level  (mean = 697.8 calories)

Eat at Restaurant 0.163 338.8 1.74 237.6 1.22 3,920
(46.0) (0.24) (23.8) (0.12)

Panel B: Daily-Level  (mean = 2,061.8 calories)

Eat at Restaurant 0.408 214.2 1.12 34.6 0.18 1,591
(53.0) (0.28) (41.1) (0.21)

Table 9: Relationship between Restaurant and Caloric Intake for Obese & Overweight Individuals

Between Estimator Fixed Effects

Sample Size

Frequency of 
Restaurant 

Meals

Note: This table presents an analysis of caloric intake by obese and overweight rural individuals based on data
collected by the U.S. Department of Agriculture. The sample includes individuals aged 18 or older on days in
which the person ate either zero, one, or two meals at a restaurant. Column (1) shows the frequency of restaurant
meals (percent of meals at restaurants in Panel A and average number of restaurant meals per day in Panel B). 
Columns (2) and (4) report coefficients from regressions of caloric intake. The number of calories consumed
during a given meal or day is regressed on an indicator for whether the food was from a restaurant and a set of
controls. The controls include indicators for lunch and dinner (meal-level regressions only), the day of the week,
and whether an individual reported eating more because of a social occasion or extreme hunger. Standard errors
corrected for within-household correlation in the error term are reported in parentheses. Columns (3) and (5)
translate the coefficients from columns (2) and (4) into the total effect of eating at restaurants on BMI for the
average obese or overweight rural individual. The formulas used for translation are described in the Section 6.
The results reveal why restaurants do not cause obesity, even though the portions consumed in restaurants are
relatively large: (1) people who frequent restaurants eat more than those who do not, even when they are not
eating out; and (2) people who eat at restaurants compensate for larger restaurant portions by consuming less
throughout the rest of the day.



Consumer Government Deadweight Optimistic
Demand Welfare Loss – Revenue = Loss Benefit Cost-Benefit
Elasticity ($ billion) ($ billion) ($ billion) ($ billion) Ratio

-0.5 134.1 121.8 12.3 1.4 8.8 : 1

-1.0 121.0 99.4 21.5 1.4 15.3 : 1

-2.0 99.4 66.3 33.1 1.4 23.6 : 1

Note: This table reports estimates of the health benefits (medical cost avoidance) and welfare loss associated with a hypothetical
50 percent tax on restaurant food. The deadweight loss (consumer welfare loss net of government revenue) is calculated using a
constant-elasticity demand curve and a range of assumptions for the restaurant own-price elasticity of demand. (The difference
between consumer welfare loss and government revenue may not exactly equal the deadweight loss because of rounding.) The
benefit is calculated under the optimistic assumption that the tax would reduce the prevalence of overweight and obese
individuals by 0.8 percentage points (one standard error greater than the point estimate from Table 6) and using estimates of the
external costs of treating obesity-related illnesses from Finkelstein et al. (2003). The cost-benefit ratio equals the deadweight
loss divided by the benefit.  In all cases, the costs of a tax on restaurant food are significantly greater than the benefits.

Cost

Table 10: Potential Deadweight Loss from 50% Restaurant Tax



Sample:  Males Females
Under 50
Years Old

Over 50
Years Old

College 
Educated

High School 
Educated

Income Under 
$40K/Year

Income Over 
$40K/Year

Dependent Variable
i)  Obese 0.000 -0.001 0.009 -0.009 0.004 -0.004 -0.010 0.005
    (BMI ≥ 30) (0.013) (0.011) (0.010) (0.013) (0.013) (0.012) (0.014) (0.012)

ii)  Overweight -0.019 0.002 0.002 -0.010 -0.006 -0.008 -0.011 0.015
    (BMI ≥ 25) (0.014) (0.014) (0.014) (0.015) (0.014) (0.014) (0.014) (0.015)

iii)  BMI -0.057 0.052 0.069 -0.029 0.004 0.011 -0.037 0.137
(0.146) (0.166) (0.155) (0.169) (0.169) (0.150) (0.186) (0.163)

Observations 5,613 7,857 6,827 6,643 6,232 6,005 5,475 4,635

Table A1: Reduced Form Effect of Interstate Proximity on Obesity by Demographic Group

Note: In this table, each coefficient represents a separate regression. Each row corresponds to a different dependent variable, and each column corresponds to a
different demographic group. The reported coefficients are from regressions of the indicated dependent variables on an indicator for whether the respondent's telephone
prefix is adjacent to an Interstate Highway and a set of state-by-year fixed effects. Standard errors corrected for within-prefix correlation in the error term are reported
in parentheses.  The results indicate that proximity to highways has no significant effect on obesity for any of these demographic subgroups.



(1) (2) (3) (4)

Panel A: Effect of Being One Mile Closer to a Restaurant on:

Dependent Variable

i)  Obese 0.007 0.007 0.008 0.011
    (BMI ≥ 30) (0.007) (0.007) (0.008) (0.009)

ii)  Overweight -0.003 -0.003 0.002 0.006
    (BMI ≥ 25) (0.007) (0.007) (0.007) (0.007)

iii)  BMI 0.054 0.054 0.043 0.099
(0.090) (0.090) (0.080) (0.083)

Panel B: Effect of Lowering Restaurant Prices by $1 on:

Dependent Variable

i)  Obese 0.005 0.005 0.006 0.008
    (BMI ≥ 30) (0.005) (0.005) (0.005) (0.006)

ii)  Overweight -0.002 -0.002 0.001 0.004
    (BMI ≥ 25) (0.005) (0.005) (0.005) (0.005)

iii)  BMI 0.039 0.039 0.031 0.070
(0.064) (0.064) (0.057) (0.059)

Covariates No Yes No Yes

Sample:
Population Density Cutoff 80 80 40 40
    (People per Sq Mile) 
Observations 8,266 8,266 4,709 4,262

Note: This table reports estimates from two-stage least squares regressions using observations for which we
know the exact ZIP code of residence with 97 percent confidence or greater. Each coefficient represents a
separate regression. All estimates control for state-by-year fixed effects and use an indicator for proximity to
an Interstate Highway as an instrument for restaurant access. Regressions with covariates include the
following controls: gender, a quadratic in age, indicators for educational attainment, employment,
unemployment, and marital status. Standard errors corrected for within-ZIP code correlation in the error term
are reported in parentheses. These estimates indicate that there is no economically or statistically significant
effect of restaurant access on body mass or obesity.

Table A2: Effect of Restaurant Access on Obesity (2SLS Models)




