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Abstract

Recent research has documented a significant rise in the volatility (e.g.,
expected squared change) of individual incomes in the U.S. since the 1970s.
Existing measures of this trend abstract from individual heterogeneity, effec-
tively estimating an increase in average volatility. We decompose this increase
in average volatility and find that it is far from representative of the experi-
ence of most people: there has been no systematic rise in volatility for the
vast majority of individuals. The rise in average volatility has been driven
almost entirely by a sharp rise in the income volatility of those expected to
have the most volatile incomes, identified ex-ante by large income changes in
the past. We document that the self-employed and those who self-identify as
risk-tolerant are much more likely to have such volatile incomes; these groups
have experienced much larger increases in income volatility than the popula-
tion at large. These results color the policy implications one might draw from
the rise in average volatility. While the basic results are apparent from PSID
summary statistics, providing a complete characterization of the dynamics of
the volatility distribution is a methodological challenge. We resolve these dif-
ficulties with a Markovian hierarchical Dirichlet process that builds on work
from the non-parametric Bayesian statistics literature.
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1 Introduction

A large literature argues that income volatility – the expectation of squared individual

income changes – has increased substantially since the 1970s in the U.S., with further

increases since the 1990s.1 To the degree that people are risk-averse and income

volatility is taken as a proxy for risk, ceteris paribus such rising volatility may carry

substantial welfare costs. As a consequence, there has been a great deal of recent

interest by politicians and journalists in this finding. (Gosselin, December 12, 2004;

Scheiber, Decemer 12, 2004; Hou, January 31, 2007)

To date, research on income volatility trends has ignored individual heterogeneity,

effectively estimating an increase in average volatility. We decompose this increase

in the average and find that it is far from representative of the experience of most

people: there has been no systematic increase in volatility for the vast majority of

individuals. The increase has been driven almost entirely by a sharp increase in the

income volatility of those with the most volatile incomes. In turn, we find that these

individuals with high – and increasing – volatility more likely to be self-employed and

more likely to self-identify as risk-tolerant.

Our main finding is apparent in simple summary statistics from the PSID. For

example, divide the sample into cohorts, comparing the minority who experienced

very large absolute one-year income changes in the past (e.g., four years ago) to those

who did not. Since volatility is persistent, those identified ex-ante by large past

income changes naturally tend to have more volatile incomes today. The income

volatility of this group identified ex-ante as high-volatility has increased since the

1Dahl, DeLeire, and Schwabish (2007) is a noteable exception. Dynan, Elmendorf, and Sichel
(2007) provide an excellent survey of research on this subject in their Table 2, including Gottschalk
and Moffitt (1994); Moffitt and Gottschalk (1995); Daly and Duncan (1997); Dynarski and Gruber
(1997); Cameron and Tracy (1998); Haider (2001); Hyslop (2001); Gottschalk and Moffitt (2002);
Batchelder (2003); Hacker (2006); Comin and Rabin (2006); Gottschalk and Moffitt (2006); Hertz
(2006); Winship (2007); Bollinger and Ziliak (2007); Bania and Leete (2007); Dahl, DeLeire, and
Schwabish (2007); Shin and Solon (2008).
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1970s while the income volatility of others has remained roughly constant.2 This

divergence of sample moments identifies our key result.

Obviously, these findings could affect substantially the welfare and policy implica-

tions of the rise in average volatility. The individuals whose volatility has increased

– who we find are those with the most volatile incomes – may be those with the

highest tolerance for risk or the best risk-sharing opportunities. Such risk tolerance

is apparent not only from the willingness of these individuals to undertake volatile

incomes or self-employment in the first place, but also from their answers to survey

questions.

While the basic results can be seen in summary statistics, providing a complete

characterization of the dynamics of the volatility distribution is a methodological

challenge. We use a standard model for income dynamics that allows income to

change in response to permanent and transitory shocks. What is less standard is

that we allow the variance of these shocks – our income volatility parameters – to be

heterogeneous and time-varying.

We estimate a discrete non-parametric model in which volatility parameters are

assumed to take one of L unique values, where the number L and the values themselves

are determined by the data. We add structure and get tractability with a variant

on the Dirichlet process (DP) prior commonly used in Bayesian statistics. The

Markovian hierarchical DP prior model we develop accounts for the grouped nature

of the data (by individual) as well as the time-dependency of successive observations

within individuals. Implicitly, we place a prior on the probability that an individual’s

parameter values will change from one year to the next, on the number of unique

2Our finding is consistent with Dynan, Elmendorf, and Sichel (2007) who find that increasing
income volatility has been driven by the increasing magnitude of extreme income changes, by the
increasingly fat tails of the unconditional distribution of income changes. The fat tails of the
unconditional distribution of income changes has also been documented in Geweke and Keane (2000).
In its reduced form, our paper shows that these increasingly fat tails are borne largely by individuals
who are ex-ante likely to have volatile incomes. The increasingly fat tails of the unconditional
distribution are not attributable – or at least not solely attributable – to increasingly fat tails of the
expected distribution for everyone.
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parameter values an individual will hold over his lifetime, and on the number of

unique parameter values found in the sample.

In Section 2, we discuss our data and the summary statistics that drive our results.

In Section 3, we present our statistical model including the income process (Section

3.1), the structure we place on heterogeneity and dynamics in volatility parameters

(Section 3.2), and our estimation strategy (Section 3.3). In Section 4, we show the

results obtained by estimating our model on the data. Increases in the average

volatility parameter are due to increases in volatility among those with the most

volatile incomes (Section 4.2). We find that the increase in volatility has been

greatest among the self-employed and those who self-identify as risk-tolerant (Section

4.5), and that these groups are disproportionately likely to have the most volatile

incomes (Section 4.4). Increases in risk are present throughout the age distribution,

education distribution, and income distribution (Section 4.5). Section 5 concludes

with a discussion of welfare implications.

2 Data and summary statistics

2.1 Data and variable construction

Data are drawn from the core sample of the Panel Study of Income Dynamics (PSID).

The PSID was designed as a nationally representative panel of U.S. households. It

tracked families annually from 1968 to 1997 and in odd-numbered years thereafter;

this paper uses data through 2005. The PSID includes data on education, income,

hours worked, employment status, age, and population weights to capture differential

fertility and attrition. In this paper, we limit the analysis to men age 22 to 60;

we use annual labor income as the measure of income.3 Table 1 presents summary

3Labor income in 1968 is labeled v74 for husbands and has a constant definition through 1993.
From 1994, we use the sum of labor income (HDEARN94 in 1994) and the labor part of business
income (HDBUSY94), with a constant definition through 2005. Note that data is collected on
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Table 1: Summary Statistics

mean st. dev. min max
year 1986.3 10.0 1968 2005
age (years) 40.0 10.5 22 60
education (years) 13.1 2.9 0 17
# of observations/person 17.2 9.0 1 34
married (1 if yes, 0 if no) 0.80 . . .
black (1 if yes, 0 if no) 0.05 . . .
annual income (2005 $s) $50, 553 $57, 506 0 $3, 714, 946
annual income ($s) $29, 277 $46, 818 0 $3, 500, 000
family size 3.1 1.5 1 14

This table summarizes data from 52,181 observations on 3,041 male household heads.

statistics from these data.

We want to ensure that changes in income are not driven by changes in the top-

code (the maximum value for income entered that can be entered in the PSID).

The lowest top code for income was $99,999 in 1982 ($202,281 in 2005 dollars), after

which the top-code rises to $9,999,999. So that top-codes will be standardized in real

terms, this minimum top-code is imposed on all years in real terms, so the top-code

is $99,999 in 1982 and $202,281 in 2005. Since our income process in Section 3.1

does not model unemployment explicitly, we need to ensure that results for the log of

income are not dominated by small changes in the level of income near zero (which

will imply huge or infinite changes in the log of income). To address this concern,

we replace income values that are very small or zero with a non-trivial lower bound.

We choose as this lower-bound the income that would be earned from a half-time job

(1,000 hours per year) at the real equivalent of the 2005 federal minimum wage ($5.15

per hour). This imposes a bottom-code of $5,150 in 2005 and $2,546 in 1982. Note

that the difference in log income between the top- and bottom-code is constant over

household “heads” and “wives” (where the husband is always the “head” in any couple). We use
data for male heads so that men who are not household heads (as would be the case if they lived
with their parents) are excluded.
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Table 2: Distribution of Income, Excess Log Income, and Income Changes for Men

Real Income Excess Income

Level Level
One-Year
Change

Five-Year
Change

Mean $50,553 ($48,867) 0 0.0017 0.0043
St. Dev. $57,506 ($34,943) 0.7307 0.4870 0.6863
Observations 52,181 52,181 43,261 34,972
Minimum $0 ($5,150) -2.9325 -3.6877 -3.8361
5th Percentile $668 ($5,150) -1.6283 -0.7323 -1.3046
25th Percentile $26,174 -0.2964 -0.1089 -0.2126
50th Percentile $42,887 0.1246 0.0134 0.0653
75th Percentile $62,012 0.4601 0.1442 0.3072
95th Percentile $113,500 0.9757 0.6673 0.9764
Maximum $3,714,946 ($202,381) 2.6435 3.5862 4.0678

Table 2 describes the distribution of labor income for men in the PSID over the period from 1968 to
2005. See Section 2 for a detailed description of the income variable and the top- and bottom-coding
procedure. Column 1 shows the distribution of real annual income for men (in 2005 dollars). The
numbers in parentheses are the values with top- and bottom-coding restrictions. Column 2 shows
the distribution of “excess” log income, the residual from the regression of log labor income (with
top- and bottom-code adjustments) on the covariates enumerated in Section 2. Column 3 presents
the distribution of one-year changes in excess log income. Column 4 repeats the results for column
3, but presents five-year changes instead of one-year changes.

time, so that differences over time in the prevalence of predictably extreme income

changes cannot be driven by changes in the possible range of income changes. The

vast majority of the values below this bound are exactly zero. This bound allows us

to exploit transitions into and out of the labor force. At the same time, the bound

prevents economically unimportant changes that are small in levels but large and

negative in logs from dominating the results. Results are robust to other values for

this lower bound, such as the income from full-time work (2,000 hours per year) at

the 2005 minimum wage (in real terms).4

4The Winsorizing strategy employed here is obviously second-best to a strategy of modeling a
zero income explicitly. Unfortunately, such a model is not feasible given the complexity added
by evolving and heterogeneous volatility parameters. The other alternative would be simply to
drop observations with low incomes, though we view this approach is much more problematic in our
context; it would explicitly rule out the extreme income changes that are the subject of this paper.
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In this paper, we model the evolution of “excess” log income. This is taken as

the residual from a regression to predict the natural log of labor income (top- and

bottom-coded as described). The regression is weighted by the PSID-provided sample

weights, with the weights normalized so that the average weight in each year is the

same. We use as regressors: a cubic in age for each level of educational attainment

(none, elementary, junior high, some high school, high school, some college, college,

graduate school); the presence and number of infants, young children, and older

children in the household; the total number of family members in the household, and

dummy variables for each calendar year. Including calendar year dummy variables

eliminates the need to convert nominal income to real income explicitly. While this

step is standard in the income process literature, it is not necessary to obtain our

results. The results to follow are qualitatively the same and quantitatively similar

when we use log income in lieu of excess log income.

Table 2 presents data on the distribution of real annual income in column 1 (im-

posing top- and bottom-code restrictions in parentheses). While the mean real income

is nearly identical with and without top- and bottom-code restrictions ($50,553 versus

$48,867), these restrictions on extreme values reduce the standard deviation of real

income from $57,506 to $34,943. Column 2 shows the distribution of “excess” log

income. Since excess log income is the residual from a regression, its mean is zero.

The inter-quartile range of excess log income is −0.30 to 0.46.

Column 3 presents the distribution of one-year changes in excess log income.

Naturally, the mean of one-year changes is close to zero. The inter-quartile range

of one-year changes is −0.11 to 0.14; excess income does not change more than 11

to 14 percent from year to year for most individuals. However, there are extreme

changes in income, so the standard deviation of changes to log income (0.49) is far

great than the inter-quartile range. This implies either that changes to income have

fat tails (so that everyone faces a small probability of an extreme income change),
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or alternatively that there is heterogeneity in volatility (so that a few people face a

non-trivial probability of an extreme income change). Unless a model is identified

from parametric assumptions, these are observationally equivalent in a cross-section

of income changes. However, heterogeneity and fat tails have different implications

for the time-series of volatility, and we exploit these in the paper.

Column 4 repeats the results from column 3, but presents five-year excess log

income changes instead of one-year changes. These long-term changes have only

slightly higher standard deviations than the one-year change, 0.69 vs. 0.49, suggesting

some mean-reversion in income. Abowd and Card (1989) show that while one-year

income changes are highly negatively correlated at one-year lags, there is no evidence

of autocorrelated income changes at lags greater than two years.

2.2 Volatility summary statistics

Table 3 shows the evolution of volatility sample moments over time. The first three

columns show the variance of permanent income changes.5 The final three columns

present two-year squared changes in excess log income, a raw measure of income

volatility.6 Note that while the mean size of an income change (columns 1 and 4,

Table 3) has increased over time, the median (columns 2 and 5) has not. This

divergence can be explained by an increase in the magnitude of large unlikely income

changes (columns 3 and 6). While not framed in this way, these features of the data

have been identified in previous research, including Dynan, Elmendorf, and Sichel

5The variance of permanent income changes is the individual-specific product of two-year changes
in excess log income (for example, between years t and t − 2) and the six-year changes that span
them (for example, between years t + 2 and t − 4). Meghir and Pistaferri (2004) show that this
moment identifies the variance of permanent income changes (between years t-2 and t) under fairly
general conditions, including the income process we use in Section 3.1.

6All use weights from the PSID. The first row shows whole-sample results. The second row
shows the percent change in the mean, median, or 95th percentile over the sample. This is merely
calculated as coefficient of a weighted OLS regression of the year-specific sample moment on a time
trend, multiplied by the number of years (2005−1968) and divided by the whole-sample value in the
previous row. The coefficient and t-statistic from this regression are shown just below. Year-by-year
values are then shown.
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Table 3: Income Volatility Sample Moments

Permanent Variance Squared Change
Mean Median 95th % Mean Median 95th %

Average 0.1091 0.0099 0.8264 0.3561 0.0314 2.0042
% Change

49% 15% 92% 110% 19% 143%
1970-2003
Slope 0.0015 0.0000 0.0205 0.0106 0.0002 0.0775
(t-stat) (4.11) (0.52) (8.76) (11.96) (1.26) (11.18)
1970 . . . 0.1555 0.0210 0.7709
1971 . . . 0.1823 0.0229 0.8004
1972 0.0665 0.0059 0.4003 0.2142 0.0277 1.1276
1973 0.0786 0.0048 0.4423 0.2296 0.0269 1.1500
1974 0.0792 0.0054 0.5090 0.2324 0.0264 1.1059
1975 0.0986 0.0129 0.6243 0.2496 0.0380 1.2286
1976 0.0997 0.0179 0.6749 0.3124 0.0498 1.6006
1977 0.0933 0.0095 0.7058 0.2983 0.0316 1.8058
1978 0.0706 0.0062 0.5958 0.2751 0.0296 1.3344
1979 0.0838 0.0061 0.6415 0.2931 0.0269 1.6711
1980 0.1388 0.0115 0.9270 0.2811 0.0292 1.4495
1981 0.1159 0.0123 0.8844 0.2932 0.0296 1.5200
1982 0.1004 0.0150 0.7256 0.2514 0.0305 1.2840
1983 0.0859 0.0150 0.6630 0.2912 0.0330 1.5820
1984 0.1220 0.0126 0.8786 0.3185 0.0331 1.8609
1985 0.1109 0.0118 0.7869 0.3283 0.0370 1.7499
1986 0.1002 0.0110 0.6905 0.3089 0.0358 1.5483
1987 0.1089 0.0093 0.7739 0.3015 0.0295 1.6058
1988 0.1224 0.0087 0.7969 0.3121 0.0300 1.6476
1989 0.1161 0.0077 0.8171 0.3278 0.0276 1.8996
1990 0.1174 0.0091 0.7770 0.2998 0.0261 1.5937
1991 0.1312 0.0121 0.9905 0.3523 0.0309 1.8485
1992 0.1013 0.0111 0.9119 0.3168 0.0295 1.7572
1993 0.1272 0.0112 1.0935 0.4166 0.0333 2.3561
1994 0.1083 0.0104 0.9270 0.4479 0.0347 2.6530
1995 0.1346 0.0077 1.1290 0.4914 0.0333 3.3055
1996 . . . 0.4768 0.0264 3.1923
1997 0.0898 0.0074 0.8660 0.4671 0.0282 2.9644
1999 0.1142 0.0080 0.9632 0.4539 0.0317 2.7189
2001 0.1190 0.0073 1.1174 0.4463 0.0271 2.9567
2003 0.1487 0.0182 1.2951 0.6348 0.0574 3.9098

The year t permanent variance is the product of two-year changes in excess log income (from t− 2
to t) and the six-year changes that span them (from t − 4 to t + 2). The year t squared change
is from t − 2 to t. The first row shows full sample moments. The second row shows the percent
change over the sample, calculated as the coefficient of a weighted OLS regression of year-specific
sample moments on a time trend, multiplied by the number of years (2005-1968) and divided by the
full sample moment. The coefficient and t-statistic are shown below.
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Figure 1: Comparing Sample Variances for Those With and Without Large Past
Income Changes
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Following Meghir and Pistaferri (2004), the sample permanent variance is calculated as the product
of two-year changes in excess log incomes (between years t and t-2) and the six-year changes that
span them (between years t+2 and t-4). The sample transitory variance is calculated as the square
of two-year changes in excess log income. Individuals are defined as low past variances when their
sample variance (permanent or transitory, respectively) four years ago is below median; individuals
are defined as high past variance when their sample variance four years ago is above the 95th

percentile. Weighted averages for these groups are presented in each year for which data is available
for permanent variance (left panel) and transitory variance (right panel).

(2007).

Table 4 and Figure 1 show the evolution of volatility sample moments separately

for those who are ex-ante likely or unlikely to have volatile incomes. The left panel

of Table 4 presents the sample mean of the permanent variance; the right panel

presents the mean two-year squared excess log income change. For each year, the

sample is split into two groups (below median or above 95th percentile) based on the

absolute magnitude of permanent (left panel) or squared (right panel) changes four

years prior. Unsurprisingly, individuals with large past income changes tend to have

larger subsequent income changes. The tendency to have large income changes is

persistent, which indicates that some individuals have ex-ante more volatile incomes

than others.
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Table 4: Income Volatility Sample Moments by Past Volatility

Permanent Variance Squared Change
Moment Mean Mean
Past Variance Low High Low High
Average 0.0820 0.3845 0.2675 0.6879
% Difference 92% 54%
Slope 0.00083 0.020 0.0080 0.026
(t-stat) (1.29) (4.36) (8.67) (6.61)
1974 . . . .
1975 . . . .
1976 0.1015 0.2895 0.2265 0.5304
1977 0.0935 0.3260 0.2164 0.5917
1978 0.0374 0.1955 0.1540 0.3231
1979 0.0491 0.3720 0.2017 0.4381
1980 0.0786 0.3663 0.1972 0.5860
1981 0.0668 0.2558 0.1780 0.5981
1982 0.0608 0.2214 0.1964 0.5569
1983 0.0676 0.0927 0.1806 0.5065
1984 0.1285 0.3449 0.2426 0.4804
1985 0.0757 0.2262 0.2708 0.4550
1986 0.1178 0.0190 0.2210 0.6276
1987 0.0753 0.3392 0.2532 0.4401
1988 0.0600 0.2691 0.2381 0.6474
1989 0.0701 0.3087 0.2430 0.6448
1990 0.0964 0.4907 0.2143 0.3365
1991 0.1108 0.4253 0.2846 0.8574
1992 0.0783 0.3356 0.2498 0.5450
1993 0.0889 0.6556 0.2990 0.8766
1994 0.0569 0.2607 0.3339 0.7283
1995 0.1105 0.5464 0.3327 0.8622
1996 . . 0.3590 0.8988
1997 0.0428 0.9663 0.3375 0.8572
1999 0.0865 0.6554 0.3309 1.2439
2001 0.1049 0.4295 0.3115 1.0118
2003 0.1101 0.8355 0.4460 1.2074

The year t permanent variance is the product of two-year changes in excess log income (from t− 2
to t) and the six-year changes that span them (from t − 4 to t + 2). The first and third columns
show sample means for the cohort of individuals whose permanent variance and squared change,
respectively, were below median in the year four years prior. The second and fourth columns show
the same, but for the cohorts with past values above the 95th percentile four years prior. The first
row shows full sample moments. The third and fourth rows present the coefficient and t-statistic
from a weighted OLS regression of year-specific sample means on a time trend. The difference in
these two coefficients, divided by their average, is the % difference in the second row. Year-by-year
means are shown below.
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If (as we argue) volatility is increasing for high-volatility individuals but not for

low-volatility individuals, then the gap in the sample variance between those with and

without large past income changes should be increasing over time. This divergence

over time in volatility between past low- and high-volatility cohorts is clear in both

Table 4 and Figure 1. The magnitude of income changes has been increasing more

for those with large past income changes (who are more likely to be inherently high-

volatility) than for those without such large past income changes (who are not). This

is particularly apparent for the permanent variance; for the transitory variance, the

finding is obscured slightly by the jump in volatility for everyone in the early- to

mid-nineties (when the PSID changed to an automated data collection system which

may have led to increased measurement error in income). This divergence illustrates

the key stylized fact developed in this paper: the increase in income volatility can be

attributed to an increase in volatility among those with the most volatile incomes,

identified ex-ante by large past income changes.

3 Statistical model

3.1 Income process

Here, we present a standard process for excess log income for individual i at time t

(following Carroll and Samwick, 1997; Meghir and Pistaferri, 2004, and many others):

yi,t = pi,t + ξi,t + ei,t (1)

pi,t = pi,0 +

t−qω∑
k=1

ωi,k +
t∑

k=t−qω+1

φω,t−kωi,k.

ξi,t =
t∑

k=t−qε+1

φε,t−kεi,k
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Excess log income (yi,t) is the sum of permanent income (pi,t), transitory income

(ξi,t), and measurement error (ei,t). The permanent shock, transitory shock, and

measurement error are assumed to be normally distributed with mean zero as well

as independent of one another, over time and across individuals. Permanent income

is initial income (pi,0) plus the weighted sum of past permanent shocks (ωi,k, 0 <

k ≤ t) with variance σ2
ω,i,t ≡ E

[
ω2

i,t

]
. Transitory income is the weighted sum of

recent transitory shocks (εi,k) with variance σ2
ε,i,t ≡ E

[
ε2

i,t

]
. We refer to σ2

i,t ≡

(σ2
ε,i,t, σ

2
ω,i,t) jointly as the volatility parameters. These will be allowed to differ

between individuals to accommodate heterogeneity, and to evolve over time. This

accommodates not just an evolving distribution of volatility parameters, but also

systematic changes over the life-cycle in volatility paramters, as suggested by Shin

and Solon (2008). Subcripts for i and t indicate that volatility parameters may differ

across individuals and over time, as discussed in Section 3.2. “Noise variance”refers

to the variance of measurement error, γ2 ≡ E
[
e2i,t
]
. This measurement error could

be subsumed into transitory income; it is kept separate only to accommodate our

estimation strategy.

Here, permanent shocks come into effect over qω periods, and transitory shocks

fade completely after qε periods.7 As an example of our notation, φω,2 denotes the

weight placed on a permanent shock from two periods ago, ωi,t−2, in current excess

log income; φε,2 denotes the weight placed on a transitory shock from two periods ago,

εi,t−2, in current excess log income. While we use the word “shock” for parsimony,

these innovations to income may be predictable to the individual, even if they look

like shocks in the data. Without loss of generality, we impose the constraint that

the weights placed on transitory shocks sum to one (
∑

k φε,k = 1).

7In Carroll and Samwick (1997), φω,k = φε,k = 0 is assumed for k > 0, though the authors
acknowledge that this assumption is unrealistic and design an estimation strategy that is robust to
this restriction but do not estimate φk. In Meghir and Pistaferri (2004) and Blundell, Pistaferri,
and Preston (forthcoming), φω,k = 0 is assumed for k > 0 but φε,k = 0 is not.
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3.2 Heterogeneity and dynamics

We characterize the dynamics of volatility parameters, σ2
i,t, using a discrete non-

parametric approach. In a discrete non-parametric model, the variable of interest –

here, the pair σ2
i,t ≡ (σ2

ε,i,t, σ
2
ω,i,t) – can take one of L possible values, {σ2

l }Ll=1 (where L

and {σ2
l }Ll=1 for any given sample are determined by the data). The probability that

σ2
i,t takes a given value is a function of a) the distribution of values in the population,

{Πl}, where Πl is the proportion of the population whose parameter values are equal

to σ2
l , b) the distribution of values for each individual i, {Πli}, where Πli is the

proportion of individual i’s observations with parameter values are equal to σ2
l ,, and

c) the number of consecutive years Qi,t with the most recent value.8 In other words,

σ2
i,t has a given probability of changing from one year to the next; when it changes,

it changes to a value drawn from the individual’s distribution, {Πli}, which in turn

consists of values drawn from the population distribution, {Πl}.

We add structure and get tractability by adding a prior commonly used in Bayesian

analysis of such discrete non-parametric problems: the Dirichlet process (DP) prior.

In a standard DP model, there is a “tuning parameter”, Θ, which implicitly places

a prior on the total number of unique parameter values in the sample, L.9 Θ is

defined more formally in Section 3.3. We set Θ = 1, though our inference is not

sensitive to this choice. In a hierarchical DP (HDP) model (recently developed by

Teh, Jordan, Beal, and Blei, 2007), the usual DP model is extended so by adding a

second tuning parameter, Θi, which implicitly places a prior on the total number of

unique parameter values for any given individual, Li; we set Θi = 1.

We extend this approach further to address panel data by including a Markovian

structure on the hierarchical DP, giving us a Markovian hierarchical DP (MHDP)

model. In our Markovian approach, the prior probability that the parameter is

8Qi,t is the largest value satisfying σ2
i,t−1 = σ2

i,t−q for all 0 < qit ≤ Qi,t.
9In large samples the expected number of unique values is of the order Θ log((N + Θ)/Θ) where

N is the number of observations. (Liu, 1996)
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unchanged from the previous period depends on the number of consecutive years

with that value, Qi,t. We add a third tuning parameter, θ, to place a prior on the

probability of changing the parameter value, p
(
σ2

i,t = σ2
i,t−1 |i, t

)
= Qi,t/(θ+Qi,t); we

set θ = 1. In the MHDP model, our prior parameters can then be characterized with

the triple ΘΘΘ ≡ {Θ,Θi, θ} = {1, 1, 1}.

Given our research question, a key advantage of this set-up is that it does not

restrict the shape (or the evolution of the shape) of the cross-sectional volatility

distribution. We view our discrete non-parametric model and the structure placed

on it by our MHDP prior as providing a sensible middle ground between tractability

and flexibility.

3.3 Estimation

We estimate the income process from Section 3.1 on annual data from the PSID

(detailed in Section 2) for excess log income. When data are missing, mostly be-

cause no data was collected by the PSID in even-numbered years following 1997, we

impute bootstrapped guesses of income.10 These bootstrapped values add no ad-

ditional information; they merely accommodate our estimation strategy in a setting

with missing data in a way that is intended to minimize the possible impact on our

results. Here, we outline an approach for combining the prior from Section 3.2 with

data on excess log income, yyy, to form a posterior on the distribution of volatility

10We examine the two-year change in excess log income that spans any single-year of missing data.
We identify the set of two-year excess log income changes with a similar magnitude elsewhere in the
data and select one at random. This bootstrapped draw has an intermediate value which is used to
fill in the missing data. For example, consider an individual with excess log income of 0.1 in 1999,
0.5 in 2001 and (since the PSID did not gather data in the intervening year) missing in 2000. From
the set of all sample observations with two-year excess log income changes in the neighborhood of
0.4, we select one at random. In general, this observation will be drawn from a different individual
than the one with the missing data. Imagine that the individual-years drawn at random have excess
log incomes of 0.6, 0.7, and 1.0 in 1972, 1973, and 1974, respectively. We then fill in the original
individual’s missing data in 2000 with 0.2 (0.1+0.7-0.6). We drop individuals with longer spans of
missing data.
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parameters, σ2σ2σ2.11 Further details and an algorithm for implementation are provided

in the appendix.

Consider the problem of estimating σ2
i,t, the volatility parameters for person i in

year t, if all other parameters σ2
−(i,t)σ2
−(i,t)σ2
−(i,t) (and φφφ) were known. The decision tree for

estimation is shown in Figure 2 and described here, both with references to relevant

equations in the appendix.

Level 1 σ2
i,t can remain unchanged from last year (σ2

i,t = σ2
i,t−1, eq: 7) or can change

(σ2
i,t 6= σ2

i,t−1, eq: 8). If σ2
i,t changes;

Level 2 σ2
i,t can change to a value from the set of other values for that individual (σ2

i,t ∈

σ2
i,−tσ2
i,−tσ2
i,−t and σ2

i,t 6= σ2
i,t−1, eq: 9) or can take on a value new to the individual

(σ2
i,t /∈ σ2

i,−tσ2
i,−tσ2
i,−t, eq: 10). If σ2

i,t takes on a value new to the individual;

Level 3 σ2
i,t can be a value held by other individuals (σ2

i,t ∈ σ2
−(i,t)σ2
−(i,t)σ2
−(i,t) and σ2

i,t /∈ σ2
i,−tσ2
i,−tσ2
i,−t, eq:

11) or can be a new value not shared with other individuals (σ2
i,t /∈ σ2

−(i,t)σ2
−(i,t)σ2
−(i,t), eq:

12).

The probability that σ2
i,t takes a given value is a function of a) the likelihood of

generating estimated shocks (ωi,t, εi,t) given σ2
i,t and b) the prior probability of σ2

i,t.

The prior probability that the parameter remains unchanged in Level 1 (σ2
i,t =

σ2
i,t−1) is proportional to Qi,t; the prior probability that the parameter changes is

proportional to θ. If the parameter changes in Level 1 (σ2
i,t 6= σ2

i,t−1), the prior

probability that σ2
i,t changes to a value held by that individual in another year in

Level 2 is proportional to the number of times that value occurs in other years for

that individual; the prior probability that σ2
i,t changes to a new value not seen for

that individual in another year is proportional to Θi. If the parameter changes to a

new value not seen for that individual in another year in Level 2, the prior probability

11yyy is the ragged N by T+1 matrix, with yi,t in the i-th row of the t+1-th column. σ2σ2σ2 ≡ {σ2
ωσ
2
ωσ
2
ω,σ

2
εσ
2
εσ
2
ε}

is the pair of ragged N by T matrices, with σ2
ω,i,t and σ2

ε,i,t in the i-th row of the t-th column of σ2
ωσ
2
ωσ
2
ω

and σ2
εσ
2
εσ
2
ε, respectively.
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Figure 2: Model Hierarchy
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Diagram describes evolution of volatility parameters. The numbers 1, 2, and
3 in circles at each decision node correspond to the levels of the hierarchy
described on page 15. The numbers (7) through (12) identify the equation
number giving the probability of reaching that branch.

that σ2
i,t changes to one of the other population values in Level 3 is proportional to

the number of times that value occurs within the population; the prior probability

that σ2
i,t changes to a new value not seen elsewhere in the population is proportional

to Θ.

A detailed outline of this estimation algorithm is given in the appendix. The

appendix shows this compound prior algebraically, and also shows how it is combined

with the data to produce a posterior for σ2
i,t. We proceed iteratively through all

t within an individual and all i across individuals. This entire scheme for choos-

ing volatility values σ2σ2σ2 is nested within a larger Gibbs sampling algorithm (Geman

and Geman, 1984). This Markov Chain Monte Carlo (MCMC) approach simultane-

ously estimates the other parameters of our model, namely shocks (ωωω,εεε) and income

coefficients (φφφ, γ2).
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Table 5: Basic Model Results

Distribution of Variance Parameters
Permanent
Variance

Transitory
Variance

Mean 0.0713 0.2771
St. Dev. 0.4685 1.0471
N 67,725 67,725
1st % 0.0200 0.0499
5th % 0.0250 0.0506
10th % 0.0301 0.0510
25th % 0.0313 0.0518
50th % 0.0321 0.0530
75th % 0.0331 0.0572
90th % 0.0356 0.2452
95th % 0.0498 1.2187
99th % 0.8909 5.5030

Distribution of posterior means of σ2σ2σ2

Shocks’ Rate of Entry/Exit

lag φω,k φε,k

k = 0 0.381 0.784
(0.088) (0.029)

k = 1 0.865 0.180
(0.072) (0.025)

k = 2 0.951 0.037
(0.064) (0.017)

φω,k: impact of permanent shock
from k periods ago

φε,k: impact of transitory shock
from k periods ago

Standard errors in parentheses.

The left panel presents the posterior mean estimates of the volatility parameters, σ2σ2σ2. The distri-
butions presented here consider all years and all individuals together. The right panel of this table
present φφφ, the mapping of shocks to income changes.

4 Results

Here, we present the model parameters estimated using the methods from Section

3.3. The chief object of interest is the evolution of the cross-sectional distribution

of volatility parameters, σ2
tσ
2
tσ
2
t , over time. These are shown in Section 4.2. We begin

with more basic results. In subsection 4.1, we present estimates of the homogeneous

parameters φφφ that map shocks to income changes and the unconditional distribution

of volatility parameters, σ2σ2σ2. In Section 4.3, we rule out alternative explanations.

In Sections 4.4 and 4.5, we map these volatility parameter estimates to individuals’

demographic or risk attributes.
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Figure 3: Distribution of Permanent and Transitory Variance
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This figure presents the distribution of σ2
εσ
2
εσ
2
ε and σ2

ωσ
2
ωσ
2
ω. These are the distribution of posterior means

estimated from the data, as presented numerically in Table 5. These posteriors of the permanent
variance and transitory variance are calculated for each individual in each year, as described in
Section 3.3. The distributions presented here show all years and individuals together. Values
are truncated at the 95th percentile for the permanent variance and at the 90th percentile for the
transitory variance. Mean and median of the truncated part of each distribution is given.

4.1 Basic results

Table 5 presents the basic parameter estimates obtained from fitting our model to the

PSID income data described in Section 3.3. The left panel shows the distribution of

risk in the population, σ2
εσ
2
εσ
2
ε and σ2

ωσ
2
ωσ
2
ω. Formally, we present the distribution of posterior

means of permanent and transitory variance parameters. The right panel show the

mapping from shocks to income changes, φφφ, which we constrained to be constant over

time and across individuals.

Note the extreme skew and fat tails (kurtosis) in the distribution of volatility

parameters, σ2σ2σ2, shown in the left panel of Table 5). While medians are modest, means

far exceed medians. At the median, transitory shocks have a standard deviation of

approximately 23% annually; permanent shocks have a standard deviation of just

under 18% annually. However, the highest volatility observations imply shocks with

standard deviations well above 100% annually. Figure 3 plots these skewed and
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Figure 4: Impulse Response Function for Permanent and Transitory Shocks
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This figure presents an estimated impulse response function for
a permanent (left panel) and transitory (right panel) shock.

fat-tailed distributions by truncating the right tail.

As shown in the right panel of Table 5, permanent shocks enter in quickly (φω,k

are close to one) while transitory shocks damp out quickly (φε,k fall to zero). The

impact of a shock on the evolution of income is presented in Figure 4. These present

impulse response functions for a permanent (left panel) and transitory (right panel)

shock. Shocks were calibrated as a one standard-deviation shock for an individual

with volatility parameters at the estimated means (pulled from Table 5).

4.2 Evolution of the volatility distribution

Here, we show how the distribution of posterior means of variance parameters has

evolved over time. This evolution is shown in Tables 6 and also in Figure 5. Table

6 shows the year-by-year distribution of volatility parameters (σ2
tσ
2
tσ
2
t ) posterior means.

This table mirrors Table 3, with volatility parameter (σ2
i,t) posterior means replacing

reduced form moments. The first three columns show results for the permanent vari-

ance parameter, σ2
ω; the final three columns show results for the transitory variance
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Table 6: Year-by-Year Income Volatility Parameters

Permanent Variance, σ2
ω Transitory Variance, σ2

ε

Mean Median 95th % Mean Median 95th %
Average 0.0713 0.0321 0.0498 0.2771 0.0530 1.2186
% Change 73% 0% 71% 99% 1% 154%
Slope 0.0014 0.0000 0.0010 0.0074 0.0000 0.0508
(t-stat) (6.84) (3.78) (6.31) (7.02) (9.37) (6.25)
1970 0.0573 0.0321 0.0424 0.1568 0.0526 0.4498
1971 0.0502 0.0321 0.0406 0.1901 0.0526 0.6419
1972 0.0411 0.0320 0.0374 0.1909 0.0527 0.7775
1973 0.0550 0.0321 0.0389 0.2027 0.0528 0.7997
1974 0.0481 0.0322 0.0437 0.1848 0.0528 0.5520
1975 0.0547 0.0321 0.0397 0.1923 0.0530 0.7597
1976 0.0663 0.0321 0.0464 0.2746 0.0529 1.3527
1977 0.0540 0.0321 0.0409 0.2424 0.0529 1.1020
1978 0.0557 0.0321 0.0411 0.1865 0.0529 0.6785
1979 0.0738 0.0321 0.0432 0.2226 0.0528 1.0134
1980 0.0748 0.0321 0.0452 0.2012 0.0529 0.7139
1981 0.0651 0.0321 0.0504 0.1986 0.0529 0.7762
1982 0.0594 0.0321 0.0502 0.2055 0.0529 0.8885
1983 0.0744 0.0321 0.0457 0.2550 0.0531 1.2691
1984 0.0660 0.0321 0.0503 0.2307 0.0531 0.9686
1985 0.0593 0.0321 0.0477 0.2260 0.0530 1.0063
1986 0.0672 0.0321 0.0441 0.2557 0.0529 1.1042
1987 0.0679 0.0321 0.0477 0.2448 0.0530 1.1468
1988 0.0714 0.0321 0.0467 0.2286 0.0531 0.9494
1989 0.0629 0.0321 0.0490 0.2462 0.0529 1.3182
1990 0.0801 0.0321 0.0607 0.2387 0.0530 0.9812
1991 0.0726 0.0321 0.0600 0.2708 0.0530 1.2466
1992 0.0633 0.0321 0.0539 0.2431 0.0531 1.0536
1993 0.0887 0.0321 0.0701 0.4290 0.0532 2.6502
1994 0.0916 0.0321 0.0628 0.4229 0.0532 2.3884
1995 0.0764 0.0321 0.0583 0.4080 0.0532 2.2152
1996 0.0609 0.0321 0.0541 0.4167 0.0531 2.4093
1997 0.0721 0.0321 0.0499 0.3916 0.0531 2.3408
1999 0.0769 0.0321 0.0519 0.3059 0.0532 1.5679
2001 0.0975 0.0322 0.0719 0.2616 0.0531 1.0974
2003 0.1026 0.0322 0.0967 0.4771 0.0534 2.4896
2005 0.1294 0.0324 0.0592 0.4379 0.0538 2.2246

The construction of posterior means for σ2
ω and σ2

ε for each individual in each year is detailed in the
text. The first row shows the full sample distribution, so that the second column shows the median
value of the posterior mean of σ2

ω over all individual-years. The second row shows the percent
change over the sample, calculated as the coefficient of a weighted OLS regression of year-specific
sample moments on a time trend, multiplied by the number of years (2005-1968) and divided by the
full sample value. The coefficient and t-statistic are shown below.
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parameter, σ2
ε. The first and fourth columns present means of the permanent and

transitory variance parameter posterior means, the second and fifth columns present

medians of parameter posterior means, and the third and sixth columns present 95th

percentiles. All use weights from the PSID. The first row shows whole-sample

results. The second row shows the percent change in the mean, median, or 95th

percentile over the sample.12 The coefficient and t-statistic from this regression are

shown just below. Year-by-year values are then shown.

Table 6 shows that the mean of permanent and transitory parameters have in-

creased substantially over the sample (by 73 and 99 percent, respectively) while the

medians have not (0 and 1 percent increases, respectively). This divergence can

be explained by an increase in the magnitude of permanent and transitory variance

parameters at the right tail, among individuals with the highest parameters (the 95th

percentile values increasing 71 percent and 154 percent, respectively). Colloquially,

the kind of people whose incomes had always moved around a lot are moving around

even more than they used to; the median person’s income does not move more than

it used to.

This pattern can be seen graphically in Figure 5, which shows the year-by-year

evolution of many quantiles of the distribution of permanent and transitory variance

posterior means. In the bottom panels of Figure 5, we plot the 1st, 5th, 10th, 25th,

50th, and 75th percentile values of the posterior mean of the permanent (σ2
ω, left) and

transitory (σ2
ε, right) variance parameters by year. These are very stable and show

no clear upward trend. The size of this increase is extremely small economically.

Looking at all but the “risky”tail of the distributions, the distributions look very

stable.

In the middle and upper panels of Figure 5, we show the evolution of the “risky”

12This is calculated as coefficient of a weighted OLS regression of the year-specific moments from
below on a time trend, multiplied by the number of years (2005-1968) and divided by the whole-
sample value in the previous row.
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tail of the distribution of posterior means. In this case, variance parameters increase

strongly and significantly. This increase in the right tail of the distribution explains

the increase in the mean completely.

4.3 Heterogeneity or fat tails?

So far, we have shown that the increases in income volatility can be attributed solely

to increases in the right tail of the volatility distribution. To obtain this result, our

model assumes that the distribution of shocks is normal conditional on the volatility

parameters. When the unconditional distribution of shocks is fat-tailed (has high

kurtosis), this is automatically attributed to heterogeneity in volatility parameters.

An alternative hypothesis is that there is little or no heterogeneity in volatility pa-

rameters, but that shocks are conditionally fat-tailed.

When looking at the cross-section of income changes, heterogeneity in volatility

parameters (with conditionally normal shocks) and conditionally fat-tailed shocks

(without no heterogeneity in volatility parameters) are observationally equivalent;

they both imply a fat-tailed unconditional distribution of income changes. By ex-

amining serial dependence, it is possible to reject the hypothesis that everyone has

the same volatility parameter. If shocks are conditionally fat-tailed but everyone

has the same volatility parameters, then those with large past income changes should

be no more likely than others to experience large subsequent income changes. If

individuals differ in their volatility parameters and those volatilities are persistent,

then individuals with large past income changes will be more likely than others to

have large subsequent income changes.

This possibility is investigated in Table 4 and shown graphically in Figure 1.

These compare the sample variance of income changes for individuals with and with-

out large past income changes. In each year, a cohort without large income changes
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Figure 5: Evolution of Percentiles of Volatility Distribution
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These figures show the evolution of various percentiles of the posterior mean of the permanent (left)
and transitory (right) variance for various percentiles of the distribution of variance parameters.
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is formed as the set of individuals whose measure of variance, either permanent vari-

ance or squared income change, was below median four years ago; a cohort with large

income changes is formed as the set of individuals whose measure of variance was

above the 95th percentile four years ago. This four-year period is chosen so that

income shocks are far enough apart to be uncorrelated. (Abowd and Card, 1989)

Note that individuals with large past income changes tend to have larger sub-

sequent income changes. The tendency to have large income changes is persistent,

which indicates that some individuals have ex-ante more volatile incomes than others.

The divergence over time in volatility between past low- and high-volatility cohorts

is clear in both Figure 1 and Table 4. The magnitude of income changes has been

increasing more for those with large past income changes (who are more likely to be

inherently high-volatility) than for those without such large past income changes (who

are not). This increase in volatility falls primarily on those who could be expected to

have volatile incomes to begin with. This shows that the increase in volatility among

the volatile we find in the model cannot be attributed to increasingly fat-tailed shocks

for everyone.

4.4 Whose incomes are volatile?

In this paper, we have identified increasing volatility for men in the U.S. since 1968

as being driven solely by the right (volatile) tail of the volatility distribution. Here,

we examine the attributes of men with highly volatile incomes.

Table 7 presents the results from a probit regression to predict whether a person-

year estimate of the (posterior mean) volatility parameter is above the 90th percentile

for that year. Note from the first row that self-employed individuals are much more

likely to have highly volatile incomes. The second row shows that “risk tolerant”

individuals are also much more likely to have highly volatile incomes. Risk tolerance is
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Table 7: Determinants of High Income Volatility (Probit)

Dependent Permanent Transitory
Variable Variance Variance
self-employed? 1 or 0 0.6001 0.7794

(24.07)*** (32.22)***
[0.1085] [0.1533]

risk-tolerant? 1 or 0 0.1303 0.0950
(5.91)*** (4.31)***
[0.0180] [0.0131]

age 0.0104 0.0082
(7.82)*** (6.20)***
[0.0014] [0.0011]

years of education -0.0041 -0.0123
(-0.89) (-2.67)***

[−0.0006] [−0.0017]
income>median? 1 or 0 -0.2277 -0.2922

(-9.84)*** (-12.65)***
[−0.0308] [−0.0398]

have children? 1 or 0 -0.0498 -0.0686
(-1.48) (-2.04)**

[−0.0068] [−0.0094]
number of children 0.0120 0.0068

(0.90) (0.51)
[0.0016] [0.0009]

married? 1 or 0 -0.1009 -0.1815
(-3.00)*** (-5.56)***
[−0.0143] [−0.0270]

R2 0.0469 0.0751
observations 31,898 31,898

Results from a probit regression to predict an indicator variable for whether posterior mean variance
(permanent or transitory volatility) estimate is is above the 90th percentile for that year. “Risk
tolerant” is set to 1 if the PSID risk tolerance variable exceeds 0.3. Above-median income indicates
that four-year lagged income is above-median for that (lagged) year. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively. z-statistics are in parentheses. Marginal
effects are in square brackets.
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identified from answers to hypothetical questions about lotteries, designed to elicit the

individual’s coefficient of relative risk-aversion; risk-tolerant individuals are defined

as those with an estimated coefficient of relative risk-aversion below 1/0.3.

High income individuals (those with incomes above median four years before the

observation in question) are less likely to have volatile incomes. Individuals with more

years of education are also less likely to have volatile incomes. Older individuals are

more likely to have volatile incomes, a result driven by the large number of high-

volatility individuals between ages 50 and 60. Unsurprisingly, men who are married

and/or who have children are less likely to have volatile incomes.

4.5 Whose incomes are increasingly volatile?

Section 4.4 identified attributes of individuals with volatile incomes. In particular,

the self-employed and those whose answers to survey questions suggest they are risk-

tolerant are more likely to have volatile incomes. Here, we examine the increase in

volatility over time among these groups.

Table 8 predicts the posterior mean variance (volatility) estimates described ear-

lier with a linear time trend. The “change” row shows the coefficient on calendar

time; the “percent change” row shows the expected percent change over the sample

implied by this coefficient. The top panel presents results for the permanent variance;

the bottom panel presents results for the transitory variance. Each column presents

results for a different sub-sample. By comparing the first two columns, note that that

volatility has increased dramatically more for self-employed people than for others.

These individuals have much higher average levels of volatility, but their percentage

change in volatility is still higher than for other individuals. Self-employed individ-

uals account for a substantial proportion of the overall increase in income volatility.

Similarly, the increase in permanent volatility (the variance of permanent shocks)
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Table 8: Volatility Trends by Self-Employment, Income, and Risk Tolerance

Permanent Variance
Self-Employment Income Risk Tolerance
self- not self- > med. ≤ med. risk not risk

sample employed employed income income tolerant tolerant
change per year 0.0048 0.0011 0.0018 0.0009 0.0035 0.0012
% change ’68-’05 194% 58% 135% 36% 172% 76%

(6.17)*** (4.58)*** (5.99)*** (2.75)*** (4.61)*** (4.50)***
N 6,068 41,766 10,336 23,876 23,958 18,029

Transitory Variance
Self-Employment Income Risk Tolerance
self- not self- > med. ≤ med. risk not risk

sample employed employed income income tolerant tolerant
change per year 0.0262 0.0061 0.0040 0.0116 0.0100 0.0076
% change ’68-’05 176% 101% 125% 101% 117% 114%

(11.27)*** (13.80)*** (10.84)*** (13.22)*** (7.81)*** (9.45)***
N 6,068 41,766 23,876 23,958 10,336 18,029

Results from a weighted OLS regression to predict the posterior mean variance (volatility) estimate
with a linear time trend. The “change” row shows the coefficient on calendar time; the “percent
change” row shows the expected percent change over the sample implied by this coefficient. This
is (100 percent) times (2005 minus 1968) times (the coefficient on calendar time) divided by (the
average posterior mean in the sample). The top panel presents results for the permanent variance;
the bottom panel presents results for the transitory variance. Each column presents results for
a different sub-sample. “Risk tolerant” means that the PSID risk tolerance variable exceeds 0.3.
Above-median income indicates that four-year lagged income is above-median for that (lagged) year.
t-statistics are in parentheses.

is much greater for those who self-identify as risk tolerant (those whose estimated

coefficient of relative risk aversion less than 1/0.3) than those who do not. Transi-

tory volatility does not show major differences in trend for risk tolerant and not risk

tolerant individuals.

Table 8 shows that the increase in volatility is apparent throughout the income

distribution. While increases in the average variance of transitory shocks are sim-

ilar (in proportional terms) for those with above- and below-median income, the

variance of permanent shocks has increased more for those with above-median in-

come than for those with below-median income. While below-median individuals

are over-represented among those with the highest volatilities (Section 4.5), low in-
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Table 9: Volatility Trends by Age and Education

Permanent Variance
age education

less than at least more than high less than
sample 40 yrs old 40 yrs old high school school high school
mean change/year 0.0006 0.0018 0.0024 0.0005 0.0004
% change ’68-’05 44% 76% 120% 28% 22%

(3.66)*** (4.55)*** (6.08)*** (1.71)* (1.17)
median change/year 0.0000 0.0000 0.0000 0.0000 0.0000
% change ’68-’05 0% 0% 1% 0% 0%

(0.79) (4.29)*** (5.20)*** (-1.36) (0.20)
95th %tile chnge/year 0.0007 0.0010 0.0008 0.0007 0.0012
% change ’68-’05 53% 67% 63% 55% 72%

(8.35)*** (6.47)*** (10.32)*** (6.50)*** (2.31)**
N 23,928 23,906 23,455 15,516 8,863

Transitory Variance
age education

less than at least more than high less than
sample 40 yrs old 40 yrs old high school school high school
mean change/year 0.0057 0.0096 0.0093 0.0065 0.0066
% change ’68-’05 86% 123% 120% 102% 95%

(9.36)*** (13.27)*** (12.14)*** (8.76)*** (6.91)***
median change/year 0.0000 0.0000 0.0000 0.0000 0.0000
% change ’68-’05 1% 2% 2% 2% 3%

(6.87)*** (18.73)*** (11.18)*** (13.69)*** (7.60)***
95th %tile chnge/year 0.0378 0.0649 0.0598 0.0483 0.0467
% change ’68-’05 124% 211% 183% 188% 135%

(7.87)*** (17.10)*** (12.15)*** (11.04)*** (5.78)***
N 23,928 23,906 23,455 15,516 8,863

Results from a weighted OLS regression to predict the posterior mean variance (volatility) estimate
with a linear time trend. The “change” row shows the coefficient on calendar time; the “percent
change” row shows the expected percent change over the sample implied by this coefficient. This
is (100 percent) times (2005 minus 1968) times (the coefficient on calendar time) divided by (the
average posterior mean in the sample). The top panel presents results for the permanent variance;
the bottom panel presents results for the transitory variance. Each column presents results for a
different sub-sample. t-statistics are in parentheses.

28



come individuals are not driving the increase in volatility among those with the most

volatile incomes.

Table 9 presents results by age and educational attainment. Note that while

magnitudes vary, the increase in volatility at the right tail is present for those below

and above 40, and across the education distribution.

5 Conclusion

Increases in the size of income changes in the PSID can be attributed almost entirely

to the “right tail” of the volatility distribution. Taking volatility as a proxy for

risk, those who would have had risky incomes in the past now face even more risk.

Everyone else has had no substantial change.

Without knowing more, the welfare implications of this finding are unclear. De-

pending on what kind of people have volatile incomes, an increase in volatility at

the volatile end of the distribution could be more or less bad than an increase in

volatility for everyone. Consider the possibility (which we refute in Section 4.4) that

risk tolerance is independent of income volatility or expected income. In this case,

increasing volatility at the volatile end of the distribution decreases welfare more

than increasing risk throughout the distribution. When individuals have decreasing

absolute risk aversion, high levels of income risk (proxied here by volatility) make

people more vulnerable to additional risk. (Gollier, 2001) If there is a compensating

differential for risk so that volatile incomes are also higher on average, then this effect

will be mitigated or reversed.

This paper shows that those with the most volatile incomes are also the most

risk-tolerant. In this case, the increase in risk has hit those best able to handle

it. To the degree that income volatility is chosen (e.g., by choosing an occupation),

we would expect those with the highest tolerance for risk or the best risk-sharing
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opportunities to take on the most volatile incomes. If it is these individuals whose

volatility has increased, it could blunt substantially any welfare costs associated with

increased income volatility. Since the increase in volatile has fallen disproportion-

ately on the self-employed, it could also reflect an increase in profitable (but volatile)

business opportunities. In this case, there could even be welfare gains associated

with increased income volatility.
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A Appendix A: Estimation

We estimate the joint posterior distribution of all unknown parameters conditional
on our observed data as:

p(φφφ, γ2,ωωω,εεε,σ2σ2σ2|yyy) ∝ p(yyy|φφφ, γ2,ωωω,εεε) · p(ωωω,εεε|σ2σ2σ2) · p(σ2σ2σ2) (2)

Following Bayes rule, the distribution of parameters given the data – p(φφφ, γ2,ωωω,εεε,σ2σ2σ2|yyy)
– is proportional to the product of the distribution of the data given those parameters
– p(yyy|φφφ, γ2,ωωω,εεε) – and the probability of those parameters – p(ωωω,εεε|σ2σ2σ2) · p(σ2σ2σ2). We
will estimate the posterior distribution of our unknown parameters by Markov Chain
Monte Carlo (MCMC) simulation, specifically the Gibbs sampler. (Geman and Ge-
man, 1984) The Gibbs sampler estimates the full posterior distribution in equation
(2) by iteratively sampling a value for each unknown parameter conditional on the
current values of the other unknown parameters. In other words, we iterate over the
following steps.

Step 1: Sample new values of (φφφ, γ2) from p(φφφ, γ2|yyy,ωωω,εεε,σ2σ2σ2)

Step 2: Sample new values of (ωωω,εεε), the shock parameters for each person and year,
from p(ωωω,εεε|yyy,φφφ, γ2,σ2σ2σ2)

Step 3: Sample new values of (σ2σ2σ2), the volatility parameters for each person and year,
from p(σ2σ2σ2|yyy,φφφ, γ2,ωωω,εεε).

These sampling steps form a Markov chain that is iterated until the set of all
parameters has converged to their joint posterior distribution. This algorithm is pro-
grammed in Python and run on a grid cluster of computers. One run of this model
(with 10,000 iterations) takes several weeks, though multiple runs can be done si-
multaneously. Each of the runs was started from a randomly sampled set of initial
parameter values. These multiple runs were used to evaluate convergence of the algo-
rithm to a reasonable set of samples from the posterior distribution of all parameters.
The first 5000 iterations of each chain was discarded as the pre-convergence burn-in
period, and our inference was based upon the remaining sampled values.

A.1 Step 1: Sampling income process parameters (φφφ, γ2)

In this step, we take realized shocks (ωωω,εεε) as well as excess log income data (yyy) as
given, to estimate the rate at which shocks pass through to income (φφφ). Reorganizing
equation (1) and setting limits of qω = qε = 3 (a conservative choice according to
Abowd and Card, 1989), we get the following dynamic linear model,

yi,t =
t−3∑
k=0

ωi,k +
t∑

k=t−2

φω,t−kωi,k +
t∑

k=t−2

φε,t−kεi,k (3)

For each individual i, the dynamic linear model for their excess log income (yyyi) is a
combination of the homogeneous parameters (φφφ) and realized shocks (ωωω,εεε). In our
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Gibbs sampling model implementation, we take advantage of the fact that sampling
new values of the homogeneous parameters conditional on fixed values of the realized
shocks is relatively simple, and vice versa.

If we are given values of the realized shocks (ωωωi, εεεi), we can calculate the scalar
y?

i,t and the 1× 6 (since qω + qε=6) vector Xi,t ,

y?
i,t ≡ yi,t −

t−3∑
k=0

ωi,k Xi,t ≡ (ωi,t−2, ωi,t−1, ωi,t, εi,t−2, εi,t−1, εi,t)

Let yyy? be the N(T − 3) × 1 vector of all y?
i,t across individuals i and time t, and let

XXX be the N(T − 3)× 6 matrix whose rows are all Xi,t across individuals i and time
t. We can then write equation (3) as a simple linear regression model,

yyy? = XXX · βββ + eee where eee ∼ Normal(000, γ2 · III)

where βββ = (φω,2, φω,1, φω,0, φε,2, φε,1, φε,0) are the homogeneous parameters of interest.
Note that this is the stage at which we use measurement error (eee) as distinct from
transitory shocks.

We use non-informative prior distributions for both γ2 and βββ, which leads to the
following posterior distributions (the Bayesian analog of a least-squares estimate):

γ2 ∼ Inv −Gamma

(
TN

2
,

(yyy? −XXXβ̂)′(yyy? −XXXβ̂ββ)

2

)
βββ ∼ Normal

(
β̂ββ , γ2 · (XXX ′XXX)−1

)
(4)

where β̂ββ = (XXX ′XXX)−1XXX ′yyy? as in a least-squares regression. We sample new values
of γ2 and φφφ from the distributions in (4), but with the additional constraint that∑

k φε,k = 1.

A.2 Step 2: Sampling realized shocks (ωωω,εεε)

In this step, we take excess log income data (yyy), the homogeneous parameters (φφφ),
and the volatility parameters (σ2σ2σ2) as given. We use these to sample realized shocks
(ωωω,εεε).

If we are now given values of the homogeneous parameters (φφφ), then the only
unmeasured variables in our dynamic linear model (3) are the realized shocks (ωωωi, εεεi).
We use maximum likelihood estimates from a Kalman filter (Kalman, 1960) to sample
new values of the realized shocks (ωωωi, εεεi), as outlined in Carter and Kohn (1994).
Given the homogeneous parameters (φφφ, γ2) and the collection of volatility parameters
(σ2σ2σ2), each individual’s income process is independent, so run the Kalman filter and
sampling procedure for the realized shocks (ωωωi, εεεi) for each individual i separately.
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A.3 Step 3: Sampling volatility parameters (σ2σ2σ2)

In this step, we take sampled realized shocks (ωωω,εεε) as given and use these to sample
estimates of volatility parameters (σ2σ2σ2). In order to sample a full set of volatil-
ity parameters σ2σ2σ2 from the distribution p(σ2σ2σ2|yyy,φφφ, γ2,ωωω,εεε), it is easiest to proceed
sequentially by sampling (one-by-one), the volatility parameters σ2

i,t for individual
i and year t from the distribution p(σ2σ2σ2|yyy,φφφ, γ2,ωωω,εεε,σ2

−(i,t)σ2
−(i,t)σ2
−(i,t)). Note that under this

scheme, information about (σ2
i,t) comes from our sampled permanent and transitory

shocks (ωi,t, εi,t) as well as our current estimates of the volatility parameters, σ2
−(i,t)σ2
−(i,t)σ2
−(i,t),

from other years within the individual as well as other individuals. We link these
other volatility values σ2

−(i,t)σ2
−(i,t)σ2
−(i,t) to our shock parameters (ωi,t, εi,t) through the posterior

distribution,

p(σ2
i,t|ωi,t, εi,t,σ

2
−(i,t)σ2
−(i,t)σ2
−(i,t)) ∝ p(ωi,t, εi,t|σ2

i,t) · p(σ2
i,t|σ2

−(i,t)σ2
−(i,t)σ2
−(i,t)) (5)

The first term of equation (5) comes from the likelihood of our realized shocks
(ωi,t, εi,t) from our dynamic linear model,

p(ωi,t, εi,t|σ2
i,t) ∝

(
σ2

ω,i,tσ
2
ε,i,t

)− 1
2 exp

(
−1

2

ω2
i,t

σ2
ω,i,t

− 1

2

ε2
i,t

σ2
ε,i,t

)
(6)

The second term of equation (5) is our Markovian hierarchical Dirichlet process
(MHDP) prior, p(σ2

i,t|σ2
−(i,t)σ2
−(i,t)σ2
−(i,t)), described in Sections 3.2 and 3.3. Sampling new values

σ2
i,t from the posterior distribution (5) is a multi-step process that acknowledges the

structure of our population. First, we sample a volatility parameter proposal value
(σ2

? ≡ {σ2
ω,?, σ

2
ε,?}) from a continuous distribution f(·). For our implementation, we

used an inverse-Gamma distribution, which is commonly used for variance parame-
ters. We will set σ2

i,t = σ2
? only if we cannot find a suitable σ2

i,t ∈ σ2
−(i,t)σ2
−(i,t)σ2
−(i,t) i.e. among

our currently existing values in the population.

A.3.1 Level 1: Is volatility unchanged from last year?

We first consider the posterior probability that σ2
i,t = σ2

i,t−1,

p(σ2
i,t = σ2

i,t−1) ∝ Qi,t · p(ωi,t, εi,t|σ2
i,t−1) (7)

p(σ2
i,t 6= σ2

i,t−1) ∝ θ · p(ωi,t, εi,t|σ2
?) (8)

Recall that Qi,t is the number of consecutive years with parameter values σ2
i,t−1; θ is

the prior tuning parameter for Level 1. We compare the posterior probability that
volatility values are unchanged from last year (σ2

i,t−1 in equation (7)) to the posterior
probability that volatility values are equal to the proposal value (σ2

? in equation (8)).
We sample a possible value for σ2

i,t from this posterior distribution, either σ2
i,t−1 or

σ2
?, where choice is made stochastically by flipping a weighted coin with weights equal

to the probabilities in equations (7) and (8). If this weighted coin flip selects σ2
i,t−1,

then we set σ2
i,t = σ2

i,t−1. If the coin flip selects σ2
?, we do not set σ2

i,t = σ2
i,t−1 and

instead proceed to Level 2 to find σ2
i,t.
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A.3.2 Level 2: Is volatility the same as in another year?

Given that we did not choose to set σ2
i,t 6= σ2

i,t−1, we consider the posterior probability
that σ2

i,t ∈ σ2
i,−tσ2
i,−tσ2
i,−t. If there are Li unique values σ2

li
∈ σ2

i,−tσ2
i,−tσ2
i,−t, the posterior probability

that σ2
i,t = σ2

li
is,

p(σ2
i,t = σ2

li
) ∝ nl · p(ωi,t, εi,t|σ2

li
) l = 1, . . . , Li (9)

p(σ2
i,t /∈ σ2

i,−tσ2
i,−tσ2
i,−t) ∝ Θi · p(ωi,t, εi,t|σ2

?) (10)

nl is the number of occurrences of value σ2
li

within the set of possible values σ2
−(i,t)σ2
−(i,t)σ2
−(i,t);

Θi is the prior tuning parameter for Level 2. We sample one of these Li + 1 choices
by flipping a weighted coin with weights proportional to the probabilities above. If
this weighted coin flip selects σ2

li
∈ σ2

i,−tσ2
i,−tσ2
i,−t, then we set σ2

i,t = σ2
li
. If the coin flip selects

σ2
?, we do not set σ2

i,t = σ2
li

for any σ2
i,t /∈ σ2

i,−tσ2
i,−tσ2
i,−t but instead proceed to Level 3 to find

σ2
i,t.

A.3.3 Level 3: Is volatility the same as another person’s?

Given that σ2
i,t /∈ σ2

i,−tσ2
i,−tσ2
i,−t, we consider the posterior probability that σ2

i,t ∈ σ2
−iσ2
−iσ2
−i, where σ2

−iσ2
−iσ2
−i

are the volatility values that currently exist in the population outside of individual i.
If there are L unique values σ2

l ∈ σ2
−iσ2
−iσ2
−i, the posterior probability that σ2

i,t = σ2
l is,

p(σ2
i,t = σ2

l ) ∝ nl · p(ωi,t, εi,t|σ2
l ) l = 1, . . . , L (11)

p(σ2
i,t /∈ σ2

−(i,t)σ2
−(i,t)σ2
−(i,t)) ∝ Θ · p(ωi,t, εi,t|σ2

?) (12)

nl is the number of occurrences of σ2
l within the set of current volatility values over

all people other than person i; Θ is the prior tuning parameter for Level 3. We sample
one of these L + 1 values by flipping a weighted coin with weights proportional to
the probabilities above. If this weighted coin flip selects σ2

l ∈ σ2
−(i,t)σ2
−(i,t)σ2
−(i,t), then we set

σ2
i,t = σ2

l . If the coin flip selects σ2
?, we set σ2

i,t = σ2
?. σ2

? represent new volatility
values that have not yet been seen in the population.

The three steps outlined above result in a sampled volatility value σ2
i,t for person

i and year t, conditional on the other volatility values σ2
−(i,t)σ2
−(i,t)σ2
−(i,t). We can repeat this

procedure for all other years and individuals to update our full set of volatility values
σ2σ2σ2.
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