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Abstract

Scientific freedom and openness are hallmarks of academia: relative to
their counterparts in industry, academics maintain discretion over their
research agenda and allow others to build on their discoveries. This pa-
per examines the relationship between openness and freedom, building
on recent models emphasizing that, from an economic perspective, free-
dom is the granting of control rights to researchers. Within this frame-
work, openness of upstream research does not simply encourage higher
levels of downstream exploitation. It also raises the incentives for ad-
ditional upstream research by encouraging the establishment of entirely
new research directions. In other words, within academia, restrictions on
scientific openness (such as those created by formal intellectual property
(IP)) may limit the diversity and experimentation of basic research itself.
We test this hypothesis by examining a “natural experiment” in openness
within the academic community: NIH agreements during the late 1990s
that circumscribed IP restrictions for academics regarding certain geneti-
cally engineered mice. Using a sample of engineered mice that are linked
to specific scientific papers (some affected by the NIH agreements and
some not), we implement a differences-in-differences estimator to evalu-
ate how the level and type of follow-on research using these mice changes
after the NIH-induced increase in openness. We find a significant increase
in the level of follow-on research. Moreover, this increase is driven by
a substantial increase in the rate of exploration of more diverse research
paths. Overall, our findings highlight a neglected cost of IP: reductions
in the diversity of experimentation that follows from a single idea.
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1 Introduction

The past three decades have seen a significant increase in the scope of formal
intellectual property (IP) rights, such as patents, over knowledge traditionally
maintained in the public domain (Mowery, et al 2001; Heller 2008). American
universities are granted over 3,000 U.S. patents per year and maintain a port-
folio of over 40,000 patents (Owen-Smith & Powell 2003). Notably, nearly 25%
of elite academic life sciences researchers hold at least one patent (Ding, Mur-
ray & Stuart 2006), mostly for discoveries arising from their university-based
research (Azoulay, Ding & Stuart 2007). This dramatic expansion in prop-
erty rights over the earliest stages of research and over key research inputs has
caused widespread debate. In particular, it has shifted the economic analysis
of patents away from traditional concerns over the costs of monopoly pricing in
product markets (Nordhaus 1969, Scherer 1972) towards a focus on innovators
incentives when property rights are shared across innovators, each of whom is
working at a different stage of the knowledge production process (Scotchmer
1991, 1996; Aghion, Harris & Vickers 2000; Acemoglu & Akcigit 2006). This
multi-stage characterization describes innovation as a step-by-step process in
which discoveries generated in one stage serve as essential inputs into the next.
In terms of realizing the value from a given research line, early-stage IP rights
may be important factors encouraging the establishment of new research lines,
since upstream researchers can subsequently offer incentives for research further
along the line through appropriate contract design (Scotchmer 1996). At the
same time, recent debates over the proliferation of upstream IP suggest that by
requiring downstream innovators to contend with a large number of fragmented
IP rights, their projects may suffer from ”gridlock” as a result of transaction
costs and complexity (Heller & Eisenberg 1998; Heller 2008).

Research highlighting a single step-by-step research line abstracts away from
two fundamental features of knowledge. First, a single upstream idea can,
in principle, be applied across multiple later-stage domains and applications
(Breshnahan & Trajtenberg 1995; Romer 1990; Rosenberg & Trajtenberg 2001).
In other words, ideas are non-rivalrous. Second, it may be extremely difficult
in advance to precisely articulate the diversity and range of applications arising
from a given upstream idea (Rosenberg 1996). Different individuals may have
very different perceptions regarding the main application of an idea or the follow-
on research projects they would prefer to pursue (Shane 2001). In other words,
rather than focusing exclusively on the value generated along a single line, we
argue that it may also be useful to consider whether multiple researchers are
able to pursue a diverse range of “horizontal ” follow-on experiments each of
which may itself initiate new (potentially unanticipated) research lines.

What then is the role played by upstream IP rights when follow-on research
includes both horizontal exploration as well as vertical exploitation? Inter-
estingly, while prior research regarding IP rights (or conversely openness) has
focused the potential for gridlock arising from an upstream patent “thicket,” lit-
tle attention has been paid to the interaction between the openness of scientific
knowledge and the diversity of scientific experimentation. This paper builds on
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recent research analyzing the distinctive incentives and control rights provided
by the institutional regimes in academia versus industrial researchers (David and
Dasgupta 1994, David 2001ab, David 2003), and more specifically on Aghion,
Dewatripont & Stein 2007 who emphasize the role of academic freedom defined
as the granting of control rights to researchers (see also Stern 2004). In par-
ticular, a very distinctive aspect of academia as opposed to industrial research
is that academic researchers are free to establish new research lines, based on
their perception of opportunities or on their pure curiosity-driven choices.

In this paper we extend the control-rights framework to identify three main
channels whereby openness can influence the level and nature of scientific re-
search. First, by reducing the costs of accessing key research inputs openness
encourages new researchers to enter, thus increasing the diversity of academic
research participants. Second, relative to what would happen in the case of
industrial research, openness makes free (academic) researchers more likely to
engage in experiments that broaden the number and diversity of research lines,
in part because subsequent openness implies that their research can itself have
subsequent impact. Finally, there is of course a direct expropriation effect – an
increase in the level of openness of an upstream research tool should encourage
the exploitation of that tool in research which is already well down the research
line and in the more applied phase. Overall, our theoretical discussion suggests
that, particularly in free (academic) research, openness may not only increase
the overall flow of research output, and in particular be closely associated with
the establishment and exploration of entirely new research lines. Moreover,
while there should be an effect of openness on both basic and applied research,
the impact on basic research is more likely to dominate when researchers in the
pre-openness period face high fixed costs of initiating a new line of research,
while the applied research boost will dominate when significant basic research
has already been conducted.

We evaluate these empirical implications by taking advantage of a natural
experiment in openness that occurred in the late 1990s in the field of mouse ge-
netics. The experiment resulted from two Memoranda of Understanding (MoU)
between DuPont and the National Institutes of Health (NIH) regarding the
ability of academic researchers to gain access and publish research using par-
ticular types of genetically engineered mice that were covered under two differ-
ent patents (Cre-Lox mice and Onco mice, respectively). While DuPont had
adopted stringent restrictions on licensing the mice for academic research prior
to the MoUs, the agreements lifted these restrictions by implementing a simple
contract, providing a royalty-free and costless license that specifically removed
any claims to reach-through rights on downstream research, and ensuring that
the mice covered under the patents would be made available through the Jack-
son Laboratory, the world’s single largest non-profit repository for research mice.
As a result of these MoUs significantly enhancing the openness regarding these
research tools, hundreds of varieties of Cre-lox or Onco mice that had been de-
veloped in the early 1990s suddenly became widely accessible to the academic
research community.

Our empirical approach takes advantage of key aspects of our empirical
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setting to develop and implement a differences-in-differences estimate of the
impact of the NIH-MoU openness experiment on both the level and nature of
follow-on research. First, each genetically engineered mouse is associated with
a journal article that describes its initial development; as such, we are able to
construct samples based on research articles that were affected or unaffected
by the NIH agreements. Second, both the timing and the scope of the NIH-
MoU were effectively unanticipated by the mouse genetics community, and so
there was a fairly unexpected and dramatic shift in the level of openness in
a reasonably short period of time. Finally, we are able to take advantage of
detailed bibliometric data for articles citing the articles in either the treatment
or control groups to characterize how the change in openness changed the nature
of subsequent research (relative to the evolution of citations within the control
group).

To implement this empirical approach, we analyze the citations to a sam-
ple of more than 2000 published mouse-articles, approximately 10% of which
experienced a shift in the level of scientific openness as the result of the NIH
agreements. By comparing citations to the mouse-articles before and after the
agreement (and comparing to the evolution of citations of the control sample),
we are able to isolate the causal impact of a shift in scientific openness on the
level and nature of follow-on research. In particular, rather than simply exam-
ine whether there is a net increase or decrease in the level of citations, the bulk
of our analysis examines how the nature of citations differs after the shift in
openness. Specifically, we construct measures capturing whether there is a shift
in the size of the research community using a particular mouse (such as the
number of new authors citing the mouse-paper), whether research is associated
with the establishment of new research lines that had not previously used a par-
ticular mouse (such as whether the citations include keywords that had never
been linked to particular mouse-paper), and whether the research is more basic
versus applied (as captured by the journal in which the research is published).
Thus we develop three distinctive empirical tests that map to the three claims
of our core theoretical framework.

Our results can be summarized as follows. First, the NIH agreements result
in a significant increase in the level of follow-on research. More importantly,
the bulk of the increase in citations arises from articles that are published by
“new” researchers or institutions. In other words, most of the incremental ci-
tations to a given mouse-article are by researchers working at institutions that
had not cited that mouse-article prior to the NIH agreement. Next, our re-
sults offer direct evidence that scientific openness seems to be associated with
the establishment of entirely new research lines: more specifically, increased
openness leads to a significant increase in the diversity of the journals in which
mouse-articles in the treatment group are cited, and, perhaps even more strik-
ingly, a very significant increase in the number of previously unused “keywords”
describing the underlying research contributions of the citing articles. Finally,
the two agreements – Cre-Lox and Oncomouse – differed in terms of whether
researchers had access to the mice prior to the agreement at all (but faced some
threat of IP enforcement). While the mice covered by the Oncomouse agreement
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were available but researchers were responsible for separately signing licenses as
they moved to downstream applications, mice based on the Cre-Lox technology
were much more limited in their distribution. Reflecting these differences (and
our theoretical predictions), mouse-articles associated with the Cre-Lox agree-
ment experience a significant increase in citations by basic research journals,
while mouse-articles associated with the Oncomouse agreement realize also an
increase in citation by applied research journals. Taken together, this evidence
is consistent with the view that the NIH agreement facilitated access to re-
search inputs, and that, at least in the academic setting where control rights
over research direction is in the hands of researchers, the effects of openness
have at least as large an effect on enhancing the scope and diversity of horizon-
tal exploration as on inducing vertical exploitation along well-defined research
lines.

The paper is organized as follows. Section 2 presents our theoretical frame-
work and develops it main predictions concerning the effects of increased open-
ness on the horizontal and vertical flow of research. Section 3 describes the
experiment and the identification strategy. Section 4 presents the data and
summary statistics. Section 5 presents the empirical results, and Section 6 con-
cludes.

2 Openness in scientific knowledge production

2.1 The value of academic freedom

In recent work, Aghion, Dewatripont and Stein (2007) (ADS) have argued that
the allocation of control rights is central to knowledge production and inno-
vation. In a simple multi-stage representation of the discovery process, they
suggest that freedom is more important for the production of basic -or early
stage- research compared to applied research. Their core idea is that in earlier
stages of the research process, when monetary returns from the research line
remain remote, it is optimal to leave control rights for agenda setting with the
researcher. In other words, to promote academic freedom. In contrast, later
stages in the research process it becomes optimal to have control rights over the
research agenda be retained by the firm or lab.

Specifically, ADS consider research as multi-stage lines where the develop-
ment of an economically valuable product starts with an initial idea I0. If stage
1 is successful, there is a refined idea I1; this refined idea can be further worked
on to potentially generate an even-more-refined idea I2, etc. There are a total
of k stages after the initial idea. If and only if all k stages are successful, there
is a final idea Ik which generates a marketable product with value V .

Suppose for simplicity that at any given stage it is optimal to hire a single
researcher.1 Assume that this researcher obtains a probability of success equal
to p < 1 at any stage if he follows the success-maximizing (which we call “prac-
tical”) research strategy at that stage. Assume however that, instead of the

1See ADS for an extension to the case with more than one researcher per stage.
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practical strategy, a researcher may choose to follow an “alternative” strategy
in working with an existing idea. Assume first, for the sake of the argument,
that in this case the scientist has a zero individual probability of success. The
interpretation is that the alternative strategy amounts to the scientist working
on an activity that he enjoys more but that does not pay off in monetary terms
(see the end of this section for another interpretation where the scientist works
on an activity that may help initiate new lines but does not generate progress
on that particular line).

There is an infinite supply of researchers at each stage, each of whom has
an outside option R. After being hired at stage j, the scientist is exposed to
idea Ij−1, and then learns whether he would better enjoy following the practical
strategy or the alternative strategy. If he is able to undertake his favored
strategy, he suffers no disutility from working. However, if the scientist has to
undertake the strategy that he likes less, he suffers disutility of z. The ex ante
probability that a scientist prefers to follow the practical strategy is given by α.
Assume further that the choice of the practical vs. the alternative strategy is
ex ante non-contractible.2

Academia differs from private-sector research in that it leaves control rights
over the choice of research strategy in the hands of the researcher. Thus if a
research line is pursued in Academia, the researcher is paid wage wa = R, and
always works on his preferred strategy. This implies that with probability α,
the scientist works on the practical strategy, and with probability (1 − α), he
works on the alternative strategy. Thus the ex ante probability of advancing
to the next stage is given by αp.

Now consider a researcher employed by the private sector. Whether the
researcher prefers the practical or the alternative strategy, becomes evident once
the researcher has been hired by the firm and has been given access to the idea
by the firm owner. Yet ex post, the firm owner has the authority to force the
scientist to work on the practical strategy. Anticipating this, the researcher will
demand a wage of wp = R+(1−α)z in order to work in the private sector. The
(1 − α)z markup over the academic wage represents compensation for loss of
creative freedom–the fact that scientists now always have to adopt the practical
strategy, whether this turns out to coincide with their preferences or not.

2.1.1 When is academic freedom optimal?

Take a research line involving 2 stages, and suppose that the first stage has been
successful, so that we are now at stage 2, with one more stage to be completed
in order to generate a payoff of V . If this last stage of research is done in the
private sector, the expected payoff is equal to E(πp

2) = pV − wp. If instead the
last stage is done in academia, the expected payoff is equal to E(πa

2 ) = αpV −wa.
This means that the private sector will yield a higher payoff than academia if
and only if (1− α)pV > (wp − wa), or equivalently pV > z.

2In other words, one cannot write a contract that promises a scientist a bonus for following
the practical strategy, because the nature of what kind of work that strategy entails cannot
be adequately described ahead of time.
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Now, let Π2 denote the maximum of E(πp
2) and E(πa

2 ). Moving back to
stage 1, we now compare between E(πp

1) = pΠ2 − wp and E(πa
1 ) = αpΠ2 − wa.

The private sector will yield a higher payoff than academia at stage 1 if and
only if pΠ2 > z.

Since Π2 < V , it follows that if the private sector is value-maximizing at
stage 1, it is also value-maximizing at stage 2. In particular it cannot be value
maximizing to have academia operate at later stages than the private sector.
The key result is therefore that academia will be the optimal governance struc-
ture at earlier stages and private sector research will be optimal at later stages.
This result can be generalized to lines of any length k : if Πi denotes the NPVs
of the line of length k as of stage i, we have:

Πi = max{E(πp
i ) = pΠi+1 − wp, E(πa

i ) = αpΠi+1 − wa} < Πi+1.

This monotonicity property, together with the fact that research should be pur-
sued under academic freedom if and only if pΠi+1 > z, yields the desired result.

2.1.2 Valuable experimentation

The ADS framework thus provides a rationale for academic research even in
the extreme case where the alternative strategy has no value beyond saving the
researcher the disutility of pursuing the practical strategy.

In reality however there is value in experimenting with ideas that can lead
to an entirely new research line, consistently with the idea that scientific dis-
coveries do not follow a purely “linear” model. This does not alter the relative
optimality of academia (resp. private research) in earlier (resp. later) stages
of research. But it raises the desirability of academia, if we make the realistic
assumption that pursuing the alternative strategy confers a higher probability
of generating entirely new research lines than pursuing the practical strategy
(note that, realistically, the probability of such an event, possibly the result of
an “accidental” discovery, is nonzero for both strategies).

2.2 The main effects of openness

Now, let us introduce the idea of openness into the framework, where openness
is broadly defined as any event or device that reduces a researcher’s difficulty to
access other researchers’ ideas or to provide access to her own ideas and share
them as she sees fit. We shall argue that increased openness has three main
effects on basic research. First, openness tends to favor more applied research,
possibly at the expense of more basic research, as it reduces the extent to which
upstream researchers can appropriate the returns from their own research. This
is the appropriability effect pointed out in the introduction. Second, openness
makes it easier for stage-i researchers to ”sell” their ideas to stage-i + 1 re-
searchers, which in turn encourages them to undertake stage i. Third, openness
fosters more basic research and the creation of new lines, in particular by re-
ducing researchers’ cost of accessing other researchers’ ideas, thereby making
it more likely that the alternative strategies pursued by free researchers will
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actually lead to new lines. We now discuss these various effects of openness,
first abstracting from control rights considerations and focusing on the effects
of openness on basic and applied research on a given line, then emphasizing
the complementarity between openness and freedom and the resulting effect of
openness on the diversity of lines.

2.2.1 Within a line: facilitating downstream transmission

For simplicity, consider a two-stage research line where stages 1 and 2 are man-
aged in academia. Suppose first that openness increases the extent to which
stage 2 can extract rents from stage 1. Thus,

Π2 = αpV + ψ − wa,

where ψ is the additional rent openness gives stage 2 at the expense of stage 1.
The stage-1 value of the line can then be written as:

Π1 = αp(Π2 − 2ψ)− wa = α2p2V − αpψ − (1 + αp)wa.

Thus, trivially, increasing ψ fosters stage-2 research at the expense of stage
1 research since it raises Π2 and reduces Π1.

Assume now that openness has an additional effect, by also increasing the
possibility for the stage-1 researcher to transmit her research to stage 2 re-
searcher(s). Indeed, once success has been obtained in stage 1, it may not be
immediate to identify a researcher who will be able to carry the project forward
into stage 2. This may require a ’successful match’, whose probability will nat-
urally rise with openness. Specifically, we call the probability of such a match
A and we assume it depends positively on ψ. This means the stage-1 value of
the line becomes:

Π1 = αpA(ψ)(Π2 − 2ψ)− wa = A(ψ)(α2p2V − αpψ)− (1 + αp)wa.

In turn, this implies:

dΠ1

dψ
= A′(ψ)(α2p2V − αpψ)− αpA(ψ),

which can be positive in particular if the effect of openness on the quality of
matching is high (i.e. if A′(ψ) is high).

To sum up, openness should be expected to foster downstream research
thanks to higher appropriability. As for upstream research, the adverse effect
of downstream appropriablility can at times be outweighed by a probability of
finding a good match interested in pursuing the research agenda.

2.2.2 Complementarity between openness and freedom: diversifica-
tion effects

That more openness should also foster the creation of new lines in academia,
follows from an additional consideration, which is that openness favors the cross-
fertilization of ideas within stages. More formally, consider two parallel research
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lines, 1 and 2, each of which operates as described above. Namely, with ex ante
probability α the researcher initially allocated to the current stage of either of
these two lines, prefers to pursue the practical strategy for that line whereas
with probability (1 − α) he prefers not to pursue this practical strategy. Now
openness implies that the scientist on line 1 can learn about project 2 and vice-
versa, and that consequently with positive probability ϕ, thanks to academic
freedom, she may choose to work on the practical strategy for project 2 if nobody
else does. A greater degree of openness implies a higher value of ϕ. Openness
increases the net present value of a research line operated in academia in a given
stage i, from:

αpΠi − wa

to:
[α+ (1− α)ϕ]pΠi − wa.

The idea that openness favors cross-fertilization also implies that it should
widen the pool of researchers and research institutions working on a partic-
ular research idea, since one key feature of academia is the fact that diverse
researchers experiment with scientific ideas to investigate their full potential.
What openness does is to reduce the fixed cost of ’entering’ a particular re-
search area to do conduct these investigations.

Remark: That openness should enhance basic research and the creation of
new lines, also implies that it should have a long-lasting effect on the flow of
subsequent publications: the reason is that new lines take more time before ma-
turing. Indeed, starting a new line means a positive probability of a potentially
long dynamic flow of new discoveries until one potentially reaches the end of
this line.

2.3 Testable predictions

The above discussion suggests that providing greater openness of critical inputs
for follow-on innovation should enhance the total flow of knowledge building on
materials that have become more open and accessible. This prediction is, of
course, very intuitive, and accords with a recent study estimating the positive
impact of Biological Resource Centers in making key research materials available
to researchers (Furman & Stern 2008). Several more specific predictions emerge
from our model, particularly for conditions when researchers enjoy freedom
(such as academia). First, the causal impact of a shift to greater openness
should be to generate more long-term researcher. In other words, because
the shift to greater openness is an enduring condition of key innovation inputs
(under our model) and such inputs can be of value to follow-on researchers
over a long period generating not one but multiple research lines, we would
expect to see a long-run move to greater follow-on research, not simply a one
time shock. Second, and perhaps the most important predictions to be derived
from our model, are those relating to the types of research and researchers most
likely to be impacted by an “openness shock” in a world where researchers have
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control rights on their research activities.3Four predictions stand out. First, an
openness shock should increase the diversity of researchers engaged in follow-on
innovation. With more open and independent access to innovation inputs, new
researchers can overcome fixed cost barriers to move from other fields and build
on these inputs. Second, an openness shock should increase the diversity in the
types of research that are being pursued, as it fosters horizontal experimentation,
therefore leading to the creation of new lines. Third, openness should have
a different impact on basic or applied research. In particular when controls
rights conditions are the first order consideration of the openness shift, then
we would anticipate that the vertical exploitation outcome would dominate.
However, when access costs are initially high openness and/or when control
rights considerations are not first order, then we would expect the boost to
arise in basic research with horizontal exploration dominating.

3 Empirical setting: experiments in the open-
ness of genetically engineered mice

The remainder of this paper tests these ideas by taking advantage of two ”natu-
ral experiments” that significantly shifted the level of openness associated with
two types of genetically engineered mice, both crucial inputs into cumulative
research in the modern life sciences. 4 To understand how we take advantage
of these shifts in openness, it is useful to consider the essential role played by
specialized research mice in modern life sciences research.

With their genetic likeness to humans (the mouse and human genomes have
a 99% similarity), mice play a central role in the study of cancer and other hu-
man diseases (Boguski, 2002). Throughout the twentieth century, scientists in
mouse genetics relied on “spontaneous mutations” for their disease studies: re-
searchers bred mice that naturally exhibited particular disease-linked symptoms
or behaviors. 5 To facilitate their efforts, the research community developed
open access institutions, notably the Jackson Laboratory (a mouse repository in
Bar Harbor, Maine) to classify, breed, and distribute specialized research mice
to the academic community (referred to as ”JAX” mice) (Rader 2004).

In the early 1980s, advances in molecular biology and the ability to manip-
ulate embryonic stem cells (Evans et al. 1984) allowed researchers to develop
a set of systematic and precise methodologies for engineering specialized mice
as research tools, greatly expanding the application of research mice in life sci-
ences research (Ruddle et al. 1980, Brinster et al. 1981, Constantini & Lacy

3 Given that in our particular empirical setting, the openness shock is focused directly and
exclusively on public-sector researchers, we do not make specific predictions regarding the
overall balance of innovation between the public and the private sector.

4This section draws on Murray (2009) which offers an analytical narrative history of the
role of intellectual property and openness in the mouse genetics community.

5Given the value of such mutations, researchers also developed techniques significantly
increasing the rate of mutation of research mice such as the exposing pregnant mice to high
levels of radiation (Green & Roderick, 1966).
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1981, Wagner et al. 1981ab).6 Three breakthroughs were particularly impor-
tant. First, in a discovery awarded the 2007 Nobel Prize in Medicine, Mario
Capecchi of the University of Utah and his collaborators developed ”knock-
out” technology, enabling researchers to delete specific genes (Doetschman et
al. 1987; Thomas & Capecchi 1987). Second, with partial funding from DuPont
Corporation, Phil Leder and Tim Stewart at Harvard University developed the
Oncomouse methods, which provided a means for inserting (rather than delet-
ing) genes into an embryo, and therefore making mice susceptible to particular
forms of cancer and other diseases (Stewart et al. 1984). Finally, researchers at
the life sciences division of Du Pont Corporation developed the Cre-Lox tech-
nology - a precise ”cutting and pasting” tool that turns ”off” particular genes in
specific tissue or organs (Sauer et al. 1987). By offering general-purpose tools
to engineer discrete changes in the genetic profile of research mice, each of these
methods contributed to a paradigm shift in life sciences research. These tools
gave scientists a means to investigate a wide variety of new research problems,
from very basic research on the impact of genetic variation on disease incidence
to the development and optimization of new therapies.7

The revolution in mouse genetics occurred alongside several important shifts
in the role of formal intellectual property in life sciences research. In 1980, the
Supreme Court decision in Diamond v Chakrabarty established the patentability
of genetically engineered organisms and the Bayh-Dole Act affirmatively allowed
universities to seek patent protection and licensing revenues from Federally-
funded research (Mowery et al 2004).8 By the mid-1990s, US universities
receiving over 3,000 patents each year. While many observers took this as
an indicator universities’ evolving role as engines of innovation and commer-
cialization (Henderson, Jaffe & Trajtenberg 1998), some argued that strong IP
rights over scientific research discoveries was detrimental to research productiv-
ity and effective cumulative discovery (Heller & Eisenberg 1998). In particular,
some universities placed significant restrictions on the distribution of patented
research materials to academic researchers (e.g., the University of Wisconsin re-
stricted the open distribution and use of patented stem cell lines (Murray 2007))

6The use of these methods for mouse engineering are complex and costly. To create a mouse
with particular genes inserted within a mouse genome, scientists must first inject foreign DNA
into mouse eggs, transplant the eggs into female mice, and, if successful, monitor and breed
the incorporation of the genes into the offspring . During our sample period, the development
of a ”mouse line” from scratch likely involved at least 18 months of laboratory research and a
significant investment of time and attention by a principal investigator (Rader 2003, Murray,
2009).

7The 2007 Nobel Prize announcement regarding knock-out mice states that ”Almost ev-
ery aspect of mammalian physiology can be studied by gene targeting. We have conse-
quently witnessed an explosion of research activities applying the technology. Gene tar-
geting has now been used by so many research groups and in so many contexts that
it is impossible to make a brief summary of the results.” (Nobel Prize Press Release
http://nobelprize.org/nobel prizes/medicine/laureates/2007/press.html).

8These legal and policy shifts reflected, in part, increasing appreciation that certain types
of university research were increasingly dual-natured: fundamental scientific discoveries could
simultaneously have a very high degree of commercial utility (Stokes 1987; Murray & Stern
2007)
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while other universities were accused of rent-seeking when they sought to en-
force intellectual property claims over independent commercial discoveries (e.g.
the University of Rochester’s enforcement of its patents on the Cox-2 pathway
(Shane & Somaya 2007).

Debates over the role of patents on scientific research tools were particu-
larly salient for researchers exploiting the transformation in mouse genetics.
All three of the key mouse engineering tools – Knock-out mice, Oncomice and
Cre-Lox mice – were covered under relatively broad patents.9 In the case of
knock-out mice, the University of Utah received a patent in 1987 but never
sought to enforce the patent against follow-on researchers using the knock-out
methodology. Instead, Knock-out mice were made available at (essentially)
marginal cost through the Jackson Laboratory (i.e., these mice were distributed
as JAX mice). The patents over the Onco and Cre-Lox technologies proved to
be much more controversial. As a result of their partial funding of Harvard’s
Oncomouse discoveries and their internal development of Cre-Lox technology,
DuPont was able to acquire the exclusive control over patents for these two
technologies. In contrast to the University of Utah, DuPont exercised strict
control over the distribution and use of mice that exploited the techniques cov-
ered by their patent portfolio. During the early 1990s, researchers (and their
institutions and founders) who wanted ”freedom to operate” were obliged to
obtain a license from DuPont when they sought to receive or share an Onco or
Cre-Lox mouse. The detailed licensing agreement required annual disclosure
to DuPont regarding experimental progress, limits on informal mouse exchange
among academic researchers, and ”reach through” rights allowing DuPont to
automatically receive licensing revenue from any commercial applications devel-
oped using either Cre-Lox or Onco technology.

These limits to openness caused widespread discontent among the academic
community. Academic researchers objected to the exercise of patent rights by
a for-profit company as a significant limitation on the norms of openness among
academics, and claimed that the lack of access to these mice significantly re-
duced their freedom to pursue their own research agendas (Murray, 2009). 10

Individual researchers engaged in various forms of protest – from attempt to
initiate patent invalidation proceedings (which went nowhere) to informal shar-
ing of mice (against the advice of their universities). As well, there were more
systematic attempts to subvert or blunt the impact of the DuPont licensing
regime: notably, in 1992 Dr. Ken Paigan, then director of JAX, announced he
would make Onco-mice openly available without a license, directly contravening
DuPont’s IP rights.11 While some researchers took advantage of informal shar-
ing or access of Onco-mice from the JAX (opening themselves to a potential

9Knock-out mice were covered under U.S. Patent 4,687737, Oncomice under U.S. Patent
4,736,866 and Cre-lox mice under U.S. Patent 4959317.

10As cited in Murray 2009, DuPont’s practices were seen as “an enormous obstacle to
free and open distribution of information and materials. . . .it was a whole new way of doing
science. . . it really affected the way the mouse research community works” (Rajewsky quoted
in Jaffe 2004).

11Paigan Quote
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infringement suit by DuPont), most researchers (and their institutions) were
wary of the legal repercussions that could arise from using these mice, particu-
larly for more applied research. Notably, through 1998, there was no access to
Cre-Lox mice through an open-access depository such as JAX.

Thus, by the late 1990s, researchers seeking to use a particular specialized
research mouse faced one of several access regimes. First, the most appropri-
ate mouse for a particular research project might be a spontaneous mouse or
a Knock-out mouse, and would (in general) be available on an open-access ba-
sis (from JAX or another provider) at marginal cost.12 Second, if the research
required an Oncomouse, the mouse might be available informally through the
peer-to-peer network or through JAX, but to use such a mouse (particularly for
an applied project) was in direct contravention of DuPont’s licensing require-
ments; it was also possible in principle to sign the DuPont licensing agreement,
though very few institutions or researchers signed an actual agreement prior to
1999. Third, if a Cre-lox mouse was preferred, it might be available, but only
through informal exchanges among colleagues. These informal exchanges were
themselves beset by high transaction costs: Cre-lox developers invested consid-
erable time and resources in its development and often required coauthorship (or
other type of non-monetary payment) in exchange for access to their mice, and
the exchange of such mice took place in the shadow of potential infringement
suits (which meant contravening the official policy rules of most universities)
(Murray 2009). Finally, it was also feasible (at least in principle) to develop
a new mouse as part of the research process, a process which could delay a
project by at least 18 months and require significant resources and the devel-
opment of specialized skills (and which could still be infringing on the DuPont
patent portfolio).

The degree of openness associated with both Cre-Lox and Oncomice mice
shifted dramatically in 1998 and 1999, respectively. In response to consider-
able pressure from the academic community throughout the 1990s, the National
Institutes of Health (NIH), with the direct involvement of NIH Direct and No-
bel Laureate Harold Varmus, successfully negotiated two Memorandum of Un-
derstanding (MoU) among DuPont, the Jackson Laboratories (JAX), and the
NIH. Together, they greatly increased the openness of genetically engineered
mice for academic researchers. The Cre-Lox MoU, announced in July 1998,
allowed JAX or universities to distribute and share Cre-lox mice with a simple
license (essentially a standardized one-page material transfer agreement and an
institution-wide license). In addition, JAX announced its commitment to ac-
quire, breed, and distribute Cre-Lox mice on an open-access basis. A similar
agreement for the Oncomouse was reached one year later (in July 1999), though
the impact of this agreement was somewhat less dramatic as JAX had already
been distributing Oncomice to researchers prior to the 1999 MoU.

12In addition to the unenforced Utah patent on knock-out technology, a small number of
additional patents were granted over specialized knock-out mice. However, the intellectual
property restrictions associated with these mice seems to have been negligible, and, in any
case, their openness was not directly influenced by the NIH agreements that we exploit in our
empirical work.
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Over a two-year period, life sciences researchers seeking to take advantage
of the revolution in mouse genetics thus experienced a significant shift in their
ability to access and exploit research mice covered under these agreements, while
experiencing no shift in the degree of openness associated with either Knock-
out or Spontaneous mice. These differences provide the key source of variation
that we exploit in our empirical work. Three features are particularly useful
to emphasize. First, while the ”demand” for genetically engineered mice was
increasing over time, there is no evidence that the potential demand for Onco
or Cre-Lox mice was increasing at a faster (or slower) rate than the demand for
Knock-out mice. Each technology represented a general purpose research tool,
with the key distinction being that the Knock-out technology was made available
on an open-access basis throughout the period, while the Onco and Cre-Lox
technology faced significant open-access restrictions until the time of the NIH
agreements. Second, though the academic community lobbied continuously
for increased openness regarding these research tools, both the timing of the
agreement as well as its scope (essentially removing the main hurdles associated
with access) were unanticipated (Marshall 1999). It is unlikely that researchers
delayed projects in anticipation of such a comprehensive agreement; instead,
researchers deterred by the DuPont licensing restrictions undertook different
research projects or devoted themselves to other research directions (Murray
2009). Third, though the agreements cover a small number of DuPont-
controlled patents, they impacted a large number of different specialized research
mice. In spite of the IP difficulties, by 1998, more than 50 different engineered
mice had been developed and disclosed in the scientific literature using the Cre-
Lox technology, and more than 160 different Oncomice were similarly described.
As we outline in detail below, we can take advantage of the fact that these mice
were developed and disclosed to the scientific literature at different times and
that their follow-on use by other scientists was captured through the citation
of these articles in follow-on scientific articles, to precisely identify the impact
of the NIH openness agreements on the use of genetically engineered mice in
follow-on scientific research.

Taken together, we believe that the openness shift associated with the NIH
agreements accords well with the comparative statics developed in Section II.
Specifically, engineered research mice are general purpose research tools that can
be used in multiple research lines and at multiple research stages. Restricted
access to these research tools has the potential to significantly impact both
the horizontal and vertical research incentives and productivity. On the one
hand, DuPont’s patent enforcement strategy is a strong candidate for vertical
impact, as the threat of reach-through rights for DuPont limits the incentives
to pursue more applied research stages. At the same time, the complicated
and costly process of obtaining ”freedom to operate” is also likely to reduce the
degree of horizontal exploration. As predicted by our theory, the restrictions
and transaction costs imposed by DuPont’s enforcement choices would limit
investment in early-stage academic research that depends upon these research
tools but where it is also difficult to anticipate the precise research direction,
requirements or outputs.
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4 Empirical strategy

Our theoretical framework suggests that the level and nature of follow-on re-
search depend not only upon the quality and type of research inputs available
but also upon the degree of ”openness” of these research inputs. To test this idea,
we examine the impact of shifts in the openness of some engineered research mice
(arising from the NIH agreements) on the level and type of follow-on research.
Building on Furman and Stern (2008), this approach addresses a fundamental
inference problem associated with traditional cross-sectional approaches to the
evaluation of openness (and related institutional arrangements) on cumulative
scientific research: If more “open” inputs are used more extensively by follow-
on researchers, does this follow from the fact that they are open or from the
fact that openness tends to be associated with higher-quality inputs and ma-
terials? In the absence of an empirical framework that disentangles selection
effects (i.e., the correlation between openness and overall research impact) from
the marginal impact of openness per se, we cannot construct the appropriate
counterfactual estimate of what the rate of follow-on research would have been
if the same knowledge was available under a different level of openness.

Ideally, causal identification of the impact of openness would rely on a con-
trolled experiment in which different knowledge inputs (such as particular re-
search mice) were randomly allocated to distinct institutional environments with
varying degrees of openness. A practical route towards capturing the essence
of such an approach is to take advantage of natural institutional variation that
involves shifts of key research inputs towards higher (or lower) levels of open-
ness in a way that is exogenous both to their initial production and to their
incorporation into follow-on research lines.

We implement this idea by taking advantage of the institutional changes to
openness negotiated by the NIH that affected some (but not all) specialized
research mice.13 Our empirical strategy exploits several distinctive elements of
the system by which scientific research is disclosed and cited. First, in most
cases, new specialized research mice are disclosed through publication in sci-
entific articles that describe their production and analyze distinctive features
(we refer to these disclosures as mouse-articles). Notably, we are able to iden-
tify mouse-article pairs both for mice that are affected by the NIH agreements
(i.e., Cre-Lox and Onco mouse-articles) and for mice unaffected by the NIH
agreements (i.e., Knock-Out and spontaneous mouse articles).14 Second, we
can trace out the impact of each mouse-article over time through the citations
to that mouse-article by subsequent articles in the scientific literature. While

13Our approach builds on recent work applying a differences-in-differences econometric
framework to analyze the institutional and microeconomic foundations of knowledge accu-
mulation (Murray & Stern, 2007, Furman & Stern 2008, Huang & Murray 2008, Rysman &
Simcoe 2008).

14While these types of mice differ in the precise details of the specialized genetic manip-
ulation they allow, with the exception of Spontaneous mice, they are broadly similar in the
scope of application and relevance to human disease. Moreover, all three were patented and
could have been subject to strict enforcement. Spontaneous mice differ to the extent that
they were not subject to patents.
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being an imperfect and noisy indicator of overall scientific impact, citations
offer a systematic reflection of the process by which researchers acknowledge
how their efforts at any one research stage build on the tools and knowledge
developed by prior researchers (Hagstrom, 1965; Merton 1973; de Solla Price,
1976; Garfield 1979; Cole 2000). More specifically, our approach exclusively
examines the citation patterns associated with mouse-articles. Our qualitative
research indeed suggests that nearly all citations to a given mouse-article involve
the use of that specialized research mouse in a follow-on experiment, and that
most researchers routinely include a citation to the original mouse-article when
a particular mouse is used in a follow-on project. Third, both the Cre-Lox and
Oncomouse NIH agreements occurred well after the publication dates of a large
number of Cre-Lox and Onco mouse-articles; as such, for each mouse-article,
we are able to observe citations both before and after the NIH agreement (and
compare this to the pattern observed for our control groups which were unaf-
fected by the NIH agreements). Finally, while there was pressure on the NIH
and DuPont to move towards a more open regime, both the timing and extent
of the openness shock are arguably exogenous. Specifically, the NIH agreement
could have been reached, in principle, anytime from the early 1990s through
the present; moreover, our main control group – knock-out mice – are likely
to have been drawn from a sample of similar scientific quality/importance but
they only differ insofar as the patent over knock-out technology was unenforced
by the University of Utah.

Taken together, this empirical approach allows us to exploit the timing of
the openness shocks to observe pre- and post-shock citation rates to the treated
mouse-articles (those associated with Cre-lox and Onco mice). By also includ-
ing untreated mouse-articles (those associated with Knock-out and Spontaneous
mice), we can more precisely identify a counterfactual estimate of the citation
rate that would have occurred if the NIH agreement has not been signed. By
measuring citations to Cre-lox and Onco mouse-articles before and after the
openness shocks (and by measuring the citations to mouse-paper articles unaf-
fected by the MoUs) we can separately identify the causal impact of both the
Cre-lox and Onco openness agreements.

Our estimation approach uses an annual count of forward citations to a given
mouse-article. As a starting point, we use a negative binomial to accommodate
the fact that citation data comes in the form of skewed count data. Given the
heterogeneity among scientific research articles, the nonlinear evolution of cita-
tions over time elapsed since initial publication, and the potential for differences
over time in citation practices, we include article, article-age and calendar year
fixed effects. To address the incidental parameters problem, we estimate a con-
ditional fixed effects estimator (Hausman, Hall & Griliches 1984). While the
precise functional form will depend upon the precise test, it is useful to illustrate
our overall approach by presenting the key estimation equations.

Our dependent variable is Citationsjt which measures the number of cita-
tions to a given mouse-article in a given calendar year. Our main specifications
include an article fixed effect (γj , which is conditioned out in estimation), year
effects (βt) and article-age effects (δt−PubY ear). We then include two measures to
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capture the impact of the NIH policy: OverallWindow and PostOverallShock.
OverallWindow is a dummy variable equal to one for those mouse-articles im-
pacted by a shock in the year of -and the year after- the openness shock. 15

PostOverallShock is the key treatment variable and is equal to one for mouse-
articles impacted by the shock in citation-years after the window period (i.e after
1999 for Cre-Lox mouse-articles, and after 2000 for Oncomouse mouse-articles).
Using a dataset composed of citations to mouse-articles impacted by the shock
and mouse-articles that are unaffected by the shock, our main specification for
the impact of the NIH agreements on the level of citations is thus:

Citationsjt

= f(εjt; γj + βt + δt−PubY ear + Ψ0OverallWindowjt

+Ψ1PostOverallShockjt),

This specification tests for the impact of the NIH agreements by estimating
how the citation rate for a mouse-article changes after it is impacted by one
of the NIH agreements, accounting for fixed differences in the citation rate
across articles and relative to the non-parametric trend in citation rates for the
non-treated Knock-out and Spontaneous mouse-article control groups. This ap-
proach directly accounts for heterogeneity in the underlying quality of individual
articles and the evolution of citations over time.16

We then build on this baseline specification to estimate the impact of open-
ness on the nature and diversity of follow-on citations. To evaluate the impact
of the openness shocks on different types of citations, we estimate the param-
eters from a two-equation system that divides Citations into two (mutually
exclusive) types and estimates the effects of openness on each type. For exam-
ple, a key prediction of the model is that openness is associated with an increase
in the number of different researchers who utilize a given specialized research
mouse. To test this hypothesis, we can contrast the impact of a shift in openness
on follow-on publications by authors who have (or have not) cited a particular
mouse-article before:

15Consistent with our discussion in Section 3, the window period for the Cre-Lox period
covers 1998 and 1999, and the window period for Oncomice covers 1999 and 2000.

16It is also possible to separate out the treatment effect in several different ways. Our
empirical work includes several specifications that estimate the impact of each NIH agreement
separately by including separate window and treatment variables for the Cre-Lox shock and
Oncomouse shocks. Also, we are able to evaluate the short-term versus long-term impact of
the openness shocks by creating a measure a short-term treatment measure that captures the
impact on citations during the first three years after the window period, and a separate long-
term treatment measure that captures the permanent impact on citations for citation-years
more than four years after the initial treatment.

17



NewAuthorCitationsjt

= f(εjt; γj + αNEW−OLDt+ βt + δNEW
t−PubY ear

+ΨNEW
CRE0

CreLoxWindowjt + ΨNEW
CRE1

PostCreLoxShockjt

+ΨNEW
ONCO0

OncoWindowjt + ΨNEW
ONCO1

PostOncoShockjt,

and

OldAuthorCitationsjt

= f(εjt; γj + βt + δOLD
t−PubY ear

+ΨOLD
CRE0

CreLoxWindowjt + ΨOLD
CRE1

PostCreLoxShockjt

+ΨOLD
ONCO0

OncoWindowjt + ΨOLD
ONCO1

PostOncoShockjt,

We impose several parametric restrictions due to data constraints, including
setting the mouse-article fixed effects equal across both equations and allowing
the calendar year fixed effects to differ only as a linear function of time. Notably,
we allow for the publication age fixed effects to vary freely across both equations,
as the evolution of citations in the time since publication will differ significantly
for the two citation margins (in particular, most citations in the first few years
after publication will be associated with ”new” authors). Our hypothesis test
focuses on whetherΨNEW

CRE1
and ΨNEW

ONCO1
are significantly larger than ΨOLD

CRE1

and ΨOLD
ONCO1

, respectively. In other words, we evaluate whether the change in
citations occurring after the openness shock arises due to a particular increase
in citations by authors who had not previously cited a particular mouse-article.
We then develop similar specifications for several citation margins that capture
the notion of diversity across research lines described in our theory: citations
from new versus old institutions, using new versus old key words, and published
in new versus old journals. Similarly, we explore the research response to the
openness shocks along a given research line by comparing citations in applied
versus basic journals.

In all our analyses, we provide in brackets the coefficients as incidence-rate
ratios (a coefficient equal to one implies no effect on Citationsjt, whereas a
coefficient equal to 1.50 implies a 50% boost to Citationsjt). All models also
include and report block bootstrapped standard errors, clustered by mouse-
article (MacKinnon, 2002).

5 Empirical data

5.1 Data and sampling

The data for this study are drawn from the entire population of research mice
catalogued by the Mouse Genome Informatics (MGI) database. MGI consists of
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over 13,000 unique mice, each linked to an original scientific publication (thereby
establishing the population of mouse-articles). Of this large population, we fo-
cus only on mouse-articles published between1992 and 1998 (the date of the first
NIH agreement). As outlined above, we sample all mouse-articles for four types
of mouse engineering technologies defined by MGI: Cre-lox, Onco, Knock-out
and Spontaneous mouse-articles (whose production relies upon random muta-
tion rather than engineered genetic manipulation). In total, our sample in-
cludes 2638 novel mice linked to 2223 unique mouse-articles. The breakdown
is as follows: 52 Cre-lox mice, 160 Onco mice, 2171 Knock-Out mice, and 255
Spontaneous mice.

For all 2223 mouse-articles we obtained information on publication year from
PubMed. We then used Thomson ISI Web of Science to collect all follow-on (for-
ward) citations in academic journals for the year immediately following publica-
tion through to the end of 2006, to give a total of 525,865 citations. Each citation
included detailed information on last author, reprint author, institutional ad-
dresses, key words, and journal characteristics (including name, impact factor
and a basicness score). The citations were aggregated into 27,442 citation-year
observations by combining all the citations received by a given mouse-article
in any particular year as the basis for our analysis of the impact of the NIH
agreement on the level of follow-on innovation.

To capture a variety of measures of the type of follow-on innovation, we
coded each of the citations according to a set of mutually exclusive categorical
variables. Following our theoretical predictions, we focus on margins intended
to capture horizontal experimentation across new lines. Our measures include
the diversity of researchers in follow-on innovation - new researchers and new
institutional affiliations, as well as the diversity of research - new key words and
new journals. To illustrate the construction of these variables, take the case of
new key words. We consider a citation to include one or more new key words
if the key word has never been used in citations to a particular mouse-article in
any prior year. A citation is coded old in all other instances. This construction
allows us to capture changes in the research landscape. Overall, we generate
four new/old categorical variables:

i. New/Old Last Author: defined as new if the last author (listed in ISI
Web of Science) has never appeared as a last author before in a citations to the
mouse-article in prior years, old otherwise.

ii. New/Old Institution: defined as new if any address in the institution
list has never appeared in an address list of citations to the - mouse-article in
prior years, old otherwise.

iii. New/Old Key Words: defined as new if a key word has never before
appeared in the key word list of citations to the mouse-article, old otherwise.

iv. New/Old Journal: defined as new if the journal of the citation has
never appeared before in the citations to the mouse-article, old otherwise.

We also categorize citations according to whether they are published in basic
or applied journals following a schema developed by Lim (2000). This allows
us to capture the predictions of our model regarding the impact of openness
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on the vertical change in follow-on innovation i.e. whether these shifts lead to
research further along particular research lines (towards commercialization).17

It is worth noting that in this analysis, multidisciplinary journals are classified
as “basic” thus adding a conservative bias against finding an increase in basic
research compared to applied research.

Taken together these measures allow us to explore the detailed predictions of
our theory regarding the ways in which changes in openness impact the type of
follow-on research along both horizontal and vertical dimensions. We implement
this analysis following the econometric approach laid out above. Specifically,
rather than using all citations in a given year to create the citation-year depen-
dent variable, we group the citations in each citation-year for any mouse-article
into two mutually exclusive citation-year observations e.g. new key word ci-
tations and old key word citations, basic journal citations and applied journal
citations etc. This gives us 54,884 citation-year observations and in each case
allows us to examine the impact of the NIH agreements on the two distinctive
margins. By comparing the causal impact of the NIH agreements on these two
margins, we can investigate the hypothesis that changes in openness create more
diverse lines of research, pursued by a more diverse range of scientists. We also
investigate where along the research line (from basic to applied) the additional
research is taking place. One caveat is worth noting. We do not examine the
impact of openness on the public/private citation margin. First, the openness
shocks in our analysis are directed specifically to public-sector researchers. Sec-
ond, for our entire sample we find that 97.5% of all forward citations have at
least one of their authors in public institutions (of which 92.5% are only pub-
lic and only 5% are public-private mix). With only 2.5% of citations having
all private-sector authors, this margin is insignificant in the field of engineered
mice.

5.2 Variables and summary statistics

Our empirical analysis focuses on measuring follow-on innovation as proxied
by citations to the 2223 mouse-articles. Table 1 provides variable names and
definitions and Table 2 reports summary statistics for our data. Our mouse-
articles are published between 1992 and 1998 (mean = 1995) and have an average
of seven authors each. We trace citations to each mouse-article from the year
after its publication until 2006 (with the mean of CitationY earjt being 2001),
giving us 27,442 citation-year observations. The papers receive a mean of 231
TotalCitationsj between the year following their publication and 2006. Our
key dependent variable in the initial set of regressions is AnnualCitationsjt

measuring the total number of citations to article j in year t. The average
number of citations for our mouse-articles is 18.32 (with a minimum of 0 and

17Our Basic/Applied Journal definition is based on work by Lim (2000) who used the
measure building on a classification scheme developed by CHI Research, Inc. According to
Lim, “CHI awards each journal a score from zero to four. For the biomedical sciences, they
correspond to clinical observation, clinical mix, clinical investigation and basic science (see
Hicks 1996, for more details)” (Lim 2000 p. 129).
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maximum of 336 citations received in any year). This is higher than the mean
in other samples of life science papers (e.g. Murray & Stern 2007), highlighting
the importance of mouse genetics research in this period.

TABLE 1 HERE
TABLE 2 HERE

In our core analyses we break up the annual citation count for any mouse-
article into categorical margins of interest. As outlined above, to measure
the diversity of citing authors, we construct the following two dependent vari-
ables: NewAuthorCitationsjt and OldAuthorCitationsjt by measuring num-
ber of citations by new (last) authors to article j in year t; and the number
of citations by old (last) authors to article j in year t, respectively (mean =
11.0 and 3.7 respectively). We then create an additional new/old dependent
variable: NewInstitutionCitationsjt and OldInstitutionCitationsjt (mean =
16.6 and 9.7 respectively) to capture diversity at the institutional-level. Like-
wise, to capture diversity across research lines we code citations with new and
old key words as NewKeywordCitationsjt and OldKeywordCitationsjt (mean
= 32.8 and 11.0 respectively) as well as citations in new and old journals as
NewJournalCitationsjt and OldJournalCitationsjt (mean = 7.5 and 5.9 re-
spectively). Following similar logic, we capture vertical shifts in research along
particular research lines through the dependent variables BasicCitationsjt and
AppliedCitationsjt, which measure the number of citations in basic journals to
article j in year t; and the number of forward citations in applied journals to
article j in year t, respectively (mean = 8.725 and 6.947 respectively).

As described in our empirical specification, we create three shock variables.
The first is the PostOverallShockjt, equal to one if the article j is subject to
either of the two MoU openness shocks, and if the citation year is after the
window period for the shock (mean = 0.0482). The second and third variables
capture the specific Cre and Onco shocks: PostCreLoxShockjt is equal to
one if the article j is subject to the Cre-lox MoU openness shock, and if the
citation year is after the Cre-lox window period for the shock (mean = 0.013)
and PostOncoShockjt equal to one if the article j is subject to the Onco MoU
openness shock, and if the citation year is after the OncoWindow period (2001
or later) (mean = 0.035).

TABLE 3 HERE

6 Results

Our empirical analysis estimates the causal impact of the openness shocks exem-
plified by the Memorandum of Understanding signed by DuPont, NIH and JAX
dramatically opening up the access to Cre-lox (1998) and Onco (1999) mice for
academic researchers. Recall that these agreements both reduced downstream
expropriation of follow-on innovators (in the case of Cre-lox and Onco) by de-
creasing the reach-through rights available to DuPont, and increased access for
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follow-on innovators to the mice themselves (particularly in the case of Cre-lox
mice). Our approach is to observe the annual citations to mouse-articles linked
to Cre-lox and Onco mice in the pre- and post- shock period. By comparing
the citation patterns to Knock-Out mice and Spontaneous mice unaffected by
the MoUs and to the pre-shock trends for the treated mice, we can identify the
impact of the shocks to openness.

Our analysis proceeds in several stages. First, we investigate the impact
across both shocks on the overall flow of citations received by our mouse-articles.
We also decompose the shocks to determine the specific impact of the Cre-lox
and Onco shocks to better characterize their different causal impact. In both
cases we also examine the time dynamics of the shocks. We then turn to the
core of our analysis which first examines the Overall, Cre-lox and Onco shocks
on the horizontal flow of research – by different researchers and across research
lines and then the vertical flow of research along a given line (from basic to
applied) . We capture the horizontal margin of “new” compared to “old” cate-
gories of citations, specifically key words, journals, authors, and institutions. In
contrast, we use the vertical margin of basic versus applied journals to capture
the downstream nature of research. By analyzing the impact of openness within
the differences-in-differences framework, we are particularly interested in coef-
ficient on the “shock” variable as this captures the change in citations (overall
or for a particular margin) in the pre- and post-shock period. We focus on
incidence-rate ratios in our presentation because they are easily interpreted: an
incidence-rate ratio, or IRR, provides the multiplicative effect on the expected
number of citations received with a one unit change in a regressor (i.e., the null
hypothesis of no effect yields a coefficient of 1.0). For example an IRR of 1.25
on the shock variable can be interpreted as a 25% boost in citations in the post
shock period.

6.1 Impact of openness on the level of follow-on research

Our regression results begin in Table 4 with a negative binomial specification us-
ing TotalCitations as the dependent variable. All specifications use the full set
of fixed effects. Equation (4-1) column represents our baseline model, with the
PostOverallShock variable. After accounting for the window period, we find
that the coefficient on PostOverallShock is significant. On average, mouse-
articles affected by the shocks (Cre-lox and Onco mouse-articles) received an
additional 21% increase in their annual citation rates after the MoUs are signed.
The effect is identified both from the large set of control mouse-article papers
and from the pre- and post- variations in article ages. Under specification (4-2)
we divide the primary explanatory variable into PostOverallShockShortRun
and PostOverallShockLongRun but make no other changes to the analysis.
We find that the boost in overall citation rates is significant in both periods
and is actually growing over time, with a 15% increase through 2003 and a
32% increase for 2004-2006. More than simply a lag in publishing after the
initial PostOverallShock period (which is accounted for with the window vari-
able), the significant and increasing boost in both periods represents a positive
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feedback effect, where the initial boost focuses greater attention on the lines of
research affected by the shocks, resulting in even higher citation rates in the
next round of scientific articles.

In (4-3) we repeat these analysis but make separate estimates for the coef-
ficients on the Cre-lox and Onco shocks - a specification that more accurately
captures the differences in the two shocks (with respect to openness in the pre
period). In (4-3), we show that the PostCreLoxShock variable is associated
with a statistically significant (but noisy) increase of 18% in citations for Cre-lox
mouse-articles compared to 21% for the PostOncoShock variable. These results
can also be more clearly observed in Figure 1 which provides a graphical repre-
sentation on the coefficients of the citations to the Onco, Cre-lox and Control
(Knock-out and Spontaneous) mouse-articles by year. As the graph highlights,
the control mice show a slow, steady upward trend in their annual citations,
suggestive of the fact that over time the entire area of mouse genetics is becom-
ing more salient and the source of a wide range of new research lines. However,
the coefficients on the Cre-lox and Onco mice are calculated having accounted
for this trend and we find that the Cre-lox mice show a similar slow trend up
until 2001, after which they take off quite dramatically. This relatively long lag
is consistent with the idea that open access to such mice initiated a substantial
new research but that it took time for researchers to respond and change their
research direction. nonetheless the sharp upward trend is consistent with the
notion that the Cre shock was a very sharp and clean natural experiment. In
contrast, the Onco mice citation trend is much noisier, including some pre-shock
anticipation and then a lag (similar to cre mice) until 2002, at which point they
also experience a surge in citations.

These results provide strong support for one key claim of this paper – that
positive shocks to openness foster research intensity, rather than hindering it
because of appropriability concerns surround critical research outputs. This
adds support to previous empirical results, for example by Furman and Stern
(2006), showing that the deposit of individual cell-lines (which provides open-
ness through formal access) also increases follow-on innovation. In a comple-
mentary result, Murray and Stern (2007) find that limits on openness with the
grant of intellectual property rights over knowledge have the converse effect; it
decreases follow-on citations. Taken together, these results highlight the sensi-
tivity of follow-on researchers to a variety of openness conditions, and provides
increasing support for the perspective that these results are driven by researchers
shifting their research choices rather than shifting their citations – it is hard to
imagine the research community being so strategic in their citations that they
increase and decrease their citations according to the precise timing and degree
of openness shocks. Furthermore, our results on temporal dynamics are consis-
tent with our theoretical setup, specifically the multi-staged view of innovation:
if openness leads to more research activity and potentially to a branching out of
new research lines (a conjecture we test in our next set of regressions) then these
new lines would themselves generate follow-on research activity, amplifying over
time the effects of any shocks to openness.
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TABLE 4 HERE
FIGURE 1 HERE

To examine the impact of the openness shocks on the horizontal expansion of
follow-on research, and to move to specifications that capture our core theoreti-
cal insight - that openness will have a more significant impact on new, early-stage
research lines, where openness is complementary with freedom - we examine the
impact of the openness shocks on several citation margins. As explained in the
Estimated Equations section, we consider a series of two-equation systems that
allows us to contrast various margins of the annual citations, helping to clarify
the overall changes in behavior.

6.2 Impact of openness on the type of follow-on research:
horizontal exploration

In Tables 5, 6 and 7, we present our analysis for the second main theoretical
claim in our model predicting that greater openness will lead to greater horizon-
tal experimentation, spawn a diverse array of new research lines and encourage
the participation of new researchers who have previously not contributed to
this arena of knowledge. We first present our evaluation of the impact of open-
ness shocks on the diversity of researchers participating in follow-on research.
Our key comparison is between researchers listed as the last author (the senior
scientist) on citations who have never previously been listed on a citation to
the mouse-article of interest, captured in our measure, NewAuthorCitations,
and those researchers who have been previously listed in a citation to the par-
ticular mouse-article: OldAuthorCitations. In the stacked regressions pre-
sented in (5-1a) and (5-1b) we estimate whether the marginal impact of the
PostOverallShock is different for new versus old last-authors. When we sepa-
rately evaluate the Cre-lox and Onco shocks on new and existing authors (5-2a)
and (5-2b), we find that the Cre-lox openness shock leads to a 25% increase in
new last-author citations, with no increase in old last-author citations. Similarly,
the Onco shock leads to a 22% increase in new-author citations. Turning to the
time dynamics for the overall shock (5-2a and 5-2b), we find an 18.5% increase
in citations by new authors, compared to statistically insignificant increase in
citations by old authors (with the difference of the coefficients significant at the
1% level), and 36% versus 21% for new versus old authors in the long-run. This
provides strong evidence for the hypothesis that an increase in openness leads
to new lines of research, as the shocks led to new authors focusing on the field.

In the final set of specifications in Table 5 (5-4a and 5-4b), we turn to
an alternative measure of the diversity captured by the institutional affilia-
tion. In this case institutions are coded from the address field of the partic-
ular mouse-article citation. This is particularly informative because it allows
us to explore the micro-foundations of openness and mouse exchange at the
institutional level. If researchers within a given institution (e.g. Northwest-
ern University) share mice freely with one another once one of their colleagues
has made the investment in accessing a mouse (or engineering one) then we
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would expect the surge in new authors to come predominantly from new insti-
tutions. Furthermore, any university-level agreement made prior to the MoU
made follow-on research possible for all scientists within the university. As
throughout Table 5, we used stacked regressions to estimate specifications com-
paring NewInstitutionCitations and OldInstitutionCitations. Comparing (5-
4a) and (5-4b), the impact of the overall openness shock increases citations from
new institutions by 20% compared to 14% from old (existing) institutions. In
other words, while the effect is less dramatic than the increased diversity of
authors, the boost in marginal citations does accrue (significantly) to authors
affiliated with new institutions.

TABLE 5 HERE

While our theoretical predictions highlight the importance of openness on
reducing the fixed cost of critical upstream inputs into research projects, an-
other important aspect of openness is the degree to which it facilitates horizontal
experimentation by researchers now free to match with a variety of ideas, par-
ticularly given the conditions of freedom existing in the academic sector that
we examine here. We capture this horizontal diversity using the measure of key
words represented in a particular citation. Recall that these key words are de-
fined by the cataloguing service (ISI Web of Science) and therefore not subject
of strategic intervention by researchers themselves. We compare the citation
margin between NewKeywordCitations and OldKeywordCitations in (6-1a)
and (6-1b) finding that the PostOverallShock is 25% for new key words and
and insignificant for old key words. This confirms our prediction that openness
does indeed have a substantial impact on the diversity of new research lines.
When we include the time dynamics (6-2a) and (6-2b) we find that the short
run PostOverallShock effect on new key words is 20%, and increases to 35%
in the long run (both are significant at the 1% level). The old key word impact
is insignificant. Taken together these provide strong evidence for expanding re-
search lines. When we decompose the openness shock into the Crelox and Onco
shocks, the results are also dramatic. The PostCreLoxShock is 30% while the
Onco shock is only 20% (significant at the 5% and 10% level respectively) sug-
gesting that it is the Cre-lox shock that has the most salient impact on the
initiation of diverse early-stage lines. Neither the Cre-lox nor the Onco Shocks
have a significant impact on old key words.

TABLE 6 HERE

Our final investigation to establish the impact of openness on diversity is the
emergence of research lines focusing on new areas of scientific study captured in
journals. As a proxy for this breadth of research, we compare the citation mar-
gin between NewJournalCitations and OldJournalCitations, where a “new”
journal is one which has never before published an article citing the original
mouse-paper article in question. In Table 7, we see that the PostOverallShock
in (7-1a) and (7-1b) leads to a 24% increase (significant at the 1% level) in
citations from new journals, and no significant increase in citations from old
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journals. We further investigate the impact of openness in (7-2a) and (7-2b)
which show that the short run effect is 22% for new journals increasing to 27%
in the long run, while there is no short run impact for old journals, but the
long run PostOverallShock is 23%. Finally, in (7-3a) and (7-3b) we exam-
ine the Cre and Onco shocks, finding that the Cre-lox shock has an impact on
NewJournalCitations of 24% but the effect is noisy and only significant at the
15% level, however, the Onco shock is leads to a 24% increase to citations in
new journals with no significant increase in citations in old journals (significant
at the 1% level).

TABLE 7 HERE

6.3 Impact of openness on the type of follow-on research:
vertical exploitation

We now turn to the effects of openness shocks on the vertical distribution of
research, in other words, whether openness shocks move research along any par-
ticular line towards later stage projects. We do this by examining the marginal
impact of the openness shocks on the production of research in basic versus
applied research journals. Recall that these categories are determined by exam-
ining the journal in which citations are published, categorized according to how
close to clinical application the work typically published (across the entire stock
of articles published in the journal over a five year time period). In (8-1a) and (8-
1b), we find that the BasicCitations dependent variable increases 23% during
the post-shock period; at the same time, the AppliedCitations variable expe-
riences 18% increase during the post-shock period. This suggests that across
both shocks, the average impact accrues to both basic and applied citations. In
our next regressions, however, we provide deeper insights into these patterns by
again considering the contrasting natures of the Cre-lox and Onco shocks and
disentangling their distinctive implications. Recall that in the pre-shock period,
not only were there stringent reach-through rights associated with Cre-lox mice,
but also very limited access as ex ante enforcement of IP rights had limited their
circulation and exchange. In contrast, Onco mice were made available through
JAX - although these researchers remained concerned that if they found inter-
esting commercial applications they may be subject to ex post IP enforcement.
As a result, the Onco shock also reduced reach-through rights but had a more
limited impact on access. The specifications in (8-2a) and (8-2b) reveal that
the Cre-lox shock is concentrated in basic citations, while the Onco shock has a
significant effect only on applied citations. Specifically, the Cre-lox shock leads
to a dramatic 78% increase in basic citations during the post-shock period, but
has a 21% decrease on the applied-research citation flows (significant at the 10%
level). By contrast, the impact of the Onco shock is concentrated in the more
applied research stages and leads to a 56% increase during the period through
2006 for applied citations; at the same time, the Onco shock has no significant
impact on basic citations. This is consistent with the view that when upstream
access is already secured (as in the case for Onco mice), then an agreement that
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shifts the balance of appropriability toward follow-on innovators and away from
the initial innovator (DuPont), then there is more applied research.

TABLE 8 HERE

These results are further reinforced when we look at the time dynamics
(8-3a) and (8-3b). In this case, rather than look at the time dynamics for
the overall shock, we examine the time dynamics for the Cre-lox and Onco
shocks separately. We find that the Cre-lox shock has a 63% increase in basic
citations in the short run and a dramatic 114% increase over the next three years
(through 2006). There is a significant negative impact on applied citations in
either the short run (25%) but no change in the long run. While we might have
anticipated that there would be a gradual shift to applied research in the long
run, this suggests that the early stages of the Cre-lox research lines take time
and that applications are relatively far away. Conversely, in the Onco case, the
shock to citations is entirely concentrated in applied research with a 51% boost
in the short run and 63% in the long run.

Taken together, our findings suggest that both the Cre-lox and Onco shocks
had an important impact on the rate and nature of follow-on innovation. Of
course our interpretation depends upon the extent to which the MoU shocks to
openness were truly exogenous. After all, they reflected the endogenous choice of
DuPont, JAX, and the NIH. There is, however, strong evidence to suggest that
the Cre-lox shock and (to a lesser extent) the Onco shock were unanticipated in
their timing and terms by the scientific community and that while the academic
community had agitated for broader access, this had been a continuous request
starting in the early 1990s, rather than a significant sea change in response
to changing technical opportunities (Murray, 2008). Moreover, our focus is on
the behavioral (citation) response of over 5,000 follow-on researchers who were
not part of the intense, but largely private, negotiations. More than simply
a policy announcement, or even an agreement that ratified behavior already
taking place, the MoUs directly and dramatically changed the openness of a set
of key research inputs.

7 Conclusion

In this paper we argued that openness of upstream research does not simply
encourage higher levels of downstream exploitation: it also raises the incentives
for additional upstream research by encouraging the establishment of entirely
new research directions. We tested this hypothesis by examining a “natural ex-
periment” in openness within the academic community: NIH agreements during
the late 1990s that circumscribed IP restrictions for academics regarding certain
genetically engineered mice.

Overall we found, perhaps not surprisingly, that there is an increased overall
level of follow-on research taking place after the NIH-DuPont-JAX openness
agreements. Building on this initial result, we explored the particular margins
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where this increased innovation is taking place, developing measures of innova-
tion that allowed us to test the predictions of our theory. First, we obtained
robust evidence that increased openness was associated with the exploration
of a wider range of more diverse research paths i.e. horizontal experimenta-
tion. This finding highlights a feature of early stage knowledge overlooked in
many of the current models of innovation - the fact that it is non-rivalrous and
as a consequence, can, in principle, be applied across multiple later-stage do-
mains and applications. Second, when we compared the impact of openness
on horizontal exploration versus vertical exploitation we found that on balance,
when pre-existing IP restrictions limited access to research materials (rather
than simply serve as a threat of potential future enforcement), the main impact
of openness is concentrated in an increase in more basic and more high-quality
follow-on research publications. In contrast, when prior arrangements (informal
or formal) have allowed for access even with some threat of enforcement, the
openness shock is concentrated in more applied follow-on research.

Our results highlight that the current literature on intellectual property and
innovation has neglected a key potential cost of intellectual property - the limits
that IP rights may place on the diversity research that would otherwise be
pursued by follow-on innovators taking a single powerful idea and experimenting
across multiple research lines.

Our results also have strong implications for the organization of research
and its contribution to innovation and growth both in academia and the private
sector. For nations such as China, for example, who seek to increase knowledge
production through greater funding and an emphasis on incentives to publish in
academia, we argue that without a commitment to openness as well as freedom,
these investments are unlikely to be effective (see Murray 2007 for a related
discussion). This commitment to openness requires careful consideration and
must be balanced against the current enthusiasm for IP rights in academia.
The prevailing view on openness (and IP rights) is shaped by the technology
transfer model of the United States as structured by the 1980 Bayh-Dole Act.
By placing IP rights in the hands of the universities Bayh-Dole allowed them
to shape the ways in which their IP was enforced upon follow-on innovators.
The goal was to provide key incentives for follow-on exploitation and the trans-
formation of basic research investments into commercial products. Our results
highlight one of the possible dangers of excessive IP enforcement: if IP is used
to restrict openness particularly at very early stages of the research line, then
it is possible that the rich array of exploration projects that are key to diverse
follow-on innovation will be stifled. In practical terms, there are a number
of ways of managing IP and access rights to try and maximize horizontal ex-
ploration and vertical exploitation. However, this will require policy makers,
university administrators and academics themselves to pay greater attention to
the organization of research, particularly the terms and conditions that pertain
to access to patented research inputs, but also more broadly, the institutions
that enhance openness.

Lastly, these results should affect the way we think about the role and impor-
tance of IP protection throughout the innovation process in the private sector. In
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particular, our framework suggests that more attention be paid by economists to
recent attempts by the corporate sector to generate new sources of profit built on
the openness of knowledge production by others (Huang & Murray 2008). Thus,
Tapscott and Williams (2006) explain how IBM has managed to recover from
competition with Microsoft by engaging in the openness promoted by Linux.
More generally, a systematic analysis of the forces and trade-offs at work in an
economic environment with both proprietary and open firms competing with
each other, awaits future research.
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TABLE 1: VARIABLES & DEFINITIONS  
 

VARIABLE  DEFINITION  SOURCE  

 
PUBLICATION CHARACTERISTICS  
Publication Yearj  Year in which article j is published  PM  

# Authorsj  Count of the number of authors of Article j  PM  

Total Citationsj  # of FORWARD CITATIONS from publication date through 2006  SCI  
 
CITATION-YEAR CHARACTERISTICS  
Annual Citations  # of Forward Citations to Article j in Year t  SCI 

Citation Yearjt  Year in which FORWARD CITATIONS are received  SCI  
 
CITATION CHARACTERISTICS  
New Author Citation Dummy variable equal to 1 if the last author has not appeared in the citations 

to the mouse-article in prior years; 0 otherwise 
PM  

Old Author Citation Dummy variable equal to 1 if the last author has appeared in the citations to 
the mouse-article in prior years; 0 otherwise 

PM  

New Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 
the citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Institution Citation Dummy variable equal to 1 if the institutional affiliation has not appeared in 
the citations to the mouse-article in prior years; 0 otherwise 

PM  

New Key Word Citation Dummy variable equal to 1 if the key word has not appeared in the citations to 
the mouse-article in prior years; 0 otherwise 

PM  

Old Key Word Citation Dummy variable equal to 1 if the key word has appeared in the citations to the 
mouse-article in prior years; 0 otherwise 

PM  

New Journal Citation Dummy variable equal to 1 if the publishing journal has not appeared in the 
citations to the mouse-article in prior years; 0 otherwise 

PM  

Old Journal Citation Dummy variable equal to 1 if the publishing journal has appeared in the 
citations to the mouse-article in prior years; 0 otherwise 

PM  

Basic Citation Dummy variable equal to 1 if the publishing journal is identified as a basic-
research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

Applied Citation Dummy variable equal to 1 if the publishing journal is identified as an applied-
research journal (SOURCE: CHIBasic variable); 0 otherwise  

PM  

At Least One Public Author  Dummy variable equal to 1 if at least one institutional affiliation associated 
with the citing article is a university or government organization; 0 otherwise  

PM  

Private Author Dummy variable equal to 1 if all institutional affiliations associated with the 
citing article is a biotechnology or pharmaceutical firm; 0 otherwise  

PM  

 
OPENNESS SHOCK CHARACTERISTICS 
Post Overall Shockjt  Dummy variable equal to 1 if Article j is associated with an openness MOU 

agreement (Cre-Lox, Onco) which is in effect in year t. 
MGI 

Post Overall Windowjt  Dummy variable equal to 1 if Article j is associated with an openness MoU 
agreement (Cre-Lox, Onco) which is in its initial period in year t. 

MGI  

Post Crelox Shockjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 
MoU and that agreement is in effect in year t. 

MGI  

Post Crelox Windowjt  Dummy variable equal to 1 if Article j is associated with the Cre-Lox openness 
MoU and that agreement is in its initial period in year t. 

MGI  

Post Onco Shockjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 
MoU and that agreement is in effect in year t. 

MGI  

Post Onco Windowjt  Dummy variable equal to 1 if Article j is associated with the Onco openness 
MoU and that agreement is in effect in year t. 

MGI  



TABLE 2: MEANS & STANDARD DEVIATIONS  
 

VARIABLE  N  MEAN  STD. DEV. MIN  MAX  
 
PUBLICATION CHARACTERISTICS (N = 2,223 original publication)
Publication Yearj  2223 1995.35 2.83 1983 1998
# Authorsj  2223 7.034188 3.41921 1 34
Total Citationsj  2223 209.60 231.22 1 2543
 
CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations)
Citation Yearjt  27442 2001.100 3.331 1993 2006
Annual Citations jt  27442 18.317 21.132 0 336

New Author Citations jt 27442 11.027 13.000 0 243

Old Author Citations jt 27442 3.712 5.212 0 58

New Institution Citationsjt 27442 16.616 17.427 0 287

Old Institution Citations jt 27442 9.671 13.346 0 135

New Key Word Citationsjt 27442 32.782 34.308 0 492

Old Key Word Citations jt 27442 11.008 16.235 0 202

New Journal Citations jt 27442 70.879 65.864 0 794

Old Journals Citations jt 27442 52.252 59.326 0 620

Basic Citation jt 27442 8.725 10.942 0 151

Applied Citation jt 27442 6.947 10.378 0 157
All Public Authors 
Citation jt 

27442 15.115 17.110 0 253

At Least One Private 
Author Citationjt 

27442 1.349 2.697 0 45

 
OPENNESS SHOCK CHARACTERISTICS (N = 27,442 citation-year observations)
Post Overall Shockjt  27442 0.0482 0.2143 0 1

Overall Windowjt  27442 0.0147 0.1204 0 1

Post Crelox Shockjt  27442 0.0133 0.1144 0 1

Crelox Windowjt  27442 0.0031 0.0552 0 1

Post Onco Shockjt  27442 0.0350 0.1837 0 1

Onco Windowjt  27442 0.0117 0.1074 0 1

 
 



 TABLE 3: SUMMARY STATISTICS BY MOUSE TECHNOLOGY 
 

 MOUSE TECHNOLOGY 
VARIABLE N CRELOX ONCO OTHER GM SPONTANEOUS 

 
PUBLICATION CHARACTERISTICS (N = 2,223 original publication)
Publication Yearj  2223 1996.549 1991.737 1995.448 1990.789
# Authorsj  2223 5.250 5.944 7.341 4.718
Total Citationsj  2223 158.831 228.959 234.198 68.411
 
CITATION-YEAR CHARACTERISTICS (N = 27,442 citation-year observations)

Annual Citations  27442 15.3340 13.3326 20.9152 3.8202

New Author Citations 27442 10.1294 7.6285 12.5957 2.3799

Old Author Citations 27442 2.6305 2.2984 4.3015 0.6584

New Institutions 27442 15.6910 11.0114 18.9562 3.9763

Old Institutions 27442 8.7286 6.1850 11.1357 1.8031

New Key Words 27442 75.4572 50.7871 80.2499 17.5752

Old Key Words 27442 35.7996 39.9560 59.6379 11.1171

New Journal Citations 27442 7.5511 4.7736 8.5364 1.7752

Old Journal Citations 27442 4.7182 4.6010 6.6681 1.2618

Basic Citations 27442 8.8288 5.0855 9.9965 2.1295

Applied Citations 27442 3.3612 6.4306 7.8953 1.2437

All Public Author 
Citations 27442 13.2443 10.9772 17.2503 3.1377

At Least One Private 
Author Citations 27442 0.7724 0.9591 1.5539 0.2583

 



TABLE 4: IMPACT OF OPENNESS SHOCKS ON ANNUAL CITATION FLOWS 
 

  NEGATIVE BINOMIAL  
Dep Var = ANNUAL CITATIONS  

[Incident rate ratios reported in square brackets]  
Estimated coefficients in 2nd line. 

(Block bootstrapped SEs reported in parentheses) 
 

(4-1)  
Baseline Model with 

Overall Shock 

(4-2)  
Overall Shock with 

Time Dynamics  

(4-3)  
Baseline Model with  
Cre & Onco Shocks 

Post Overall Shock  [1.213]*** 
0.1934 

(0.0507) 
  

Post Overall Shock 
Short-run   

[1.152]** 
0.1411 

(0.0591) 
 

Post Overall Shock 
Long-run   

[1.320]*** 
0.2773 

(0.0777) 
 

Post Cre-lox Shock  
  

[1.178]* 
0.1637 
0.0919 

Post Onco Shock 
  

[1.212 ]*** 
0.1921 

(0.0610) 
Window+ 
- Overall 
 
 
- Cre 
 
- Onco 

[1.119]*** 
0.1124 

(0.0405) 
 
- 
 
- 

[1.122]** 
0.1152 

(0.0472) 
 
- 
 
- 

 
- 
 

[0.983] 
-0.017 
(0.123) 

[1.163]*** 
0.151 

0.0448 
Parametric 
Restrictions  

     

Age FEs = 0     

Year FEs = 0     

Log-likelihood  -67168.977 -67153.037 -67164.516 
# of Observations  27428 27428 27428 

  
Significance levels: * 10% ** 5% *** 1% 
Coefficients for the Window period are included in all regressions but suppressed in order to focus on key variables in the analysis. 
IRRs reported in brackets; raw coefficients reported in middle line. 
 
 
 



TABLE 5:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
BY NEW VS. OLD ‘LAST AUTHORS’ & BY NEW VS. OLD INSTITUTIONS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2nd line. 
(Block bootstrapped SEs reported in parentheses) 

 
(5-1a)  
DV= 

New Author 
Citations 

(5-1b)  
DV= 

Old Author 
Citations 

(5-2a)  
DV= 

New Author 
Citations 

(5-2b)  
DV= 

Old Author 
Citations 

(5-3a)  
DV=  

New Author 
Citations 

With Time Dynamics 

(5-3b)  
DV=  

Old Author 
Citations  

With Time Dynamics 

(5-4a)  
DV= 
New 

Institution 
Citations 

(5-4b)  
DV= 
Old  

Institution 
Citations 

Post Overall Shock  [1.250]*** 
0.223 

(0.054) 

[1.082] 
0.0785 

(0.0789) 

  
 

 [1.202]*** 
0.184 
(0.0494) 

[1.142]** 
0.133 

(0.0612) 
Post Overall Shock 
Short-run    

  [1.185]*** 
0.170 

(0.0538) 

[0.994] 
-0.0056 
(0.814) 

  

Post Overall Shock 
Long-run    

  [1.363]*** 
0.310 

(0.0695) 

[1.207]** 
0.188 

(0.0801) 
  

Post Cre-lox Shock  
  

[1.251]** 
0.224 

(0.108) 

[0.992] 
-0.0083 
(0.099) 

  
  

Post Onco Shock 
  

[1.220]*** 
0.199 

(0.067) 

[1.127] 
0.120 

(0.0736) 

  
  

Parametric 
Restrictions  

           

Separate Age FEs = 
0  

        

Common Year FEs = 
0  

        

Log-likelihood          
# of Observations          

 Significance levels: * 10% ** 5% *** 1% 



TABLE 6:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
WITH NEW VS. OLD KEY WORDS  
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2nd line. 
(Block bootstrapped SEs reported in parentheses) 

 
(6-1a)  

DV=New 
Key Word 
Citations 

(6-1b)  
DV=Old  

Key Word 
Citations 

(6-2a)  
DV= New  
Key Word 
Citations 

With Time Dynamics 

(6-2b)  
DV= Old  
Key Word 
Citations  

With Time Dynamics

(6-3a)  
DV=New  
Key Word 
Citations 

(6-3b)  
DV=Old Key 

Word 
Citations 

Post Overall Shock  [1.250]*** 
0.223 

(0.0738) 

[0.977] 
-0.0230 
(0.0732) 

 
   

Post Overall Shock 
Short-run    

[1.197]*** 
0.180 

(0.0586) 

[0.926] 
-0.0765 
(0.0666) 

  

Post Overall Shock 
Long-run    

[1.350]*** 
0.300 

(0.0843) 

[1.052] 
0.0504 

(0.0784) 

  

Post Cre-lox Shock  
  

  [1.302]** 
0.264 

(0.104) 

[0.894] 
-0.112 
(0.112) 

Post Onco Shock 
  

  [1.202]* 
0.184 

(0.0965) 

[1.023] 
0.0225 
(0.115) 

Parametric 
Restrictions  

        

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood        
# of Observations        

 Significance levels: * 10% ** 5% *** 1% 



TABLE 7:   IMPACT OF OPENNESS SHOCKS ON CITATIONS  
IN NEW VS. OLD JOURNALS  
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2nd line. 
(Block bootstrapped SEs reported in parentheses) 

 
(7-1a)  
DV= 

New Journal 
Citations 

(7-1b)  
DV= 

Old Journal 
Citations 

(7-2a)  
DV=  

New Journal 
Citations 

With Time Dynamics 

(7-2b)  
DV=  

Old Journal 
Citations  

With Time Dynamics

(7-3a)  
DV= 

New Journal 
Citations 

(7-3b)  
DV= 

Old Journal 
Citations 

Post Overall Shock  [1.237]*** 
0.213 

(0.0711) 

[1.108] 
0.103 

(0.0706) 
 

   

Post Overall Shock 
Short-run    

[1.223]*** 
0.201 

(0.0546) 

[1.022] 
0.0213 

(0.0599) 

  

Post Overall Shock 
Long-run    

[1.274]*** 
0.242 

(0.0776) 

[1.234]*** 
0.210 

(0.0764) 

  

Post Cre-lox Shock  
  

  [1.235] 
0.211 

(0.145) 

[1.105] 
0.100 

(0.133) 
Post Onco Shock 

  
  [1.236]*** 

0.212 
(0.065) 

[1.108] 
0.103 

(0.087) 
Parametric 
Restrictions  

        

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood        
# of Observations        

 Significance levels: * 10% ** 5% *** 1% 
 



TABLE 8: IMPACT OF OPENNESS SHOCKS ON CITATIONS  
IN BASIC VS. APPLIED JOURNALS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2nd line. 
(Block bootstrapped SEs reported in parentheses) 

(8-1a)  
DV=  

Basic Journal 
Citations 

(8-1b)  
DV=  

Applied Journal 
Citations 

(8-2a)  
DV= 

Basic Journal 
Citations 

(8-2b)  
DV=  

Applied Journal 
Citations  

(8-3a)  
DV= 

Basic Journal 
Citations  

with Time Dynamics 

(8-3b)  
DV= 

Applied Journal 
Citations  

with Time Dynamics 

Post Overall Shock  [1.225]*** 
0.203 

(0.0732) 

[1.184]** 
0.169 

(0.0766) 

  
  

Post Cre-lox Shock  
  

[1.777]*** 
0.575 

(0.0975) 

[0.797]* 
-0.2269 
(0.117) 

  

Post Onco Shock 
  

[1.029] 
0.029 

(0.0611) 

[1.562]*** 
0.446 

(0.0739) 
  

Post Cre-lox Shock 
Short-run      

[1.631]*** 
0.4891 

(0.0914) 

[0.745]** 
-0.2950 
(0.1196) 

Post Cre-lox Shock 
Long-run      

[2.140]*** 
0.7606 

(0.1178) 

[0.915] 
-0.0889 
(0.1522) 

Post Onco Shock 
Short-run      

[1.030] 
0.0298 

(0.0756) 

[1.514]*** 
0.4150 

(0.0788) 
Post Onco Shock 
Long-run      

[1.029] 
0.0290 

(0.0861) 

[1.632]*** 
0.4898 

(0.1050) 
Parametric 
Restrictions  

      

Separate Age FEs = 
0  

      

Common Year FEs = 
0  

      

Log-likelihood        
# of Observations        

 Significance levels: * 10% ** 5% *** 1% 



FIGURE 1: IMPACT OF OPENNESS SHOCKS ON CITATIONS  
TO ONCO, CRE_LOX & CONTROL MOUSE-ARTICLES 
 
 
 

 


