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Firm-level and sectoral heterogeneity is per-
vasive in data. Equilibrium models in macro
and finance typically assume a representative
firm, as in Cochrane (1991). This representa-
tive firm paradigm leaves no role for the dis-
tribution of capital. We jointly model capi-
tal reallocation and asset pricing in a general
equilibrium model with two sectors. Exist-
ing multisector equilibrium models assume ei-
ther that capital is perfectly liquid and can be
reallocated frictionlessly, as in Cox, Ingersoll,
and Ross (1985, hereafter CIR), or that capi-
tal is completely illiquid and fixed, as in Lucas
(1978) and multisector versions by Santos and
Veronesi (2006) and Cochrane, Longstaff, and
Santa Clara (2008, hereafter CLS). When capi-
tal is perfectly liquid as in CIR, Tobin’s q is one
at all times and heterogeneity plays no role in
equilibrium. When capital is completely illiq-
uid as in CLS, investment is zero at all times. In
our model, investment drives dynamics of both
Tobin’s q and the distribution of capital; these
results fundamentally differ from both CIR and
CLS due to the illiquidity of capital.

We use capital adjustment costs to capture
illiquidity. We follow Hayashi (1982) in assum-
ing that the production technology is linearly
homogeneous, which allows us to focus on the
economic impact of the sectoral distribution of
capital. Similarly, we assume the two sectors
have identical technologies to highlight the ef-
fects of endogenous investment and reallocation,
rather than relying on ex ante heterogeneity.
We show that the distribution of capital is the
single state variable determining equilibrium re-
allocation and asset pricing.
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We analytically characterize the interdepen-
dence between price and quantity variables, in-
cluding investment, growth, the interest rate,
risk premia, and the price of capital (Tobin’s
q) at the aggregate level, along with the ef-
fect of sectoral heterogeneity on these variables.
When the two sectors are of equal size, diversi-
fication achieves its maximum attainable level,
hence precautionary savings demand is lowest,
which implies the risk premium is lowest and
the interest rate is highest (to encourage suffi-
cient savings to sustain equilibrium). Sectoral
investment generates endogenous mean rever-
sion which tends to pull the economy towards
a more balanced distribution of capital.

At the sectoral level, investment is higher
in the smaller sector, not because of higher
marginal productivity (we have constant-
returns-to-scale in production), but because in
equilibrium the required rate of return is lower
and sectoral Tobin’s q is higher for the sector
that is in relatively scarce supply. Because the
survival and recovery of a small sector is so valu-
able, its dividend yield may even be negative in
order to capture the valuable diversification op-
tion embodied in the small sector.

Our model allows us to consider the impact of
the liquidity of capital, unlike previous models
which make the extreme assumption that this
margin is either frictionless or unavailable. The
more liquid is capital, the higher is welfare, but
importantly, more liquid capital endogenously
increases the growth rate of the economy, which
raises the equilibrium interest rate and the ag-
gregate market return. As a result, the value of
installed capital (Tobin’s q) is lower in both sec-
tors, consistent with Hall’s (2001) argument that
greater liquidity reduces the rents to installed
capital. These results suggest that economies
with more liquid capital invest more and grow
faster, but have higher interest rates and lower
asset values.
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I. Model

Consider an infinite-horizon continuous-time
production economy. There are two productive
sectors in the economy, sector 0 and 1. We con-
sider the case where the two sectors are symmet-
ric.1 Let Kn, In, and Yn denote the representa-
tive firm’s capital stock, investment and output
processes in sector n where n = 0, 1. This firm
has the following “AK” production technology:

(1) Yn(t) = AKn(t),

where A > 0 is constant. Capital accumulation
is stochastic and is given by

(2) dKn(t) = Φ(In(t), Kn(t))dt + σKn(t)dBn,

where σ > 0 is the volatility parameter, and
Φ(I, K) denotes the effectiveness in converting
investment goods into installed capital. Assume
the correlation between Brownian motions B0

and B1 is 0. Shocks appear in capital accumu-
lation dynamics as in CIR and the endogenous
growth literature (Jones and Manuelli (2005)).
As in Hayashi (1982) and Jermann (1998), we
assume that the adjustment technology is ho-
mogeneous of degree one in I and K, in that

(3) Φ(I, K) = φ(i)K,

where i = I/K is the investment-capital ratio.
We require φ′(i) > 0 and φ′′(i) ≤ 0. Our model
nests “AK” models (such as CIR and Jones and
Manuelli (2005)) as special cases.

A representative consumer has a logarithmic
utility given by:

(4) E

(∫ ∞

0

e−δtδ ln C(s) ds

)
,

where δ > 0 is the subjective discount rate. The
consumer is endowed with financial claims on
the aggregate output from both sectors in the
economy. Markets are complete.

We now describe the market equilibrium. The
representative consumer chooses his consump-

1See Eberly and Wang (2009) for the general for-
mulation with heterogeneity between the two sectors
and recursive utility, which separates risk aversion
from elasticity of intertemporal substitution.

tion process and a complete set of financial
claims to maximize (4). The representative firm
in both sectors takes the equilibrium stochas-
tic discount factor as given and maximizes firm
value. All produced goods are either consumed
or invested in either sector, so the goods-market
clearing condition holds:

(5) C = Y0 + Y1 − I0 − I1.

In equilibrium, the representative consumer
holds his financial claims on aggregate output in
both sectors. This is the standard no-trade equi-
librium as in Lucas (1978). Using the standard
results in complete-markets competitive equilib-
rium analysis, we may obtain the equilibrium al-
location by solving a central planner’s problem
and then decentralize the allocation using price
system. We refer readers to the appendix and
relegate additional details to online materials.

II. Model Results and Analysis

One-sector economy. First, we summa-
rize the main results for the one-sector model.
The capital stock K is the single state vari-
able in this economy. The equilibrium of the
one-sector economy features stochastic growth,
where the stochastic growth rates of consump-
tion, investment, and capital, and output are
all equal. Moreover, these growth rate are in-
dependently and identically distributed. There-
fore, after scaling by capital, the consumption-
capital ratio c = C/K, investment-capital ratio
i = I/K, and Tobin’s q are all constant. For log-
arithmic utility, the first-order condition (FOC)
with respect to consumption gives c = δq, where
q is the firm value-capital ratio, also referred
to as average q or Tobin’s q. The FOC with
respect to investment gives q = 1/φ′(i). The
FOCs for consumption and investment together
with goods market clearing condition (invest-
ment equals saving, i.e. A − c = i) jointly de-
termine the optimal investment-capital ratio as
the solution of (A− i)φ′(i) = δ. The equilibrium
interest rate r is given by r = δ + φ(i)− σ2, the
sum of the subjective discount rate δ and the
expected growth rate φ(i), minus the last stan-
dard precautionary saving term. The expected
return of a financial claim on aggregate output
is μm = δ + φ(i) implying that the aggregate
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risk premium is equal to σ2. The CIR model is
a special case of ours with q = 1 because capital
is liquid (no adjustment cost, i.e. φ′(i) = 1).

Two-sector economy. Capital stocks in
both sectors are the natural state variables. By
exploiting the homogeneity properties, we show
that the effective state variable is the relative
size of capital stocks in the two sectors. Let

z ≡ K1

K0 + K1

denote the ratio between sector-1 capital K1 and
the aggregate capital (K0 + K1). Since physical
capital is non-negative, we have 0 ≤ z ≤ 1.

Let in denote sector-n investment capital ra-
tio, in that in = In/Kn, where n = 0, 1. Let i
denote the ratio between aggregate investment
(I0 + I1) and aggregate capital (K0 + K1), in
that i = (I0 + I1)/(K0 + K1). We may write

(6) i(z) = (1 − z) i0(z) + zi1(z).

Recall that the adjustment cost drives a wedge
between gross investment I and Φ(I, K). Let
gn(z) denote the expected growth rate of cap-
ital in sector n. Using (2), we have gn(z) =
φ(in(z)), which differs from in(z). Let g(z) de-
note the expected growth rate of aggregate cap-
ital (K0 + K1). We have

(7) g(z) = (1 − z) g0(z) + zg1(z),

The concavity of φ(i) implies g(z) ≤ φ(i(z)).
When z = 0, 1, the equality holds. Intuitively,
ceteris paribus, the expected growth rate g(z) is
lower in a two-sector economy than the corre-
sponding one-sector economy, since both sectors
incur adjustment costs and hence production is
less efficient.

The equilibrium dynamics of z are given by:

(8) dzt = μz(zt)dt + σzt(1 − zt) (dB1 − dB0) ,

where the drift μz(z) is given by
(9)
μz(z) = z(1 − z)

[
g1(z) − g0(z) + (1 − 2z)σ2] .

Note that the volatility of dz is a quadratic
function in z which attains its highest value at
z = 1/2 and becomes zero at z = 0, 1 (i.e. the
one-sector economy is absorbing), as in the two-

tree pure exchange model of CLS. More inter-
estingly in our model, the drift μz depends on
g1(z) − g0(z), the wedge between the endoge-
nous capital growth rates in the two sectors.
The larger this difference, the more capital re-
allocation will occur in equilibrium. This sec-
toral growth-wedge-induced component funda-
mentally differentiates our model from CLS.

We now turn to investment and the valuation
of capital. The FOC for i1(z) is given by:

(10)
δ

φ′(i1(z))
= c(z)

(
1 + (1 − z)

N ′(z)

N(z)

)
,

where N(z), the log of the value function (per
unit of aggregate capital), is given in the ap-
pendix. A similar FOC holds for i0(z) and is
also in the appendix. Let Qn(Kn; z) denote the
firm value in sector n. Using the homogeneity
property, we have

(11) Qn(Kn; z) = qn(z)Kn, n = 0, 1,

where Tobin’s q in sector n is given by

(12) qn(z) =
1

φ′(in(z))
.

The market value of the aggregate capital is
Q(z) = Q0(z) + Q1(z) = q(z)(K0 + K1), where
Tobin’s q for the aggregate capital is given by

(13) q(z) = (1 − z)q0(z) + zq1(z).

In complete-markets models with log utility, the
aggregate consumption-wealth ratio C(z)/Q(z)
is equal to the discount rate δ, or equivalently
c(z) = δq(z), as we noted in the one-sector set-
ting. While the aggregate dividend yield (i.e.
consumption/wealth) ratio is constant and equal
to the discount rate δ, the sector-specific divi-
dend yield dyn is stochastic and is given by

(14) dyn(z) =
A − in(z)

qn(z)
, n = 0, 1.

III. Example: Log Adjustment Costs

For analytical convenience, we now specify

(15) φ(i) = α + Γ ln

(
1 +

i

θ

)
,
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where Γ, θ > 0. While z is stochastic, at the ag-
gregate level, the consumption-capital ratio c(z),
the investment-capital ratio i(z), and Tobin’s q
are all constant, in that c(z) = c∗, i(z) = i∗, and
q(z) = q∗, where

(16) c∗ = δq∗, i∗ =
ΓA − δθ

δ + Γ
, q∗ =

A + θ

δ + Γ
.

While the aggregate investment-capital ratio
i(z) is constant, the aggregate expected growth
rate g(z) is not, as we see from (7). The ex-
pected return of the market portfolio (aggregate
output) is given by

(17) μm(z) = δ + g(z).

The equilibrium interest rate is given by

(18) r(z) = δ + g(z) − σ2
m(z),

where the last term, the variance of the market
portfolio return σ2

m(z), captures the precaution-
ary saving effect and is given by

(19) σ2
m(z) = σ2 [

(1 − z)2 + z2] .

With two symmetric sectors, diversification is
highest, and hence precautionary saving demand
is lowest, when z = 1/2. Note that both
μm(z) and the interest rate r(z) increase one-
for-one with the aggregate growth rate g(z). Let
rpm(z) = μm(z)−r(z) denote the corresponding
aggregate risk premium. We have

(20) rpm(z) = σ2
m(z) = σ2 [

(1 − z)2 + z2] .

The aggregate risk premium and the variance of
the market portfolio are independent of invest-
ment and growth, as in CLS.

Now consider sectoral heterogeneity. Recall
that the production technologies in two sectors
are identical. Despite the identical technologies,
the two sectors price investment differently and
carry different risk premia because of differences
in their capital stocks. The investment-capital
ratio i1(z) is given by

(21) i1(z) =
Γ (A + θ)

δ + Γ

[
1 + (1 − z)

N ′(z)

N(z)

]
−θ,

The expression for i0(z) is symmetric, (i.e.

i0(z) = i1(1 − z)) and omitted for brevity.

We choose model parameters to generate sen-
sible aggregate predictions and to highlight the
impact of endogenous investment and growth
on equilibrium pricing and capital reallocation.
The annual subjective discount rate is δ = 0.025.
Annual volatility parameter is σ = 0.15. The
annual productivity parameter is A = 0.12. Fi-
nally, we choose Γ = 0.025, α = −0.035, and
θ = 0.01 to generate the following aggregate
predictions for the one-sector economy: Tobin’s
q = 2.6, the expected growth rate φ(i∗) = 0.012,
and annual risk-free rate r = 0.014.

Figure 1 shows N(z), the logarithm of the rep-
resentative consumer’s value function per unit
of aggregate capital (K0 + K1), as a function of
z = K1/(K0 + K1). Intuitively, we expect that
N(z) is maximized at z = 1/2, where the con-
sumer achieves the maximally attainable level of
diversification. The value function is higher in
the economy with endogenous investment com-
pared to the equivalent pure exchange “two tree”
economy of CLS. For the baseline parameter val-
ues, the quantitative difference is substantial.

Figure 2 plots the drift of z, μz(z) given in
equation (9). Recall that the economy is not
stationary, since one of the sectors may vanish
eventually. However, there is a natural tendency
for z to move towards the center (i.e. when
z < 1/2, μz(z) > 0 and hence on average z in-
creases towards 1/2.) This mean reversion effect
is also present in CLS, due to the definition of
z; this effect is shown by the dotted line labelled
“pure exchange” in Figure 2. Unlike CLS, how-
ever, the “central tendency” is stronger in our
production economy due to endogenous invest-
ment and growth. Controlling for size (that is,
per unit of capital), the consumer has a “bigger”
demand for the smaller sector, and hence invests
more per unit of capital, ceteris paribus. For ex-
ample, when 0 < z < 1/2, sector 1 is the smaller
one, so it invests and grows at a faster rate, in
that i1(z) > i0(z) and g1(z) > g0(z). The solid
line shows the enhanced “central tendency” of
μz(z) due to endogenous growth.

In Figure 3, we plot the aggregate expected
return μm(z) and the equilibrium interest rate
r(z). Note that μm(z) increases one-for-one with
the expected aggregate growth rate g(z) and is
larger than g(z) by δ for all z. Interestingly, g(z)
features an “W”shape. First, ex ante sectoral
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homogeneity implies g(0) = g(1) = φ(i∗). In-
creasing z away from zero makes sector 1 less
scarce and investment in that sector becomes
less urgent (large investment in the miniscule
sector lowers the probability that the sector van-
ishes). Therefore, i1(z) decreases and i0(z) in-
creases, while keeping i(z) constant (recall that
the total investment-capital ratio i(z) = i∗ is
independent of z.) The concavity of g(z) and
i(z) = i∗ imply g(z) ≤ φ(i∗) for all z. Be-
cause i(z) = i∗, a two-sector economy incurs
more adjustment costs, and hence grows at a
slower rate, ceteris paribus. After reaching the
minimum level around z = 0.06, g(z) then
starts to increase when z moves towards the
center (z = 1/2), reaching the maximum value
g(1/2) = φ(i∗). This follows from the continuity
of g(z) and the fact that g(1/2) = φ(i∗), which
relies on both symmetry (i.e. i0(1/2) = i1(1/2))
and the model’s implication that the aggregate
investment-capital ratio i(z) is independent of z,
i.e. i(1/2) = i∗.

While the risk-free rate r(z) also increases
one-for-one with g(z), the precautionary saving
effect (given by the variance of the market port-
folio, σ2

m(z)) dominates fluctuations in g(z) and
hence effectively determines the level of the in-
terest rate. Note that r(z) reaches its maximum
at z = 1/2, where diversification achieves the
highest possible level and precautionary saving
demand is lowest. A high interest rate is neces-
sary to encourage saving and sustain equilibrium
when the precautionary saving effect is weak.

The next set of figures shows sectoral val-
ues; in each panel we graph results for sector
1 only for brevity since results are symmetric
for sector 0. Figure 4 plots the investment-
capital ratio i1(z) and the expected growth rate
of capital g1(z). Both i1(z) and g1(z) decrease
with z for z ≤ 0.8. The smaller sector invests
more and grows faster, in that i1(z) ≥ i0(z) and
g1(z) ≥ g0(z) for z ≤ 1/2. Moreover, symme-
try between the two sectors implies i0(1/2) =
i1(1/2) = i∗ and g0(1/2) = g1(1/2) = φ(i∗).
Note that i1(z) and g1(z) increase with z for
sufficiently high z, i.e. z ≥ 0.8. This is due
to the model’s prediction that equilibrium ag-
gregate investment is constant i(z) = i∗ and
must be equal to capital-share-weighted sectoral
investments, i.e. i(z) = (1 − z)i0(z) + zi1(z).
When z is high enough, the vanishing sector’s

contribution to total investment is negligible and
hence to keep aggregate investment constant at
the level of i∗, the investment-capital ratio in
the larger sector must rise. The increasing re-
lation for g1(z) over the region z ≥ 0.8 follows
naturally from g′

1(z) = φ′(i1(z))i′1(z).

Recall that Tobin’s q is given by q1 (z) =
1/φ′(i1(z)) = (θ + i1(z))/Γ, an affine function
of i1(z). Tobin’s q becomes significantly larger
as the sector becomes smaller, because the con-
sumer values the smaller sector more for diversi-
fication benefits, ceteris paribus. The diversifica-
tion benefits of keeping the small sector “alive”
with the potential to grow are very valuable.
Upon vanishing, the sector will never be reborn,
and the economy (with only the one surviving
sector) will be significantly riskier thereafter.

Figure 5 graphs the sectoral risk premium
rp1(z) and dividend yield dy1(z). The risk pre-
mium of a miniscule sector is effectively zero,
because this sector carries almost no weight in
aggregate consumption, and the correlation be-
tween the two shocks is zero. The same intu-
ition applies in the pure-exchange economy (e.g.
CLS). Recall that the interest rate is lowest at
z = 0, therefore, the discount rate for a sec-
tor is lowest when it is vanishing. Intuitively,
in equilibrium, the preferences for consump-
tion smoothing and risk diversification lower the
risk premium and discount rate for the shrink-
ing sector. Since both the physical production
technology and investment opportunities remain
unchanged, the vanishing sector invests at the
highest rate i1(0) to take advantage of its low-
est cost of capital. To finance this high level of
investment around z = 0 (e.g. i1(0) = 0.15), the
firm issues equity and hence the dividend yield
is negative for sufficiently small z. That is, it
is optimal to invest beyond current earnings in
the shrinking sector in order to increase the odds
that the sector survives. Tobin’s q reaches the
maximal level q1 (0) at z = 0 despite the neg-
ative dividend yield. Note that the high valua-
tion of capital for the vanishing sector is purely
driven by the discount rate effect. Unlike the
aggregate dividend yield, which is equal to the
discount rate δ, the sectoral dividend yield can
be negative and varies significantly with z.

We now turn to sectoral risk measures. In Fig-
ure 6, we plot the sectoral β and return volatility
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σr
1(z). We show that sectoral β is given by

(22)

β1(z) =
z

z2 + (1 − z)2

[
1 +

q′1(z)

q1(z)
(1 − z)(2z − 1)

]
,

First, zero risk premium for the disappearing
sector implies β1(0) = 0. Second, with increases
in the share of capital z, more consumption is fi-
nanced out of sector-1’s output and hence β1(z)
rises. Third, β(1/2) = 1, which follows from
symmetry between the two sectors and β = 1
for the market portfolio by definition. When z
exceeds 1/2, β1 exceeds one, because the other
sector becomes smaller and carries smaller β
(again by symmetry). Therefore, the bigger sec-
tor is riskier, ceteris paribus. When the sector
becomes sufficiently large (i.e. high enough z),
β has to fall as the sector becomes effectively the
market portfolio, which has β = 1 by definition.
Indeed, in the limit, when sector 1 comprises the
whole economy (z = 1), β1 = 1.

Now consider return volatility for sector 1,
σr

1(z). We have
(23)

σr
1 = σ

√(
q′1(z)

q1(z)
z(1 − z)

)2

+

(
1 +

q′1(z)

q1(z)
z(1 − z)

)2

.

While σr
1(z) also varies non-monotonically with

z, its behavior is rather different from β1(z). At
z = 0, β1 is zero and hence all return volatil-
ity comes from the idiosyncratic component (the
sector carries no weight in the aggregate). Since
total return volatility is the same as capital stock
growth volatility σ for the miniscule sector, we
have σr

1(0) = σ = 0.15. As z increases, To-
bin’s q falls (i.e. q′1 (z) < 0), which reduces the
volatility of returns in equation (23). Note that
increasing z raises β1(z), which increases the
systematic component of volatility. But the in-
crease in the systematic component is dominated
by the decrease in the idiosyncratic component,
as we see from equation (23). When z passes
0.04, sector 1 is sufficiently relevant that the sys-
tematic component of σr

1(z) becomes relatively
more significant and hence total volatility in-
creases with z. For z = 1, sector 1 comprises the
whole economy and hence σr

1(1) = σ = .15. By
continuity, for sufficiently high z (around 0.96),
σr

1(z) must be larger than 0.15 in order for the
vanishing sector (sector 0) to have a lower σr

0(z)
(as sector 1 does at small z in equilibrium). This

continuity argument and symmetry between sec-
tors explain the “overshooting” of σr

1(z) before
it converges to σ at z = 1.

Finally, consider a comparative static change
in the efficiency of reallocating capital, by chang-
ing the adjustment parameter Γ, which may be
viewed as a measure of the liquidity of capital.
In typical equilibrium models, this experiment is
not possible, since capital reallocation is either
frictionless (CIR) or ruled out in pure-exchange
settings (CLS). Comparing the shape of μz(z)
when Γ = 0.05 (the dashed line in Figure 2) with
that in our baseline case (when Γ = 0.025), we
see that the more liquid capital (a higher Γ), the
stronger central tendency the economy exhibits.
The log of the (scaled) value function N (z) in-
creases with Γ, reflecting the higher value of
more liquid capital. Investment and saving rise
with Γ. Consumption falls relative to aggregate
capital and output (while remaining a constant
fraction of wealth). The fact that greater liq-
uidity of capital endogenously increases the ag-
gregate growth rate has strong equilibrium im-
plications for pricing. The equilibrium interest
rate shifts up for all values of z and Tobin’s q
falls; there is no effect on aggregate risk pre-
mia. Interestingly, while investment rises to re-
flect the more efficient technology, the general
equilibrium effects imply that Tobin’s q falls,
so capital becomes less valuable in equilibrium.
This reflects both the elimination of rents to in-
stalled capital (since capital is more liquid) and
a higher discount rate.

Future work. These results lead us to
consider heterogeneity across sectors to poten-
tially better understand pricing and realloca-
tion. With symmetric sectors, changes such
as an increase in liquidity that generate higher
growth imply a higher equilibrium interest rate.
This general equilibrium effect tends to reduce
asset prices. This finding relies, however, on
symmetry, or ex ante identical sectors. Eberly
and Wang (2009) consider asymmetric sectors,
and allow for ex ante, as well as ex post, hetero-
geneity. Such a structure tends to dilute and
potentially mute this general equilibrium impact
on pricing.
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Mathematical Appendix

We solve the equilibrium by solving the planner’s problem. By the standard principle of optimality,
we conjecture that the following Hamilton-Jacobi-Bellman (HJB) equation holds:

(24) δV = max
I0, I1

δ ln C + φ(i0)K0V0 + φ(i1)K1V1 +
1

2
σ2 (

K2
0V00 + K2

1V11

)
,

where Vn and Vnn denote the first and the second derivative of V with respect to Kn, where n = 0, 1.
Using the homogeneity property, we conjecture

(25) V (K0, K1) = ln ((K0 + K1) N(z)) ,

where N(z) is a function to be determined. Substituting (25) into (24), we obtain the following:

(26) 0 = δ ln
c(z)

N(z)
+ φ(i0(z))L0(z) + φ(i1(z))L1(z) − σ2

2

(
L0(z)2 + L1(z)2

)
+ σ2z2(1 − z)2

N ′′(z)

N(z)
,

subject to the boundary conditions:
N(0) = N(1) = v,

where v is the value function coefficient for the one-sector economy and is given by (32), and

L0(z) = (1 − z)

[
1 − z

N ′(z)

N(z)

]
,(27)

L1(z) = z

[
1 + (1 − z)

N ′(z)

N(z)

]
.(28)
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Note L0(z)+L1(z) = 1. Optimality and equilibrium imply that i0(z), i1(z), and c(z) solve the FOCs:

δ

φ′(i0(z))
= c(z)

(
1 − zN ′(z)

N(z)

)
,(29)

δ

φ′(i1(z))
= c(z)

(
1 + (1 − z)

N ′(z)

N(z)

)
,(30)

and the goods-market clearing condition:

(31) c(z) + (1 − z)i0(z) + zi1(z) = A.

The one-sector economy is a special case of the above two-sector economy (i.e. z = 0 and z = 1
are absorbing barriers in the two-sector optimality problem). We have N(0) = N(1) = v, where

(32) v = (A − i) exp

[
1

δ

(
φ(i) − σ2

2

)]
,

and the optimal investment-capital ratio i is the solution of (A − i)φ′(i) = δ. The transversality
conditions are provided in the online appendix.

Let R1(z) denote the instantaneous cumulative return for sector 1. We have

dR1(z) = μr
1(z)dt − σ

q′1(z)

q1(z)
z(1 − z)dB0(t) + σ

(
1 +

q′1(z)

q1(z)
z(1 − z)

)
dB1(t),(33)

where the expected rate of return μr
1(z) is given by

(34) μr
1(z) = dy1(z) + φ(i1(z)) + z(1 − z)

[
φ(i1(z)) − φ(i0(z)) − 2zσ2] q′1(z)

q1(z)
+

q′′1 (z)

q1(z)
z2(1 − z)2σ2.

The instantaneous return volatility is thus given by

σr
1(z) = σ

√(
q′1(z)

q1(z)
z(1 − z)

)2

+

(
1 +

q′1(z)

q1(z)
z(1 − z)

)2

.(35)

The instantaneous correlation ρ(z) between returns in sectors 0 and 1 is given by

(36) ρ(z) =
σ2z(1 − z)

σr
0(z)σr

1(z)

[
−q′1(z)

q1(z)

(
1 − q′0(z)

q0(z)
z(1 − z)

)
+

(
1 +

q′1(z)

q1(z)
z(1 − z)

)
q′0(z)

q0(z)

]
.
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Figure 1: The scaled value function in pure exchange and production economies.
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Figure 3: The aggregate expected return and interest rate.
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Figure 4: Sectoral investment-capital ratio and expected growth rate.
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Figure 5: Sectoral risk premium and dividend yield.
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Figure 6: Sectoral beta and return volatility.


