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Abstract

Without contracting or repetition, purely self-regarding agents will not trade. To what extent
can social preferences, such as altruism or a concern for fairness, generate efficient bilateral
exchange? I analyze a simple exchange game: A purely self-regarding first mover transfers some
amount of a commodity to a second mover. Then the second mover, who has social preferences
defined over material payoffs, transfers a commodity back to the first mover. I identify key
properties of social preferences that matter for bilateral exchange behavior. I find the equilibrium
will be efficient if either (1) the second mover’s transfer is monetary (i.e., material payoffs are
quasi-linear in the second mover’s commodity), or (2) the second mover’s social preferences
cause him to behave in accordance with a “fairness rule” (such as the 50-50 sharing norm).
The results may explain why small-scale transactions with discretionary monetary payment are
common, and suggest that social norms that prescribe fair allocations promote efficiency in
exchange environments.
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1 Introduction

The efficiency of bilateral exchange has long been a central issue in economics. Under some insti-

tutional arrangements, it is well-understood that exchange will be efficient. When both parties’

actions can be bound by an enforceable contract, the Coase theorem implies that the parties will

agree to a Pareto efficient transaction (Coase 1960). In the absence of enforceable contracts, if the

exchange will be repeated, folk theorems imply that some equilibria are efficient if the parties are

sufficiently patient (e.g., Friedman 1971; Fudenberg & Maskin 1986). This paper addresses a third

possible source of increased efficiency: a direct concern for the welfare of the other party–often

called social (or interpersonal) preferences.

I analyze theoretically a simple bilateral exchange environment where contracting is infeasible

and the exchange is one-shot (this environment includes the “gift-exchange game” and “trust game”

as special cases). I focus on this setting primarily because it lays bare the role of social preferences

by ruling out contracts and repetition. It is also a relevant economic environment in its own right.

In a few especially simple situations, a customer’s payment for a good or service is not contracted

in advance–for example, tipping (Conlin, Lynn, & O’Donoghue 2003) or payment on the honor

system (Dawes & Thaler 1988; Dubner & Levitt 2004). More generally, analysis of the no-contracts,

no-repetition scenario is useful for understanding factors that may be relevant in environments

with contracts or repetition. Hart & Moore (2008) argue that in exchange relationships that

are contractible, the legal contract can typically only require “perfunctory” performance, so the

principal must rely on the good will of the agent for better-than-perfunctory performance. Similarly,

Akerlof (1982) and Akerlof & Yellen (1990) argue that workers’ social preferences play a major role

in determining how much effort they provide in excess of a minimum work standard, even though

employment relationships often involve both contracts and repetition (see also Bewley 1999).

In one-shot bilateral exchange environments without contracting, both laboratory experiments

and field experiments have found that generous behavior is often reciprocated, enabling trade to

occur and sometimes leading to moderate or high levels of efficiency (e.g., Fehr, Kirchsteiger, &

Riedl 1993).1 Several papers have found that particular functional forms for social preferences

1Hundreds of laboratory experiments since Fehr, Kirchsteiger, & Riedl (1993) and Berg, Dickhaut, & McCabe
(1995) have documented reciprocal behavior in gift-exchange games and trust games, respectively. There have also
been a number of recent field experiments. For example, in two field experiments, Gneezy & List (2006) hired
individuals for data-entry or door-to-door fundraising. They did not tell the workers that the workers were participants
in an experiment, and they were careful to rule out non-fairness explanations for why effort would be increasing in the
wage. Workers who were paid more entered more data and raised more money, respectively. Although Gneezy & List
(2006) found that effort increased only for the first few hours, other field experiments with larger sample sizes have
found persistent effort effects (e.g., Al-Ubaydli, Andersen, Gneezy, & List 2006). Additional field experiments include
Kube, Maréchal, & Puppe (2007a); Kube, Maréchal, & Puppe (2007b); Cohn, Fehr, & Goette (2007); Bellemare &
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can account reasonably well for observed behavior (e.g., Fehr, Klein, & Schmidt 2007). However,

little is known theoretically about the conditions for efficiency when exchange is motivated by

social preferences.2 Understanding the conditions for efficiency is important for interpreting the

existing evidence, as well as for predicting to which real-world settings the laboratory findings will

generalize. This paper asks: What social preferences (if any) lead to efficient exchange? When the

equilibrium is not fully efficient, what factors determine how inefficient it will be?

Economic analysis involving fairness preferences generally proceeds by studying a particular

functional form (e.g., Fehr, Klein, & Schmidt 2007). Instead, my approach is to study properties

of a generalized model of social preferences.3 This approach has three significant advantages.

First, because researchers disagree about important features of social preferences–such as the

prevalence and intensity of a desire to harm the player who is ahead (e.g., Engelmann & Strobel

2004; Fehr, Naef, & Schmidt 2006)–it is important to understand whether and how results are

sensitive to these features. Second, focusing on properties of preferences makes it possible to

discover that assumptions made implicitly by existing fairness models are actually quite central.

Finally, studying fairness and altruistic preferences within the same framework allows me to discuss

the relationship between conclusions from the literatures on altruism (economics of the family) and

fairness (experimental/behavioral economics), literatures which have generally proceeded separately

from each other.

I study a bilateral exchange game that has two stages. The first mover takes an action that

transfers a commodity from herself to the second mover. Then the second mover takes an action

that transfers a commodity from himself to the first mover. Since the second mover has no extrinsic

incentive to help the first mover at his own expense, no trade would occur if the second mover were

purely self-regarding. Instead, I assume that the second mover’s has “social preferences”: his

utility depends on both his own and the other player’s “material payoff,” the standard (purely

Shearer (2007); Greenberg (1990); and Pritchard, Dunnette, & Jorgenson (1972).
2Rabin (1997) addresses the efficiency of 2-player, 2-action, sequential-move games where a purely self-regarding

first mover can make a “fair” or “unfair” offer, and the fair-minded second mover can “accept” or “punish.” He
finds that the equilibrium outcome is relatively efficient (in terms of money payoffs) in games where the first mover’s
available “unfair” offer is not particularly unfair; where the second mover’s available “punish” action does not harm
the first mover much; or where the “punish” action harms the first mover a great deal. Rabin’s results qualitatively
differ from the results in this paper largely because I assume continuous action spaces, while Rabin’s conclusions
rely on the players not being able to choose the extremeness of their actions. In my set-up with continuous actions,
the second mover would never choose to “punish”; see the discussion of part 4 of Lemma 1 below. Also relatedly,
Dufwenberg, Heidhues, Kirchsteiger, Riedel, & Sobel (2008) address the efficiency of general equilibrium when agents
have social preferences.

3Relatedly, Cox, Friedman, & Sadiraj (2008) propose a unifying framework for existing models of social preferences.
In order to fit data from experimental games, they formalize assumptions that more generous actions induce more
altruistic preferences, and that this effect is stronger for acts of commission than for acts of omission. I do not address
these aspects of behavior.
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self-regarding) payoff from consumption of goods, leisure, etc. Because it is the second mover’s

social preferences that drive the main results and key intuitions, and because the analysis becomes

much more complicated when the first mover also has social preferences, I assume for most of the

analysis that the first mover just maximizes her material payoff. At the end of the paper, I discuss

how the results generalize when both players have social preferences.

Because of social preferences, two distinct notions of efficiency are potentially relevant. “Utility

Pareto efficiency” takes into account the fact that the second mover’s utility depends on both

players’ material payoffs. By contrast, I call a transaction “materially Pareto efficient” if there is

no alternative transaction that could have increased one player’s material payoff without reducing

the other player’s. Theorem 1 shows that for a broad class of social preferences, these two efficiency

concepts are tightly linked in the bilateral exchange game: every utility Pareto efficient transaction

is also a materially Pareto efficient transaction. I also find that if the equilibrium of the game is

materially Pareto efficient, then it is also utility Pareto efficient, and it occurs at the transaction

that is most preferred by the second mover.

Two properties that the second mover’s social preferences could have turn out to be central in

determining whether the equilibrium occurs at this efficient transaction. The first property is that

both players’ material payoffs enter the utility function as “normal goods.” That is, holding constant

the rate of tradeoff between the players’ material payoffs, if the pie gets larger, the actor prefers that

both material payoffs increase. Normality is implicitly assumed in all functional forms for fairness

preferences that have been proposed, but previous work has not appreciated its role in driving

the results of those models. I show that normality is the key property of social preferences that

generates behavior that looks like reciprocity (the second mover transferring more in response to a

greater transfer by the first mover), often considered a hallmark of fair-minded behavior. Normality

also plays a role as a sufficient condition ensuring an efficient equilibrium in the important cases

outlined below.

A second important property is that the utility function could be “fairness-kinked.” Although in

consumer theory a kinked utility function over goods is merely an illustrative extreme case, kinked

social preferences over material payoffs are realistic. Several leading functional forms for fairness

preferences assume that the utility function is kinked wherever both players receive equal material

payoffs (Fehr & Schmidt 1999; Charness & Rabin 2002; some versions of Bolton & Ockenfels 2000).

That is why these models are consistent with the preponderance of 50-50 sharing in laboratory

experiments (Camerer 2003). More generally, a fairness-kinked utility function describes behavior

in which people adhere to a social norm (such as the 50-50 sharing norm) that requires that both
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players share in the gains from a larger pie.

The central result of the paper (Theorem 2) proves that at least one of two conditions is necessary

for the equilibrium exchange to be efficient: (1) both players’ material payoffs are linear in the

second-mover’s action, or (2) the second mover’s interpersonal indifference curve at the equilibrium

is kinked. When neither is satisfied–that is, when the the second mover’s interpersonal indifference

curves are smooth and the second mover faces a convex cost of increasing his transfer to the first

mover–the equilibrium cannot be efficient. In other words, the first mover can profitably deviate

from the action that (in combination with the second mover’s reaction) would generate an efficient

transaction. Deviating is profitable despite a second-order loss in the total gains from trade because

the first mover gets a first-order increase in her share of the gains from trade.

Theorem 2 suggests that there are two cases in which the equilibrium could be efficient. The

first is where both players’ material payoffs are linear in the second mover’s action–“quasi-linear,”

a.k.a. “transferable,” material payoffs. This is a standard assumption for situations where the

second mover’s action is a monetary transfer. In the bilateral exchange game, the monetary trans-

fer is not specified in advance–for example, it is the discretionary component of payment to a

contractor who provides housework. Theorem 3 shows that linearity in the second mover’s action,

along with normality of the second mover’s social preferences, are together sufficient conditions

for efficiency. This result may explain why small-scale commercial transactions with discretionary

monetary payment are so common.

Theorem 3 generalizes the well-known Rotten Kid theorem (Becker 1974). That result states

that if a parent (the second mover) is altruistic, then a selfish child (the first mover) will act so as to

maximize family income. Traditionally, the Rotten Kid theorem has been interpreted as pertaining

to family environments but not market environments because altruism is thought to be relevant

primarily within the family. However, Theorem 3 shows that the efficiency conclusion actually

holds for a more general class of social preferences, including fairness concerns that appear to be

common in market environments. This is important because it implies that the surprising efficiency

conclusion actually applies to contracting situations outside the family.

The second efficient case is where the second-mover’s utility is fairness-kinked (even if the

material payoffs are not linear in the second-mover’s action). That is, the second mover follows a

social norm that requires that both players share in the gains from a larger pie (such as the 50-50

sharing norm). In that case, Theorem 4 states that if the second mover’s social preferences are

normal and sufficiently kinked, the equilibrium will be efficient. This result may explain why social

norms have developed that prescribe fair allocations of gains from trade.
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Consistent with a long-standing conjecture among social scientists (e.g., Arrow 1971, p.22),

the results in this paper suggest that social norms can enable efficient economic exchange, even

in the absence of enforceable contracts. Therefore, in many settings, the main consequence of

contracting may be redistribution, rather than efficiency enhancement. The efficient equilibrium

that relies on social preferences gives the second mover his most-preferred transaction, whereas with

an enforceable contract, the division of surplus is determined by bargaining power at the time of

contracting, and the timing of actions that carry out the contract does not matter for the division

of surplus.

The remainder of this paper is organized as follows. Section 2 describes the bilateral exchange

game. Section 3 introduces the properties of social preferences. Preparatory results are contained

in Section 4. Section 5 presents results on equilibrium efficiency. Section 6 discusses how the results

generalize when both players have social preferences. Section 7 discusses how these results apply to

the hold-up problem, as well as three possible other extensions of the analysis: uncertainty about

the other players’s preferences (as in Fehr, Klein, & Schmidt 2007), social preferences that depend

on the perceived intentions of the other player (as in Rabin 1993 and Levine 1998), and concern

about how the terms of exchange compare with the terms received by others (often relevant in

multi-worker firms). The appendix contains proofs.

2 The Bilateral Exchange Game

In this section, I introduce the bilateral exchange environment that I will analyze in the rest of

the paper. The first mover can take an action a1 that transfers a commodity from herself to the

second mover. The second mover can then choose an action a2 that transfers a commodity from

himself to the first mover. Define a transaction to be any pair of real numbers (a1, a2). (I allow

any real values to avoid dealing with boundary conditions.) Rather than taking an action, either

player can choose during her or his turn not to trade, in which case no transfers occur, and both

players receive an outside option payoff.4

The players’ material payoffs represent the purely self-regarding component of payoffs. The

players’ respective material payoff functions are

π1 (a1, a2) = a2 − a1, (1)

π2 (a1, a2) = v (a1)− c (a2) . (2)

4As long as trade occurs in equilibrium, the results are not sensitive to the exact assumption about when an
outside option is available and to whom.
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The function v (·) reflects concave benefits to the second mover of the first mover’s transfer: v0 > 0,

v00 < 0, lima1→−∞ v0 (a1) = ∞; and c (·) reflects convex costs to the second mover of the second

mover’s transfer: c0 > 0, c00 > 0, lima2→∞ c0 (a2) = ∞.5 I have written the first mover’s material

payoff function as linear in a1 and a2 to keep notation brief; as long as the material payoff functions

are additively separable, they can be represented as (1)-(2) via an appropriate change in variables.6

Additive-separability of the material payoffs simplifies the analysis but is not crucial for the main

results in this paper.7

The second mover maximizes utility, U (π1, π2), that depends on both his own and on the first

mover’s material payoff and may have some or all of the properties described later, in Section 3.

For brevity, I slightly abuse notation by sometimes writing the second mover’s utility function as

U (a1, a2) instead of U (π1 (a1, a2) , π2 (a1, a2)). To keep the analysis simpler, I assume that the first

mover just maximizes her own material payoff, π1 (a1, a2), but in Section 6, I discuss how the main

conclusions generalize when the first mover also has social preferences.

I normalize v (0) = 0 and c (0) = 0, each player’s outside option material payoff is 0, and the

second mover’s outside option utility is U (0, 0) = 0. I assume that v0 (0) > c0 (0) so that there are

potential (material) gains from trade.

2.1 Equilibrium

The solution concept is subgame-perfect Nash equilibrium. Unlike in a typical principal-agent

problem, the first mover cannot make her transfer a function of any variable that depends on the

second-mover’s action. Therefore the second mover has no extrinsic incentive to make a transfer to

the first mover. Clearly, if the second mover were purely selfish, with utility function U (π1, π2) =

5The assumptions that lima1→−∞ v0 (a1) = ∞ and lima2→∞ c0 (a2) = ∞ play a purely technical role in ensuring
that the space of individually-rational material payoffs is compact and hence that an equilibrium exists.

6For example, suppose the first-mover’s material payoff is increasing in her consumption of both Good 1, g11 , and
her consumption of Good 2, g21 :

π1
�
g11 , g

2
1

�
= u11

�
g11
�
+ u21

�
g21
�
,

with u101 > 0, u1001 ≤ 0, u201 > 0, and u2001 ≤ 0. The second-mover’s material payoff is also increasing in his consumption
of both goods:

π2
�
g12 , g

2
2

�
= u12

�
g12
�
+ u22

�
g22
�
,

with u102 > 0, u1002 ≤ 0, u202 > 0, and u2002 ≤ 0. Letting g1 = g11 + g12 and g2 = g21 + g22 denote the aggregate
amounts of the two goods, the following transformation gives (1)-(2): a2 = u21

�
g21
�
, a1 = −u11

�
g1 − g12

�
, v (a1) =

u12

�
g1 −

�
u11
�−1

(−a1)
�
, and c (a2) = −u22

�
g2 −

�
u21
�−1

(a2)
�
. Note that c (·) is convex if either u21 (·) or u22 (·) is

concave.
7An exception is part 2 of Lemma 1, for which additive-separability is crucial. Theorem 4 does not require

additively-separable material payoffs and therefore also applies (with appropriate boundary conditions imposed)
when the first mover has the non-additively-separable material payoff function often used in laboratory gift-exchange
experiments: π1 (a1, a2) = (k1 − a1) a2 and π2 (a1, a2) = a1 − c (a2)− k2, where a1 ≤ k1, a2 ≥ 0, and where k1 > 0
and k2 are constants (e.g., Fehr, Kirchsteiger, & Riedl 1993).
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π2, then regardless of the first mover’s action, the second mover would take minimal action (here

actually, negative infinity, since the actions are unbounded). There would be no exchange because

the first mover would prefer her outside option. Hence, any exchange that occurs in equilibrium

is a consequence of the second mover’s social preferences. That is why this stark setting of no

contracting and no repetition makes the implications of social preferences as clear as possible.

At the solution to a typical principal-agent problem, the second mover’s “participation con-

straint,” U (a1, a2) ≥ 0, is binding. That is because the first mover can reduce the level of her

transfer without affecting the second-mover’s best response. Here, because the level of the first

mover’s action will in general affect the second-mover’s reaction, that constraint may not bind. I

call an equilibrium (a1, a2) interior if U (a1, a2) > 0.

2.2 Efficiency

Recall that an exchange is defined to be Pareto efficient if there is no alternative exchange that

could have made one party better off without making the other worse off. Here, there are two

possible interpretations of Pareto efficiency, depending on whether the second mover’s welfare is

measured by his material payoff or by his utility.

Definition 1 A transaction (a1, a2) is utility Pareto efficient if there is no other transaction

(ba1,ba2) such that π1 (ba1,ba2) ≥ π1 (a1, a2) and U (ba1,ba2) ≥ U (a1, a2), at least one inequality strict.

Definition 2 A transaction (a1, a2) is materially Pareto efficient if there is no other transac-

tion (ba1,ba2) such that π1 (ba1,ba2) ≥ π1 (a1, a2) and π2 (ba1,ba2) ≥ π2 (a1, a2), at least one inequality

strict.

If both players were purely self-regarding, then Pareto efficiency would be characterized by v0 (a1) =

c0 (a2). It follows that here, a transaction (a1, a2) is materially Pareto efficient if and only if

v0 (a1) = c0 (a2).

It is sometimes argued that individuals obey social norms that do not maximize their material

payoffs, even though the individuals’ material payoffs describe their personal welfare (e.g., Sen

1973).8 To the extent that individuals’ social preferences reflect adherence to social norms, a social

8For example, Sen (1973, pp.253-254) writes: “In economic analysis individual preferences seem to enter in two
different roles: preferences come in as determinants of behaviour and they also come in as the basis of welfare
judgements...[However] mores and rules of behaviour [will] drive a wedge between behaviour and welfare. People’s
behaviour may still correspond to some consistent as if preference but a numerical representation of the as if prefer-
ence cannot be interpreted as individual welfare. In particular, basing normative criteria, e.g., Pareto optimality, on
these as if preferences poses immense difficulties.” Arrow (1971) also makes this distinction, albeit less explicitly.
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planner might be interested in promoting material Pareto efficiency rather than utility Pareto

efficiency. Consistent with this view, much of the existing work can be interpreted as asking whether

behavior in accordance with social norms (such as tipping) leads to material Pareto efficiency (e.g.,

Conlin, Lynn, & O’Donoghue 2003). On the other hand, if (as usually assumed) utility represents

both behavior and welfare, then utility Pareto efficiency is the appropriate concept of social welfare.

I discuss the relationship between utility Pareto efficiency and material Pareto efficiency in the

bilateral exchange game in Section 4.

When the equilibrium is not efficient, it may be of interest to describe the factors that determine

how far from efficient it is. Unfortunately, there is not a unique way to measure the degree to which

a transaction is inefficient. I define a notion that will turn out to be convenient.

Definition 3 The marginal (material) inefficiency of a transaction (a1, a2) is

dπ2 (a1, a2)

da1

¯̄̄̄
π1(a1,a2)=π1

= v0 (a1)− c0 (a2) ,

the amount by which the second-mover’s material payoff could be increased on the margin, holding

the first-mover’s material payoff constant.

An alternative notion of the degree of inefficiency would be dπ1(a1,a2)
da1

¯̄̄
π2(a1,a2)=π2

= v0(a1)
c0(a2)

− 1, the

amount by which the first mover’s material payoff could be increased on the margin, holding the

second-mover’s material payoff constant. These coincide when c (a2) = a2, and both equal zero at

a materially Pareto efficient transaction.

This paper asks: What social preferences for the second mover lead to a materially Pareto

efficient equilibrium? Utility Pareto efficient? When the equilibrium is not fully efficient, what

factors determine how inefficient it will be?

3 Social Preferences

3.1 Existing Models

A player with social preferences, say the second mover, is assumed to maximize a utility function,

U (π1, π2), that depends on both players’ material payoffs.9 These four prominent existing models

help motivate the more general analysis that follows:
9Models designed to explain laboratory behavior write interpersonal preferences U

�
xW , xF

�
as a function of the

monetary amounts xW and xF paid to participants in a laboratory experiment. To allow for more than one commodity
(in the gift-exchange game, money and effort), I instead make utility U

�
πW , πF

�
depend on the material payoffs

πW and πF from the transaction. If the material payoff functions are quasi-linear in money, then the U
�
πW , πF

�
specification specializes to the U

�
xW , xF

�
model in the laboratory, where money is the only relevant commodity.
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• Fehr & Schmidt’s (1999) “inequity-averse preferences” have the form

U (π1, π2) = π2 − αmax {π1 − π2, 0}− βmax {π2 − π1, 0} , (3)

where α ≥ 0 is the second mover’s aversion to “disadvantageous unfairness” (the first mover

earning more than the second mover), and β ≥ 0 is his aversion to “advantageous unfairness”

(the second mover earning more than the first mover).

• Bolton & Ockenfels’s (2000) “Equity, Reciprocity, and Competition (ERC) preferences,” writ-

ten here in additively-separable form, are:

U (π1, π2) = π2 − ω

µ
π2

π2 + π1
− 1
2

¶2
, (4)

where ω ≥ 0 weights a quadratic loss in deviation from an equal split. These preferences are

well defined as long as π1, π2 > 0. When applying their model to a simple exchange game,

Bolton & Ockenfels (2000, pp.183-187) instead use

U (π1, π2) = − |π1 − π2| . (5)

• Charness & Rabin (2002) propose “social welfare preferences,”

U (π1, π2) = π2 + γπ1 + δmin {π2, π1} , (6)

where γ ≥ 0 is the second-mover’s positive regard for the other player, and δ ≥ 0 is his

additional concern for the person who gains least.

• Becker’s (1974) model of altruism within the family assumes that U (π1, π2) is continuous,

monotonically increasing in both arguments, quasi-concave, and normal (i.e., π1 and π2 enter

U as normal goods).

Figure 1 illustrates interpersonal indifference curves from (3) and Becker’s (1974) altruism model.

Applied economic analysis involving fairness preferences generally proceeds by studying the impli-

cations of one of the above functional forms. Instead, I will study the behavioral implications of

properties of social preferences in order to understand which implications follow from which classes

of models.

Whether it is appropriate to write social preferences as a function of the material payoffs depends on whether
individuals judge the fairness of an allocation taking into account both of the relevant commodities (rather than,
say, only judging the fairness of the monetary allocation). This seems especially reasonable for bilateral transactions,
where the role of two commodities is salient.
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3.2 Properties of Social Preferences

Following convention, I describe the relevant monotonocity and concavity notions before getting to

the key properties of normality and fairness-kinkedness.

A primary difference between altruistic preferences and fairness preferences is that altruistic

preferences U (π1, π2) are assumed to be monotonically increasing in both arguments, like consump-

tion preferences over goods. By contrast, fairness preferences such as (3), (4), and (5) allow for a

type of non-monotonicity: an individual may prefer to reduce the payoff of a person who is ahead.

Upward-sloping regions of interpersonal indifference curves in Figure 1 reflect non-monotonicity.

Experimental economists disagree about the extent to which individuals are willing to reduce a

player’s material payoff in order to ensure a more equal allocation. In hypothetical choices, Bazer-

man, Loewenstein, & White (1992) found that 25% of experimental participants preferred receiving

$500 for themselves and $500 for a friendly neighbor rather than receiving $600 for themselves and

$800 for the neighbor. When the choice was between $600 for each versus $600 for themselves and

$800 for the neighbor, 68% chose the fair but inefficient outcome. In 3-player allocation problems

with real money at stake, Fehr, Naef, & Schmidt (2006) found similar patterns. However, other

researchers found that fewer participants make such materially Pareto inefficient choices (Charness

& Rabin 2002; Engelmann & Strobel 2004; Fisman, Kariv, & Markovits 2005). Relatedly, models

of positional (or status) preferences also predict a willingness to sacrifice one’s own material payoff

to reduce others’s (e.g., Heffetz & Frank 2008).

It is important to allow for this empirically relevant kind of non-monotonicity–where individ-

uals prefer to reduce a player’s material payoff to reach a fairer allocation–in order to determine

whether and how it matters. At the same time, it is important to rule out too much spitefulness

or self-hating, in which case trade would not occur or an equilibrium would not exist. I propose a

new condition, joint-monotonicity, that appropriately weakens monotonicity.10

Definition 4 U is joint-monotonic if for any (π1, π2):

1. For any ε > 0, there is some (bπ1, bπ2) with 0 < bπ1−π1 < ε, 0 < bπ2−π2 < ε, and U (bπ1, bπ2) >
U (π1, π2).

2. There exist δ1, δ2 > 0 such that U (π1 − δ1, π2) < U (π1, π2) and U (π1, π2 − δ2) < U (π1, π2).

10 In studying social preferences in a general equilibrium environment, Dufwenberg, Heidhues, Kirchsteiger, Riedel,
& Sobel (2008) independently propose a “social monotonicity” condition, which is the same as condition 1 of my
joint-monotonicity property.
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Condition 1 states that for any material payoff pair, there is an arbitrarily close alternative material

payoff pair giving more to both players that the second mover strictly prefers. It implies local

non-satiation but additionally requires that it is possible to find a more-preferred allocation in a

particular direction, a direction which jointly increases both players’ material payoffs. Hence joint-

monotonicity limits the extent to which an agent can be spiteful or self-hating, while permitting

the possibility that at some transactions, increasing only one player’s material payoff might reduce

utility.

However, condition 2 states that if the first mover’s (second mover’s) material payoff is suffi-

ciently small relative to the second mover’s (first mover’s), the second mover would prefer that the

first mover (second mover) have a higher material payoff. This rules out globally spiteful prefer-

ences such as U (π1, π2) = π2 − π1, and because the inequalities are strict, it rules out the purely

self-regarding case U (π1, π2) = π2 and the purely altruistic case U (π1, π2) = π1. Although de-

scriptively reasonable, condition 2 actually plays only a technical role in the analysis that follows,

ensuring that optimal strategies exist for both players. All of the above models of social preferences

satisfy joint-monotonicity.

The second condition, quasi-concavity, is familiar from consumer theory and social choice.

Definition 5 U is quasi-concave if for any (π1, π2) , (bπ1, bπ2) such that U (π1, π2) ≤ U (bπ1, bπ2),
U (π1, π2) ≤ U (λπ1 + (1− λ) bπ1, λπ2 + (1− λ) bπ2) for any λ ∈ [0, 1].
For social preferences, quasi-concavity implies that along an interpersonal indifference curve, the

higher the first mover’s material payoff, the less material payoff the second mover is willing to give

up to increase the first mover’s material payoff. It also ensures that the upper level sets of U are

convex, which is a helpful regularity condition. All of the above models of social preferences satisfy

quasi-concavity.

A third potential assumption about U is that if the pie is larger, holding constant the rate

of tradeoff in material payoffs, the second mover prefers that both players earn a higher material

payoff. Since this thought experiment involves considering a linear tradeoff in material payoffs, it

corresponds to the familiar assumption of “normal goods.”

Definition 6 Suppose eπ1 (I; p) and eπ2 (I; p), defined by
(eπ1, eπ2) = arg max

{(π1,π2):pπ1+π2=I}
U (π1, π2) ,

are finite, real-valued functions. U is (weakly) locally normal at (I; p) if eπ1 (I; p) and eπ2 (I; p)
12



are (strictly) increasing in I at (I; p). U is (weakly) normal if U is (weakly) locally normal at

(I; p) for all I ∈ R and p > 0.

(The functions eπ1 (I; p) and eπ2 (I; p) will in fact be well defined given other assumptions on U .)

Becker’s (1974) altruism model explicitly assumes normality, and all of the above fairness functional

forms–(3), (4), (5), and (6)–also satisfy normality or weak normality.11 Nonetheless, existing work

has not recognized that normality is a strong and central assumption in generating fair-minded

behavior. For future reference, if U is continuously twice-differentiable, call N (I; p) ≡ ∂π1(I;p)
∂I the

income effect (on π1), and note that if U is locally normal at (I; p), then N (I; p) > 0.

A fourth property that will also turn out to be important is conformance to rules of fair behav-

ior. The “equal-split fairness rule,” also called the “50-50 sharing norm,” has been documented in

a variety of contexts, such as negotiations, asymmetric joint ventures among corporations, share

tenancy in agriculture, and bequests to children (Andreoni & Bernheim 2007). Similarly, in “dicta-

tor game” experiments, where one player allocates a given amount of money between himself and

another player, 20-30% of participants give exactly half of the money to the other player (Camerer

2003). Conformance to a rule of fair behavior can be modeled with kinked indifference curves.12

Indeed, a kink around equal material payoffs is the feature of fairness models (3), (5), and (6) that

allows them to explain the preponderance of equal splits.

Although 50-50 splits are the predominant norm in the laboratory and in a variety of field

settings, unequal fairness norms come into play in other economic environments (see Cappelen,

Hole, Sørensen, & Tungodden 2007). For example, customers who leave money for produce in

a cash box on the honor system typically pay the requested amount per unit of produce (rather

than matching the amount of payment to their own perceived gain). Financial contracts often

apportion profit according to unequal percentages that are standard in the industry. Moreover,

even if an individual intends to split surplus evenly, self-serving biases may cause the individual to

overestimate his own share, causing him to adhere to a fairness rule that is not equal-split (Babcock

& Loewenstein 1997). To allow for these possibilities, I do not require that the kinks occur at equal

material payoffs.

11When actions are bounded, piecewise-linear functional forms like (3) and (6) satisfy only weak normality. How-
ever, requiring normality to be strict only matters for ensuring that the second-mover’s action is strictly increasing
in the first-mover’s action (Lemma 1) and that the equilibrium is unique (Theorems 3 and 4).
12Many of the same people who choose exactly even splits in a dictator game also choose to assign equal monetary

payoffs to themselves and another player in modified dictator games, where the “price” of increasing one player’s
payoff by $1 is less than $1 (e.g., Andreoni & Miller 2002). No smooth utility function can explain equal-split behavior
in both cases. See Andreoni & Bernheim (2007) for an alternative model based on signaling, which could be viewed
as a microfoundation for kinked indifference curves.
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Definition 7 U is fairness-kinked if it can be expressed as U = min
©
UA, UB

ª
, where UA, UB

are utility functions satisfying:

• There exists some (π1, π2) at which UA (π1, π2) = UB (π1, π2).

• If UA (π1, π2) ≤ UB (π1, π2), then UA (bπ1, π2) < UB (bπ1, π2) for all bπ1 > π1.

• If UA (π1, π2) ≥ UB (π1, π2), then UA (π1, bπ2) > UB (π1, bπ2) for all bπ2 > π2.

(Note that if UA and UB are continuous, joint-monotonic, and quasi-concave, then so is U .)

Definition 8 For a fairness-kinked U , the fairness rule is the function f (π2) that, given a

material payoff for the second-mover π2, assigns the first-mover a material payoff according to

UA (f (π2) , π2) = UB (f (π2) , π2).

Transactions that exactly satisfy the fairness rule are called fair transactions. Fairness-kinked

utility can be interpreted as social preferences that penalize deviations from the fairness rule. To

see this, note that U = min
©
UA, UB

ª
can be equivalently expressed as U = UB+UA

2 −
¯̄̄
UB−UA

2

¯̄̄
.

The first term can be thought of as a “standard” smooth utility function, while the second term

represents disutility from not adhering to the fairness rule. As noted above, functional forms (3),

(5), and (6) are fairness-kinked, with the equal-split fairness rule.

The single-crossing properties in the definition of “fairness-kinked” have three useful implica-

tions. First, the indifference curves are in fact kinked at fair transactions. Second, U = UA in the

region of disadvantageously unfair transactions for the second mover, where the first mover’s

material payoff is higher and the second-mover’s material payoff is lower than dictated by the fair-

ness rule; and U = UB in the region of advantageously unfair transactions for the second mover.

Lastly, the fairness rule f is a strictly increasing function: when the pie increases, the fairness rule

assigns a larger piece of pie to both players. Hence, fairness-kinked utility is locally normal when

the agent behaves according to the fairness rule.13

Finally, the weakening of monotonicity makes necessary a technical assumption. What matters

for behavior is whether the second-mover’s indifference curves are kinked are smooth. When U

is monotonic, the indifference curves are kinked if and only if U is kinked. However, when U is

joint-monotonic, there may be saddle points, (π1, π2) with ∂U
∂π1

= ∂U
∂π2

= 0, where the indifference

13To be precise, suppose U is fairness-kinked, and the material payoff pair (hπ1, hπ2) that maximizes U on budget
line pπ1 + π2 = I satisfies: UA = UB , ∂U

A

∂π1
− p∂U

A

∂π2
< 0, and ∂UB

∂π1
− p∂U

B

∂π2
> 0 evaluated at (hπ1, hπ2) (so that (hπ1, hπ2)

occurs at a kink point). Then U is locally normal at (I; p).
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curves can be kinked even though U is smooth.14 The following technical assumption rules out

such points, ensuring that the indifference curves are kinked if and only if U is kinked.

Technical Assumption (TA) At any point where U is differentiable, U has non-vanishing first

derivative: There is no (π1, π2) such that ∂U
∂π1

= ∂U
∂π2

= 0 at (π1, π2).

4 Some Preliminaries

This section presents preliminary observations about efficiency, about the second mover’s behavior,

and about the first-mover’s behavior that will be useful in the subsequent analysis.

4.1 Characterizing Utility Pareto Efficient Transactions

Which transactions are utility Pareto efficient? Describing the set of utility Pareto efficient trans-

actions may seem challenging because the second-mover’s utility function could be a complicated

function of the material payoffs, possibly kinked. Perhaps surprisingly, it turns out that for a very

general class of social preferences, there is a straightforward characterization that highlights a tight

link between utility Pareto efficiency and material Pareto efficiency.

As is standard, call a transaction (a1, a2) individually-rational if both players earn at least

their outside option: π1 (a1, a2) ≥ 0 and U (π1 (a1, a2) , π2 (a1, a2)) ≥ 0. Let

(a∗1, a
∗
2) ≡ arg max

{(a1,a2)|π1(a1,a2)≥0}
U (π1 (a1, a2) , π2 (a1, a2))

be called the second-mover’s favorite transaction, his most-preferred transaction among the

individually-rational transactions. It is necessarily materially Pareto efficient.

Theorem 1 Suppose U is continuous, joint-monotonic, and quasi-concave. The second-mover’s

favorite transaction (a∗1, a
∗
2) exists and is unique. Moreover, a transaction is utility Pareto efficient

if and only if it is materially Pareto efficient and satisfies π2 (a1, a2) ≤ π2 (a
∗
1, a

∗
2).

Figure 2 illustrates the relationship between the material Pareto efficiency frontier and the utility

Pareto efficiency frontier. A transaction that gives the second mover higher material payoff than

14For example, the function

U (x, y) =

⎧⎪⎪⎨⎪⎪⎩
x3 + y3 if x > 0, y > 0
y3 if x > 0, y ≤ 0
x3 if x ≤ 0, y > 0
x3 + y3 if x ≤ 0, y ≤ 0

is continuously twice-differentiable, but has a kinked indifference curve at U (x, y) = 0 given by min {x, y} = 0.
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his favorite transaction cannot be utility Pareto efficient because both players would prefer the

second-mover’s favorite transaction. Material Pareto efficiency is a necessary condition for utility

Pareto efficiency because the second-mover’s preferences are joint-monotonic. Starting from a

materially Pareto-inefficient transaction, there is an alternative transaction that increases both

players’ material payoffs in a direction that increases the second-mover’s utility. In a general

equilibrium setting, Dufwenberg, Heidhues, Kirchsteiger, Riedel, & Sobel (2008) independently

prove that material Pareto efficiency is a necessary condition for utility Pareto efficiency.

4.2 The Second-Mover’s Behavior

Given the first-mover’s action a1, the second mover can be thought of as selecting a pair of material

payoffs on the (material payoff) budget curve B (a1) = {(π1 (a1, a2) , π2 (a1, a2))}a2∈R by his

choice of action a2. At a point (a1, a2) on the budget curve, the (material payoff) budget line

that first-order approximates the budget curve is given by pπ1 + π2 = I, where p = p (a2) ≡

− dπ2
dπ1

¯̄̄
B(a1)

= c0 (a2) and I = I (a1, a2) ≡ p (a2)π1 (a1, a2) + π2 (a1, a2). This notation, p (a2) and

I (a1, a2), will be useful because local normality is defined with respect to a linear budget set.

Lemma 1 establishes results about the second-mover’s behavior that are helpful for backward-

inducting the equilibrium, as well as informative about what various properties of social preferences

imply for behavior.

Lemma 1 Suppose U is continuous, joint-monotonic, and quasi-concave. Then:

1. For any transfer by the first mover, a1, the second mover has a unique optimal action, a2 (a1),

that is a continuous function of a1.

2. If U is (weakly) locally normal at (I (ba1, a2 (ba1)) ; p (a2 (ba1))), then a2 (a1) is (weakly) increas-

ing in a1 at ba1. Hence if U is (weakly) normal, then a2 (a1) is (weakly) increasing in a1 at

all ba1.
3. If (ba1, a2 (ba1)) is an equilibrium, then a2 (a1) is strictly increasing in a1 at ba1.
4. If U is continuously differentiable at some (ba1, a2 (ba1)) and satisfies (TA), then ∂U

∂π1
> 0 and

∂U
∂π2

> 0 at (ba1, a2 (ba1)).
The second-mover’s optimal action is unique because his indifference curves are convex and his

budget curve is strictly concave. Existence follows from part 2 of joint-monotonicity and the limit
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conditions on v (·) and c (·), which together rule out the possibility that the second-mover might

make an unboundedly positive or negative transfer.

A reciprocity motive–roughly speaking, a preference to be more benevolent toward individuals

who are more benevolent–is built in to some fairness models (e.g., Rabin 1993; Cox, Friedman,

& Sadiraj 2008), but not the ones listed at the beginning of Section 3. Reciprocity cannot be

fully captured in models where utility depends only on the players’ material payoffs. An influential

defense of using models without a built-in reciprocity motive is that they are much simpler to

analyze, while nonetheless generating similar behavior (e.g., Fehr & Schmidt 2003). Lemma 1

shows that, in the kind of game considered here, (local) normality of U is the critical assumption

that causes the second mover to behave in a way that looks like reciprocity in models where social

preferences are defined only over material payoffs. Holding constant the second-mover’s action,

an increase in the first-mover’s transfer locally shifts the budget curve without changing its slope.

Normality states that the second mover prefers both players’ material payoffs to increase or decrease

together in exactly such a circumstance, which requires the second mover to strictly increase his

transfer. In other games (or with non-additively-separable material payoff functions), normality

would not necessarily lead to reciprocal behavior. Note that if a2 (a1) is increasing in a1, then the

marginal inefficiency, v0 (a1)− c0 (a2 (a1)), is strictly decreasing in a1.

The third part of the lemma observes that even without normality, a higher transfer by the

first mover leads to a higher transfer by the second mover at any equilibrium. If it did not, the

first mover could profitably deviate by reducing her transfer. (Hence local normality is a sufficient

condition for a2 (a1) to be increasing, but not a necessary condition.)

While part 2 of the lemma highlights a central role for normality in bilateral exchange, part

4 points out the irrelevance of generalizing monotonicity to joint-monotonicity: if the second-

mover’s optimum occurs at a smooth region of his indifference curves, then his social preferences

are monotonic on the margin, even if they are not monotonic in general. If the second mover instead

preferred to reduce either his own or the first mover’s material payoff on the margin, then his action

could not be optimal because he could get higher utility by either increasing or reducing the size

of his transfer, respectively. Graphically, since the budget curve is always downward-sloping in the

space of material payoffs, a smooth indifference curve must also be downward sloping at a tangency

point. Even if the second-mover’s optimum occurs at a kink, the weakening of monotonicity to

joint-monotonicity does not really matter because non-monotonicities away from the kink are not

relevant for behavior.

Why do non-monotonicities feature so prominently in the evidence that motivates models of
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fairness if they are essentially irrelevant in the bilateral exchange game? The key difference between

the bilateral exchange game and settings where non-monotocities matter–like the payoff allocation

problems described in Section 3–is that in the latter, the “budget set” (the set of material payoff

pairs available to the fair-minded player) is upward-sloping in the space of material payoffs. For

example, in a prototypical two-option problem, the “unfair” option may give higher material payoffs

to both players than the “fair” option does. In that setting, an individual with joint-monotonic

utility might well prefer the materially-dominated “fair” option. By contrast, in the bilateral

exchange game, the budget curve is downward-sloping. Because the second-mover’s utility is joint-

monotonic, rather than reducing both players’ material payoffs away from an “unfair” option, he

always prefers to increase the material payoff of the player whose material payoff is low at the same

time that he decreases the material payoff of the player whose material payoff is high. Since the

budget curve is continuous, there is always a point on the budget curve available to him that gives

him higher utility than a materially-dominated outcome would.

4.3 The First-Mover’s Behavior

The first part of Lemma 2 states that the second-mover’s favorite transaction is the only materially

Pareto efficient transaction that is possible for the first mover to induce. If there were two materially

Pareto efficient transactions that the first mover could induce, then U would have two local maxima

on the material Pareto efficiency frontier, which is ruled out by quasi-concavity. Because of Lemma

2, I will sometimes refer to the second mover’s favorite transaction as “the” efficient transaction,

even though technically there are many other materially/utility Pareto efficient transactions.

Lemma 2 Suppose U is continuous, joint-monotonic, and quasi-concave. Then:

1. There exists a unique ba1 such that the resulting transaction (ba1, a2 (ba1)) is materially Pareto
efficient. This transaction is the second-mover’s favorite transaction (and so is utility Pareto

efficient).

2. An equilibrium exists. Moreover, if there is some individually rational, materially efficient

transaction, (ba1,ba2), and some material payoff pair on the same interpersonal indifference
curve, (eπ1, eπ2), such that −π2−π2(a1,a2)

π1−π1(a1,a2) > c0(ba2), then there exists an equilibrium in which the

players exchange rather than taking their outside options.

This first part has an immediate corollary: The second-mover’s favorite transaction is the only

candidate for a materially Pareto efficient equilibrium. In turn, that observation has two important
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implications. First, because it is his favorite transaction, the second mover never prefers to deviate.

Therefore, a necessary condition for an equilibrium to be materially/utility Pareto efficient is that

the first mover does not prefer to deviate from the second-mover’s favorite transaction. For this

reason, subsequent sections will focus on whether the first mover has an incentive to make the

transfer that induces the efficient transaction.

Second, even when the equilibrium of the bilateral exchange game is efficient, the first mover

would always prefer to contract for the second mover’s action, as long as writing and enforcing a

contract is not too costly. Figures 2 illustrates that if the first mover can make a take-it-or-leave-

it offer (a1, a2) to the second mover, the first mover will choose the transaction that maximizes

her material payoff subject to ensuring that the second mover earns at least his outside option

utility. This transaction occurs at the intersection of the material Pareto-efficiency frontier with

the second mover’s outside option indifference curve. More generally, if the second mover has

bargaining power, the contract will lie somewhere on the material Pareto-efficiency frontier between

the second-mover’s outside option indifference curve and the second-mover’s favorite transaction.

At any of these transactions, the first mover earns a higher material payoff than she does at the

second-mover’s favorite transaction.

The second part of Lemma 2 addresses existence of equilibrium. Since the set of individually

rational transactions is compact, an equilibrium always exists. However, this equilibrium may

involve the first mover choosing her outside option if the second mover is so selfish that his transfer

will be very small (or negative), regardless of the first mover’s action. Lemma 2 gives a sufficient

condition for trade to occur in equilibrium. Roughly, the condition is that the second mover is

altruistic enough (his interpersonal indifference curve is flat enough) at some individually rational,

materially efficient transaction.

5 Efficiency of Equilibrium

This section addresses the central question of the paper: How efficient is the equilibrium of the

bilateral exchange game?

5.1 The General Case

If U is smooth and c (a2) is convex, the equilibrium cannot be materially Pareto efficient.

Theorem 2 Suppose U is joint-monotonic, quasi-concave, continuously twice-differentiable, and

satisfies (TA), and suppose c00 > 0. Then no equilibrium is materially Pareto efficient. Furthermore,
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at any interior equilibrium (a1, a2 (a1)), the marginal inefficiency is:

v0(a1)− c0(a2) =
1

N (I (a1, a2) ; p (a2))

c00 (a2)
d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

6= 0. (7)

At an interior equilibrium, the magnitude of marginal inefficiency is decreasing in the magnitude

of the income effect (hereafter abbreviated as N (a1, a2)), increasing in the convexity of the cost of

the second mover’s transfer, and decreasing in the convexity of the interpersonal indifference curve.

Since c00 > 0 and d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

> 0, the sign of the income effect determines the sign of the

marginal inefficiency.

To understand why no equilibrium is efficient, first consider an equilibrium where the second

mover gets exactly his outside option utility U = 0. Since v0 (0) > c0 (0) and U is joint-monotonic,

the second mover’s favorite transaction gives him strictly higher utility. Since the equilibrium

transaction is not the second mover’s favorite, it cannot be materially Pareto efficient.

Now consider an interior equilibrium. The first mover’s incentive on the margin can be decom-

posed into two effects:

dπ1 (a1, a2 (a1))

da1
=

¡
v0(a1)− c0(a2)

¢
N (a1, a2)

⎛⎜⎝ d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

+ c00 (a2)

⎞⎟⎠
| {z }

size-of-the-pie effect

(8)

+

⎛⎜⎝ −c00 (a2)
d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

+ c00 (a2)

⎞⎟⎠
| {z }

share-of-the-pie effect

The “size-of-the-pie effect” is the effect on the first mover’s material payoff from a change in the

gains from trade. If the change in the players’ actions increases efficiency, and if the second mover’s

utility is locally normal, then the size-of-the-pie effect is positive. The “share-of-the-pie effect”

captures how the second mover optimally reallocates the change in gains from trade (rather than

giving all of it to the first mover) as a result of the change in the rate of tradeoff between the

players’ material payoffs. While the size-of-the-pie effect could in general have either sign, the

share-of-the-pie effect is always negative. An increase in a2 raises the “price” of a unit of the first

mover’s material payoff relative to a unit of the second mover’s since c (a2) is convex. Because U is

quasi-concave and smooth, this makes the second mover want to reduce the first mover’s material

payoff on the margin and increase the second mover’s.

The materially Pareto-efficient transaction (a∗1, a
∗
2) is not be an equilibrium. At (a

∗
1, a

∗
2), the

marginal inefficiency, v0(a∗1)− c0(a∗2), equals zero, so the size-of-the-pie effect is second order. The
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share-of-the-pie effect dominates, and the first mover can profitably deviate by making a smaller

transfer.

At an equilibrium, the two effects must exactly offset each other. Equation (7) follows from

setting (8) equal to zero. The equilibrium has inefficiently low transfers if and only if the util-

ity function is locally normal; and inefficiently high transfers if and only if it is locally inferior.

(N (a1, a2) cannot equal zero at a local equilibrium because the first mover’s first-order condition

would be violated.) Figure 3 illustrates how material payoffs vary with the first mover’s action and

how the equilibrium occurs at a materially Pareto-inefficient transaction.

In the discrete payoff allocation problems that are often studied, a fair-minded second-mover is

more likely to choose an “efficient but unfair” outcome over an “inefficient but fair” outcome the

less materially costly it is to help the first mover and the more weight he puts on the first-mover’s

material payoff. It is notable that here, it is the second derivatives of c (a2) and of the interpersonal

indifference curve that determines the magnitude of marginal inefficiency, rather than the slopes

per se. The reason is that, with a continuous budget curve, the slopes are taken into account in

how the second mover chooses to distribute a given amount of surplus; loosely speaking, when c0

is small or dπ1/dπ2|U is large in magnitude, the second mover is willing to transfer more for any

given level of transfer by the first mover. However, the degree of efficiency (as measured by the

gains from marginally increasing the transfers) depends on how these slopes change, rather than

on their levels.

A paradoxical implication is that if the second mover cares exclusively about social efficiency–

that is, if utility is a weighted sum of the material payoffs, U = (1− λ)π1+λπ2 for some 0 < λ < 1–

then the equilibrium will be maximally inefficient (as measured by marginal inefficiency). In that

case, the second mover’s transfer is independent of the first mover’s, so the first mover will choose

the lowest transfer that makes the second mover indifferent between trading and taking his outside

option. The equilibrium will be more efficient to the extent that the second-mover’s indifference

curves are convex, even if there are many transactions where the second mover has a preference for

reducing one of the players’ material payoffs.

Equation (8) implies that there are two cases in which the share-of-the-pie effect vanishes at an

efficient transaction: (1) both players’ material payoff functions are linear in the second commodity,

in which case the numerator of the share-of-the-pie term is zero, and (2) the second-mover’s utility

function is kinked at the equilibrium, in which case the denominator is infinite. Hence at least

one of these two conditions is necessary for the equilibrium to be fully efficient. The next two

subsections explore these cases in more detail.
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5.2 Efficient Case I: Material Payoffs Are Linear in the Second Action

This subsection, and this subsection only, replaces the assumption that c00 > 0 with the assumption

that c00 = 0. In this case, where the players’ material payoff functions are linear in the second-

mover’s action, the second mover faces the same rate of tradeoff between the players’ material

payoffs, regardless of either player’s action. The share-of-the-pie effect in (8) is zero because the

first mover cannot influence the relative price of the players’ material payoffs with his action. As a

result, the first mover does not face a tradeoff between maximizing the size of the pie and creating

a more favorable relative price. That makes it possible for the equilibrium to be fully efficient.

In fact, linear material payoff functions in the second-mover’s action and the normality of U ,

taken together, are sufficient to ensure that the equilibrium is efficient–and also unique.

Theorem 3 Suppose U is continuous, joint-monotonic, quasi-concave, and normal. If there is

an equilibrium in which the players trade, and if c (a2) = κ1 + κ2a2 for κ2 > 0, then the unique

equilibrium transaction is the second-mover’s favorite transaction (and so is utility Pareto efficient).

Because U is normal, and because the rate of tradeoff between material payoffs is independent of

the size of the pie, the second mover will choose his action such that both players’ material payoffs

are increasing in the total surplus to be divided. Hence, the first mover maximizes her own material

payoff by choosing the unique action that leads to a materially Pareto-efficient outcome. Figure 4

illustrates Theorem 3.

In a variety of economic applications, it is common to assume that c (a2) is linear in a2. That

is considered a reasonable model when the first mover is providing a good or service that has di-

minishing marginal utility or increasing marginal cost of provision, and the second mover is paying

money in exchange (because the marginal utility of money declines much more slowly than the

marginal utility for any particular good). Hence the theorem applies to commercial transactions

where the exact payment is not specified in advance, such as the discretionary component of pay-

ment to a contractor (e.g., for housework). Theorem 3 says that when monetary transactions have

a discretionary component, and the second mover is an agent with social preferences, the transac-

tions will be efficient. As long as the specified assumptions on U are satisfied, the conclusion does

not depend on how selfish or altruistic the second-mover is, or whether U is kinked or smooth;

the first mover will choose the same action in any case, since there is a unique efficient action

(satisfying v0 (a∗1) = κ2) when c (a2) = κ1+κ2a2. For that reason, even though I have assumed that

U is known to the first mover, the first mover would choose the efficient action even if she were
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uncertain about the second-mover’s social preferences (and hence uncertain about the action the

second mover will choose). Theorem 3 may explain the ubiquity of commercial transactions where

the monetary payment is (at least partly) discretionary.

Theorem 3 generalizes the Rotten Kid theorem (Becker 1974), a well-known result in the eco-

nomics of the family. In the classic Rotten Kid setup, a child can take an action that increases

family income but reduces his own personal income. Then the parent transfers some amount of

family income to the child. The Rotten Kid theorem says that if the parent has altruistic (i.e.,

monotonic) social preferences, and if both players’ material payoffs enter the parent’s utility as

normal goods, then even a purely self-regarding child (“rotten kid”) will act so as to maximize

family income.

Relative to the Rotten Kid theorem, Theorem 3 relaxes the assumption that utility is monotonic,

allowing instead for joint-monotonicity. It follows fairly directly from Lemma 1 that this relaxation

does not matter for equilibrium behavior. Although only a slight mathematical generalization,

the relaxation of monotonicity is an important economic generalization because it means that the

surprising efficiency conclusion applies for a large and empirically-relevant class of (non-monotonic)

fairness preferences. Traditionally, the Rotten Kid theorem has been interpreted as applying to

family environments but not market environments because altruism is assumed to be relevant

primarily within the family (Becker 1974). By contrast, a concern for fairness appears to be

widespread in market settings (e.g., Kahneman, Knetsch, & Thaler 1986; Bewley 1999). Theorem

3 therefore suggests that the Rotten Kid logic may be applicable in a far wider range of settings,

including market environments.

On the other hand, the analysis in this paper also clarifies the limitations of Rotten-Kid-type

results. Bergstrom (1989) proved that linearity of the material payoff functions in the second-

mover’s action is a sufficient condition for the Rotten Kid theorem, and he conjectured that it is

also a necessary condition. Theorem 2 proves that it is in fact a necessary condition.15 Moreover,

although existing literature interprets altruism as central and does not emphasize normality, the

analysis here makes clear that normality is crucial while altruism can be weakened.

5.3 Efficient Case II: Second-Mover’s Social Preferences Are Fairness-Kinked

Returning to the assumption that c (a2) is strictly convex, this subsection considers the case where

the second-mover’s indifference curve is kinked at his favorite transaction. In this case, the second-

15The game I analyze is slightly less general than Bergstrom’s (1989) in that it has only two players with material
payoff functions that are additively separable, but is similar in essential respects.
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mover’s optimal action is insensitive to a marginal change in the rate of tradeoff between the

players’ material payoffs. The share-of-the-pie effect in (8) is zero here because–even though the

first mover can influence the relative price of the players’ material payoffs with his action, unlike

in the case of linear material payoff functions–changing the relative price of the players’ material

payoffs will not affect the second-mover’s action. As in the case of linear material payoff functions,

the fact that the share-of-the-pie effect vanishes makes it possible for the equilibrium to be fully

efficient.

In fact, if the second-mover’s utility is very slightly kinked at his favorite transaction, then the

action that induces the second-mover’s favorite transaction will be a local optimum for the first

mover (though possibly not a global optimum).

Lemma 3 Suppose U is fairness-kinked, with UA and UB being joint-monotonic, quasi-concave,

continuously twice-differentiable, and satisfying (TA). Let (a∗1, a
∗
2) denote the second-mover’s fa-

vorite transaction. If the utility function satisfies

UA = UB (9)

∂UA

∂π1
− c0(a∗2)

∂UA

∂π2
< 0 (10)

∂UB

∂π1
− c0(a∗2)

∂UB

∂π2
> 0 (11)

at (a∗1, a
∗
2), then the second-mover’s optimal strategy a2 (a1) satisfies the fairness rule for all a1 in

a neighborhood of a∗1, and a
∗
1 is a locally optimal action for the first mover.

Equality (9) simply says that the second-mover’s favorite transaction occurs at a kink (and therefore,

on the fairness rule). At the favorite transaction, the weak inequalities

∂UA (π1 (a
∗
1, a

∗
2) , π2 (a

∗
1, a

∗
2))

∂a2
=

∂UA

∂π1
− c0(a∗2)

∂UA

∂π2
≤ 0 (12)

∂UB (π1 (a
∗
1, a

∗
2) , π2 (a

∗
1, a

∗
2))

∂a2
=

∂UB

∂π1
− c0(a∗2)

∂UB

∂π2
≥ 0 (13)

necessarily hold, ensuring that the second-mover’s action is optimal. If these inequalities hold

strictly–that is, if (10) and (11) are satisfied–then the second-mover’s optima continue to occur

at kinks for small changes in the first-mover’s action. As a result, the second mover obeys the

fairness rule locally, and so inducing the second-mover’s favorite transaction is locally optimal for

the first mover.

Intuitively, the fairness rule is characterized by the players’ material payoffs increasing or de-

creasing in tandem. As long as the second-mover’s favorite transaction occurs at a kink, the second

24



mover responds to small changes in the first-mover’s action by adjusting his own transfer to ensure

that the fairness rule remains satisfied. This behavior means that the first-mover’s material payoff

is increasing in the size of the pie, which gives the first mover an incentive to maximize the size of

the pie.

However, fairness-kinked social preferences alone do not ensure that the equilibrium occurs

at the efficient transaction. Theorem 4 provides sufficient conditions: the second-mover’s social

preferences are normal and sufficiently fairness-kinked at the efficient transaction. These conditions

also imply that the equilibrium is unique.

Theorem 4 Suppose U is fairness-kinked, with UA and UB being joint-monotonic, quasi-concave,

normal, continuously twice-differentiable, and satisfying (TA). Let (a∗1, a
∗
2) denote the second-mover’s

favorite transaction, and let (ba1,ba2) denote the (necessarily unique) transaction with ba1 < a∗1 such

that π1(ba1,ba2) = π1 (a
∗
1, a

∗
2) and U(ba1,ba2) = 0. If there is an equilibrium in which the players trade,

and if the utility function satisfies

UA = UB (14)

∂UA

∂π1
− c0(ba2)∂UA

∂π2
< 0 (15)

∂UB

∂π1
− c0(a∗2)

∂UB

∂π2
> 0 (16)

at (a∗1, a
∗
2), then the second-mover’s optimal strategy a2 (a1) satisfies the fairness rule for all a1 in

a neighborhood of a∗1, and (a
∗
1, a

∗
2) is the unique equilibrium transaction (and so is utility Pareto

efficient).

Inequality (16) is the same as (11),16 but inequality (15) is more stringent than (11), requiring

that the second mover put sufficiently low relative weight on the first-mover’s material payoff

at disadvantageously unfair transactions that are near the efficient transaction. Combined with

normality, this condition prevents the second mover from being willing (due to altruism) to make a

large transfer when the first mover makes a small transfer. Loosely put, normality allows the local

aversion to disadvantageous unfairness from (15) to imply a sufficient aversion to disadvantageous

unfairness on the outside option indifference curve. Without (15) and normality, even if inducing

the efficient transaction were locally optimal for the first mover, the first mover might earn a

still greater material payoff by making a much smaller transfer. Figure 5 illustrates the efficient

16The conclusion of Theorem 4 that (a∗1, a
∗
2) is the unique equilibrium transaction actually requires only the weak

inequality (13), rather than the strict inequality (16). Moreover, with the weak inequality, the second-mover’s optimal
strategy a2 (a1) still satisfies the fairness rule for all a1 < a∗1 sufficiently close to a

∗
1. However, with weak inequality

(13), the second mover may not obey the fairness rule when a1 is marginally larger than a∗1.
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equilibrium with fairness-kinked social preferences, as well as how the equilibrium could fail to be

efficient if the assumptions of Theorem 4 are not satisfied.

Roughly speaking, these results state that if the second mover is behaving according to a fairness

rule, then trade will be efficient. Unlike Theorem 3, Lemma 3 and Theorem 4 put no restrictions

on the material payoff functions, and so apply to more kinds of exchange, including in-kind trades,

such as barter or exchange of favors. Moreover, as long as the second mover adheres to a fairness

rule that assigns larger material payoff to both players as the pie increases, any fairness rule can

lead to an efficient equilibrium, even if it is non-linear or self-serving.

However, the theorem requires that the first mover know what fairness rule the second mover

is following. Otherwise, the first mover would not know which action would induce an efficient

transaction. The fact that efficiency depends on both players knowing the fairness rule suggests

a role for customs or laws that make the “fair” rate of exchange between commodities common

knowledge. It also might explain why social norms like 50-50 sharing have developed, and are

considered to apply when there is no norm that is more specific to the situation. Indeed, even if

the first mover is uncertain about what fairness rule the second mover is following, as long as a

sufficiently large proportion of second movers follow the same rule, it will be optimal for the first

mover to make the transfer that would lead to an efficient outcome given that rule.

6 Robustness: Both Players Have Social Preferences

To keep things as simple as possible, I have assumed throughout that only the second-mover’s

utility, U2 (π1, π2) (now subscripted for clarity), depends on both players’ material payoffs. Here I

discuss the extent to which the earlier results generalize when both players have social preferences.

If the first-mover’s utility function U1 (π1, π2) is monotonic, then all of the main points from

earlier sections generalize. In this case, a transaction is utility Pareto efficient if and only if it

lies on the material Pareto-efficiency frontier between the second-mover’s favorite transaction and

the first-mover’s favorite transaction. If both players’ material payoff functions are linear in the

second-mover’s action, or if the second-mover’s social preferences are sufficiently-kinked, then the

equilibrium occurs at the second-mover’s favorite transaction (and so is utility Pareto efficient)

as long as U2 is normal. These full efficiency results only require that the first-mover’s social

preferences be continuous and monotonic because the first mover maximizes both players’ material

payoffs by inducing the efficient transaction. If the first mover has fairness-kinked utility with a

different fairness rule than the second mover’s, it is the second-mover’s fairness rule that determines
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the equilibrium.

New complications arise if the first-mover’s utility is merely joint-monotonic rather than monotonic.

In that case, there may be non-materially-Pareto-efficient transactions that both players consider

“unfair” to themselves in the sense that both prefer to reduce the other player’s material payoff.

These transactions are utility Pareto efficient, despite being materially Pareto inefficient. However,

such transactions cannot occur in equilibrium because at least one player can profitably deviate.

In the extreme case where at least one player wants to reduce the other player’s material payoff at

every transaction, then no trade will occur in equilibrium–yet this no-trade outcome will actually

be utility Pareto efficient.

At an interior local equilibrium (a1, a2 (a1)), if U1 is continuously differentiable and U2 is con-

tinuously twice-differentiable, then the formula for marginal (material) inefficiency is

v0(a1)− c0(a2) =
1

M (I (a1, a2) ; p (a2))

c00 (a2)
d2π2
d(π1)

2

¯̄̄
U2=U2(π1,π2)

µ
−∂U1 (a1, a2)

∂a1

¶
, (17)

where M (I; p) ≡ ∂U1(π1(I;p),π2(I;p))
∂I is the income effect on U1, and −∂U1(a1,a2)

∂a1
is the effect on U1

from marginally reducing a1, holding a2 constant.

Naturally, equation (17) specializes to (7) when the first mover is purely self-regarding (U1 ≡ π1,

so −∂U1(a1,a2)
∂a1

= −∂π1(a1,a2)
∂a1

= 1). However, the first-mover’s social preferences introduce a third

possible way to get full efficiency: both players share the same favorite transaction (−∂U1(a1,a2)
∂a1

= 0),

in which case that transaction is the equilibrium and is utility Pareto efficient. Relative to when the

first mover is purely self-regarding, the equilibrium could be less efficient if either the first mover

considers her material-payoff-maximizing transaction to be “unfair” to herself (−∂U1(a1,a2)
∂a1

> 1),

or if the first mover is so altruistic that her favorite transaction gives the second mover a higher

material payoff than the second mover’s own favorite transaction does (−∂U1(a1,a2)
∂a1

< 0). However,

in the most realistic case where the first mover is altruistic on the margin, but prefers to give herself

a higher material payoff than the second mover does (0 < −∂U1(a1,a2)
∂a1

< 1), equation (17) implies

that the equilibrium will be more efficient than it would be in the case where the first mover is

purely self-regarding.

7 Discussion and Concluding Remarks

When contracting is costly, social preferences may nonetheless enable relatively efficient exchange.

The results in this paper predict that exchange will be efficient in two cases: (1) when the party
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who is trusted to reciprocate is paying money to the other party, or (2) when he behaves according

to a rule of fair behavior.

While the analysis in this paper directly applies to settings where the second-mover’s action is

entirely discretionary, it is relevant for understanding a range of other contracting and organiza-

tional issues, such as the hold-up problem. In the classic hold-up problem, a first mover makes an

irreversible, relationship-specific investment and then Nash-bargains with the relationship partner

over how to split the surplus. Because the first-mover’s investment is sunk, she is forced to share

the gross returns (rather than the returns net of the investment) with the partner. Anticipating

this, it may not be profitable for the first mover to make the investment at all, even if making

the investment is socially efficient. The bilateral exchange game analyzed in this paper does not

directly apply to the hold-up problem because the bilateral exchange game is the special case where

the second-mover has all of the bargaining power in the Nash bargaining. That extreme case is

precisely when the hold-up problem is most severe. Yet that is the case where Theorem 3 delivers

a generic efficiency result for a very broad class of social preferences when the players’ material

payoffs are assumed to be linear in the second mover’s transfer (the standard assumption in hold-

up settings). Theorem 4 applies even without quasi-linear material payoffs when the second-mover

behaves according to a rule for allocating surplus fairly. Hence the results here suggest that social

preferences provide a full solution to the hold-up problem exactly when other potential solutions

do not apply.17

A key assumption about social preferences that enables them to resolve the hold-up problem

is that the second-mover cares about the players’ material payoffs (i.e., returns) net of the first-

mover’s action (i.e., investment). Viewed in this light, a crucial feature of social preferences is that

they do not ignore sunk costs. However, the extent to which judgments about what is fair ignore

sunk costs is likely sensitive to how the situation is framed. This suggests that in settings where

social preferences play an important role in exchange, strategic framing of the situation may also

become important.

Besides incorporating strategic framing, there are three ways to extend the analysis that are

particularly urgent for improving the applicability of the theory. Carefully implementing any of

these extensions will require further elaborating the theory of social preferences. First, I have

assumed throughout that the players’ preferences are common knowledge, but uncertainty about

17 Interestingly, I believe that the equilibrium will not be efficient in the less severe hold-up problem where the
first-mover has some bargaining power because the second-mover will anticipate Nash bargaining when choosing his
action. A careful analysis of this case requires an expected utility structure on the social preferences in order to
operationalize the Nash bargaining.
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both the material payoff functions and the social preferences is more realistic (see, e.g., Fehr, Klein,

& Schmidt 2007). In some cases, uncertainty about social preferences will make little difference–

such as when the first mover believes that a sufficiently large proportion of second-mover types will

adhere to a 50-50 sharing rule. In that case, it is still optimal for the first mover to take the action

that induces a 50-50-rule-following second mover to respond efficiently. However, in many cases, it

seems likely that uncertainty will reduce efficiency. For example, even if all second-mover types obey

a fairness rule, if each obeys a different fairness rule, then the first-mover’s uncertainty will make

it optimal for him to play against a “representative second-mover” who has smooth preferences,

ensuring that the equilibrium is generically inefficient. A careful analysis of the uncertainty case

will require a theory of social preferences under uncertainty, which raises challenges I have not

confronted in this paper.

Second, I have assumed that social preferences depend only on material payoffs, but there is

substantial evidence that social preferences also include a reciprocity motive (see, e.g., Rabin 1993

and Charness & Rabin 2002). In terms of generating reciprocal behavior, a direct reciprocity

motive will qualitatively serve much the same role as the assumption of normality in the present

paper. However, in the psychological games apparatus, it is not clear how to formulate the question

of whether the equilibrium exchange is efficient because preferences themselves depend on beliefs

about the other player. Nonetheless, since models of reciprocity require an underlying material-

payoff-based theory of what is considered a fair allocation, the analysis in the present paper may

help provide a foundation for analyses that incorporate intentions.

Finally, although this paper has focused on bilateral exchange, there are important real-world

settings with many players, such as a multiple-worker firm. Although it is important to analyze how

a concern for fairness affects transactions in such environments, the conclusions are sensitive to how

the bilateral model is generalized. The simplest extension of the model to a situation with multiple

workers hired by a firm is to assume that each worker’s social preferences apply to that worker’s

bilateral transaction with the firm. In that case, the analysis in this paper applies immediately to

each bilateral transaction. Consistent with that possibility, Maximiano, Sloof, & Sonnemans (2007)

find in a laboratory labor market that behavior in the presence of other workers is nearly identical

to behavior when there is only a single worker. However, the fact that real-world workers compare

their own wage and effort to those of other workers in the firm (e.g., Bewley 1999) suggests that

the bilateral model misses important aspects of reality. It is not difficult to write down a game with

an employer and two workers, along with social preferences for the workers, such that the workers

sabotage each other in order to come out ahead, leading to an equilibrium that is materially and
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Pareto inefficient. Unfortunately, at present there is very little evidence to suggest which of many

possible generalizations of social preferences is most appropriate.
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8 Proofs

We begin with a technical lemma before proving the results in the text. Throughout, for notational

compactness, let π ≡ (π1, π2) denote the vector of material payoffs.

Technical Lemma Suppose U is continuous, joint-monotonic, and quasi-concave. Then:

1. The set of individually-rational transactions

T ≡ {(a1, a2) | U(π(a1, a2)) ≥ 0, π1(a1, a2) ≥ 0}

is non-empty and compact, as is the set of payoff pairs Tπ ≡ {π(a1, a2) | (a1, a2) ∈ T}.

2. Along any budget curve B (a1) = {(π1 (a1, a2) , π2 (a1, a2))}a2∈R, the second-mover’s utility

has a unique maximum and strictly decreases as a2 moves away from this maximum.

3. Along the material-efficiency frontier, the second-mover’s utility has a unique maximum and

strictly decreases as a2 moves away from this maximum.

Proof of part 1: The transaction (a1, a2) = (0, 0) gives material payoffs π (0, 0) = (0, 0) and

utility U (π (0, 0)) = 0, so both sets are non-empty.

By joint-monotonicity (part 2), there is some π02 < 0 with U(0, π
0
2) < 0. Quasi-concavity implies

that U(0, π2) ≤ U(0, π02) < 0 for all π2 ≤ π02. By joint-monotonicity (part 2) and continuity, there

is some π01 < 0 with U(0, π02) < U(π01, 0) < 0. Quasi-concavity then implies that any point (π1, π2)

with π1 ≥ 0 that lies to the left of the line connecting (0, π02) to (π01, 0) will have U(π1, π2) < 0.

Therefore, every point of T will lie to the right of this line.

The line is downward sloping, so it may be written in the form bπ1+dπ2 = k for some constants

b, d, k with b, d > 0. So every point (a1, a2) ∈ T satisfies bπ1(a1, a2)+ dπ2(a1, a2) > k. Rewrite this

left-hand side as (dv(a1)− ba1) + (ba2 − dc(a2)). Now, ba2 − dc(a2) is concave and goes to −∞ as

a2 →∞, so it is either decreasing everywhere or has some maximum value M at a point a∗2.

In the first case, a2 ≥ a1 (which is true for all points in T because π1 ≥ 0) implies ba2−dc(a2) ≤

ba1 − dc(a1), hence k < bπ1(a1, a2) + dπ2(a1, a2) ≤ d(v(a1)− c(a1)) for all (a1, a2) ∈ T . The right-

hand side of this goes to −∞ as a1 → ±∞, since lima1→−∞ v0(a1) = ∞ and lima2→∞ c0(a2) = ∞.

Hence, a1 must be bounded for all (a1, a2) ∈ T . Now this implies that av(a1)− ba1 is also bounded

above in T , which in turn implies that ba2− ac(a2) must be bounded below in T , so a2 is bounded

above in T . And a2 ≥ a1 shows that a2 is bounded below in T .
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In the second case, where ba2 − dc(a2) has a maximum a∗2, we can apply the same argument to

show that a1 is bounded above in T because for a1 > a∗2, ba2− dc(a2) is decreasing (since a2 ≥ a1).

Moreover, a1 must be bounded below in T because dv(a1) − ba1 > k − (ba2 − dc(a2)) ≥ k −M .

Then we proceed as in the previous paragraph to show that a2 is bounded in T .

So in either case, we have shown that both a1 and a2 are bounded for all (a1, a2) ∈ T , as

required. Hence T is bounded. Since T is clearly closed and U is continuous, the set T is in fact

compact, as is Tπ.

Proof of part 2: We first show that for each fixed a1 and real number k, the set of second-

mover actions {a2 | U(π(a1, a2)) ≥ k} is an interval (possibly unbounded). Let a02 < a002 be two

values in this set. By construction, U ≥ k at (x1, y1) = π(a1, a
0
2) and (x2, y2) = π(a1, a

00
2). It follows

that U ≥ k at (x1, y2). (To see this, let ȳ = max{y ∈ [y1, y2] | U(x1, y) ≥ k} (the maximum exists

by continuity). If ȳ = y2 then we are done, so assume ȳ < y2. By joint-monotonicity, we can choose

x̂, ŷ with x1 < x̂ and ȳ < ŷ < y2 so that U(x̂, ŷ) > U(x1, ȳ) ≥ k. The line segment connecting

(x2, y2) and (x̂, ŷ) meets the line x = x1 at a point with some y-coordinate strictly between ȳ and

y2. By quasi-concavity, the value of U at this point is ≥ k. This contradicts the maximality of ȳ.)

Now, for any a02 < a2 < a002, the point π(a1, a2) lies strictly inside the triangle defined by these three

points (by the convexity of c(a2)). Since U is quasi-concave, U(π(a1, a2)) ≥ k also.

This shows that there cannot be three values a02 < a2 < a002 with U(π(a1, a
0
2)) > U(π(a1, a2)) <

U(π(a1, a
00
2)). It follows that U is either weakly monotonic everywhere, or weakly increasing on

(a∗2,−∞) and weakly decreasing on (a∗2,∞) for some a∗2.

We now show that U cannot be constant on any interval along the budget curve. Suppose U

assumes the constant value k on the interval [a02, a
00
2]. Quasi-concavity implies that U is ≥ k at the

point (x0, y0) = (π(a1, a02)+π(a1, a
00
2))/2. For sufficiently small � > 0, the box [x0, x0+�]×[y0, y0+�]

lies entirely below and to the left of the curve C = {π(a1, a2) | a02 < a2 < a002}. Joint-monotonicity

ensures that U assumes a value k0 > k at some point (x0, y0) inside this box. Now, let S =

{(x, y) | x ≥ x0, y ≥ y0, U(x, y) ≥ U(x0, y0)}. We know that S does not intersect C because U ≥ k0

on S, whereas U takes on the constant value k on C, by assumption. S is closed and convex, and

must then be bounded (by the lines x = x0, y = y0, as well as by the curve C since (x0, y0) ∈ S), so it

is compact. Hence we can choose a point (x, y) ∈ S with x+y maximal. But by joint-monotonicity

there exists x00 > x0, y00 > y0 with U(x00, y00) > U(x0, y0) ≥ k0, contradicting maximality. It follows

that U cannot be constant on [a02, a
00
2] after all.

We complete the proof by ruling out that U is monotonic along the budget curve; in particular,

we show that for any (a1, a2), there are a02 < a2 < a002 such that U(π(a1, a
0
2)) < U(π(a1, a2)) >
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U(π(a1, a
00
2)). Let (bx0, by0) = π(a1, a2) and U0 = U(π(a1, a2)). By joint-monotonicity (part 2), there

exist δx, δy > 0 such that for bx1 = bx0 − δx and by1 = by0 − δy, U(bx0, by1) < U0 and U(bx1, by0) < U0.

Since U is continuous and quasi-concave, we can assume that U(bx0, by1) = U(bx1, by0), U(bx0, by1−ε) <
U(bx0, by1), and U(bx1−ε, by0) < U(bx1, by0) for ε > 0 sufficiently small. Because the slope of the budget
curve is asymptotes to −∞ and 0 as a2 → −∞ and a2 → +∞, respectively, the line through (bx0, by1)
and (bx1 − ε, by0) intersects the budget curve at some point (bx2, by2) with bx2 < bx0 and by2 > by0. Since
U is quasi-concave, U(bx2, by2) < U0. Similarly, the line through (bx1, by0) and (bx0, by1 − ε) intersects

the budget curve at some point (bx3, by3) with bx3 > bx0,by3 < by0 , and U(bx3, by3) < U0.

Proof of part 3: The argument in part 2 applies not just to the budget curve, but to any

graph of the form (π1, g(π1)) where g is a decreasing, concave function. In particular, it can be

applied to the material Pareto-efficiency frontier.

¤

Theorem 1 Suppose U is continuous, joint-monotonic, and quasi-concave. The second-mover’s

favorite transaction (a∗1, a
∗
2) exists and is unique. Moreover, a transaction is utility Pareto efficient

if and only if it is materially Pareto efficient and satisfies π2 (a1, a2) ≤ π2 (a
∗
1, a

∗
2).

Proof: Note that any point not on the material Pareto-efficiency frontier cannot be either

utility Pareto efficient or a maximum for the second-mover’s utility U : If (π1, π2) is a materially

Pareto-inefficient payoff pair, then for sufficiently small � > 0, the box [π1, π1+ �]× [π2, π2+ �] still

lies below the material Pareto-efficiency frontier (and so consists entirely of feasible payoff pairs),

and joint-monotonicity implies that some point (π01, π
0
2) inside this box gives the second-mover

higher utility than (π1, π2). Clearly (π01, π
0
2) also gives the first-mover higher utility than (π1, π2),

so we have an individually-rational point whose payoffs for both parties are higher than at (π1, π2).

Now, since the space of individually-rational payoffs is compact (by Technical Lemma), there

must be some point that maximizes U ; as we have just seen, this point must be materially Pareto-

efficient. Technical Lemma further implies that there must be a unique payoff pair that achieves

the maximum utility. Since this payoff pair is on the material Pareto-efficiency frontier, there is in

turn only one transaction (a∗1, a
∗
2) that achieves these payoffs. (Any other transaction that gives the

same material payoff for the first-mover must take the form (a∗1 +∆, a
∗
2 +∆). But there is exactly

one value of ∆ that maximizes π2 (∆) = v (a∗1 +∆)− c (a∗2 +∆).)

Let (π∗1, π
∗
2) = π (a∗1, a

∗
2) be the materially Pareto-efficient payoff pair that maximizes U . If

(π01, π
0
2) is any other materially Pareto-efficient pair with π02 > π∗2, then π01 < π∗1 (by material

Pareto-efficiency of (π∗1, π
∗
2)), so both the first-mover’s payoff and the second-mover’s utility are
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lower at (π01, π
0
2) than at (π

∗
1, π

∗
2). So (π

0
1, π

0
2) is not utility Pareto efficient.

We have now shown that any utility Pareto-efficient transaction (a1, a2) is materially Pareto

efficient and satisfies π2 (a1, a2) ≤ π2 (a
∗
1, a

∗
2). Conversely, consider any transaction (a1, a2) meeting

these conditions. If it is not utility Pareto efficient, then there exists another transaction (a01, a
0
2)

(which we may assume to be materially Pareto-efficient) giving at least equally high material

payoff to the first-mover and utility to the second-mover. Now π(a01, a
0
2), π(a1, a2), π (a

∗
1, a

∗
2) lie in

that order along the material Pareto-efficiency frontier, and U(π(a01, a
0
2)) ≥ U(π(a1, a2)). But this

contradicts the fact (from Technical Lemma) that U is strictly decreasing as we move away from

(a∗1, a
∗
2) along the material Pareto-efficiency frontier.

¤

Lemma 1 Suppose U is continuous, joint-monotonic, and quasi-concave. Then:

1. For any transfer by the first-mover a1, the second-mover has a unique optimal action a2 (a1)

that is a continuous function of a1.

2. If U is (strictly) locally normal at (I (ba1, a2 (ba1)) ; p (a2 (ba1))), then a2 (a1) is (strictly) in-

creasing in a1 at ba1. Hence if U is (strictly) normal, then a2 (a1) is (strictly) increasing in

a1 at all ba1.
3. If (ba1, a2 (ba1)) is an equilibrium, then a2 (a1) is strictly increasing in a1 at ba1.
4. If U is continuously differentiable at some (ba1, a2 (ba1)) and satisfies (TA), then ∂U

∂π1
> 0 and

∂U
∂π2

> 0 at (ba1, a2 (ba1)).
Proof of part 1: Technical Lemma immediately gives existence and uniqueness of an optimal

action a2 (a1). The Maximum Theorem (e.g., Sundaram 1996, p.235) can now be applied (where

we can ignore the compactness requirement on the budget curve since we have already proved

existence of an optimal action) to show that a2 (a1) is an upper-semi-continuous correspondence.

Since a2 (a1) is single-valued, it is a continuous function.

Proof of part 2: Consider an increase in the first-mover’s action ba01 > ba1. If the second-
mover did not change his action, then the second-mover’s material payoff would rise while the

first-mover’s would fall: π2 (ba01, a2 (ba1)) > π2 (ba1, a2 (ba1)) and π1 (ba01, a2 (ba1)) < π1 (ba1, a2 (ba1)). But
the slope of the second-mover’s budget curve p (a2 (ba1)) would remain the same. If U is weakly

locally normal at (I (ba1, a2 (ba1)) ; p (a2 (ba1))), then for a small enough ε > 0, the second mover
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weakly prefers the material payoff pair on the budget line that gives slightly more material payoff

to the first mover and slightly less to himself, (π2 (ba01, a2 (ba1))− p (a2 (ba1)) ε, π1 (ba01, a2 (ba1)) + ε), to

(π2 (ba01, a2 (ba1)) , π1 (ba01, a2 (ba1))). It follows from continuity of U that a2 (ba01) ≥ a2 (ba1). Clearly, if
U is weakly normal, then this argument applies at all ba1. If U is locally normal, then the same

argument implies that a2 (ba01) > a2 (ba1), and this argument applies at all ba1 if U is normal.

Proof of part 3: If a2 (a1) were not strictly increasing in a1 at equilibrium action ba1, then
the first mover could increase π1 by slightly reducing a1, contradicting equilibrium.

Proof of part 4: Since U is continuously differentiable at (ba1, a2 (ba1)), the second-mover’s
unique optimum is characterized by the first-order condition, Ua2 (ba1, a2) = ∂U

∂π1
− c0 (a2)

∂U
∂π2

= 0.

Joint-monotonicity rules out that both partial derivatives ∂U
∂π1

and ∂U
∂π2

are negative, and (TA) rules

out that they both equal 0. Therefore, the first-order condition implies that both are positive.

¤

Lemma 2 Suppose U is continuous, joint-monotonic, and quasi-concave. Then:

1. There exists a unique ba1 such that the resulting transaction (ba1, a2 (ba1)) is materially Pareto
efficient. This transaction is the second-mover’s favorite transaction (and so is utility Pareto

efficient).

2. An equilibrium exists. Moreover, if there is some individually rational, materially efficient

transaction, (ba1,ba2), and some material payoff pair on the same interpersonal indifference
curve, (eπ1, eπ2), such that −π2−π2(a1,a2)

π1−π1(a1,a2) > c0(ba2), then there exists an equilibrium in which the

players exchange rather than taking their outside options.

Proof of part 1: We will prove that given any action ba1, the transaction (ba1, a2 (ba1)) resulting
from the unique best-response a2 (ba1) is materially Pareto-efficient if and only if (ba1, a2 (ba1)) is the
second-mover’s favorite transaction. The “if” direction follows immediately from the fact that

the second-mover’s favorite transaction is materially Pareto-efficient, so we focus on the “only if”

direction. Suppose (ba1, a2 (ba1)) is materially Pareto-efficient but is not the second-mover’s favorite
transaction (a∗1, a

∗
2). Every budget curve B (a1) touches the material Pareto-efficiency frontier at

exactly one point (the unique a2 solving v0 (a1) = c0 (a2)) and is tangent to the material Pareto-

efficiency frontier at that point. Hence the second-mover’s indifference curve passing through

(ba1, a2 (ba1)) touches the material Pareto-efficiency frontier only at (ba1, a2 (ba1)). So there is some
(a01, a

0
2) on the material Pareto-efficiency frontier between (ba1, a2 (ba1)) and (a∗1, a∗2), sufficiently close
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to (ba1, a2 (ba1)), such that U(π(a01, a02)) < U(π(ba1, a2 (ba1))). But this contradicts the fact that U is

strictly decreasing as we move away from (a∗1, a
∗
2) along the material Pareto-efficiency frontier (as

proved in Technical Lemma).

Proof of part 2: Let bπ1 = π1(ba1,ba2) and bπ2 = π2(ba1,ba2). Recall that, since (ba1,ba2) is
materially efficient, B (ba1) (the budget curve facing the second mover after action ba1) is tangent to
the material efficiency frontier at (bπ1, bπ2), and both have slope c0(ba2) at (bπ1, bπ2). The assumption
that−π2−π2

π1−π1 > c0(ba2) implies that the line l through the points (eπ1, eπ2) and (bπ1, bπ2) lies below B (ba1)
in a neighborhood to the left of (bπ1, bπ2). Since (eπ1, eπ2) and (bπ1, bπ2) lie on the same interpersonal
indifference curve, this interpersonal indifference curve must lie below l in a neighborhood to the left

of (bπ1, bπ2) (using continuity, joint-monotonicity, and quasi-concavity of U). Hence the indifference
curve lies strictly below B (ba1) in a neighborhood to the left of (bπ1, bπ2). But then joint-monotonicity
implies there is some (π1, π2) ∈ B (ba1) with π1 > bπ1 (and π2 > bπ2) and U (π1, π2) > U (bπ1, bπ2).
Technical Lemma then implies that the second-mover’s most-preferred (π1, π2) in B (ba1) also gives
π1 > bπ1 and U (π1, π2) > U (bπ1, bπ2).

We have shown that if the first mover chooses action ba1, she will get some material payoff π1 >bπ1 ≥ 0, where the last inequality follows from the fact that (ba1,ba2) is individually rational. (The
second mover will choose to exchange rather than taking his outside option because U (π1, π2) >

U (bπ1, bπ2) ≥ 0, where the last inequality follows from the fact that (ba1,ba2) is individually rational.)
Since some other action may give an even higher material payoff than ba1 does, this is a lower bound
on the first mover’s equilibrium payoff. From Technical Lemma, the set of individually rational

transactions T is compact. Since π1 (a1, a2 (a1)) is continuous, there exists an optimal action a1 in

T . The result follows.

¤

Theorem 2 Suppose U is joint-monotonic, quasi-concave, continuously twice-differentiable, and

satisfies (TA), and suppose c00 > 0. Then no equilibrium is materially Pareto-efficient. Further-

more, at any interior equilibrium (a1, a2 (a1)), the marginal inefficiency is:

v0(a1)− c0(a2) =
1

N (I (a1, a2) ; p (a2))

c00 (a2)
d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

> 0.

Proof: The first-mover’s optimal action gives him more than his outside option material payoff

0 (Lemma 2). Joint-monotonicity implies that some point (π1, π2) inside the box [0, �]× [0, �] gives

the second-mover strictly higher utility than U(0, 0) = 0. Therefore, the second-mover’s favorite
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transaction (π∗1, π
∗
2) gives him U(π∗1, π

∗
2) > 0. It follows that any equilibrium (a1, a2) where the

constraint U (a1, a2) ≥ 0 binds cannot be the second-mover’s favorite. Hence Lemma 2 implies that

(a1, a2) is not materially Pareto efficient.

So suppose (a1, a2) is an equilibrium where the constraint U (a1, a2) ≥ 0 does not bind. Since

U is continuously twice-differentiable, both the first-mover’s first-order condition and the second-

mover’s first-order condition hold. Implicitly differentiating the second-mover’s first-order condi-

tion, ∂U
∂π1
− c0 (a2)

∂U
∂π2

= 0, gives

da2 (a1)

da1
= −

− ∂2U
∂(π1)

2 + v0 (a1)
∂2U

∂π1∂π2
+ c0 (a2)

∂2U
∂π1∂π2

− c0 (a2) v0 (a1)
∂2U

∂(π2)
2

∂2U
∂(π1)

2 − 2c0 (a2) ∂2U
∂π1∂π2

− (c0 (a2))2 ∂2U
∂(π2)

2 − c00 (a2)
∂U
∂π2

=
¡
v0(a1)− c0(a2)

¢ − ∂U
∂π1

∂2U
∂(π2)

2 +
∂U
∂π2

∂2U
∂π1∂π2³

∂U
∂π2

´2 ³
d2π2
d(π1)

2 + c00 (a2)
´ + d2π2

d(π1)
2

d2π2
d(π1)

2 + c00 (a2)
,

where the second equality uses c0 (a2) =
∂U
∂π1
∂U
∂π2

and d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

=
− ∂2U

∂(π1)
2

∂U
∂π2

2
+2 ∂U

∂π1

∂U
∂π2

∂2U
∂π1∂π2

− ∂2U

∂(π2)
2

∂U
∂π1

2

∂U
∂π2

3 .

Now consider maximizing U with respect to a budget line: eπ1 (I; p) = argmax{π1:pπ1+π2=I} U (π1, π2),
which has first-order condition, ∂U(π1,I−pπ1)

∂π1
− p∂U(π1,I−pπ1)∂π2

= 0. Implicitly differentiating to find

the local income effect:

∂eπ1 (I; p)
∂I

= −
−p ∂2U

∂(π2)
2 +

∂2U
∂π1∂π2

∂2U
∂(π1)

2 − 2p ∂2U
∂π1∂π2

+ p2 ∂2U
∂(π2)

2

=
− ∂U

∂π1
∂2U
∂(π2)

2 +
∂U
∂π2

∂2U
∂π1∂π2³

∂U
∂π2

´2
d2π2
d(π1)

2

where the second equality uses p =
∂U
∂π1
∂U
∂π2

and the formula for d2π2
d(π1)

2

¯̄̄
U=U(a1,a2)

. Substituting,

da2 (a1)

da1
=
¡
v0(a1)− c0(a2)

¢ ∂eπ1 (I; p)
∂I

d2π2
d(π1)

2

d2π2
d(π1)

2 + c00 (a2)
+

d2π2
d(π1)

2

d2π2
d(π1)

2 + c00 (a2)
. (18)

Equation (8) in the text follows from substituting (18) into

dπ1 (a1, a2 (a1))

da1
=

da2 (a1)

da1
− 1.

Setting this equal to zero leads to equation (7).

¤

Theorem 3 Suppose U is continuous, joint-monotonic, quasi-concave, and normal. If c (a2) =

κ1 + κ2a2 for κ2 > 0, then the unique equilibrium transaction is the second-mover’s favorite trans-

action (and so is utility Pareto efficient).
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Proof: Since c (a2) = κ1+κ2a2, the budget constraints (and material Pareto-efficiency frontier)

are parallel lines with slope −κ2, so they can be written in the form κ2π1+π2 = v (a1)−κ2a1−κ1 ≡

I (a1). Because U is normal, the second-mover chooses a2 (a1) from each B (a1) such that π1 and

π2 are both strictly increasing in I (a1). The first-mover maximizes her material payoff by taking

the action ea1 that maximizes I (a1), which satisfies v0 (ea1) = κ2, the condition that characterizes

material Pareto efficiency. Since the budget constraint B (ea1) is the material Pareto-efficiency
frontier, the resulting transaction is the second-mover’s favorite transaction.

¤

Lemma 3 Suppose U is fairness-kinked, with UA and UB being joint-monotonic, quasi-concave,

continuously twice-differentiable, and satisfying (TA). Let (a∗1, a
∗
2) denote the second-mover’s fa-

vorite transaction. If the utility function satisfies

UA = UB (19)

∂UA

∂π1
− c0(a∗2)

∂UA

∂π2
< 0 (20)

∂UB

∂π1
− c0(a∗2)

∂UB

∂π2
> 0 (21)

at (a∗1, a
∗
2), then the second-mover’s optimal strategy a2 (a1) satisfies the fairness rule for all a1 in

a neighborhood of a∗1, and a∗1 is a locally optimal action for the first mover.

Proof: Since the given inequalities hold strictly at (a∗1, a
∗
2), there are some neighborhoods

X,Y of a∗1, a
∗
2, respectively, such that they hold for all (a1, a2) ∈ X × Y . Once the neighborhood

Y is chosen, we may take X to be small enough so that a2 (a1) ∈ Y for all a1 ∈ X (because

a2 (a1) is a continuous function of a1 by Lemma 1). Thus, for any a1 in a neighborhood of a∗1, the

second-mover will choose action a2 (a1) such that UA = UB at π(a1, a2 (a1)). The single-crossing

properties in the definition of fairness-kinked utility imply that along the curve UA = UB, π1 and

π2 are increasing in tandem–that is, for points (π01, π
0
2) and (π

00
1, π

00
2) on the curve, π

0
2 < π002 if and

only if π01 < π001. It follows immediately that a
∗
1 is a locally optimal action for the first mover.

¤

Theorem 4 Suppose U is fairness-kinked, with UA and UB being joint-monotonic, quasi-concave,

normal, continuously twice-differentiable, and satisfying (TA). Let (a∗1, a
∗
2) denote the second-

mover’s favorite transaction, and let (ba1,ba2) denote the (necessarily unique) transaction withba1 < a∗1 such that π1(ba1,ba2) = π1 (a
∗
1, a

∗
2) and U(ba1,ba2) = 0. If the utility function satisfies

UA = UB (22)
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∂UA

∂π1
− c0(ba2)∂UA

∂π2
< 0 (23)

∂UB

∂π1
− c0(a∗2)

∂UB

∂π2
> 0 (24)

at (a∗1, a
∗
2), then the second-mover’s optimal strategy a2 (a1) satisfies the fairness rule for all a1 in

a neighborhood of a∗1, and (a
∗
1, a

∗
2) is the unique equilibrium transaction (and so is utility Pareto

efficient).

Proof: We first show that (ba1,ba2) exists and is unique. For each possible real number a1,
consider the unique ba2 (a1) such that π1(a1,ba2 (a1)) = π1(a

∗
1, a

∗
2) (namely ba2 ≡ a1 + π1(a

∗
1, a

∗
2)).

Then π2(a1,ba2 (a1)) = v(a1) − c(a1 + π1(a
∗
1, a

∗
2)); the derivative of this expression with respect to

a1 is v0(a1)− c0(a1 + π1(a
∗
1, a

∗
2)), which is decreasing. That is, π2(a1,ba2 (a1)) is concave in a1; and

it must reach a maximum at a1 = a∗1,ba2 (a1) = a∗2, since (a
∗
1, a

∗
2) is materially Pareto efficient.

Therefore, any value less than π2(a
∗
1, a

∗
2) is achieved exactly once by π2(a1,ba2 (a1)) for a1 < a∗1. In

particular, the (unique) value of π2 ≤ π2(a
∗
1, a

∗
2) such that U (π1(a

∗
1, a

∗
2), π2) = 0 is achieved exactly

once, which is what was required. Note that ba2 < a∗2.

By hypothesis,
∂UA

∂π1
− c0(ba2)∂UA

∂π2
< 0

at π(a∗1, a
∗
2). This ensures

∂UA

∂π2
≥ 0 at π(a∗1, a∗2) (otherwise we would have to have ∂UA

∂π1
< 0, violating

joint-monotonicity). Since ba2 < a∗2, we have c
0(ba2) < c0(a∗2), so

∂UA

∂π1
− c0(a∗2)

∂UA

∂π2
< 0

at π(a∗1, a
∗
2) also. Hence Lemma 3 implies that the second-mover’s optimal strategy a2 (a1) satisfies

the fairness rule for all a1 in a neighborhood of a∗1.

We next show that
∂UA

∂π1
− c0(ba2)∂UA

∂π2
< 0

at all individually-rational transactions π(a1, a2) such that π1(a1, a2) > π1(a
∗
1, a

∗
2). Suppose to the

contrary there were some π(a1, a2) at which ∂UA

∂π1
− c0(ba2)∂UA

∂π2
≥ 0. ∂UA

∂π2
≥ 0 there (else ∂UA

∂π1
< 0,

violating joint-monotonicity), so by choosing a value k slightly smaller than c0(ba2), we have
∂UA

∂π1
− k

∂UA

∂π2
> 0

strictly at π(a1, a2). Since k is very close to c0(ba2), we know that
∂UA

∂π1
− k

∂UA

∂π2
< 0
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at π(a∗1, a
∗
2). So if we draw “budget lines” l, l

0 each with slope −k passing through the two points

π(a∗1, a
∗
2) and π(a1, a2), respectively, the second-mover’s most-preferred point on line l is below

π(a∗1, a
∗
2) and his most-preferred point on l0 is above π(a1, a2). (Even though we have only local

conditions, we know this holds for the global optimum on each line by Technical Lemma.) By

assumption, π1(a1, a2) > π1(a
∗
1, a

∗
2). So the normal good assumption is violated unless l lies to

the left of l0. But the slope of the material Pareto-efficiency frontier at π(a∗1, a
∗
2) is −c0(a∗2) < −k,

which means that (π2 − π∗2)/(π1 − π∗1) < −k; hence the line l lies to the right of l0. So, we have a

contradiction.

To prove that a∗1 is the first-mover’s global optimum, we show that at any individually-rational

transaction (a1, a2) that gives the first-mover a higher material payoff, the second-mover would

prefer to reduce his action. First, we claim that at any such transaction (a1, a2), we have a2 > ba2.
Accepting this for now, we get c0(a2) > c0(ba2); hence, using the result from the previous paragraph,
∂UA

∂π1
− c0(a2)

∂UA

∂π2
< 0 at π(a1, a2). (Again, ∂UA

∂π2
≥ 0; else joint-monotonicity is violated.) This

implies that, at this transaction, the second-mover would strictly prefer to lower his action (note

that since we assumed π1(a1, a2) > π1(a
∗
1, a

∗
2), U

A is indeed the relevant part of the utility function

here).

It remains only to show that, for any individually-rational transaction (a1, a2) with π1(a1, a2) >

π1(a
∗
1, a

∗
2), we have a2 > ba2. So suppose a2 ≤ ba2. Then we must have a1 < ba1. Using concavity of

v and convexity of c, we get v0(ba1) > v0(a∗1) = c0(a∗2) > c0(ba2), and concavities also give
π2(a1, a2)− π2(ba1,ba2)
π1(a1, a2)− π1(ba1,ba2) <

(a1 − ba1)v0(ba1)− (a2 − ba2)c0(ba2)
(a2 − ba2)− (a1 − ba1)

<
−(a2 − ba2)c0(ba2)

(a2 − ba2) = −c0(ba2).
Thus, the line segment from π(ba1,ba2) upward to π(a1, a2) has a slope lying between −c0(ba2) and 0.

At the point (ba1,ba2), we have U = UA = 0. At this point, the directional derivative of UA in the

direction (−c0(ba2), 1) is ≤ 0 (this is given); and the directional derivative in the direction (−1, 0) is
also ≤ 0 (because U must increase in the direction leading to π(a∗1, a

∗
2), namely (1, 0)). At least one

of these directional derivatives is strictly negative, by (TA). Hence, the derivative in the direction

leading to π(a1, a2) is strictly negative. It follows that U(π(a1, a2)) ≤ UA(π(a1, a2)) < 0, which

contradicts the assumption that this point was individually-rational. This completes the proof.

¤
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Figure 1.  Indifference curves corresponding to social preferences that satisfy joint-monotonicity and 
quasi-concavity.  Panel (a): Inequity-averse preferences.  Panel (b): Becker’s altruism model, which has 
monotonic preferences.  Panel (c): Smooth preferences that are not monotonic.  Panel (d): Fairness-kinked 
preferences, where the fairness rule is not the equal-sharing rule.  Due to the non-monotonicity, the black 
point is preferred to the white point that gives higher material payoffs to both players. 
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Figure 2.  Relationship between utility Pareto efficiency and material Pareto-efficiency.  The set of 
individually-rational material payoffs, shown in gray, is convex and compact.  The black point 
corresponds to the second-mover’s favorite transaction.  The utility Pareto-efficiency frontier is the subset 
of the material Pareto-efficiency frontier that gives lower material payoff to the second mover than the 
second-mover’s favorite transaction does.  The white point is the outcome if contracts are enforceable and 
the first mover can make a take-it-or-leave offer to the second mover. 



material 
Pareto-
efficiency

frontier

equilibrium

U = 0

1

2
a1 = a1’

a1 = a1’’ a1 = a1’’’

 
Figure 3.  Equilibrium with smooth social preferences and strictly convex c(a2) is inefficient.  The 
material payoff budget curves are shown for first-mover actions a1’ < a1’’ < a1’’’.  The white 
points show the action the second mover would choose at non-equilibrium actions by the first 
mover.  The arrow illustrates how material payoffs vary as the first-mover’s action increases.  
Note that the materially Pareto-efficient transaction along the path of the arrow is not an 
equilibrium because the first mover can profitably deviate to a lower action.  The black point is 
the equilibrium. 
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Figure 4.  If both players’ material payoff functions are linear in the second-mover’s action, and if U is 
normal, then the equilibrium is efficient.  The material payoff budget curves are lines parallel to the 
material Pareto-efficiency frontier (shown for first-mover actions a1’ < a1’’ < a1’’’).  The white points 
show the action the second mover would choose at non-equilibrium actions by the first mover.  The arrow 
illustrates how material payoffs vary as the first-mover’s action increases.  The black point is the 
equilibrium. 
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Figure 5.  The three possible equilibria with fairness-kinked preferences.  The material payoff budget 
curves are shown for first mover actions a1’ < a1’’ < a1’’’.  The white points show the action the second 
mover would choose at non-equilibrium actions by the first mover.  The arrow illustrates how material 
payoffs vary as the first-mover’s action increases.  The black point is the equilibrium.  (a) The second-
mover’s favorite transaction is not on the fairness rule.  Equilibrium is inefficient.  (b) Equilibrium with 
sufficiently-kinked and normal social preferences is utility Pareto efficient.  (c) The first mover 
maximizes her material payoff by taking a small action â1 instead of the action a1* that would lead to an 
efficient outcome.  The social preferences shown violate the assumption that U is normal. 


