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Abstract

The paper studies a class of games, “All-Pay Contests”, which captures general asymme-

tries and sunk investments inherent in scenarios such as lobbying, competition for market

power, labor-market tournaments, and R&D races. Players compete for one of several iden-

tical prizes by choosing a score. Conditional on winning or losing, it is weakly better to do

so with a lower score. This formulation allows for differing production technologies, costs of

capital, prior investments, attitudes towards risk, and conditional and unconditional invest-

ments, among others. I provide a closed-form formula for players’ equilibrium payoffs, and

analyze player participation. A special case of contests is multi-prize, complete-information

all-pay auctions.
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1 Introduction

In many settings, economic agents compete by making irreversible investments before the out-

come of the competition is known. Lobbying activities, research and development races, and

competitions for promotions, to name a few, all have this property.

This type of competition has been widely studied in the literature. In the classic all-pay

auction with complete information (henceforth: all-pay auction), for example, rivals incur a

cost of bidding that is the same whether they win or lose, but may differ in their valuation

for winning the single prize. The all-pay auction has been used to model rent-seeking and

lobbying activities (Hillman & Samet (1987), Hillman & Riley (1989), Baye, Kovenock & de

Vries (1993)), competitions for a monopoly position (Ellingsen (1991)), waiting in line (Clark &

Riis (1998)), sales (Varian (1980)), and R&D races (Dasgupta (1986)). Variations of the all-pay

auction have been used to model competitions for multiple prizes (Clark & Riis (1998) and

Barut & Kovenock (1998)), the effect of lobbying caps (Che & Gale (1998, 2006) and Kaplan

& Wettstein (2006)), and R&D races with endogenous prizes (Che & Gale (2003)). While this

literature has produced interesting results, the models considered are often restrictive in some

or all of the following dimensions: the types of asymmetries across players, the number of prizes,

the number of players, and the degree of irreversibility of the investments.

The goal of this paper is to better understand competitions in which contestants are asymmet-

rically positioned and make irreversible investments. To this end, I investigate all-pay contests

(henceforth: contests). In a contest, each player chooses a costly “score”, and the players with

the highest scores obtain one prize each (relevant ties can be resolved using any tie-breaking

rule). Thus, ex-post, each player can be in one of two states: winning or losing. Conditional

on winning or losing, a player’s payoff decreases weakly and continuously with his chosen score;

choosing a higher score entails a player-specific cost, which may differ across the two states. The

primitives of the contest are commonly known. This captures players’ knowledge of the asym-

metries among them. Consequently, equilibrium payoffs represent players’ “economic rents”, in

contrast to “information rents” that arise in models of competition with private information.1

Contests are defined in Section 2.

The generality of players’ cost functions allows for differing production technologies, costs

of capital, and prior investments, among others. Moreover, contests allow for non-ordered cost

functions. These arise when different competitors are disadvantaged relative to others in different

regions of the competition (see the example of Section 1.1 below). In addition, state-dependent

costs accommodate both sunk and conditional investments, player-specific risk attitudes, and

1Such models typically assume ex-ante identical players (for example, Moldovanu & Sela (2001, 2006) and

Kaplan, Luski, Sela, & Wettstein (2002)). An exception is the work by Parreiras & Rubinchik (2006), who allow

for asymmetry between players and provide a partial characterization of equilibrium.
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player- and score-dependent valuations for a prize.2

When all investments are unconditional, each player is characterized by his valuation for a

prize, which is the payoff difference between the two states, and a weakly increasing, continuous

cost function that determines his cost of choosing a score independently of the state. I refer to

such contests as separable contests. Separable contests nest many models of competition that

assume a deterministic relation between effort and prize allocation.3 For example, the models

of Che & Gale (2006) and Kaplan & Wettstein (2006) are two-player, single-prize separable

contests.4 Single- and multi-prize all-pay auctions are separable contests with linear costs, in

which asymmetries among players are captured only by differences in valuations for a prize.

Section 3 begins the analysis by identifying an unambiguous ranking of players. Such a

ranking is not immediately obvious, because players’ costs may not be ordered. Players are

ranked in decreasing order of their reach, where a player’s reach is the highest score he can

choose without obtaining a negative payoff if he wins a prize with certainty.

The key result of the paper is Theorem 1, which provides a full characterization of players’

expected equilibrium payoffs in a “generic” contest form prizes. Expected payoffs are determined

by reaches, powers, and the threshold. The threshold is the reach of player m + 1. A player’s

power equals his payoff from winning a prize with certainty when choosing a score equal to the

threshold. Theorem 1 shows that under “generic” conditions - checked using players’ powers -

each player’s expected payoff equals the higher of his power and zero. Thus, a generic contest

has the same payoffs in all equilibria. Theorem 1 also shows that the number of players who

obtain strictly positive expected payoffs equals the number of prizes. The derivation of the payoff

characterization does not rely on solving for an equilibrium.

The payoff result implies that a player’s expected payoff does not depend on his cost when

he loses. For example, a player’s expected payoff in a modified complete-information first-price

auction in which he pays a strictly positive fraction of his bid if he loses does not depend on the

2González-Díaz (2007) also allows for non-linear, state-dependent costs, but accommodates only a single prize

and ordered costs. His techniques and results do not generalize to non-ordered costs or multiple prizes.

3Other models assume a probabilistic relation between players’ efforts and prize allocation. The classic

examples are Tullock’s (1980) “lottery model”, in which players are symmetric and each player’s probability of

winning the single prize is proportional to the player’s share of the total expenditures, and Lazear & Rosen’s (1981)

two-player tournaments. Recent contributions to this large, single-prize literature that accommodate a degree

of asymmetry include Cornes & Hartley (2005) and Szymanski & Valletti (2005). The analysis of probabilistic

models typically focuses on pure-strategy equilibria by using first-order conditions. Functional form assumptions

are made “[...] to ensure the existence of pure-strategy equilibria and first-order conditions characterizing these

equilibria” (Szymanski & Valletti (2005)).

4Although Che & Gale (2006) have N ≥ 2 players, they assume strictly ordered costs so only two players
participate in equilibrium.
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size of the fraction. When the fraction equals 1 for all players, we have an all-pay auction.

Section 3.2 discusses contests that are not generic. In such contests, players’ payoffs in at

least one equilibrium are specified by the payoff characterization, but payoffs in other equilibria

may be different. Perturbing a contest that is not generic leads to a generic contest.

Section 4 examines equilibrium participation. Participation is related to the ordering of

players’ costs. Theorem 2 shows that when players’ costs (appropriately normalized) are strictly

ordered, at most m + 1 players participate in any equilibrium. This is why precisely m + 1

players participate in an all-pay auction with distinct valuations. In contrast, non-ordered costs

may lead more than two players to participate even when there is only one prize.5

Section 5 concludes by briefly discussing implications of the analysis for rent dissipation and

comparative statics. The Appendix contains an example of a contest with multiple equilibria,

the proofs of Corollary 1 and Theorem 2, and a technical lemma.

I begin with an example that illustrates the payoff result and some of its implications.

1.1 An Example

Three risk-neutral firms compete for one monopoly position allocated by a government official.

Each firm chooses how much to invest in lobbying activities, and this investment leads to a score,

which can be interpreted as the amount of influence the firm has achieved over the government

official. The firm with the highest score obtains the monopoly position, which carries a monetary

value of 1, but all firms pay the lobbying costs associated with their respective scores. Firms 1

and 2 have better “lobbying technologies” than firm 3, because they have better lobbyists, are

located closer to the government official, or have lower costs of capital. Firm 3 has an initial

advantage, due to prior investments or reputation.

Figure 1 depicts players’ cost functions, where player i ∈ {1, 2, 3} corresponds to firm i. Firm

3’s initial advantage is captured by its initial marginal cost, γ ≥ 0, which is low relative to the
other firms’ marginal costs. In contrast, firm 3’s cost for high scores is high relative to those of

the other two firms. Thus, players’ costs are not ordered. Cost functions are commonly known,

and relevant ties are broken randomly.

The costs of choosing 1 for players 1,2, and 3 are K < 1, 1, and L > 1, respectively.

Consequently, players 2 and 3 would never choose a score higher than 1, since that would

cost them more than the value of the prize. Player 1 can therefore guarantee himself a payoff

5When more than two players participate, general asymmetric costs significantly complicate equilibrium analy-

sis. For this reason, a non-crossing property is the standard assumption in the literature. The few papers that

analyze mixed-strategy equilibria with more than two participants make assumptions, in addition to non-crossing,

that lead to limited asymmetry among participating players (see Baye et al. (1996), Clark & Riis (1998), and

González-Díaz (2007), who showed that the analysis of Baye et al. (1996) generalizes to non-linear costs).
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arbitrarily close to 1−K by choosing a score slightly higher than 1, so 1−K is a lower bound

on his expected payoff in any equilibrium.

Player 1 

Player 3 

Player 2 

Cost

Score

1

0 1

K<1 

L>1 

γ

Player 1 

Player 3 

Player 2 

Cost

Score

11

0

K<1 K<1 

L>1 L>1 

Figure 1: Players’ costs

Player 1 does not, however, choose scores greater or equal to 1 with certainty in equilibrium,

since players 2 and 3 would best-reply by choosing scores lower than 1, in which case player 1

would be better off choosing a lower score. In fact, player 1 must employ a mixed strategy in

any equilibrium. It may therefore seem plausible that such a strategy could give player 1 an

equilibrium payoff higher than 1−K.

Theorem 1 shows that the expected equilibrium payoff of player 1 is exactly 1−K. Similarly,
players 2 and 3 can guarantee themselves no more than 0; the payoff characterization shows that

this is exactly their equilibrium payoff. This implies that aggregate equilibrium expenditures

equal K.

For low, strictly positive values of γ, all three players must participate (invest) in equilibrium.

This is shown in Section 4. Each player contributes to aggregate expenditures and wins the

prize with strictly positive probability. This participation behavior results from the non-ordered

nature of players’ cost functions.6

Now consider a variant of the contest, in which player 3 has 0 marginal cost up to a score

whose cost for player 1 is at least 1. This represents a very large initial advantage for player 3.

In this case, there is a pure-strategy equilibrium in which player 3 wins with certainty and no

player invests. Thus, it may be that no player invests in a contest for a valuable prize.

Regardless of the value of γ, precisely one player receives a strictly positive expected payoff.

This too follows from the payoff characterization, since there is only one prize.

Section 5 discusses the effects of changes in competition structure. For example, the addition

of player 3 from Figure 1 to a contest that includes only players 1 and 2 changes neither expected

payoffs nor expected aggregate expenditures, but changes individual expenditures for low, strictly

6Unlike in the all-pay auctions of Baye et al. (1996), participation by more than two players in a contest for

one prize does not rely on players’ valuations being identical.
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positive values of γ, because all three players participate. Thus, the addition of a player may

change equilibrium behavior, without changing players’ payoffs or aggregate expenditures. In

contrast, lowering the prize’s value can lead to a positive payoff for player 3, making him the

only player who obtains a positive expected payoff.

2 The Model

In a contest, n players compete for m homogeneous prizes, 0 < m < n. The set of players

{1, . . . , n} is denoted by N . Players compete by each choosing a score, simultaneously and

independently. Player i chooses a score si ∈ Si = [ai,∞), where ai ≥ 0 is his initial score.

Positive initial scores capture starting advantages, or “head starts”, without allowing players to

choose lower scores. This may eliminate equilibria involving weakly dominated strategies (see

Example 4 in Siegel (2007)). Each of the m players with the highest scores wins one prize. In

case of a relevant tie, any procedure may be used to allocate the tie-related prizes among the

tied players.

Player i has preferences over lotteries whose outcomes are pairs (si,Wi), where si is the

player’s score and Wi indicates whether he obtains a prize (Wi = 1) or not (Wi = 0). These

preferences are represented by a Bernoulli utility function. BecauseWi equals 0 or 1, this function

can be written asWivi (si)−(1−Wi) ci (si), where vi : Si → R is player i’s valuation for winning
and ci : Si → R is player i’s cost of losing. The primitives of the contest are commonly known.

Thus, given a profile of scores s = (s1, . . . , sn), si ∈ Si, player i’s payoff is

ui (s) = Pi (s) vi (si)− (1− Pi (s)) ci (si)

where Pi : ×j∈NSj → [0, 1], player i’s probability of winning, satisfies

Pi (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if sj > si for m or more players j 6= i

1 if sj < si for N −m or more players j 6= i

any value in [0, 1] otherwise

such that
Pn

j=1 Pj (s) = m.

Note that a player’s probability of winning depends on all players’ scores, but his valuation for

winning and cost of losing depend only on his chosen score.

I make the following assumptions.

A1 vi and −ci are continuous and non-increasing.

A2 vi (ai) > 0 and limsi→∞ vi (si) < ci (ai) = 0.
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A3 ci (si) > 0 if vi (si) = 0.

Assumption A1 means that, conditional on winning or losing, a lower score is weakly prefer-

able.7 This represents an “all-pay” component. Assumption A2 means that with the initial

score winning is better than losing, so prizes are valuable, but losing with the initial score is

preferable to winning with sufficiently high scores. Assumption A3 means that if winning with

score si is as good as losing with the initial score, then winning with score si is strictly better

than losing with score si. This last condition stresses the all-pay nature of contests. It is not

satisfied by complete-information first-price auctions, for example, since a player pays nothing

if he loses, and is therefore indifferent between losing and winning with a bid that equals his

valuation for the prize. But the condition is met when an all-pay element is introduced, e.g.,

when every bidder pays some strictly positive fraction of his bid whether he wins or not, and

only the winner pays the balance of his bid.

The formulation allows the difference between a player’s valuation for winning and his cost

of losing to depend on his chosen score. For example, in a competition for promotions in which

a higher score is achieved by investing in managerial skills, such skills are costly to acquire

and may increase the value associated with a promotion. Or, it may be that the value of the

prize for player i is fixed at Vi but some costs are only borne if the player wins, so his costs

are cWi when he wins and cLi when he loses. In this case, vi (si) = Vi − cWi (si) and ci = cLi ,

so ui (s) = Pi (s)
¡
Vi − cWi (si)

¢
− (1− P (s)) cLi (si). When thinking about the outcome of a

contest in monetary terms, contests can capture players’ risk attitudes. In the previous setting,

for example, we can let vi (si) = f
¡
Vi − cWi (si)

¢
and ci = f

¡
cLi
¢
for some strictly increasing f

such that f (0) = 0.

One subclass of contests that is of particular interest is separable contests. In a separable

contest, every player i’s preferences over lotteries with outcomes (si,Wi) depend only on the

marginal distributions of the lotteries.8 This implies that the effect of winning or losing on a

player’s Bernoulli utility is additively separable from that of the score, i.e., vi (si) = Vi − ci (si)

and ui (s) = Pi (s)Vi − ci (si) for Vi = vi (ai) > 0.9 If we interpret payoffs as money, the value

7The “non-increasing” part of Assumption A1 can be relaxed to requiring that (i) vi be non-increasing where

it is non-negative, i.e., if y > x, then vi (x) ≥ 0 and vi (y) ≥ 0 imply vi (x) ≥ vi (y), (ii) vi cross 0 once from

above, i.e., if y > x, vi (x) < 0 implies vi (y) < 0, and (iii) ci ≥ 0 and if y > x, then ci (x) > 0 implies ci (y) > 0.

8For example, in a separable contest player i is indifferent between a lottery in which (ai, 1) occurs with

probability 1
2 and (si, 0) occurs with probability

1
2 , and a lottery in which (ai, 0) occurs with probability

1
2 and

(si, 1) occurs with probability 1
2 (for any si ≥ ai), because the marginal distribution of the first coordinate is the

same in both lotteries, and the marginal distribution of the second coordinate is the same in both lotteries.

9Indeed, if player i’s Bernoulli utility is not additively separable, then vi (ai) + ci (ai) 6= vi (si) + ci (si) for

some si > ai. But then the player is not indifferent between the two lotteries described in the previous footnote,

even though their marginal distributions are the same. The converse is also true: if the player i’s Bernoulli utility
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ci (si) could be thought of as player i’s cost of choosing score si, which does not depend on

whether he wins or loses, and Vi could be thought of as player i’s valuation for a prize, which

does not depend on his chosen score. All expenditures are unconditional, and players are risk

neutral. The example of Section 1.1 depicts a separable contest with three players and non-linear

costs. The lobbying games of Kaplan & Wettstein (2006) and Che & Gale (2006) are two-player

separable contests. Separable contests with linear costs are the single- and multi-prize complete-

information all-pay auction (Hillman & Samet (1987), Hillman & Riley (1989), Clark & Riis

(1998)).10

3 Payoff Characterization

The following concepts are key in analyzing the payoffs of players in equilibrium.

Definition (i) Player i’s reach ri is the highest score at which his valuation for winning is 0.

That is, ri = max {si ∈ Si|vi (si) = 0}. Re-index players in (any) decreasing order of their reach,
so that r1 ≥ r2 ≥ . . . ≥ rn.

(ii) Player m+ 1 is the marginal player.

(iii) The threshold T of the contest is the reach of the marginal player: T = rm+1.

(iv) Players i’s power wi is his valuation for winning at the threshold. That is, wi = vi (max {ai, T}).
In particular, the marginal player’s power is 0.

In a separable contest, a player’s reach is the highest score he can choose by expending

no more than his valuation for a prize. In the example of Section 1.1, players are indexed in

decreasing order of their reach, player 2 is the marginal player, and the threshold is 1. Player

1’s power is 1−K > 0, player 2’s power is 0, and player 3’s power is 1− L < 0. In an m-prize

all-pay auction, player i is the player with the ith highest valuation, and his power equals his

valuation less that of the marginal player.

Theorem 1 below characterizes players’ equilibrium payoffs in contests that meet the following

two conditions.

Generic Conditions (i) Power Condition - The marginal player is the only player with power

0. (ii) Cost Condition - The marginal player’s valuation for winning is strictly decreasing at the

is additively separable, it is immediate that his preferences over lotteries with outcomes (si,Wi) depend only on

the marginal distributions of the lotteries.

10Formally, vi (si) = Vi − si, ci (si) = si, ai = 0, and ties are resolved by randomizing uniformly, where Vi is

bidder i’s valuation for a prize.
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threshold, i.e., for every x ∈ [am+1, T ), vm+1 (x) > vm+1 (T ) = 0.11

I refer to a contest that meets the Generic Conditions as a generic contest. The separable

contest in the example of Section 1.1 is generic, because the marginal player’s costs are strictly

increasing at the threshold and only he has power 0. An m-prize all-pay auction meets the Cost

Condition because costs are strictly increasing. If the Power Condition is met, i.e., the valuation

of the marginal player is different from those of all other players, the all-pay auction is generic.

Contests that do not meet the Generic Conditions can be perturbed slightly to meet them.

Perturbing the marginal player’s valuation for winning around the threshold leads to a contest

that meets the Cost Condition. Doing the same for all players with power 0 generates a contest

that meets the Power Condition. Note that in a generic contest, players in NW = {1, . . .m}
(“winning players”) have strictly positive powers, and players in NL = {m+ 1, . . . , n} (“losing
players”) have non-positive powers.

I now state the main result of the paper.

Theorem 1 In any equilibrium of a generic contest, the expected payoff of every player equals

the maximum of his power and 0.

An immediate implication of Theorem 1 is that in a generic contest players in NW have

strictly positive expected payoffs and players in NL have expected payoffs of zero. Equivalently,

a player obtains a strictly positive expected payoff in a generic contest if and only if his reach is

strictly higher than the threshold.

Players’ equilibrium strategies may be mixed, so players in NW may obtain a prize with

probability smaller than 1, and players inNL may obtain a prize with strictly positive probability.

It is only expected payoffs that are positive for players in NW , and 0 for players in NL. In the

example of Section 1.1, NW = {1} and NL = {2, 3}. The contest is generic, so player 1’s payoff
is 1 − K, and those of players 2 and 3 are 0. In an m-prize generic all-pay auction in which

player i’s value is Vi, the payoff of every player i is max {Vi − Vm+1, 0}.12

I use the following notation in the proof of Theorem 1. Pi (·), player i’s probability of winning,
and ui (·), player i’s utility, are expanded to mixed strategies. A mixed strategy Gi of player i

is a cumulative probability distribution that assigns probability 1 to his set of pure strategies

Si. When a strategy profile G = (G1, . . . , Gn) is specified, Pi (x) is shorthand for player i’s

probability of winning when he chooses x ≥ ai with certainty and all other players play according

to G, and similarly for ui (x). For an equilibrium (G1, . . . , Gn), denote by ui = ui (Gi) player i’s

equilibrium payoff. Note that in equilibrium best responses are chosen with probability 1. The

11In a separable contest, because vm+1 (x) = Vm+1−cm+1 (x), the cost condition is that for every x ∈ [am+1, T ),
cm+1 (x) < cm+1 (T ) = Vm+1.

12Players’ payoffs in a multi-prize all-pay auction in which all players have different valuations were first derived

by Clark & Riis (1998).
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phrase “player i beats player j” refers to player i choosing a strictly higher score than player j

does. For a set I, denote by |I| the cardinality of I.
Proof of Theorem 1. Choose a generic contest and an equilibrium G = (G1, . . . , GN) of

the contest.

Least Lemma A player’s expected payoff in G is at least the maximum of his power and 0.

Proof. Every player i can guarantee himself a payoff of 0 by choosing his initial score, ai (recall
that vi (ai) > 0 and ci (ai) = 0). It therefore suffices to consider players with strictly positive

power, all of whom are in NW . In equilibrium, no player chooses scores higher than his reach

with a strictly positive probability, since choosing such scores leads to a negative payoff (by

assumptions A1 and A3). So, by choosing max {ai, T + ε} for ε > 0, a player i in NW beats all

N −m players in NL with certainty. This means that for every player i in NW

ui ≥ vi (max {ai, T + ε}) →
ε→0

vi (max {ai, T}) = wi

by continuity of vi.

Tie Lemma Suppose that in G two or more players have an atom at a score x, i.e., choose

x with strictly positive probability. Then players who have an atom at x either all win with

certainty or all lose with certainty when choosing x.

Proof. Denote by N 0 the set of players who have an atom at x, with |N 0| ≥ 2. Denote by E

the strictly positive-probability event that all players in N 0 choose x. Denote by D ⊆ E the

event in which a relevant tie occurs at x, i.e., the event in which m0 prizes are divided among

the |N 0| players in N 0, with 1 ≤ m0 < |N 0|. Suppose D has strictly positive probability. Then,

conditional on D, at least one player i in N 0 can strictly increase his probability of winning to 1

by choosing a score slightly higher than x, regardless of the tie-breaking rule. Since i chooses x

with strictly positive probability, x ≤ ri so vi (x) > −ci (x) (by assumptions A1-A3). Thus, by
continuity of vi and ci, player i would be strictly better off by choosing a score slightly higher

than x. Therefore, D has probability 0. This implies that P (E) = P
¡
EL
¢
+ P

¡
EW

¢
, where

EL ⊆ E is the event that at least m players in N\N 0 choose scores strictly higher than x,

EW ⊆ E is the event that at most m− |N 0| players in N\N 0 choose scores strictly higher than x,

and P (A) denotes the probability of event A. By independence of players’ strategies, either EL

or EW have probability 0, otherwise D would have strictly positive probability. Suppose that

P (E) = P
¡
EL
¢
. Independence of players’ strategies now implies that, without conditioning

on E, at least m players in N\N 0 choose scores strictly higher than x with probability 1, so

Pi (x) = 0 for every player i in N 0. Similarly, if P (E) = P
¡
EW

¢
then Pi (x) = 1 for every player

i in N 0.
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Several players may have an atom at the same score in equilibrium; the Tie Lemma only

rules out ties in which at least one player wins with a strictly positive probability that is less

than 1. That no such ties arise in equilibrium helps establish which players have an expected

payoff of 0.

Zero Lemma In G, at least n−m players have best responses with which they win with prob-

ability 0 or arbitrarily close to 0. These players have an expected payoff of at most 0.

Proof. Denote by J a set of some m + 1 players. Denote by S̃ the union of the best-response

sets of the players in J , and by sinf the infimum of S̃. Consider three cases: (1) two or more

players in J have an atom at sinf , (2) exactly one player in J has an atom at sinf , and (3) no

player in J has an atom at sinf .

Case 1: Denote by N 0 ⊆ J the set of players in J who have an atom at sinf . It cannot be that

Pi (sinf) = 1 for every player i in N 0: because any player in J\N 0 chooses scores strictly higher

than sinf with probability 1, even if the players in N\J choose scores strictly lower than sinf with
probability 1, only

m− |(J\N 0)| = m− (m+ 1− |N 0|) = |N 0|− 1 > 0

prizes are divided among the |N 0| players in N 0. Thus, the Tie Lemma shows that Pi (sinf) = 0

for every player i in N 0.

Case 2: Denote by i the only player in J with an atom at sinf . Pi (sinf) = 0, since all m players

in J\ {i} choose scores strictly higher than sinf with probability 1.

In cases (1) and (2), Pi (sinf) = 0 for some player i ∈ J who has an atom at sinf , so sinf is a best

response for this player at which he wins with probability 0.

Case 3: By definition of sinf , there exists a player i in J with best responses {xn}∞n=1 that
approach sinf . Since 1 ≥ 1−Pi (xn) ≥

Q
j∈J\{i} (1−Gj (xn)), no player has an atom at sinf , and

G is right-continuous, as n tends to infinity Pi (xn) approaches 0.

Because J was a set of any m+1 players, at least n−m players have best responses with which

they win with probability 0 or arbitrarily close to 0, and therefore have an expected payoff of at

most 0.

The Least Lemma, the Tie Lemma, and the Zero Lemma hold regardless of the Generic

Conditions. The Least Lemma and the Power Condition show that the m players in NW have

strictly positive expected payoffs. Therefore, the Least Lemma and the Zero Lemma imply that

under the Power Condition the n −m players in NL obtain expected payoffs of 0. Using this

fact, I show that players in NW obtain at most their power.

Threshold Lemma The players in NW have best responses that approach or exceed the thresh-

old, and therefore have an expected payoff of at most their power.
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Proof. By the Power Condition, players in NL\ {m+ 1} have strictly negative powers. Their
reaches, and therefore the supremum of their best responses, are strictly below the threshold.

Consequently, there is some ssup < T such that Gi (x) = 1 for every player i in NL\ {m+ 1}
and every score x > ssup. This implies that every player i in NW chooses scores that approach

or exceed the threshold, i.e., has Gi (x) < 1 for every x < T . Otherwise, for some s in (ssup, T ),

Gi (s) = 1 for all but at most m− 1 players in N\ {m+ 1}. But then the marginal player could
win with certainty by choosing a score in (max {am+1, s} , T ) (note that am+1 < T ); because of

the Cost Condition, this would give him a strictly positive payoff, a contradiction (recall that

the marginal player is in NL and therefore has an expected payoff of 0).

Take a player i in NW . Because Gi (x) < 1 for every x < T , there exists a sequence {xn}∞n=1 of
best responses for player i that approach some zi ≥ T . Since xn is a best response for player

i, who has a strictly positive payoff by the Least Lemma and the Power Condition, vi (xn) > 0.

So, by assumptions A1 and A2, vi (xn) > −ci (xn). By continuity of vi, we have

ui = ui (xn) = Pi (xn) vi (xn)− (1− Pi (xn)) ci (xn) ≤ vi (xn) →
xn→zi

vi (zi) ≤ vi (T ) = wi

so every player in NW obtains at most his power.

The Least Lemma and the Threshold Lemma, which relies on the Generic Conditions, show

that players in NW have expected payoffs equal to their power. We have seen that players in NL

have expected payoffs of 0. Since NL ∪NW = N , the expected payoff of every player equals the

maximum of his power and 0.

3.1 Discussion of the Payoff Characterization

Equilibrium payoffs in generic contests depend only on players’ valuations for winning at the

threshold, even though the equilibria generally depend on players’ valuations for winning and

costs of losing at all scores up to the threshold.13 From an applied perspective, only the reach of

each player and valuations for winning at a single score, the threshold, need to be computed. In

particular, players’ costs of losing do not affect payoffs. This means, for example, that a player’s

expected payoff in an all-pay auction does not change if instead of paying his entire bid he pays

only a strictly positive fraction of his bid in advance and the rest only if he wins (as long as the

fraction is specified in advance).

The payoff result implies that the number of players who obtain positive expected payoffs

equals the number of prizes. That no more than m players obtain positive payoffs for every

13Equilibria may also include multiple atoms at various scores and multiple gaps in players’ best response sets

(see Example 4 and page 23 of Siegel (2007)).
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realization of players’ strategies (and tie-breaking randomization, if necessary) follows from the

definition of contests. The payoff result shows that this is also true in expectation.

As the example of Section 1.1 illustrates, contests do not, in general, have pure-strategy

equilibria.14 Existence of an equilibrium (in pure or mixed strategies) is not immediately obvious,

since payoffs are discontinuous in pure strategies, of which there is a continuum. Simon &

Zame’s (1990) result shows that an equilibrium exists for some tie-breaking rule. The following

corollary of their result and the Tie Lemma above, whose proof is in the Appendix, shows that

an equilibrium exists for any tie-breaking rule.

Corollary 1 Every contest has a Nash equilibrium.

The payoff result does not rely on equilibrium uniqueness: Example 3 in the Appendix

describes a generic separable contest and two equilibria of the contest. Moreover, these equilibria

lead to different allocations of the prize and different aggregate expenditures, so standard revenue

equivalence techniques cannot be used to compare players’ payoffs across equilibria.

3.2 Contests That Are Not Generic

Although the payoff result does not apply to contests that are not generic, it implies the following.

Corollary 2 Every contest (generic or not) has at least one equilibrium in which every player’s
payoff is the maximum of his power and 0.

This “upper-hemicontinuity” result can be proved by considering a sequence of generic con-

tests that “approach” the original contest, and an equilibrium for each contest in the sequence.

Every limit point (in the weak* topology) of the resulting sequence of equilibria is an equilibrium

of the original contest in which payoffs are given by the payoff result.15

The payoff result also holds for contests in which all players are identical, even though such

contests do not meet the Power Condition (all players have power 0). This is because in any

equilibrium of any contest, identical players have identical payoffs,16 and the Zero Lemma, which

does not require the Generic Conditions, shows that at least one player has payoff 0. Therefore,

14Pure-strategy equilibria arise when players with positive power have head starts sufficiently large to dissuade

weaker players from participating. Such equilibria do not arise in all-pay auctions, regardless of the difference in

players’ valuations. The payoff result applies to both pure- and mixed-strategy equilibria.

15Probability measures on the Borel subsets of the compact metric set [ai, ri + ε] are regular (for any ε > 0),

so the set of these probability measures is weak* compact and has at least one limit point (see, for example,

Dunford & Schwartz (1988)).

16Suppose players i and j 6= i are identical, and consider an equilibrium G. Player i can choose scores slightly

above the supremum of player j’s best responses, beating player j for sure and beating the other players at least

12



Corollary 3 In any equilibrium of a contest in which all players are identical, all players have

a payoff of 0.

When players are not identical and the contest is not generic, the payoff of a player in some

equilibrium may be very close to his valuation for winning at his initial score, even if his power is

very low. Example 1 below shows this when the Power Condition fails; Example 2 below shows

this when the Cost Condition fails.

3.2.1 Example 1 - The Power Condition Fails and the Payoff Result Does Not Hold

Consider the following three-player separable contest for one prize of common value 1, which is

a modification of the example from Section 1.1. Players’ costs are

c1 (x) =

⎧⎨⎩ (1− α)x if 0 ≤ x ≤ h

(1− α)h+
¡
1 + αh

1−h
¢
(x− h) if x > h

c2 (x) =

⎧⎨⎩ (1− ε)x if 0 ≤ x ≤ h

(1− ε)h+
¡
1 + εh

1−h
¢
(x− h) if x > h

, c3 (x) =

⎧⎨⎩ γx if 0 ≤ x ≤ h

γh+ L (x− h) if x > h

for some small α, ε in (0, 1), small γ ≥ 0, h in (0, 1), and L > 0. Regardless of the value

of L, the threshold is 1 and the Power Condition is violated (since at least two players have

power 0). Costs are strictly increasing at 1 for all players, so the Cost Condition is met. It is

straightforward to verify that for any h in (0, 1), there exists some β > 0 and M > 0 such that

if α, ε, γ < β and L > M , then (G1, G2, G3) is an equilibrium, for

G1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

(1− ε)h+ γ
1−α

¡
x
h
− 1
¢

if 0 ≤ x ≤ h

(1− ε)h+
¡
1 + εh

1−h
¢
(x− h) if h < x ≤ 1

1 if x > 1

G2 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

(1− α)h if 0 ≤ x ≤ h

(1− α)h+
¡
1 + αh

1−h
¢
(x− h) if h < x ≤ 1

1 if x > 1

, G3 (x) =

⎧⎨⎩ x/h if x ≤ h

1 if x > h

The top part of Figure 2 below depicts players’ costs. The bottom part depicts players’ atoms

and densities in the equilibrium (G1, G2, G3).

as often as player j does with any best response. This implies that player i’s payoff in G is at least as high as that

of player j, by applying a continuity argument and a reasoning similar to the one used in the proof of Theorem

2.

13



 

(1-ε)h-γ/(1-α)

Player 3

Player 2

Player 1

0 1 

(1-α)h 1+αh/(1-h) 

h

1/h

1+εh/(1-h) γ/(1-α)h

0 1 0 1 0 1 

γh+L(1-h) 
 11 

1-α

1+αh/(1-h) 
1-ε

1+εh/(1-h)

h

γ L 
Player 1 Player 3 Player 2

h h 

Figure 2: Cost functions and the equilibrium (G1, G2, G3) of Example 1

Player 3’s power is 1−γh−L (1− h) (his valuation for the prize less his cost of choosing the

threshold), so as L increases player 3’s power becomes arbitrarily low. But as h tends to 1 and

ε, α, and γ tend to 0, for any value of L > M player 3 wins with near certainty, and his payoff

(1− ε) (1− α)h2−γh approaches the value of the prize. While the equilibrium of Figure 2 may

seem robust, a slight change in player 1’s or 2’s valuation for the prize leads to a generic contest

and destroys the equilibrium (since Theorem 1 then applies).

3.2.2 Example 2 - The Cost Condition Fails and the Payoff Result Does Not Hold

When the Cost Condition fails the marginal player cannot obtain a strictly positive payoff on

some interval of scores leading up to the threshold, so competition may stop before the threshold

is reached. Consider the following two-player separable contest for one prize of common value

1. Players’ costs are c1 (x) = bx for some b < 1, and

c2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
d

if 0 ≤ x < d

1 if d ≤ x ≤ 1

2x− 1 if x > 1

for some d in (0, 1). Player 1’s reach is 1
b
> 1, player 2’s reach is 1, the threshold is 1, and

players’ powers are w1 = 1 − b > 0 and w2 = 0, so the Power Condition holds. But the Cost

Condition fails, because c−12 (c2 ( r2)) = [d, 1]. As a result, (G1, G2) is an equilibrium in which

14



player 1 has a payoff of 1− bd > w1, for

G1 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0

x
d
if 0 ≤ x ≤ d

1 if x > d

,G2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0

1− bd+ bx if 0 ≤ x ≤ d

1 if x > d

As b approaches 1, player 1’s power approaches 0. But for any value of b, as d approaches

0 player 1’s payoff approaches 1, the value of the prize. Note, however, that
³
G1, G̃2

´
is an

equilibrium in which both players’ payoffs equal their powers, for

G̃2 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0

1− b+ bx if 0 ≤ x ≤ 1

1 if x > 1

4 Participation

A player participates in an equilibrium of a contest if with strictly positive probability he chooses

scores associated with strictly positive costs of losing. Players with strictly negative powers that

are disadvantaged everywhere with respect to the marginal player do not participate in any

equilibrium. This is the content of Theorem 2, which is proved in the Appendix.

Theorem 2 In a generic contest, if the normalized costs of losing and valuations for winning
for the marginal player are, respectively, strictly lower and weakly higher than those of player

i > m+ 1, that is

cm+1 (max {am+1, x})
vm+1 (am+1)

<
ci (x)

vi (ai)
for all x ∈ Si such that ci (x) > 0

and
vm+1 (max {am+1, x})

vm+1 (am+1)
≥ vi (x)

vi (ai)
for all x ∈ Si

then player i does not participate in any equilibrium. In particular, if these conditions hold for

all players in NL\ {m+ 1}, then in any equilibrium only the m + 1 players in NW ∪ {m+ 1}
may participate.

Theorem 2 shows that in a generic all-pay auction only players 1, . . . ,m+1may participate.17

And because players’ cost functions in all-pay auctions are strictly increasing and all initial scores

17Baye et al. (1996) showed that more than two players may participate in certain non-generic, single-prize all

pay auctions.
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equal 0, players 1, . . . ,m+1 do indeed participate.18 This explains why in all-pay auctions with

distinct valuations precisely the m+1 players with the highest valuations place strictly positive

bids with strictly positive probability.

In contrast, the example of Section 1.1 shows that a player in NL\ {m+ 1} may participate if
he has a local advantage with respect to the marginal player. Indeed, the proof of the Threshold

Lemma shows that players 1 and 2 choose scores that approach or exceed the threshold, and

so participate in any equilibrium. Suppose player 3 did not participate. Then, players 1 and 2

would have to play strategies that make all scores in (0, T ) best responses for both of them.19

For low values of γ > 0, player 3 could then obtain a strictly positive payoff by choosing a low

score, contradicting the payoff result. Thus, player 3 must also participate in any equilibrium,

even though his expected equilibrium payoff is 0.

5 Concluding Remarks

All-pay contests capture general asymmetries among contestants, and allow for both sunk and

conditional investments. The paper has provided a closed-form formula for players’ expected

payoffs in generic contests, and analyzed players’ participation. The main insight is that reach

and power are the right variables to focus on when examining contests.

Additional, seemingly complicated questions become simple when this insight in put to use.

Consider for example the issue of rent dissipation, which is central to the rent-seeking literature.

In a separable contest for m prizes of value V , aggregate equilibrium expenditures are simply

mV less players’ payoffs. As winning players’ powers approach 0, which happens when their

costs at the threshold approach V , rent dissipation is complete. As winning players’ powers

approach V , which happens when their costs at the threshold approach 0, no rent is dissipated.

The addition of a player to a contest never lowers the threshold, and therefore makes existing

players weakly worse off. If the new player’s reach is below the existing threshold, existing

players’ payoffs do not change, and the new player has a payoff of 0. The addition of a prize

makes playerm+2 the marginal player, and this lowers the threshold and makes existing players

better off. In contrast, making prizes more valuable may make players worse off, because it raises

the threshold. Further analysis of these issues, which have implications for contest design, is left

for future work.

18The m players in NW participate because, as shown in the proof of the Threshold Lemma, they choose scores

that approach or exceed the threshold. If the marginal player does not choose scores that approach or exceed

the threshold, any player in NW can win with certainty and increase his payoff by choosing a score strictly below

the threshold, contradicting the Threshold Lemma.

19Apply Lemma 1 in the Appendix to the contest that includes only players 1 and 2.
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A Appendix

A.1 Example 3

The example depicts a separable contest and two equilibria of the contest, in which different
players participate and in which aggregate expenditures differ. Let n = 4 and m = 1. I extend
the example of Section 1.1 by adding player 4 , without constructing the contest explicitly. I
will demonstrate the existence of two equilibria, G and G0, such that only players 1,2, and 3
participate in G, and only players 1,2, and 4 participate in G0. Different player participation
implies different allocations, since a player chooses a costly score only if he has a strictly positive
probability of winning by doing so.
Begin with an equilibrium G = (G1, G2, G3) of the example of Section 1.1. When γ is small

and positive, all three players participate inG as shown in Section 4. Let t3 = inf {x : G3 (x) = 1}.
Add player 4 with V4 = 1 and continuous, strictly increasing costs c4 that are lower than those
of player 3 below t3 and equal to them starting from t3. That is, ∀x ∈ (0, t3) : c4 (x) ∈ (0, c3 (x)),
and ∀x ≥ t3 : c4 (x) = c3 (x).
There exist such functions c4, for which an equilibrium is for players 1,2, and 3 to play G,

and for player 4 not to participate. Indeed, assume that player 4 does not participate. Since
player 3’s equilibrium payoff is 0 (his power is negative), he obtains at most 0 by choosing any
score when players 1 and 2 play G1 and G2, respectively, and he wins a prize under G if and
only if he beats players 1 and 2. By Lemma 1 below, there are no atoms in (0, T ) in G so
∀x ∈ (0, T ) : P3 (x) = G1 (x)G2 (x). Player 4, who considers joining in when the others are
playing G, must beat players 1,2, and 3 to win, i.e., ∀x ∈ (0, T ) : P4 (x) = G1 (x)G2 (x)G3 (x).
Let x ∈ (0, t3) (note that t3 < T ), which implies that G3 (x) < 1. If u3 (x) = 0, then P3 (x) > 0

because c3 (x) > 0. Thus, P4 (x) < P3 (x) and P4 (x) − c3 (x) < P3 (x) − c3 (x) = u3 (x) = 0.
If u3 (x) < 0, since P4 (x) ≤ P3 (x) again P4 (x) − c3 (x) < 0. Thus, there exist continuous,
non-decreasing functions c4 such that ∀x ∈ (0, t3) : c4 (x) ∈ (0, c3 (x)) and P4 (x) − c4 (x) < 0.
For such functions, it is a best response for player 4 not to participate when the other players
play G. Since G is an equilibrium of the contest that includes only players 1, 2, and 3, we have
an equilibrium.
Maintaining the same cost functions, consider now an equilibrium G

0
=
¡
G

0
1, G

0
2, G

0
4

¢
of the

contest that includes only players 1,2, and 4. As in the example of Section 1.1, all three players
must participate in G0. When player 3 is added to the contest and doesn’t participate, this
remains an equilibrium. Indeed, player 4’s payoff is zero in G0 (his power is negative), and at
every score player 3’s costs are weakly higher than those of player 4 whereas his probability of
winning is weakly lower than that of player 4.
If aggregate expenditures under the two equilibria are the same, multiply the valuation and

cost of player 4 by some strictly positive d 6= 1. This does not change the equilibria of the
contest, but changes aggregate expenditures in G0.

A.2 Proof of Corollary 1

Consider a contest C and the restricted contest C
0
, in which every player i chooses scores in

S0i = [ai,K], for K = maxi∈N ri <∞. Any equilibrium of C
0
is an equilibrium of C, since scores
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higher than K are strictly dominated by ai for every player i. Thus, it suffices to show that C
0

has an equilibrium.
To do this, consider S∗ = ×i∈NS

0
i\ {(s1, . . . , sn) |∃i 6= j : si = sj}. That is, S∗ is the set of

n-tuples of distinct strategies. Players’ payoffs are bounded and continuous on S∗, which is
dense in ×i∈NS

0
i. So, following Simon & Zame (1990) page 864, there exists some tie-breaking

rule, which may be score dependent, such that C 0 has a mixed-strategy equilibrium G when this
tie-breaking rule is used. Denote the game in which this tie-breaking rule is used by C̃, and
player i’s payoff in the equilibrium G by ũi. To complete the proof, it suffices to show that G is
an equilibrium of C 0. I do this in two steps.
Step 1: A Gi-measure 1 of best responses for player i in C̃ gives player i the same payoff

ũi in C 0 as it does in C̃ when all other players play according to G. Indeed, choosing a score
si at which no player has an atom gives player i the same payoff regardless of the tie-breaking
rule. Since the number of atoms in G is countable, it is enough to show that when choosing
Gi-atoms in C 0 player i obtains ũi. Consider a Gi-atom si. If only i has an atom at si then a tie
occurs with probability 0 so player i obtains ũ in C 0. If there are multiple atoms at si, by the
Tie Lemma the tie is never binding regardless of the tie-breaking rule, so again player i obtains
ũi in C 0.
Step 2: No score gives player i a payoff in C 0 higher than ũi. The only scores si to check are

those at which player i does not have an atom and another player does. Consider such a score
si, and denote player i’s payoff in C 0 when choosing si by u0i (si). By choosing scores slightly
higher than si in C̃, player i can obtain a payoff of at least u0i (si) − ε, for any ε > 0. Thus,
u0i (si) ≤ ũi.

A.3 Proof of Theorem 2

Since dividing a player’s Bernoulli utility by vi (ai) > 0 does not change his strategic behavior,
it suffices to prove the result for contests in which vi (ai) = 1 for every player i. Choose an
equilibrium G of such a contest, and suppose player i > m+ 1 that meets the conditions of the
proposition participated in G. Let ti = inf {x : Gi (x) = 1} < T and and let t̃i = max {am+1, ti}.
Then t̃i < T , Pi (ti) < 1 (because them players in NW choose scores that approach or exceed the
threshold, as shown in the proof of the Threshold Lemma), and for every δ > 0 : Pm+1

¡
t̃i + δ

¢
≥

Pi (ti) since by choosing
¡
t̃i + δ

¢
player m+1 beats player i for sure and beats the other players

at least as often as player i does. Therefore, since for every δ > 0 such that t̃i + δ < rm+1 = T

we have
vm+1

¡
t̃i + δ

¢
> 0 ≥ −cm+1

¡
t̃i + δ

¢
we obtain

um+1 ≥ Pm+1

¡
t̃i + δ

¢
vm+1

¡
t̃i + δ

¢
−
¡
1− Pm+1

¡
t̃i + δ

¢¢
cm+1

¡
t̃i + δ

¢
≥

Pi (ti) vm+1
¡
t̃i + δ

¢
− (1− Pi (ti)) cm+1

¡
t̃i + δ

¢
Now, by definition of participation, ci (ti) > 0, so ci (ti) > cm+1

¡
t̃i
¢
. Since Pi (ti) < 1 and

vm+1 (max {am+1, x}) ≥ vi (x) for all x ∈ Si, by continuity of vm+1 and cm+1 player m + 1 can
choose t̃i + δ for sufficiently small δ > 0 such that

Pi (ti) vm+1
¡
t̃i + δ

¢
− (1− Pi (ti)) cm+1

¡
t̃i + δ

¢
>
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Pi (ti) vi (ti)− (1− Pi (ti)) ci (ti) = ui (ti) ≥ 0

so um+1 > 0, which contradicts the payoff result because wm+1 = 0.

A.4 Statement and Proof of Lemma 1

Lemma 1 In any equilibrium G of a contest with strictly decreasing valuations for winning,
strictly increasing costs of losing, and initial scores of 0, (1) G is continuous on (0, T ), and (2)
every score in (0, T ) is a best response for at least two players.

Proof. Suppose that a player i had an atom at x ∈ (0, T ). Because players 1, . . . ,m+1 choose
scores that approach or exceed the threshold (see the argument in footnote 18), Pj (x) < 1 for
every player j, and, in particular, Pi (x) < 1. If Pi (x) = 0, then player i would be better off
by choosing 0. Therefore Pi (x) ∈ (0, 1). Now, consider a player j 6= i. Because player i has
an atom at x and Pi (x) ∈ (0, 1), player j would be better off choosing scores slightly above x
than choosing scores slightly below x. To see this, suppose player j chose x and all other players
played according to G, with some randomization as the tie-breaking rule at x. Then player i
would still win with a probability in (0, 1) when choosing x, so j would be better off choosing
a slightly higher score, by a reasoning similar to that of the Tie Lemma. Thus, no player j 6= i

chooses scores in some region below x (regardless of the tie-breaking rule), and, by the Tie
Lemma, no player j 6= i has an atom at x. Therefore, player i would be better off by choosing a
score slightly below x. This shows that G is continuous on (0, T ). For (2), note that if x ∈ (0, T )
is not a best response for player i, then continuity of G implies that the same is true for scores in
some neighborhood of x. Therefore, if only one player had a best response at x, he could choose
scores slightly lower than x and win with the same probability, making him better off. Suppose
no player had a best response at x. Then there would be a gap in the union of players’ best
response sets. Continuity of G on (0, T ) implies that the top of the gap cannot be below the
threshold. And because valuations for winning are strictly decreasing and Gi (T ) = 1 for every
player i in NL, players in NW do not have best responses above the threshold. So, Gi (T ) = 1 for
every player i. Now, every player i in {1, . . . ,m+ 1} has Gi (x) < 1 because he chooses scores
that approach or exceed the threshold. So, the top of the gap must be the threshold, and players
{1, . . . ,m+ 1} must each have an atom there, contradicting the Tie Lemma. This shows that x
is a best response for at least two players.

19



References
[1] Barut, Yasar and Kovenock, Dan. “The Symmetric Multiple Prize All-Pay Auction with

Complete Information.” European Journal of Political Economy, November 1998, 14 (4),
pp. 627-644.

[2] Baye, Michael R., Kovenock, Dan and de Vries, Casper G. “Rigging the Lobbying Process:
An Application of All-Pay Auctions.” American Economic Review, March 1993, 83 (1), pp.
289-94.

[3] Baye, Michael R., Kovenock, Dan and de Vries, Casper G. “The All-Pay Auction with
complete-information.” Economic Theory, August 1996, 8 (2), pp. 291-305.

[4] Billingsley, Patrick. “Integration,” in Probability and Measure, New York, New York, Wiley
Interscience, 1995, pp. 199-216.

[5] Che, Yeon-Koo and Gale, Ian. “Caps on Political Lobbying.” American Economic Review,
June 1998, 88 (3), pp. 643—51.

[6] Che, Yeon-Koo and Gale, Ian. “Optimal Design of Research Contests.” American Economic
Review, June 2003, 93(3), pp. 646—71.

[7] Che, Yeon-Koo and Gale, Ian. “Caps on Political Lobbying: Reply.” American Economic
Review, September 2006, 96 (4), pp. 1355-60.

[8] Clark, Derek J. and Riis, Christian. “Competition over More than One Prize.” American
Economic Review, March 1998, 88 (1), pp. 276-289.

[9] Cornes, Richard and Hartley, Roger. “Asymmetric Contests with General Technologies.”
Economic Theory, November 2005, 26 (4), pp. 923-946.

[10] Dasgupta, Partha. “The Theory of Technological Competition,” in Joseph E. Stiglitz and
G. F. Mathewson, eds., New Developments in the Analysis of Market Structure. Cambridge:
MIT press, 1986, pp. 519-47.

[11] Dunford, Neilson and Schwartz, Jacob T. “Linear Operators Part I: General Theory,” New
York, Wiley & Sons, 1988.

[12] Ellingsen, Tore. “Strategic Buyers and the Social Cost of Monopoly.” American Economic
Review, June 1991, 81 (3), pp. 648-57.

[13] González-Díaz, Julio. “A Unifying Model for First-Price Winner-Takes-All Contests.”,
mimeo, 2007.

[14] Harsanyi, John. “Games with Randomly Perturbed Payoffs: A New Rationale for Mixed-
Strategy Equilibrium Points.” International Journal of Game Theory, 1973, 2, pp. 1-23.

[15] Hillman, Arye L. and Riley, John G. “Politically Contestable Rents and Transfers.” Eco-
nomics and Politics, Spring 1989, 1 (1), pp. 17-39.

[16] Hillman, Arye L. and Samet, Dov. “Dissipation of Contestable Rents by Small Numbers of
Contenders.” Public Choice, January 1987, 54 (1), pp. 63-82.

[17] Kaplan, Todd R., Luski, Israel, Sela, Aner, and Wettstein, David. “All-Pay Auctions with
Variable Rewards.” Journal of Industrial Economics, December 2002, 50(4), pp. 417-430.

20



[18] Kaplan, Todd R. and Wettstein, David. “Caps on Political Lobbying: Comment” American
Economic Review, September 2006, 96 (4), pp. 1351-4.

[19] Krishna, Vijay. “The Revenue Equivalence Principle,” in Auction Theory, San Diego, Cali-
fornia, Elsevier Science, 2002, pp. 31-2.

[20] Lazear, Edward P. and Rosen, Sherwin. “Rank-Order Tournaments as Optimum Labor
Contracts.” Journal of Political Economy, October 1981, 89(5), pp. 841-864.

[21] Moldovanu, Benny and Sela, Aner. “The Optimal Allocation of Prizes in Contests.” Amer-
ican Economic Review, June 2001, 91 (3), pp. 542-558.

[22] Moldovanu, Benny and Sela, Aner. “Contest Architecture.” Journal of Economic Theory,
January 2006, 126 (1), pp. 70-96.

[23] Parreiras, Sergio and Rubinchik, Anna. “Contests with Many Heterogeneous Agents”,
mimeo, May 2006.

[24] Siegel, Ron. “All-Pay Contests.” Ph.D. Thesis, Stanford Graduate School of Business, June
2007.

[25] Simon, Leo K. and Zame, William R. “Discontinuous Games and Endogenous Sharing
Rules.” Econometrica, July 1990, 58 (4), pp. 861-872.

[26] Szymanski, Stefan and Valletti, Tommaso M. “Incentive Effects of Second Prizes.” European
Journal of Political Economy, June 2005, 21 (2), pp. 467-481.

[27] Tullock, Gordon. “Efficient Rent Seeking,” in James M. Buchanan, Robert D. Tollison, and
Gordon Tullock, eds., Toward a theory of the rent seeking society. College Station, TX:
Texas A&M University Press, 1980, pp. 269-82.

[28] Varian, Hal. “A Model of Sales.” American Economic Review, September 1980, 70(4), pp.
651-58.

21


