
Terrorism and the Optimal Defense of Networks of Targets

Dan Kovenock · Brian Roberson

This paper has benefited from the helpful comments of Kai Konrad and Daniel G. Arce

as well as participants in presentations at the 2006 MidwestEconomic Theory Meetings,

the 2008 Tournaments, Contests and Relative Performance Evaluation Conference held

at North Carolina State University, and the 2008 Contests: Theory and Applications

Conference held at Stockhom School of Economics. Part of this work was completed

while Kovenock was Visiting Professor at the Social ScienceResearch Center Berlin

(WZB). Roberson gratefully acknowledges financial supportfrom the Social Science

Research Center Berlin (WZB), the Miami University Committee on Faculty Research,

and the Farmer School of Business. The authors, of course, remain solely responsible

for any errors or omissions.
Dan Kovenock

Purdue University, Department of Economics, Krannert School of Management, 403

West State Street, West Lafayette, IN 47907-2056 USA

t: 765-494-4468, f: 765-494-9658, E-mail: kovenock@purdue.edu

Brian Roberson

Miami University, Department of Economics, Richard T. Farmer School of Business,

208 Laws Hall, Oxford, OH 45056-3628 USA

t: 513-529-0416, f: 513-529-8047, E-mail: robersba@muohio.edu (Correspondent)



2

Abstract This paper examines a game-theoretic model of attack and defense of mul-

tiple networks of targets in which there exist intra-network strategic complementarities

among targets. The defender’s objective is to successfullydefend all of the networks

and the attacker’s objective is to successfully attack at least one network of targets. In

this context, our results highlight the importance of modeling asymmetric attack and

defense as a conflict between “fully” strategic actors with endogenous entry and force

expenditure decisions as well as allowing for general correlation structures for force

expenditures within and across the networks of targets.
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1 Introduction

In the literature on optimal defense from intentional attack there has been growing in-

terest in not only the attack and defense of isolated targets1 but also networks of targets2

and even complex supra-networks of targets.3 This move towards increasing network

complexity emphasizes the role that strategic complementarities among targets play in

creating structural asymmetries between the attack and defense of such combinations

of targets. For example in complex infrastructure supra-networks — such as communi-

cation systems, electrical power grids, water and sewage systems, oil pipeline systems,

transportation systems, and cyber security systems — thereoften exist particular targets

or combinations of targets which if destroyed would be sufficient to either: (a) disable

the entire supra-network or (b) create a terrorist ‘spectacular.’

In order to highlight the importance of modeling the asymmetric attack and defense

of complex supra-networks as a conflict between ‘fully’ strategic actors with endoge-

nous entry and force expenditure decisions, we examine a contest-theoretic model of the

attack and defense of a complex supra-network and allow for the players to use general

correlation structures for force expenditures within and across the networks of targets.

The supra-network of targets is made up of an arbitrary combination of two simple types

of networks which capture the two extreme endpoints of an exposure-redundency spec-

trum for network types. The maximal exposure network, whichwe label aweakest-link

network, is successfully defended if and only if the defender successfully defends all tar-

gets within the network.4 The maximal redundancy network, which we label abest-shot

network, is successfully defended if the defender successfully defends at least one target

within the network. At each target the conflict is modeled as adeterministic contest in

which the player who allocates the higher level of force winsthe target with probability

one. Given that the loss of a single network may be sufficient to either disable the entire

supra-network or create a terrorist ‘spectacular,’ we focus on the case that the attacker’s

1 See for example Bier et al. (2007), Powell (2007a, b), and Rosendorff and Sandler

(2004).
2 See for example Bier and Abhichandani (2003), Bier et al. (2005), and Clark and

Konrad (2007).
3 See for example Azaiez and Bier (2007), Hausken (2008), and Levitin and Ben-Haim

(2008).
4 See Hirshleifer (1983) who coins the terms best-shot and weakest-link in the context

of voluntary provision of public goods.
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objective is to successfully attack a single network, and that the defender’s objective is

to successfully defend all of the networks.

A distinctive feature of this environment is that a mixed strategy is a joint distribution

function in which the randomization in the force allocationto each target is represented

as a separate dimension. A pair of equilibrium joint distribution functions specifies not

only each player’s randomization in force expenditures foreach target but also the cor-

relation structure of the force expenditures within and across the networks of targets.

For all parameter configurations, we completely characterize the unique set of Nash

equilibrium univariate marginal distributions for each player as well as the unique equi-

librium payoff for each player. Furthermore, in any equilibrium we find that the attacker

launches an attack on at most one network of targets, and there exist parameter config-

urations for which the attacker optimally launches no attack with positive probability.

While at most one network is attacked, the attacker randomizes over which network is

attacked, and each of the networks is attacked with positiveprobability. In the event that

a weakest-link network is attacked, the attacker optimallylaunches an attack on only a

single target. When a best-shot network is attacked, the attacker optimally attacks every

target in that network with a strictly positive force level.

As emphasized in theNational Strategy for Homeland Security, “terrorists are strate-

gic actors.” However, much of the existing literature [e.g.Azaiez and Bier (2007), Bier

and Abhichandani (2003), Bier et al. (2005), Bier et al. (2007), Levitin and Ben-Haim

(2008), Powell (2007a, b), and Rosendorff and Sandler (2004).] assumes that terrorists

(henceforth attackers) are not ‘fully’ strategic in the sense that the number of attacks

(which is usually set to one) is exogenously specified. By endogenizing the attacker’s

entry and force expenditure decisions, we examine not only the conditions under which

the assumption of one attack is likely to hold, but also related issues such as how the

defender’s actions can decrease the number of terrorist attacks. Furthermore, the few

previous models which allow for the attacker to endogenously choose the number of

targets to attack [e.g. Clark and Konrad (2007) and Hausken (2008)]5 obtain the result

5 Utilizing probabilistic contest success functions [Clarkand Konrad (2007) utilize

the Tullock contest success function, Hausken (2008) utilizes both the Tullock and

difference-form contest success functions], Clark and Konrad (2007) and Hausken

(2008) examine a single weakest-link network and a supra-network consisting of any

arbitrary combination of weakest-link and best-shot networks [as in this paper, a suc-

cessful attack on any one network is sufficient to disable theentire supra-network],

respectively.
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that even when the attacker’s objective is to disable a single network — and the attacker

derives no additional benefit from successfully disabling more than one network — the

attacker optimally chooses to attack every target in every network with certainty. By

showing that in all equilibria of our model the attacker optimally engages in a from of

stochastic guerilla warfare in which they attack at most onenetwork of targets (but with

positive probability each network is chosen as the one to be attacked), our results also

provide a sharp contrast with existing models of ‘fully’ strategic attackers.

Section 2 presents the model of attack and defense with networks of targets. Section 3

characterizes a Nash equilibrium and explores properties of the equilibrium distributions

of force. Section 4 concludes.

2 The Model

Players

The model is formally described as follows. Two players, an attacker,A, and a defender,

D, simultaneously allocate their forces across a finite number, n≥ 2, of heterogeneous

targets. The players’ payoffs depend on the composition of each of the networks of

targets in the supra-network. We examine a supra-network consisting of any arbitrary

combination of two types of simple networks.

The targets are partitioned into a finite numberk ≥ 1 of disjoint networks, where

network j ∈ {1, . . . ,k} consists of a finite numbern j ≥ 1 of targets with∑k
j=1n j = n.

Let Nj denote the set of targets in networkj. Let W denote the set of weakest-link

networks andB denote the set of best-shot networks.

In abest-shot networkthe network is successfully defended if the defender allocates

at least as high a level of force to at least one target within the network. Conversely,

an attack on a best-shot network is successful if the attacker allocates a higher level of

force to each target in the network. Letxi
A (xi

D) denote the level of force allocated by the

attacker (defender) to targeti. Define

ιB
j =







1 if ∀ i ∈ Nj | xi
A > xi

D

0 otherwise
.

Observe that for each target, the player that allocates the higher level of force wins that

target, but in order to win the network the attacker must win all of the targets. In a best-

shot network, a tie arises when player A allocates a level of force to each target in the
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network that is at least as great as player D’s allocation, and there exists at least one

target in the network to which the players allocate the same level of force. In this case,

the defender wins the network.

In the second type of network, which we label aweakest-link network, the network

is successfully defended if the defender allocates at leastas high a level of force to all

targets within the network. Conversely, an attack on a weakest-link network is successful

if the attacker allocates a higher level of force to any target in the network. Define

ιW
j =







1 if ∃ i ∈ Nj | xi
A > xi

D

0 otherwise
.

Again, in the case of a tie, the defender is assumed to win the network.

The players are risk neutral and have asymmetric objectives. The attacker’s objective

is to successfully attack at least one network, and the attacker’s payoff for the successful

attack of at least one network isvA. The attacker’s payoff function is given by

πA(xA,xD) = vAmax
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

−
n

∑
i=1

xi
A

The defender’s objective is to preserve the entire supra-network, and the defender’s pay-

off for successfully defending the supra-network isvD. The defender’s payoff function

is given by

πD (xA,xD) = vD

(

1−max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

))

−
n

∑
i=1

xi
D.

The force allocated to each target must be nonnegative.

It is important to note that our formulation utilizes the all-pay auction contest suc-

cess function.6 Within the all-pay auction literature it is well known that the equilibrium

of the game in which the players have differing unit costs of resources is equivalent

up to a linear scaling of the equilibrium of the game with asymmetric valuations. This

result extends directly to the environment examined here, and thus, our focus on asym-

metric valuations also covers the case in which the players have differing unit costs of

resources.

Also observe that in the formulation described above the supra-network is a weakest-

link supra-network. That is if the defender loses a single network then the entire supra-

network is inoperable. By interchanging the identities of player A and player D, our

6 See Baye, Kovenock, and de Vries (1996).
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results on weakest-link supra-networks apply directly to the case of best-shot supra-

networks (where a best-shot supra-network is a supra-network which is successfully

defended if the defender successfully defends at least one network).

Figure 1 provides a representative supra-network consisting of 5 networks (A, B, C,

D, and E). Networks A, C, and E are weakest-link (series) networks with two targets

each. Networks B and D are best-shot (parallel) networks with five targets each. In

order to preserve the entire supra-network player D’s objective is to preserve a path

across the entire network. If a single target in networks A, C, or E is destroyed then the

supra-network is inoperable. Conversely, in networks B andD all of the targets must be

destroyed in order to render the supra-network inoperable.

[Insert Figure 1 here]

Strategies

It is clear that there is no pure strategy equilibrium for this class of games. A mixed

strategy, which we term adistribution of force, for playeri is ann-variate distribution

functionPi : R
n
+ → [0,1]. Then-tuple of playeri’s allocation of force across then targets

is a randomn-tuple drawn from then-variate distribution functionPi .

Model of Attack and Defense with Networks of Targets

The model of attack and defense with networks of targets, which we label

ADN
{

{

Nj
}

j∈B
,
{

Nj
}

j∈W
,vA,vD

}

,

is the one-shot game in which players compete by simultaneously announcing distri-

butions of force, each target is won by the player that provides the higher allocation of

force for that target, ties are resolved as described above,and players’ payoffs,πA and

πD, are specified above.

3 Optimal Distributions of Force

It will be useful to introduce a simple summary statistic which captures both the asym-

metry in the players’ valuations and the structural asymmetries arising in the supra-

network.
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Definition 1 Let α = vD/(vA[∑ j∈W n j +∑ j∈B
1
n j

]) denote thenormed relative strength

of the defender.

Several properties of this summary statistic should be noted. First, the normed rela-

tive strength of the defender is increasing in the relative valuation of the defender to the

attacker (vD/vA), and is decreasing in the level of exposure arising in the supra-network

(∑ j∈W n j +∑ j∈B
1
n j

). In particular, the defender’s exposure is increasing in the number

of weakest-link targets (∑ j∈W n j), and is decreasing in the number of targets within each

best-shot network (∑ j∈B
1
n j

).

For all parameter ranges, Theorem 1 establishes the uniqueness of: (i) the players’

equilibrium expected payoffs and (ii) the players’ sets of univariate marginal distribu-

tions. Theorem 1 also provides a pair of equilibrium distributions of force for all param-

eters ranges. Case (1) of Theorem 1 examines the parameter configurations for which

the defender has a normed relative strength advantage, i.e.α ≥ 1. Case (2) of Theorem

1 addresses the parameter configurations for which the defender has a normed relative

strength disadvantage, i.e.α < 1. It is important to note that the stated equilibrium dis-

tributions of force (n-variate distributions) are not unique. However, in Propositions 1-3

we characterize properties of optimal attack and defense that hold in all equilibria.

Theorem 1 For all feasible parameter figurations of the game ADN{{Nj} j∈B,{Nj} j∈W ,

vA,vD} (i.e., vA,vD > 0 and Nj 6= /0 for all j) there exists a unique set of Nash equilib-

rium univariate marginal distributions and a unique equilibrium payoff for each player.

One such equilibrium is for each player to allocate his forces according to the following

n-variate distribution functions.

(1) If α ≥ 1, then for player A andx ∈ ∏ j∈W [0,vA]n j ×∏ j∈B[0, vA
n j

]n j

PA(x) = 1−
1
α

+
∑ j∈W ∑i∈Nj

xi +∑ j∈B mini∈Nj{xi}

vD

Similarly for player D andx ∈ ∏ j∈W [0,vA]n j ×∏ j∈B[0, vA
n j

]n j

PD (x) = min





{

mini∈Nj

{

xi
}

vA

}

j∈W

,

{

∑i∈Nj
xi

vA

}

j∈B





The expected payoff for player A is0, and the expected payoff for player D is vD(1−
1
α ).
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(2) If α < 1, then for player A andx ∈ ∏ j∈W [0,αvA]n j ×∏ j∈B[0, αvA
n j

]n j

PA(x) =
∑ j∈W ∑i∈Nj

xi +∑ j∈B mini∈Nj{xi}

vD

Similarly for player D andx ∈ ∏ j∈W [0,αvA]n j ×∏ j∈B[0, αvA
n j

]n j

PD (x) = 1−α +min

(

{min
{

xi
}

i∈Nj

vA

}

j∈W

,

{∑i∈Nj
xi

vA

}

j∈B

)

The expected payoff for player D is0, and the expected payoff for player A is vA(1−

α).

Proof The proof of the uniqueness of the players’ equilibrium expected payoffs and sets

of univariate marginal distributions is given in the appendix. This proof establishes that

the pair ofn-variate distribution functions given in case (1) constitute an equilibrium

within the case (1) parameter range. The proof of case (2) is analogous. The appendix

(see Lemma 5) establishes that in anyn-tuple drawn from any equilibriumn-variate

distributionPA playerA allocates a strictly positive level of force to at most one network

of targets. If the network which receives the strictly positive level of force is a weakest-

link network, then exactly one target in that network receives a strictly positive level

of force. While not a necessary condition for equilibrium, thePA described in Theorem

1 also displays the property that when the network which receives the strictly positive

level of force is a best-shot network the force allocated to each target in that network

is an almost surely increasing function of the force allocated to any of the other targets

in that network. The appendix (see Lemma 5) also establishesthat in anyn-tuple drawn

from any equilibriumn-variate distributionPD playerD allocates a strictly positive level

of force to at most one target in each best-shot network of targets.

We will now show that for each player each point in the supportof their equilibrium

n-variate distribution function{PA,PD} given in case (1) of Theorem 1 results in the

same expected payoff, and then show that there are no profitable deviations from this

support.

We begin with the case in which player A attacks a single target in a single weakest-

link network. The probability that playerA wins targeti in network j ∈ W is given

by the univariate marginal distributionPD(xi
A,{{vA}i′∈Nj′ |x

i′
A=0} j ′∈W ,{{ vA

n j′
}i′∈Nj′

} j ′∈B).

Given that playerD is using the equilibrium strategyPD described above, the payoff to

playerA for any allocation of forcexA ∈ R
n
+ which allocates a strictly positive level of
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force to a single targeti in a weakest-link networkj ∈ W is

πA(xA,PD) = vAPi
D(xi

A)−xi
A.

Simplifying,

πA(xA,PD) = vA

(

xi
A

vA

)

−xi
A = 0.

Thus the expected payoff to playerA from allocating a strictly positive level of force to

only one target in any weakest-link network is 0 regardless of which target is attacked.

Next, we examine the case in which player A attacks a single best-shot network. The

probability that playerA wins every target in networkj ∈ B is given by then j -variate

marginal distributionPD({xi
A}i∈Nj ,{{vA}i′∈Nj′

} j ′∈W ,{{ vA
n j′
}i′∈Nj′

} j ′∈B| j ′ 6= j), which we

will denote asP
Nj
D ({xi

A}i∈Nj ). Given that playerD is using the equilibrium strategyPD

described above, the payoff to playerA for any allocation of forcexA ∈ R
n
+ which allo-

cates a strictly positive level of force only to the targets in a best-shot networkj ∈ B,

and allocates zero forces to every other network is

πA(xA,PD) = vAP
Nj
D

(

{xi
A}i∈Nj

)

− ∑
i∈Nj

xi
A.

Simplifying,

πA(xA,PD) = vA

(

∑i∈Nj
xi

A

vA

)

− ∑
i∈Nj

xi
A = 0.

Thus, the expected payoff to playerA from allocating a strictly positive level of force to

only one best-shot network is 0 regardless of which best-shot network is attacked.

For playerA, possible deviations from the support include allocating astrictly posi-

tive level of force to: (a) two or more targets in the same weakest-link network, (b) two

or more targets in different weakest-link networks, (c) twoor more best-shot networks,

and (d) any combination of both weakest-link and best-shot networks.

Beginning with (a), the probability that playerA wins both targetsi andi′ in network

j ∈ W is given by the bivariate marginal distribution

PD(xi
A,xi′

A,{{vA}i′′∈Nj′ |i
′′ 6=i,i′} j ′∈W ,{{ vA

n j′
}i′′∈Nj′

} j ′∈B), which we will denote asPi,i′

D (xi
A,xi′

A).

The payoff to playerA for any allocation of forcexA ∈R
n
+ which allocates a strictly pos-

itive level of force to two targetsi, i′ in a weakest-link networkj ∈ W is

πA(xA,PD) = vAPi
D

(

xi
A

)

+vAPi′
D

(

xi′
A

)

−vAPi,i′

D

(

xi
A,xi′

A

)

−xi
A−xi′

A.
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Simplifying,

πA(xA,PD) = vA





xi
A

vA
+

xi′
A

vA
−

min
{

xi
A,xi′

A

}

vA



−xi
A−xi′

A < 0.

The case of playerA allocating a strictly positive level of force to more than two targets

in a weakest-link network follows directly. Clearly, in anyoptimal strategy playerA

never allocates a strictly positive level of force to more than one target within a weakest-

link network.

The proof for type (b) deviations follows along similar lines. Thus, in any optimal

strategy playerA never allocates a strictly positive level of force to more than one target

within a weakest-link network of targets or in different weakest-link networks.

For type (c) deviations, the probability that playerA wins all of the targets in both

best-shot networksj, j ′ ∈ B is given by the(n j + n j ′)-variate marginal distribution

PD({xi
A}i∈Nj∪Nj′

,{{vA}i′′∈Nj′′
} j ′′∈W ,{{ vA

n j′′
}i′′∈Nj′′

} j ′′∈B| j ′′ 6= j , j ′), which we will denote as

P
Nj ,Nj′

D

(

{xi
A}i∈Nj∪Nj′

)

. The payoff to playerA for any allocation of forcexA ∈R
n
+ which

allocates a strictly positive level of force to exactly two best-shot networksj, j ′ ∈ B is

πA(xA,PD) =

vAP
Nj
D

(

{xi
A}i∈Nj

)

+vAP
Nj′

D

(

{xi
A}i∈Nj′

)

−vAP
Nj ,Nj′

D

(

{xi
A}i∈Nj∪Nj′

)

− ∑
i∈Nj∪Nj′

xi
A.

Simplifying,

πA(xA,PD) = −vAmin

{

∑i∈Nj
xi

A

vA
,
∑i∈Nj′

xi
A

vA

}

The case of playerA allocating a strictly positive level of force to more than two best-

shot networks follows directly. Clearly, in any optimal strategy playerA never allocates

a strictly positive level of force to more than one best-shotnetwork.

The case of type (d), follows along similar lines. Thus, the expected payoff from each

point in the support of then-variate distributionPA results in the same expected payoff,

0, and there exist no allocations of force which have a higherexpected payoff.

The case for playerD follows along similar lines. ⊓⊔
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While the equilibrium distributions of force stated in Theorem 1 are not unique,7 it

is useful to provide some intuition regarding the existenceof this particular equilibrium

before moving on to the characterization of properties of optimal attack and defense that

hold in all equilibria (Propositions 1-3). The supports of the equilibrium distributions

of force stated in Theorem 1 are given in Figure (2). Panels (i) and (ii) of Figure (2)

provide the supports for the attacker and defender, respectively, in the case that there is

one weakest-link network with two targets (i = 1,2). Panels (iii) and (iv) of Figure (2)

provide the supports for the attacker and defender, respectively, in the case that there is

one best-shot network with two targets (i = 1,2) and one weakest-link network with one

target (i = 3).

[Insert Figure 2]

Across all of the Panels (i)-(iv), ifα = 1 then each player randomizes continuously

over their respective shaded line segments. In the event that the defender has a normed

relative strength advantage (α > 1), the defender’s strategy stays the same, but the at-

tacker now places a mass point of size 1− (1/α) at the origin and randomizes contin-

uously over the respective line segments with the remainingprobability. Conversely, if

the defender does not have a normed relative strength advantage (α < 1) then it is the

defender who places a mass point (of size 1−α) at the origin.

Beginning with Panels (i) and (ii), recall that if the attacker successfully attacks a

single target in a weakest-link network the entire network is disabled. As shown in

Panel (i) the attacker launches an attack on at most one target. To successfully defend a

weakest-link network, the defender must win every target within the network. As shown

in Panel (ii) the defender’s allocation of force to targeti is an almost surely strictly

increasing function of the force allocated to target−i. Note that if the attacker launches

an attack on at most one target, then the probability that anysingle attack is successful

depends only on the univariate marginal distributions of the defender’s (n-variate joint)

7 For example, in the case (1) parameter range of Theorem 1 another equilibrium strat-

egy for player D is to use the distribution of force

PD (x) = min





{

∏i∈Nj
xi

vA

}

j∈W

,

{

∑i∈Nj
xi

vA

}

j∈B



 .
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distribution of force. In addition, the defender’s expected force expenditure depends

only on his set of univariate marginal distributions, and, for a given set of univariate

marginal distributions, is invariant to the correlation structure.8 Finally, note that for

the given correlation structure in the defender’s support [panel (ii)] the probability that

the attacker launches at least one successful attack depends only on the maximum of

his force allocations across the two targets. That is, giventhe defender’s distribution

of force, if there exists any points in the support of the attacker’s distribution of force

in which xi
A > x−i

A > 0 with positive probability, then the attacker can strictlyincrease

his expected payoff by changing tox−i
A = 0 in all such points. In such a deviation, the

probability of at least one successful attack is unaffected, but the attacker’s expected

force expenditure decreases. Thus, at each point in the support of an optimal distribution

of force the attacker launches at most one attack.

Panels (iii) and (iv) examine a simple supra-network with one best-shot network and

one weakest-link network . In Panel (iii), note that the attacker launches an attack on

at most one network. In the event that the best-shot network is attacked, the attacker’s

allocation of force to targeti is an almost surely strictly increasing function of the force

allocated to target−i. In Panel (iv), note that the defender allocates a strictly positive

level of force to at most one of the targets in the best-shot network, and that level of

force allocated to the weakest-link network is an almost surely increasing function of

the level of force allocated to the best-shot network. Giventhese correlation structures,

the intuition for the attacker launching an attack on at mostone network in the supra-

network follows along the lines given above for the weakest-link network in which at

most one target was attacked.

We now characterize the qualitative features arising in allequilibrium distributions of

force. Proposition 1 examines the number of networks that are simultaneously attacked

as well as the number of targets within each network that are simultaneously attacked

and defended. Propositions 2 and 3 examine the likelihood that the attacker optimally

chooses to launch an attack on any given network, and the likelihood that the attacker

launches no attack or the defender leaves the supra-networkundefended.

Proposition 1 In any equilibrium{PA,PD}:

1. Player A allocates a strictly positive level of force to atmost one network.

8 More formally, for a given set of univariate marginal distribution functions, the ex-

pected force expenditure is invariant to the mapping into a joint distribution function,

i.e. then-copula.
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2. If the network to which player A allocates a strictly positive level of force is a

weakest-link network, then at most one target in that weakest-link network receives

a strictly positive level of force.

3. In each best-shot network player D allocates a strictly positive level of force to at

most one target in the network.

The formal proof of Proposition 1 is given in the appendix (see Lemma 5). The intuition

for Proposition 1 follows from the fact that the likelihood that player D successfully

defends all of the networks (and therefore player D’s expected payoff) is weakly de-

creasing in the number of networks that player A chooses to simultaneously attack.

However, player D has the ability to vary the correlation structure of his force alloca-

tions while leaving invariant: (i) his network specific multivariate marginal distributions

of force, (ii) his univariate marginal distributions of force, and (iii) his expected ex-

penditure. Furthermore, there exist correlation structures for which the likelihood that

player D successfully defends all of the networks depends only on player A’s force allo-

cation to the one network which receives the highest level offorce from player A. Given

that player D is using such a correlation structure, player Aoptimally attacks at most

one network at a time. A similar result extends directly to (2) the case of weakest-link

networks and to (3) the case of best-shot networks.

Proposition 2 If α ≥ 1, then in any equilibrium{PA,PD}:

1. The probability that any weakest-link network j is attacked (i.e., the probability that

the attacker allocates a strictly positive level of force toweakest-link network j) is

(n jvA/vD), which is increasing in the number of targets in network j andthe at-

tacker’s valuation of success and decreasing in the defender’s valuation of success-

fully defending the entire supra-network.

2. The probability that any best-shot network j is attacked is (vA)/(n jvD), which is

increasing in the attacker’s valuation of success and is decreasing in both the de-

fender’s valuation and the number of targets in network j.

3. The attacker optimally attacks no network in the supra-network with probability1−

(1/α).

For the attacker’s joint distribution, the appendix characterizes the attacker’s mass point

at the origin (see Lemma 9) as well as his set of univariate marginal distributions. Propo-

sition 2 follows directly. The probability that a networkj is attacked is equal to one mi-

nus the attacker’s mass point at zero in then j-variate marginal distribution for network

j, where then j-variate marginal distribution for networkj is given byP
Nj
A ({xi}i∈Nj ).
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The likelihood that the attacker optimally chooses to launch no attack is increasing in

the defender’s valuation of success and decreasing in the attacker’s valuation of success.

In the case (1) parameter range, the attacker’s valuation islow enough relative to

the defender’s valuation that the optimal strategy includes not launching an attack with

positive probability. As we move to the case (2) parameter range, the attacker optimally

launches an attack with certainty. In this case the probability that any given network of

targets is attacked depends only on the number of targets in the network and the type

of network. The proof of Proposition 3 also follows from the characterization of the

equilibrium joint distributions given in the appendix.

Proposition 3 If α < 1, then in any equilibrium{PA,PD}:

1. The probability that any weakest-link network j is attacked (i.e., the probability that

the attacker allocates a strictly positive level of force toweakest-link network j) is

n j/([∑ j ′∈W n j ′ +∑ j ′∈B
1

n j′
]), which is increasing in the number of targets in network

j.

2. The probability that any best-shot network j is attacked is1/(n j [∑ j ′∈W n j ′ +∑ j ′∈B
1

n j′
]),

which is decreasing in the number of targets in network j.

3. The defender optimally leaves the entire supra-network undefended with probability

1−α.

In the case (1) parameter range, the defender optimally chooses, with certainty, to

allocate a strictly positive level of defensive force. However, in the case (2) parameter

range, the defender optimally chooses to leave the entire supra-network undefended

with positive probability. Furthermore, the likelihood that the defender chooses to leave

the entire supra-network undefended is increasing in the attacker’s valuation of success

and decreasing in the defender’s valuation of successfullydefending the entire supra-

network.

To summarize, the following conditions hold in all equilibria. In the case (1) parame-

ter range the attacker optimally chooses not to launch an attack with positive probability.

In both cases (1) and (2), the attacker optimally launches anattack on at most one net-

work. In the event that a weakest-link network is attacked, only one target within the

network is attacked. The likelihood that any individual network is attacked depends on

the number of targets within the network. In each weakest-link network the likelihood

of attack is increasing in the number of targets. In each best-shot network the likelihood

of attack is decreasing in the number of targets. In the case (2) parameter range, the de-

fender optimally leaves the entire supra-network undefended. Lastly, in both cases (1)
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and (2) when the defender chooses to defend the supra-network, within each best-shot

network, the defender randomly chooses at most one target todefend.

4 Conclusion

This paper examines a game-theoretic model of attack and defense with multiple net-

works of targets and intra-network strategic complementarities among targets. In equi-

librium we find that the correlation structure of the optimalattack and defense strategies

depends critically on the composition of the supra-network. In addition, network re-

dundancies, as in best-shot networks, strengthen the defender’s strategic position. Con-

versely, the absence of network redundancies, as in weakest-link networks, weaken the

defender’s strategic position. In the context of networks of targets with asymmetric at-

tack and defense, our results highlight the importance of allowing for endogenous entry

and force expenditure decisions including general correlation structures for force ex-

penditures within and across the networks of targets.
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Appendix

This appendix characterizes the supports of the equilibrium joint distributions, the unique

equilibrium payoffs, and the unique sets of equilibrium univariate marginal distribu-

tions. Before proceeding, observe the following notational conventions which will be

used throughout the appendix. For points inR
n, will use the vector notationx =(x1,x2, . . . ,xn).

Forak ≤ bk for all k= 1,2, . . . ,n, let [a,b] denote then-boxB= [a1,b1]× [a2,b2]× . . .×

[an,bn], the Cartesian product ofn closed intervals. The vertices of ann-box B are the

points(c1,c2, . . . ,cn) whereck is equal toak or bk.

Given that the defender is using the distribution of forcePD, let

Pr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

(1)

denote the probability that with a force allocation ofxA the attacker wins at least one

network. Thus, the attacker’s expected payoff from any purestrategyxA is

vAPr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

−∑
i

xi
A. (2)

It will also be useful to note that the attacker’s expected payoff from any distribution of

forcePA is

vAEPA

[

Pr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 1
∣

∣

∣
PD,xA

)]

−∑
i

EF i
A

[

xi
A

]

(3)

whereEPA denotes the expectation with respect to the joint distribution of forcePA and

EF i
A

denotes the expectation with respect to the univariate marginal distribution for target

i, henceforthF i
A, of the joint distribution of forcePA.

Similarly, given that the attacker is using the distribution of forcePA, let

Pr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 0
∣

∣

∣
PA,xD

)

(4)

denote the probability that with a force allocation ofxD the defender wins all of the

networks in the supra-network. Thus, the defender’s expected payoff from any pure

strategyxD is

vDPr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 0
∣

∣

∣
PA,xD

)

−∑
i

xi
D. (5)

Lastly, the defender’s expected payoff from any distribution of forcePD is

vDEPD

[

Pr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 0
∣

∣

∣
PA,xD

)]

−∑
i

EF i
D

[

xi
D

]

(6)
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whereEPD andEF i
D

denote the expectation with respect to the joint distribution of force

PD and the expectation with respect to the univariate marginaldistribution for targeti,

F i
D, respectively.

Lemma 1 For each i and j such that i∈ Nj | j ∈ W , s̄i
A = s̄i

D = s̄j
W and siA = si

D = 0. For

i and j such that i∈ Nj | j ∈ B, s̄i
A = s̄i

D = s̄j
B and siA = si

D = 0.

Proof We begin with the proof thatsi
A = si

D = 0 for all i. By way of contradiction,

supposesi
A 6= si

D. Let ŝi ≡ max{si
A,si

D}, and letk be the identity of the player attaining

ŝi (that isŝi = si
k andŝi > si

−k).

If si
−k > 0, when player−k allocatessi

−k to targeti player−k is losing targeti with

certainty and can strictly increase his payoff by settingsi
−k = 0. It follows directly, that

player−k does not randomize over the open interval(0, ŝi), and thus player−k must

have a mass point 0.

In the case thatsi
−k = 0 (where player−k does not randomize over the open interval

(0, ŝi) and has a mass point at 0), we know that (i) both players can nothave a mass point

at si
k and (ii) playerk can strictly increase his payoff by loweringsi

k to a neighborhood

above 0.

Thus, we conclude thatsi
A = si

D = 0 for all i.

Lastly, for the proof that for eachi and j such thati ∈ Nj | j ∈ W , s̄i
A = s̄i

D = s̄j
W, note

that for i,k ∈ Nj | j ∈ W it follows that if s̄i
A = s̄i

D < s̄k
A = s̄k

D then player A would do

better by moving mass from ¯sk
A to s̄i

A. The proof that fori and j such thati ∈ Nj | j ∈ B,

s̄i
A = s̄i

D = s̄j
B follows for the same reasons.⊓⊔

Lemma 2 In any equilibrium{PA,PD}, for each target j neither player’s univariate

marginal distributions place positive mass on any point except possibly at zero.

Proof If xi
j is such a point for playerj, then player− j would either benefit from moving

mass from anε-neighborhood belowxi
j to zero or to aδ -neighborhood abovexi

j . ⊓⊔

Lemma 3 In any equilibrium{PA,PD}, each player’s expected payoff is constant over

the support of their joint distribution except possibly at points of discontinuity of the

payoff function.

Proof By Lemma 2, for each targeti there are no mass points in the half-open interval

(0, s̄i]. Thus for each point in the support of playerj ’s joint distribution, playerj must

make his equilibrium payoff except for possibly at points ofdiscontinuity of the payoff

function. ⊓⊔
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Lemma 4 In any equilibrium{PA,PD}, for each target i each player randomizes con-

tinuously over the interval(0, s̄i].

Proof By way of contradiction, suppose that there exists an equilibrium in which for

some targeti, player j ’s univariate marginal distribution for targeti, F i
j , is constant over

the interval[α,β ) ⊂ (0, s̄i] and strictly increasing aboveβ in its support. For this to be

an equilibrium, it must be the case thatF i
− j is also constant over the interval[α,β ).

Otherwise, player− j could increase his payoff.

If F i
− j(α) = F i

− j(β ), then for anyε > 0 spendingβ +ε in targeti cannot be optimal

for player j. Indeed, by discretely reducing his expenditure fromβ + ε to α + ε player

j ’s payoff would strictly increase. Consequently, ifF i
j is constant over[α,β ) it must

also be constant over[α, s̄i], a contradiction to the definition of ¯si . ⊓⊔

Lemma 5 In any equilibrium{PA,PD}:

(a) If xA is an n-tuple contained in the support of PA, thenxA allocates a strictly positive

level of force to at most one network.

(b) If the network to which the n-tuplexA (contained in the support of PA) allocates a

strictly positive level of force is a weakest-link network,then at most one target in

that weakest-link network receives a strictly positive level of force.

(c) If xD is an n-tuple contained in the support of PD, then within each best-shot network

xD allocates a strictly positive level of force to at most one target in the network.

Proof Beginning with (a), by way of contradiction suppose that there exists an equilib-

rium in which player A simultaneously allocates a strictly positive level of force to two

or more networks. Without loss of generality, we will also assume that there exists at

least one point in the support of an equilibrium strategyPA for which only networksj

and j ′ simultaneously receive a strictly positive level of force from player A (henceforth

networks j and j ′ are simultaneously “attacked”). Observe that this assumption allows

for any number and/or combination of networks to be simultaneously attacked as long

as at some point in the support ofPA only networksj and j ′ are simultaneously attacked.

Furthermore, while the focus on the case in which the minimumnumber of networks

being simultaneously attacked is equal to two simplifies theexpressions that follow, the

case in which the minimum number of networks which are simultaneously attacked is

greater than two follows directly.
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Since max({ιB
j } j∈B,{ιW

j } j∈W ) is equal to either 0 or 1, the expected payoff for

player D may be written as

vD −vDEPA

[

Pr
(

max
(

ι j , ι j ′
)

= 1
∣

∣

∣
PD,xA s.t. only j and j ′ attacked

)]

−vDEPA

[

Pr
(

max
(

{

ιB
j

}

j∈B
,
{

ιW
j

}

j∈W

)

= 1
∣

∣

∣
PD,xA s.t. not j and j ′ attacked

)]

−∑
i

F i
D

(

xi
D

)

. (7)

The expectation in the first line of (7) is the probability that player A successfully attacks

at least one of the networksj or j ′ given that player A attacks only networksj and j ′.

The expectation in the second line of (7) is the probability that player A successfully

attacks at least one network conditional on the attack beingon any single network or

any combination of networks other than onlyj and j ′.

Letxj
A denote the restriction of the vectorxA to the set of targets contained in network

j, i.e.{xi
A}i∈Nj . Note that

Pr
(

max
(

ι j , ι j ′
)

= 1
∣

∣

∣
PD,xA s.t. j and j ′ attacked

)

= Pr
(

ι j = 1
∣

∣

∣
P

n j
D ,x j

A

)

+Pr
(

ι j ′ = 1
∣

∣

∣
P

n j′

D ,x j ′

A

)

−Pr
(

ι j = 1 andι j ′ = 1
∣

∣

∣
P

n j ,n j′

D ,x j
A,x j ′

A

)

. (8)

If network j is a best-shot network thenPr(ιB
j = 1|P

n j
D ,x j

A) = P
n j
D (x j

A). If network j

is a weakest-link network then the probability that player Awins at least one target,

Pr(ιW
j = 1|P

n j
D ,x j

A), depends critically on bothP
n j
D and the number of targets in network

j which are attacked. In both cases, it is clear that player D’spayoff depends not only

on then j-variate marginal distribution for networkj, P
n j
D , and then j ′-variate marginal

distribution for networkj ′,P
n j′

D , but also on the correlation between these two multi-

variate marginal distributions. There are 3 possible casesto consider: (i) both networks

j and j ′ are best-shot networks, (ii) both networksj and j ′ are weakest-link networks,

and (iii) either networkj or j ′ is a best-shot network and the other is a weakest-link

network.

If both networksj and j ′ are best shot networks, then (8) becomesP
n j
D (x j

A)+P
n j′

D (x j ′

A)−

P
n j ,n j′

D (x j
A,x j ′

A). However, ifP
n j ,n j′

D (x j
A,x j ′

A) 6= min{P
n j
D (x j

A),P
n j′

D (x j ′

A)} then player D could

increase the first line of (7) without affecting the univariate marginals and thus the third

line of (7). Furthermore, ifPD(x) = minj{P
n j
D (x j)} then eachn j -variate marginal distri-

bution (P
n j
D (x j)) is preserved, each univariate marginal distribution (F i

D(xi)) is preserved,

and for any set of networksj ∈ J the joint marginal distribution for the setJ is

P
J
D (xJ ) = minj∈J {P

n j
D (x j)}. Clearly, if networksj and j ′ are the only two networks
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which player A simultaneously attacks, then the deviation to such a correlation strategy

strictly increases player D’s payoff. A contradiction to the assumption that{PA,PD} is

an equilibrium. Furthermore, ifP
n j ,n j′

D (x j
A,x j ′

A) = min{P
n j
D (x j

A),P
n j′

D (x j ′

A)} then player A

could increase his payoff by attacking networkj or network j ′ but not both simultane-

ously; also a contradiction.

If networks j and j ′ arenot the only networks which player A simultaneously attacks

but all of the networks in the supra-network are best-shot networks, then the second line

of (7) can be broken into components for each of the sets of networks which player

A simultaneously attacks and each of the networks which are attacked in isolation. In

this case, the proof follows along the lines of the proceeding case. That is if the supra-

network is comprised of only best-shot networks, player A attacks at most one network.

For cases (ii) and (iii) as well as the remaining case (i) network configurations, note

that the result on a supra-network consisting of only best-shot networks can be modi-

fied to show that within each weakest-link network player A attacks at most one target.

That is, without loss of generality, assume that there exists at least one point in the

support of an equilibrium strategyPA for which within weakest-link networkj only

targetsi and i′ simultaneously receive a strictly positive level of force from player A.

In such a case,Pr(ιW
j = 1|P

n j
D ,x j

A) = F i
D(xi

A) + F i′
D(xi′

A)−P
n j
D (xi

A,xi′
A,{s̄j

W}i′′∈Nj |i′′ 6=i,i′)

where(xi
A,xi′

A,{s̄j
W}i′′∈Nj |i′′ 6=i,i′) denotes the vector formed by replacing each zero inx j

A

(all targets excepti and i′) with s̄j
W. SettingP

n j
D (x j

A) = mini∈ j{F i
D(xi)}, the result fol-

lows directly, as does the result for the case in which the number of targets which are

simultaneously attacked is greater than two or involves anyarbitrary combinations of

weakest-link targets. Thus, player A attacks at most one target in each weakest-link net-

work, andPr(ι j = 1|P
n j
D ,x j

A) = F i
D(xi

A). Inserting this back into (8), the proof for cases

(ii) and (iii) as well as the remaining case (i) network configurations follows directly.

The proof for part (c) follows from a symmetric argument.⊓⊔

Lemma 6 ∀ j, j ′ ∈ W , s̄j
W = s̄j ′

W ≡ s̄W.

Proof Following from Lemmas 2 and 5, in the support of any optimal strategy, when

player A allocates ¯sj
W to a single target in networkj the force allocated to each of the

remaining targets is 0, player A wins networkj with certainty, and player A’s expected

payoff isvA− s̄j
W.

From Lemma 3, player A’s expected payoff is constant across all points in the support

of PA. Thus,∀ j, j ′ ∈ W , s̄j
W = s̄j ′

W ≡ s̄W. ⊓⊔

Lemma 7 ∀ j ∈ B, s̄W = n j s̄
j
B.



23

Proof From Lemma 5 part (a) in the support of any optimal strategy player A attacks at

most one network. In the case that player A attacks best-shotnetwork j, from Lemma 3

there exists akA ≥ 0 such that

Pr
(

ιB
j = 1

∣

∣

∣
P

n j
D ,xA

)

≤
kA

vA
+

∑i x
i
A

vA
(9)

which holds with equality for eachxA in the support ofPA such that player A attacks

best-shot networkj.

From Lemma 5 part (c) in the support of any optimal strategy player D allocates a

strictly positive level of force to at most one target in network j, and thus the support of

player D’sn j -variate marginal distribution for networkj, P
n j
D is contained on the each

of the n j axes inR
n j . From Lemmas 2 and 4, it follows that equation (1) holds with

equality not only for eachxA in the support ofPA such that player A attacks best-shot

network j, but — given that networkj is the only network attacked — for alln j-tuples

xj ∈ [0, s̄j
B]n j . That is given that the support of player D’sn j -variate marginal distribution

for network j is: (i) contained on the each of then j axes inR
n j , (ii) has no mass points

except possible at the origin inRn j , and (iii) is continuous on each axis, it follows that

for xj
A ∈ [0, s̄j

B]n j , P
n j
D (x j

A) = Pr(ιB
j = 1

∣

∣

∣
P

n j
D ,xA) = kA

vA
+

∑i x
i
A

vA
.

Thus, if player A chooses then j -tuple with s̄j
B for each element then from Lemma 2

player A’s expected payoff from such ann j -tuple isvA−n j s̄
j
B.

From Lemmas 3 and 6,kA = vA− s̄W. From Lemma 3, player A’s expected payoff is

constant across all points in the support ofPA. Thus,∀ j ∈ B, s̄W = n j s̄
j
B. ⊓⊔

Lemma 8 s̄W = min{vA,vD/[∑ j∈W n j +∑ j∈B(1/n j)]}.

Proof If player D allocates: (i) ¯sW to each target in each weakest-link network, (ii) ¯sj
B

to exactly one target in each best-shot networkj, and (iii) 0 to each of the remaining

targets in the best-shot networks, then player D wins with certainty and has an expected

payoff of vD −∑ j∈W n j s̄W + ∑ j∈B(s̄W/n j) ≥ 0. Thus, in such a case it must be that

s̄W ≤ vD/[∑ j∈W n j +∑ j∈B(1/n j)]. Similarly, player A’s expected payoff isvA− s̄W ≥ 0,

and thus, ¯sW ≤ vA.

Since player A attacks at most one network, and in the case of aweakest-link network

only one target, we know that the origin is contained in the support of any equilibrium

distribution of force for player A,PA.

By way of contradiction suppose that there exists an equilibrium {PA,PD} in which

the origin is not contained in the support ofPD. Thus, there exists anε > 0 such that

for at least two targets, denoted as targets 1 and 2, the intersection of the projection
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of player D’s support onto thex1,x2-plane with the box[0,ε]2 is empty. There are five

configurations to consider: (i) targets 1 and 2 are in the sameweakest-link network, (ii)

targets 1 and 2 are in separate weakest-link networks, (iii)targets 1 and 2 are in the same

best-shot network, (iv) targets 1 and 2 are in separate best-shot networks, (v) target 1 is

in a weakest-link network and target 2 is in a best-shot network. From Lemma 5, it is

clear that we can rule out case (iii). In cases (i) and (ii), for any(x1,x2) ∈ [0,ε]2 player

D’s bivariate marginal distribution for targets 1 and 2,P1,2
D , is equal to zero and player

A can strictly increase his payoff by allocating a level of force less thanε to both targets

1 and 2 a contradiction to Lemma 5 if targets 1 and 2 are in the same weakest-link

network or if targets 1 and 2 are in separate weakest-link networks. Following along

similar lines, cases (iv) and (v) lead to a similar contradiction to Lemma 5. Thus, the

origin is contained in the support of any equilibrium distributionPD for player D.

Since only one player can have a mass point at the origin, we have that ifvA− s̄W > 0

player A must outbid player D with a probability that is bounded away from zero. Thus,

player D places positive mass at the origin, but if player D has a mass point at the origin

then it must be the case thatvD −∑ j∈W n j s̄W + ∑ j∈B(s̄W/n j) = 0. Similarly, if vD −

∑ j∈W n j s̄W +∑ j∈B(s̄W/n j) > 0 then player D must outbid player A with a probability

that is bounded away from zero. Thus,vA− s̄W = 0 and player A places positive mass

at the origin. ⊓⊔

The next two lemmas follow directly from Lemma 8. Recall thatα = vD/(vA[∑ j∈W n j +

∑ j∈B
1
n j

]).

Lemma 9 If α ≥ 1, then (i) player A places mass1− (1/α) at the origin, (ii) player

A’s expected payoff is 0, (iii) player D does not place positive mass at the origin, and

(iv) player D’s expected payoff is vD − (vD/α).

Lemma 10 If α < 1, then (i) player D places mass1−α at the origin, (ii) player D’s

expected payoff is 0, (iii) player A does not place positive mass at the origin, and (iv)

player A’s expected payoff is vA−vAα.

Lemma 11 There exists a unique set of equilibrium univariate marginal distributions

{{F j
A} j∈B∪W ,{F j

D} j∈B∪W }.

Proof This proof is for the uniqueness of player D’s set of univariate marginal distri-

butions. The proof for player A is analogous. For each best-shot network j ∈ B, from

Lemma 7 forxj ∈ [0, s̄j
B]n j , P

n j
D (x j) = vA−s̄W

vA
+ ∑i x

i

vA
, where ¯sW = min{vA,vD/[∑ j∈W n j +
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∑ j∈B(1/n j)]} ands̄j
B = s̄W

n j
. Thus, in each best-shot networkj player D’s unique univari-

ate marginal distributions follow from player D’s uniquen j -variate marginal distribution

for network j.

From Lemma 5 parts (a) and (b), player A attacks at most one target in one weakest-

link network. From Lemmas 2, 3, and 4 it follows that for each targeti in each weakest-

link network j ∈ W ,

vAF i
D

(

xi
A

)

−xi
A = vA− s̄W

for xi ∈ [0, s̄W]. Thus, player D’s univariate marginal distributions are uniquely deter-

mined in each weakest-link network.⊓⊔
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Fig. 1 Example Supra-Network with Five Networks (A, B, C, D, and E)
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One weakest-link network with two targets (i = 1,2)

x1

x2

ṽA

ṽA

b b

b

(i) Attacker

x1

x2

ṽA

ṽA

b

b

(ii) Defender

One best-shot network with two targets (i = 1,2) and one weakest-link network with one target (i = 3)

x1

x2

x3

ṽA
2

ṽA
2

ṽA

b

b

b

(iii) Attacker

x1

x2

x3

ṽA
2

ṽA
2

ṽA

b

b

b

(iv) Defender

Fig. 2 Supports of the equilibrium joint distributions stated in Theorem 1 ( ˜vA = min{αvA,vA}).


