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Abstract

We study a dynamic cheap talk model with multiple senders where the

receiver can choose when to make her decision and communication can

take place over time. Delays are wasteful, and no player can commit to

any action or inaction; the receiver can choose momentary inaction only

if her beliefs about the continuation play rationalize that. In contrast to

the results in static versions of the model, we show that when the senders

commonly know the state of nature, a perfect Bayesian equilibrium exists

with instantenous, full revelation irrespective of the size and direction of

the senders�biases. We show that the equilibrium outcome is robust to

the introduction of noise in the senders�signals about the state.
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1 Introduction

Consulting with experts before making a decision takes time, and happens over

time. Our goal in the present paper is to point out some fundamental con-

sequences of considering information transmission in a truly dynamic setting.

We investigate how the decision maker�s self-ful�lling belief in learning more

by waiting (or taking other temporary, suboptimal actions) can induce speedier

and more informative communication from biased experts.

In the model, a decision maker (she) consults multiple experts who have

private information about the payo¤-relevant state of nature. There is a single

decision to be made, and neither the state nor the experts�signals and biases

change over time.1 At every point in time, �rst the experts can send simulta-

neous public messages, then the receiver either picks a game-ending policy, or

chooses momentary inaction. When the game ends, the players receive payo¤s

representing state-dependent, single-peaked preferences. Con�ict arises because

conditional on the state, the senders�ideal policies di¤er from the receiver�s. All

players have strict time preferences, and play a perfect Bayesian equilibrium,

requiring consistency and sequential rationality. No player has commitment

power� in particular, the decision maker cannot commit to future actions (e.g.,

choosing a policy with a certain delay).

This is a dynamic (though not repeated), multi-sender cheap talk game

where the receiver continuously faces the tradeo¤between more communication

and earlier decision, and the time spent on communication (or delay) adversely

a¤ects all players�payo¤s. These features distinguish it from traditional static

models and also long cheap talk.2 It will also become clear that �time�in our

model is not simply a new dimension in which the receiver can threaten the

senders with punishment (albeit without being able to commit); the fact that

beliefs evolve over time in our dynamic game is crucial to the analysis.

1The state, the senders�information and the preferences do not evolve over time so that
we can focus on the dynamics of communication in this model.

2The �static�version where the senders have common knowledge about the state is studied
by Gilligan and Krehbiel (1989), Krishna and Morgan (2001a,b), Battaglini (2002), Ambrus
and Takahashi (2007), among others. Battaglini (2004) allows a special type of noisy signal
structure in the same setup. Multiple rounds of communication are studied by Aumann and
Hart (2003), Krishna and Morgan (2004), and Ambrus and Takahashi (2007), among others.
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For a concrete situation that we intend to model, think of immigration re-

form in the United States. The decision maker is the median voter in Congress;

the senders are various committees, representatives and lobbyists who have rel-

evant private information.3 The honest opinions of these experts may di¤er

due to their information, but based on what they know it would be possible

to determine Congress� ideal policy choice. However, the senders are also bi-

ased from the median voter�s perspective due to their ethical considerations,

business interests, etc. Therefore, a disagreement among them may also re-

�ect their desire to shift Congress�decision in their favor. The question is how

much information can be transmitted, if the legislative process takes place over

time� hearings followed by proposals, debates and votes� assuming that delays

(or certain temporary policies) are wasteful, and that the median voter cannot

explicitly commit to inaction or any future actions. Other legislative issues in

the U.S. that share these characteristics range from the response to the �nancial

crisis to entitlement or health care reform.

We �rst study the case where the two experts have common knowledge about

the realization of the state of nature, while the decision maker only knows the

state�s prior distribution. We prove that, no matter what the state space and

the players�preferences are, if public communication can take place su¢ ciently

frequently, then there exists a perfect Bayesian equilibrium where the state of

nature is immediately disclosed, and the decision maker carries out her ideal

policy without delay. The senders�equilibrium strategy is to report the state

at time 0, and repeat it frequently (every period in discrete time, or at given

intervals in continuous time). The receiver takes an action matching the senders�

report as soon as they agree at a time when they are expected to be truthful.

Her o¤-equilibrium inaction is rationalized by the expectation (shared among

all parties) that both senders will report the true state frequently and almost

immediately following a disagreement. Note that the receiver does not have the

power to commit to wait; she can choose inaction only if she expects to learn

more by waiting. O¤ the equilibrium path, she believes that learning the state

is imminent, hence her momentary inaction is rational.

3Legislative procedures are modeled as cheap talk games in Gilligan and Krehbiel (1989).

2



The result that the receiver can immediately extract all information from

biased experts is remarkable because in the corresponding static multi-sender

cheap-talk model the result only obtains under certain conditions. As Battaglini

(2002) and Ambrus and Takahashi (2007) have shown, the necessary and su¢ -

cient condition for the existence of a fully-revealing equilibrium is that the state

space be �relatively large�compared to the senders�biases.4 In contrast, our

result holds without any restriction on the shape or size of the state space, or

the direction and size of the senders�biases. The fully-revealing equilibrium

in our model involves no delay, therefore an outside observer would not even

realize that the underlying situation is dynamic.

Notice that the decision maker can fully extract the senders�private informa-

tion even though she is unable to commit to delay her decision. She can achieve

the �rst-best by rationally maintaining a positive attitude and believing that the

senders will immediately agree. Such beliefs are plausible in the model where

the senders have bilateral common knowledge of the state of nature� they must

be able to agree, and the receiver knows that.5

Experts do not always have common knowledge about the state of nature.

If so, then �cross-checking�their reports and only acting when they fully agree

may not be a sensible course of action for the decision maker. This criticism

applies not only to our model under perfect observation, but also to a large chunk

of the existing literature on multi-sender cheap talk. In those models, too, the

senders observe the state, and the construction of a fully-revealing equilibrium

hinges on this fact.6 Another drawback of models with perfect observation is

that they are not particularly insightful for analyzing situations with more than

two senders. In that case, even without dynamics, a fully-revealing equilibrium

4The condition identi�ed in the cited papers is discussed in Section 3.1.
5Similar equilibrium constructions for dynamic models have been used outside the cheap

talk literature. In the durable-good oligopoly model of Ausubel and Deneckere (1987) and
Gul (1987) the buyers�o¤-equilibrium beliefs discipline the sellers�dynamic pricing behavior.
Marx and Matthews (2000) and Lockwood and Thomas (2002) use a related construction to
overcome the free-riding problem in public good provision when contributions are made over
time. The investment hold-up problem is resolved by Gul (2001) using repeated contract
o¤ers and by Che and Sákovics (2004) using dynamic investment.

6Models where the experts do not have common knowledge about the state of nature
include Austen-Smith (1993), Wolinsky (2002), Battaglini (2004).
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trivially exists: If more than two senders are expected to report the state, then

a single deviator cannot prevent the receiver from learning the truth.

We extend our model to allow for noisy signals on the senders�part. The

main di¢ culty in constructing informative equilibria in this case is that dis-

agreement between the senders can happen on the equilibrium path, and so it

is di¢ cult to detect untruthful reporting. If the receiver threatens with costly

delay as a function of the senders�disagreement and this threat induces truthful

reports, then she has no incentive to carry out the punishment once she receives

the senders�truthful reports and they actually disagree.

Despite these di¢ culties we prove that in our model with noisy signals, un-

der certain conditions, there exists an equilibrium with imperfect revelation and

positive expected delay. This equilibrium is sustained by the senders not reveal-

ing everything they know all at once, thereby motivating the receiver to wait

along the equilibrium path. The delay anticipated by the senders depends on

the degree of their disagreement, which in turn provides incentives for them not

to misrepresent their signals. As the senders�signals become arbitrarily precise,

the equilibrium outcome converges to the one found under perfect observation,

that is, full revelation and no delay.7 Our result shows that the immediate,

fully-revealing equilibrium under perfect observation is not an aberration as it

is the limit of sensible equilibria as the noise in the senders�signals vanishes.

These results shed light on whether and how delay� to which the decision

maker cannot commit� can induce the experts to reveal more information. The

insights are applicable in our �rst motivating example, legislation in Congress:

Repeated hearings and procedural delays in the absence of agreement may en-

hance communication and hence the quality of the median voter�s decision.

Another similar, practical situation where our model applies is one in which

a court needs to decide in a dispute between parties with opposing interests.

The parties have information about the state, which the court wishes to match

with its decision. The court can repeatedly ask the parties to provide (soft)

information, but delays hurt the litigants as well as the court. The court cannot

7We prove the existence of the sequence of such equilibria under conditions involving the
receiver�s eagerness to learn the state of nature in comparison to the senders� biases and
impatience, as well as assumptions imposed on the signal structure.
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commit to costly delay; that can only be the result of the court�s equilibrium

beliefs that prolonged questioning will lead to information revelation and a

socially bene�cial outcome. Indeed it will, as our results show.8

A similar situation is that of a police interrogator questioning multiple sus-

pects of a crime. The suspects have correlated information about the facts of

the case, and the interrogator can ask them repeatedly if their stories di¤er.

Repeated questioning decreases the suspects�utilities as they have to forego

other activities while in police custody. However, most interrogators cannot ex-

plicitly commit to delay. We show that repeated questioning is indeed a sensible

strategy for the interrogator.

In some of the applications it may be reasonable to assume that even in the

absence of transfers, the decision maker could impose di¤erent waiting costs

on the experts. For example, the interrogator could make one suspect�s wait

a lot less comfortable than another�s� her tools may include anything from

harassment to outright torture. While we do not explicitly allow this in our

base model, the availability of instruments that make waiting costs di¤erent

would only strengthen our results.

As we already pointed out, our paper�s main contribution is to the litera-

ture on multi-sender cheap talk games. This literature is partly motivated by

applications in political theory, and focuses on equilibria and institutions that

facilitate information transmission among experts and a decision maker.9 In the

static version of the model that we study, in the special case of perfect obser-

vation, Battaglini (2002) and Ambrus and Takahashi (2007) derive necessary-

su¢ cient conditions for the existence of fully-revealing equilibria. Aumann and

Hart (2003) and Krishna and Morgan (2004) argue that multiple rounds of com-

munication can in general expand the set of equilibrium outcomes. However,

in the multi-sender cheap talk model that we study, under perfect observation,

8A real-world example is the recent patent dispute between Research in Motion (RIM,
maker of Blackberry phones) and NTP (a patent holding company). NTP sued RIM for
patent infringement in January 2000. After a series of claims, counterclaims, court decisions
and reversals, the parties settled in March 2006. Delay costs a¤ected both parties (RIM
risked losing business, NTP risked losing its patents to invalidation). Commentators found
the settlement appropriate (see http://money.cnn.com/2006/03/03/technology/rimm_ntp).

9See also Austen-Smith (1990, 1993), Wolinsky (2002) and their references.
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Ambrus and Takahashi (2007) show that large biases still make it impossible to

sustain a fully-revealing equilibrium even with long cheap talk. In contrast, we

obtain an unconditional possibility result in our baseline dynamic model, in the

comparable case of perfect observation.

The explicit modeling of time and the possibility of costly delay in our

model is reminiscent from dynamic bargaining models (see Serrano (2007) for an

overview). However, our underlying game� multi-sender cheap talk� is rather

di¤erent. Rubinstein and Wolinsky (1992) add a time dimension to a bilateral

trading model and study renegotiation-proof contracts; Artemov (2006) con-

siders Nash implementation with costly delay as a punishment device. Our

problem is fundamentally di¤erent from these because the mechanism designer

can commit to delay and other distortions, while the receiver in our cheap talk

game cannot. A contemporaneous paper by Damiano, Li and Suen (2007) stud-

ies how the use of commitment to costly delay helps players improve e¢ ciency

in a dynamic voting game. Compared to these papers our main contribution is

to show that the receiver can credibly carry out the delay even without com-

mitment and that costly delay can be avoided in equilibrium as the senders�

signals become more precise.

Our dynamic model is marginally related to cheap talk models with money-

burning (see Austen-Smith and Banks (2000), Kartik (2007)). Delay �burns�

the payo¤s of all parties, not just the senders�. More importantly, in our setup it

is the receiver who can decide on delay, not the senders, and the receiver cannot

commit to any period of delay. In contrast, in Austen-Smith and Banks (2000)

it is the informed party (the sender) who can signal his type by committing to

veri�ably reduce his payo¤. In that model, if the sender�s budget is unlimited,

then there exists an equilibrium where the sender signals a higher state of nature

by burning more money, and all types separate. Our results are di¤erent, too:

In our setup there is no private or social loss on the equilibrium path when the

senders have common knowledge about the state.

The paper is structured as follows. We set up the model in Section 2.

The case where the experts commonly know the state is analyzed in Section 3.

We discuss noisy signals in Section 4. Section 5 concludes, and an Appendix

contains additional results with imperfect observation.

6



2 The model

We study a dynamic, incomplete information game where the players are two

experts (the senders, i = 1; 2) and one decision maker (the receiver, i = 0). Time

is discrete with � > 0 increments and an in�nite horizon: t = 0; �; 2�; : : :.10

States and signals. Before the game starts, a state of nature, !, is drawn
from a closed set S � Rn. The senders observe private signals about ! rep-
resented by random variables Xi, i = 1; 2. For simplicity, assume that the

realizations of the signals belong to the state space as well. The joint distri-

bution of (!;X1; X2) is commonly known; neither the state nor the senders�

signals change over time.

Timing, actions, strategies. At the beginning of every period, each

sender (he) simultaneously sends a public message, mt
i 2 Mi for i = 1; 2, after

which the receiver (she) chooses a policy, yt 2 Y . The message sets contain
at least all elements of S and a �null�message representing no communication,

that is, S [ f;g � Mi for i = 1; 2.11 The policy space includes at least the

entire convex hull of S and action y = ; (corresponding to inaction in period
t), that is, co(S) [ f;g � Y . The assumptions on the receiver�s payo¤s made

below ensure that for any beliefs about the state, the receiver�s ideal policy falls

in the convex hull of S. Other elements of Y may include the senders� ideal

policies (ones that are not optimal for any beliefs of the receiver), and possibly

other actions. Policy y = ;; or inaction, can be interpreted as any temporary,
suboptimal action, not supported by any beliefs of the receiver over S.

Sender i�s strategy �i assigns a message mt
i to the realization of Xi and the

public history ht = (m�
1;m

�
2; y

� )�<t for all t = 0; �; 2�; : : :, while the receiver�s

strategy �0 maps ht to yt for all t.

Payo¤s. We assume that as soon as the receiver picks an action in the
convex hull of S (chooses a policy that is rational for her given some beliefs

about the state), the game ends.12 The players�payo¤s depend on the state,

10We extend the model and our results to continuous time in Section 3.3.
11We could allow, but do not require nor model, multiple rounds of talk each period.
12This is an innocuous simpli�cation; an alternative speci�cation where the game ends with

the same probability no matter what action is chosen by the receiver is discussed below.
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the game-ending policy, and the physical time: Ui(!; y; t) for i = 0; 1; 2, where

! 2 S, y 2 co(S) and t 2 [0;1).13 We assume that U0(!; y; t) is continuous, it
is bounded for any �xed t <1, and limt!1 U0(!; y; t) = �1 for all ! and y.

The players�preferences over policies only depend on the state of nature:

For all ! 2 S, y; y0 2 co(S) and t; t0 <1, Ui(!; y; t)�Ui(!; y0; t) = Ui(!; y; t0)�
Ui(!; y

0; t0). Moreover, in all states of nature, the players�preferences over y are

concave and single-peaked. Hence, for all i = 0; 1; 2 and ! 2 S, there exists
yi(!) such that Ui(!; yi(!); t) > Ui(!; y; t) for all y 6= yi(!) and all t < 1.
For notational simplicity, we identify the receiver�s ideal point with the state,

y0(!) = !. Note that no matter what the receiver believes about the state, her

best policy is indeed in the convex hull of S.

We assume that time enters the players�utility functions in the form of dis-

liking delays: For all t0 > t and all i, ! and y, Ui(!; y; t0) < Ui(!; y; t). In other

words, y = ; (�inaction�) is indeed a suboptimal choice on the receiver�s part:
All players (the receiver and both senders) prefer a given action to be carried

out earlier. Preference for earlier resolution can be the result of discounting

of a positive utility function, or a cost of waiting, for example. Of course, the

players can have di¤erent degrees of impatience.

We assume that for any two actions y and y0 such that player i prefers y over

y0 with no delay, Ui(!; y; t) > Ui(!; y0; t), there exists a delay such that y with

that delay is dominated by y0 without delay, that is, Ui(!; y; t+�) < Ui(!; y0; t)

for some � > 0. This assumption is satis�ed, for example, if there is a linear

cost of delay.

Equilibrium concept. In the game de�ned above we study perfect Bayesian
equilibria (see Fudenberg and Tirole (1991)). Practically, this concept requires

that at any point in time, given the player�s private information and the history

of the play, no player has an incentive to deviate from his or her prescribed

strategy. No player can commit to any action in the future; in particular, the

receiver cannot commit to delay or any policy.14

13We assume that Ui(!; y; t) is de�ned for all t 2 [0;1), not just t = 0; �; 2�; : : : in order to
accommodate the continuous-time extension in Section 3.3.
14In every period, the receiver can choose momentary inaction only if her beliefs regarding

the continuation play rationalize it.
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Additional de�nitions. We de�ne a couple of quantities related to the
players� tradeo¤s between preferred outcomes and delay. Let �0 denote the

maximum delay that the receiver is willing to bear in order to learn the state

of nature and carry out her corresponding ideal point:

E [U0(!; !; t+�0)] = max
y2Y

E [U0(!; y; t)] : (1)

By our earlier assumptions, such �0 exists uniquely and does not depend on

t. Moreover, �0 is increasing in the receiver�s patience and the variance (or

other measures of di¤usion) of the prior distribution of !. For example, if the

receiver�s utility is represented by a quadratic loss function and a linear cost of

delay, then �0 is proportional to the variance of the prior on !.

Let �i(!) denote the (state-contingent) willingness to wait of sender i in

order to obtain his ideal point instead of the receiver�s ideal point without

delay:

Ui(!; yi(!);�i(!)) = Ui(!; !; 0): (2)

For example, if the sender�s ideal point di¤ers from the one-dimensional state of

nature by a constant bi, has a quadratic loss function and a linear waiting cost,

then �i(!) is proportional to b2i . Also, de�ne �i = max!2S �i(!) for i = 1; 2.

Notes on an alternative speci�cation of the model. We have assumed
that any policy choice that best responds to some beliefs of the receiver over

the state immediately ends the game, but �suboptimal�choices, like inaction,

do not. This is a convenient and innocuous simpli�cation.

Alternatively, we could assume that the receiver chooses a policy every pe-

riod and the game ends with the same, exogenous probability no matter whether

or not yt 2 co(S). Each player�s per-period payo¤, ui(!; yt) for i = 0; 1; 2, ac-
cumulates and is realized when the game ends. The payo¤ function ui(!; yt)

is de�ned for all yt 2 Y , not just yt 2 co(S), and it admits a unique optimum
in yt given !. In this version, the key assumption regarding y = ; is that
ui(!; ;) < ui(!; y) for all i = 0; 1; 2, for all ! 2 S and y 2 co(S). All of our
results carry over to this alternative version of the model.
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3 The perfect observation case

In this section we assume that each sender observes the state of nature, i.e.,Xi =

! for i = 1; 2. We look for the most informative perfect Bayesian equilibrium; in

particular, we determine whether or not there exists a fully-revealing equilibrium,

where the senders report ! and the receiver carries out y = !.

For comparison, we �rst review the benchmark results in the static version of

the game. There, Battaglini (2002) and Ambrus and Takahashi (2007) identi�ed

a necessary-su¢ cient condition for the existence of a fully-revealing equilibrium.

After discussing this result we turn to our possibility results in the dynamic

version of the same game. We extend the analysis to continuous time, and

discuss the existence of other equilibria at the end.

3.1 The static benchmark

Assume, in Section 3.1 only, that the entire game is played at a single point in

time (at t = 0), in two stages. First, the senders observe !, and simultaneously

send messages mi 2Mi. Second, the receiver picks an action y 2 Y . Note that
in the static game, in any perfect Bayesian equilibrium, the policy chosen by

the receiver must be optimal for some beliefs about the state, hence belong to

co(S). That is, sequential rationality rules out that y = ;, or any other policies
in Y nco(S), are chosen in equilibrium.
The question posed in the literature on static, multi-sender cheap talk games

is whether there exists a perfect Bayesian equilibrium in which, by comparing

the senders�messages, the receiver can infer the true state.

Denote the set of receiver-actions that sender i weakly prefers to y = !

in state ! by Bi(!). With the notation introduced in Section 2, Bi(!) =

fy 2 co(S) : Ui(!; y; 0) � Ui(!; !; 0)g, i = 1; 2. The exact condition for the

existence of a fully-revealing perfect Bayesian equilibrium is the following.

Proposition 1 (Battaglini (2002) and Ambrus and Takahashi (2007))
A fully-revealing perfect Bayesian equilibrium exists in the static game if, and

only if, for all !; !0 2 S, co(S) " B1(!0) [B2(!).
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This result is due to Battaglini (2002) for one-dimensional state spaces;

Ambrus and Takahashi (2007) observed that it holds irrespective of the dimen-

sionality of the state space. The intuition is simple. Consider a fully-revealing

equilibrium and suppose that sender 1 sends a message consistent with the state

being ! while sender 2 reports as if the true state were !0. The receiver�s re-

sponse to such inconsistent reports, y(!; !0), must lie in co(S). However, if

B1(!
0) [ B2(!) contains co(S) then at least one of the senders has a pro�table

deviation in some state: If y(!; !0) 2 B1(!0) then sender 1 prefers to pretend it
is state ! in state !0, while if y(!; !0) 2 B2(!) then sender 2 prefers to report !0

in state !. Therefore there is no fully-revealing equilibrium. In contrast, if the

condition in Proposition 1 holds, then it is easy to construct an fully-revealing

equilibrium: The senders announce the state and, if they agree, the receiver

carries out y = !; if they disagree (sender 1 reports ! while sender 2 reports

!0) then the receiver picks any y 2 co(S)n (B1(!0) [B2(!)).

ω
ω’

B2(ω)

B1(ω’)

S

b1 b2

•
•

Figure 1: Non-existence of fully-revealing equilibrium in the static game

While the receiver can use the fact that the senders must be able to agree

on !, there is a limitation on her ability to use �cross-checking�to support a

fully-revealing equilibrium of the static game. If the senders�biases are su¢ -
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ciently large relative to the state space (like in Figure 1), then it is impossible

for the receiver to punish both of them for some disagreements, and so there

does not exist a fully-revealing equilibrium. It is important to note that the

dimensionality of the state space makes no di¤erence to the analysis or the

necessary-su¢ cient conditions.

Multiple rounds of communication (at a single physical point in time, i.e.,

without costly delay) can expand the set of equilibria, as pointed out by Aumann

and Hart (2003), Krishna and Morgan (2004), and, in the multi-sender cheap

talk model, by Ambrus and Takahashi (2007). However, the latter authors also

show that when the state space is bounded and the biases are su¢ ciently large,

fully-revealing equilibria do not exist even if long cheap talk is allowed.

Our dynamic setup is di¤erent because (i) delays are costly, and (ii) the

receiver can time her decision to leave more or less time for communication.

The timing of the receiver�s action could be thought of as another dimension

of her decision problem. However, the receiver�s preference for earlier action is

commonly known� the �time-coordinate�of the state of nature is always zero.

Therefore, in a game where a new policy dimension corresponding to �time�

is added to the static model, the receiver cannot rationally choose (on or o¤

the equilibrium path) a positive delay.15 This means that introducing a new

dimension to the standard, static problem with the properties of �delay�would

not guarantee the existence of a fully-revealing equilibrium.

3.2 Unconditional possibility in the dynamic game

The main result of this section is that in our dynamic multi-sender cheap talk

game, if the period-length of discrete time is su¢ ciently short, then there ex-

ists an equilibrium where all information commonly known by the senders is

immediately revealed. In this equilibrium, the senders report the state and the

receiver picks her ideal policy right away. In case of disagreement, the receiver

believes that the senders will agree in the next period, which leads her to choose

momentary inaction, and in turn induces truthtelling on the senders�part.

15That is, even if the policy space is extended to Y � [0;1), only the policies in the subset
co(S)� f0g are sequentially rational for the receiver.
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Proposition 2 Assume that the senders perfectly observe the state: X1 = X2 =

!. If � � �0, then there exists a perfect Bayesian equilibrium where the state

of the world is immediately, publicly reported by both senders, and the receiver

carries out y = ! without delay.

Proof. The equilibrium is constructed as follows. Sender i 2 f1; 2g reports
mt
i = ! for all t, irrespective of history. For all t such that the senders report

the same state, the receiver picks the corresponding policy. If the senders dis-

agree, the receiver chooses inaction. The outcome of the proposed strategies is

immediate full revelation and yt = ! at t = 0.

Neither sender can do better than to report ! after any history because the

other sender reports ! and the receiver is expected to wait until they agree. If

the senders disagree at t, the receiver maintains her prior beliefs about !. Her

best response is inaction because she expects to learn the state at time t + �,

and E[U0(!; !; t+ �)] � maxy2Y E[U0(!; y; t)] by �0 � � and equation (1).

Proposition 2 establishes that when the receiver is willing to wait one �tick of

the clock�in order to make a fully-informed decision, there exists an immediate,

fully-revealing equilibrium. The condition � � �0 is guaranteed to hold if the

discrete time increments are su¢ ciently small. Indeed, we consider � being

arbitrarily close to zero as the most compelling assumption, because it implies

that the communication between the senders and the receiver can be arbitrarily

frequent, and that the receiver cannot commit to any amount of physical time

delay. In the next subsection we also consider the case of truly continuous time,

which is conceptually di¤erent from the case of discrete time with very short

period lengths.

Since the equilibrium in Proposition 2 exhibits no delay on the equilibrium

path, the outcome of our dynamic game is observationally equivalent to a fully-

revealing equilibrium in a corresponding static environment. As we discussed

it in Section 3.1, a fully-revealing equilibrium only exists under certain condi-

tions in the static environment, even with multiple rounds of communication.

In contrast, our result regarding immediate full disclosure holds without any

restriction on the shape or size of the state space, nor does it depend on the

direction or size of the senders�biases.
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It may be obvious to point out that our possibility result relies on the un-

boundedness of the time horizon. If there exists a last point in time by which the

receiver has to make a decision, then the sender(s) may be better o¤ by silently

waiting until then rather than divulging any information about the state. Of

course, our results remain valid if either the stopping time is random (and the

probability of continuation is su¢ ciently high), or if the senders grow in�nitely

impatient as the end of time approaches.

In the equilibrium constructed in the proof of Proposition 2, the receiver does

not update her beliefs about the state o¤the equilibrium path. This is consistent

with perfect Bayesian equilibrium, but may be unattractive on intuitive grounds.

For example, the receiver may believe that in case of disagreement, only one of

the senders was untruthful. This motivates the question whether the immediate,

fully-revealing equilibrium outcome can be implemented such that the receiver�s

beliefs are continuous o¤ the equilibrium path at time 0. We now show how to

modify the equilibrium construction to achieve this goal.

In order to simplify the exposition of this construction, suppose that ! is

uniform on [0; 1], and allow two rounds of communication per period. De�ne

(!A; !B) 2 f0; 1g � [0; 0:5] such that ! � 0:5!A + !B. Consider the following

strategies: In the �rst round of talk at t = 0, and in the �rst round of every

period until the reports match, each sender reports !B. From the time their

reports �rst agree, the senders start reporting !A. The receiver chooses inaction

until the senders report the same !B 2 [0; 0:5] and subsequently the same

!A 2 f0; 1g; when they agree on both, she carries out y = 0:5!A + !B.
If for all !B, the receiver is willing to wait at least one period to �nd out

whether ! = !B or 0:5 + !B conditional on knowing !B, then these strategies

form an immediate, fully-revealing equilibrium such that the receiver�s beliefs

are continuous in the senders� reports at t = 0. To see this, suppose that

at t = 0 the senders�reports are almost (but not exactly) equal, and assume

that the receiver believes one of the senders is truthful, ensuring the continuity

of beliefs. Although the receiver can essentially infer !B, she does not know

whether ! = !B or 0:5 + !B. She anticipates that in the following period the

senders will both report !B, and then immediately !A, so she will learn ! by the

end of the next period. By assumption, it is worth for her to wait one period.

14



3.3 Extension to continuous time

When time is continuous, players can move asynchronously and there is no

�next period�. Indeed, the latter property causes a fundamental problem in

continuous-time repeated or dynamic games: unrestricted strategies may not

determine a unique outcome (see Bergin and Macleod (1993)). This issue is

also present in our setup with continuous time.16

One, commonly-used solution is to require that strategies exhibit �inertia�:

A player must keep playing an action for a short time before switching. The

length of the �short period�can depend on the public history, the player�s signal

and action. In line with this, we now give a proper de�nition of our multi-sender

cheap talk game in continuous time.17

First, we de�ne histories and strategies (mapping histories to actions) so

that within any �nite interval of time, each player can change his action on

only countably many occasions. Let hi : [0; t) ! Mi for i = 1; 2 the public

history of sender i�s play up to time t > 0. We call hi admissible if h�1i (Mi) is a

countable collection of intervals of the form [�; � 0) � [0; t). Denote the set of all
�nite, admissible public histories by H and the restriction of h = (h1; h2) 2 H
to [0; t) by hjt. A (pure) strategy for sender i maps the realization of his signal
and the public history to a message, fi : S �H ! Mi. We assume that fi has

inertia: For all xi 2 S, t � 0 and h 2 H, if fi(xi; hjt) = mi, then there exists

� > 0 such that fi(xi; hj�) = mi for all � 2 [t; t + �).18 The receiver�s strategy
is f0 : M1 �M2 � H ! Y . The game ends at the earliest time t such that

y0(m1;m2; hjt) 2 co(S). Therefore, the inertia condition for the receiver is that
for all t � 0, h 2 H and (m1;m2) 2 M1 �M2, if f0(m1;m2; hjt) =2 co(S) then

16To see this, suppose that each sender observes the state and uses the following strategy :
�Play mi = ; at t = 0 and as long as both senders were silent for all t0 < t; send mi = ! if
either sender has sent ! at any t0 < t:�Assume the receiver�s strategy is to choose inaction
at (t; 1) if the senders were silent at (t; 0), and implement y = m1 if they agreed on a ! 2 S
at (t; 0). Then, for any t� > 0, both senders playing mi = ; for all t 2 [0; t�] and reporting !
for all t > t� is consistent with their strategies making the outcome indeterminate.
17Our setup parallels that of Bergin and MacLeod (1993) for continuous-time repeated

games. Somewhat stronger restrictions are imposed in the continuous-time bargaining games
of Perry and Reny (1993, 1994).
18In the discrete-time version of model, � is the length of a time period; there it cannot

depend on the history of the play and the identity of the player.
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there exists � > 0 such that f0(m0
1;m

0
2; hj�) is constant for all � 2 [t; t+ �) and

(m0
1;m

0
2) 2 M1 �M2. In words, the receiver cannot terminate the game at the

��rst moment�after a certain history. Denote Fi the set of inertia strategies

for player i 2 f0; 1; 2g, and let F = �i2f0;1;2gFi.
The assumption that the strategies have inertia does not mean the players

can commit to future actions (e.g., play their current action for a given period

of time). This is so because Fi contains every strategy with arbitrarily small

inertia. Whether or not commitment is feasible is determined by the equilibrium

concept, which is discussed below.

The inertia assumptions are made purely for technical reasons, in order to

guarantee that any combination of strategies f = (f0; f1; f2) 2 F determines a
unique outcome.19 We denote the play induced by the strategy-tuple f by �h(f),

the physical time when it terminates by �t(f) 2 [0;1], and the receiver�s action
at �t(f) < 1 by �y(f). We continue to use perfect Bayesian equilibrium. For-

mally, f � 2 F is a perfect Bayesian equilibrium if for all t 2 [0;1), i 2 f0; 1; 2g
and fi 2 Fi, E[Ui(!; �y(f �); �t(f �))jXi; t] � E[Ui(!; �y(fi; f

�
�i); �t(fi; f

�
�i))jXi; t]

with the convention X0 = ;.
The inertia assumption implies that if the senders disagree at t = 0, they

cannot suddenly agree for all t > 0, therefore the receiver cannot rationally be-

lieve that she will learn the state immediately following an initial disagreement.

This makes our construction of a no-delay, fully revealing equilibrium under dis-

crete time infeasible under continuous time. The issue is resolved by letting the

receiver believe that she will learn the true state at a particular point in time

after the disagreement, until which she is willing to wait given her beliefs about

the state. The senders know that the receiver only pays attention to them at

that particular point in time, and only believes them if they agree. Since they

expect each other to report truthfully at that time (and babble otherwise), the

best they can do once they are o¤ the equilibrium path is to report truthfully

when the receiver expects them to do so.

19At time 0, the play is uniquely determined by inertia for some period [0; �). If t� is
the supremum of t such that play is uniqely determined on [0; t), then by inertia there is a
unique continuation until t�+ �0 > t�, which implies t� =1. For more details see Bergin and
Macleod (1993) and Perry and Reny (1993).
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The following result is the counterpart of Proposition 2 in continuous time.

Proposition 3 In continuous time, if the senders commonly know the state,
then there exists an immediate, fully-revealing equilibrium.

Proof. We construct the equilibrium as follows. On the equilibrium path,

sender i 2 f1; 2g reports mt
i = ! at t = 0, and repeats it for all t > 0 provided

that both senders have done so at t = 0. If the senders report the same m� 2 S
at t = 0, then the receiver carries out y = m� (ending the game) at all t � 0

such that the game has not ended before t.

Suppose that the senders report m0
1 = !

0 6= !00 = m0
2, !

0; !00 2 S, at time 0.
(A report m0

i =2 S is understood by all players as a report of a state according to
a �xed, arbitrary mapping.) Denote �(!0; !00) the receiver�s willingness to wait

to �nd out the state given that she believes it is either !0 or !00:

E [U0(!; !; �(!
0; !00)) j ! 2 f!0; !00g] = max

y2Y
E [U0(!; y; 0) j ! 2 f!0; !00g] :

De�ne T � f� j � = ��(!0; !00)=2; � 2 Z+g. If the senders report !0 6= !00 at 0,
then for any history h 2 H and t 2 T they both report ! at t, while for all
h 2 H and t =2 T sender i reports m�

i such that � is the maximal element of

T \ [0; t). At t 2 T and history such that the senders reported !0 6= !00 at 0, if
the senders send the same m� 2 S at t then the receiver believes that ! = m�,

otherwise she believes ! 2 f!0; !00g. If the senders disagree at time 0, then the
receiver chooses inaction at all t � 0 unless t 2 T and both senders report the
same m� 2 S at t, in which case she picks y = m�.

If all play the proposed strategies, then the game ends at t = 0 with pay-

o¤s Ui(!; !; 0), i = 0; 1; 2. If the senders report !0 6= !00 at t = 0, then the

receiver believes ! 2 f!0; !00g, and that she will learn the truth at exactly time
�(!0; !00)=2 < �(!0; !00), hence it is optimal for her to choose inaction for all

t0 2 [0; �(!0; !00)=2). If the senders agree on some m� 2 S at t = �(!0; !00)=2 or
any other t 2 T , then, according to the receiver�s beliefs, it is optimal for her to
carry out y = m�. If the senders disagree at t = �(!0; !00)=2 or any other t 2 T ,
then the receiver continues to believe ! 2 f!0; !00g and that she will learn the
truth �(!0; !00)=2 time later. Hence it is optimal for her to wait for the next

time when she expects the senders to agree on the truth.
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If the senders disagree at t = 0, then in the continuation they expect each

other to report ! at all t 2 T and the receiver to ignore all messages sent at all
t =2 T . Therefore neither sender can induce any outcome other than y = ! at
any t 2 T , and their best response is to report ! at all t 2 T .
An attractive feature of the equilibrium construction in continuous time

is that the receiver�s beliefs regarding the true state of nature are naturally

continuous in the senders�reports at time 0. This is so because she believes

that if the senders disagree at time 0, then exactly one of them is truthful, and

that they will both agree on the truth in a period of time that is proportional

to her willingness to wait to resolve the remaining uncertainty about the state.

3.4 On the existence of other equilibria

Propositions 2 and 3 establish the existence of an immediate, fully-revealing

equilibrium in discrete and continuous time, provided the senders commonly

observe the state. However, there are also other equilibria of these dynamic

games. For example, any equilibrium of the corresponding static game can

be sustained in the dynamic setup. This raises the questions, (i) whether all

equilibria of the dynamic game can be characterized, and (ii) in what sense the

immediate, fully-revealing equilibrium is focal.

The characterization of all equilibria remains an open question. The �rst

and greatest impediment is that even in the static model, the set of equilibria

is not characterized in the literature. The only class of cheap talk games where

the set of equilibrium outcomes is known is the single-sender, static cheap talk

model with a one-dimensional state space (Crawford and Sobel (1982)). The

rest of the static literature focuses on the existence of particular equilibria,

e.g., fully-revealing equilibria with multiple senders (from Krishna and Morgan

(2001a) to Ambrus and Takahashi (2007)), or comparative equilibria with a

single sender but a multi-dimensional state space (Chakraborty and Harbaugh

(2007)). It is clear that more research needs to be done on the characterization

of equilibria in all cheap talk games, static or dynamic.

It is easy to see that in our dynamic setup, with su¢ ciently frequent in-

teraction (with � close to zero or in continuous time), there exist immediate,
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imperfectly-revealing equilibria. In these equilibria, the senders simultaneously

report the element of a partition of S that the true state belongs to, and the re-

ceiver carries out her ideal policy given the information revealed by the senders.

Such an equilibrium exists as long as the receiver is willing to wait one period

to learn the state subject to the partitioning of S; that is, if the partition is

�not too coarse�. However, if the senders�have strictly concave utilities in y

(given !), then ex ante they prefer the equilibrium with the �nest partition,

because the receiver�s response is unbiased in any equilibrium (on average, her

policy matches the state), and the most-informative communication equilibrium

minimizes the variability of the policy choice.

It is also clear that if the state space is one-dimensional and the senders�

biases have opposite signs (as in Krishna and Morgan (2001a)), any policy that

one sender prefers over the receiver�s ideal point (the state) is disliked by the

other. Therefore, with a one-dimensional state space and opposite-sign biases,

the immediate, fully-revealing equilibrium is preferred by all players.

We summarize our observations in the following Proposition.

Proposition 4 (a) Let P = fPkgk2K be a partition of S: In discrete time with
� > 0 assume E [maxy2Y E [U0(!; y; �)j f! 2 Pkg]] � maxy2Y E [U0(!; y; 0)]; in
continuous time P can be arbitrary. Then, there exists a perfect Bayesian equi-
librium where k 2 K such that ! 2 Pk is immediately disclosed. Ex ante (before
! is realized), all parties prefer the outcome of the immediate, fully-revealing

equilibrium to the outcome of any such equilibrium.

(b) If S � R and sgn(y1(!) � !) = sgn(! � y2(!)) for all !, then there is
no perfect Bayesian equilibrium whose outcome both senders prefer conditional

on the state, in any state, to that of the immediate, fully-revealing equilibrium.

The latter result suggests that if the receiver is concerned about the possi-

bility of sender collusion, or the focality of the fully-revealing equilibrium, then

it may serve her interest to present policy decisions as simple, uni-dimensional

problems, and seek the advice of (well-informed) experts that are known to have

opposite biases. Propositions 2-3 imply that there exists an immediate, fully-

revealing equilibrium even if the biases are large, while part (b) of Proposition

4 establishes that no other equilibrium dominates it for both senders.
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4 Delay and disclosure with imperfect signals

In this section, we drop the assumption that the payo¤-relevant state of nature

is commonly known by the senders, and investigate the robustness of the im-

mediate, fully-revealing equilibrium outcome to noise in the senders�signals.

Equilibrium constructions that rely on �cross-checking�and the receiver know-

ing that the senders must be able to agree break down.

Nevertheless, in certain environments with noisy signals, we are able to con-

struct equilibria where the senders reveal their signals with a positive expected

delay along the equilibrium path. We show that as the senders�signals become

arbitrarily precise, the outcome of this equilibrium converges to full revelation

with no delay� the result found with perfect observation. First, we exhibit an

instructive example to show how the construction works. Then, we present

a general framework with a �nite state space and imperfect observation, and

prove that under certain conditions, there exists an equilibrium whose outcome

converges to immediate, full revelation as the noise in the senders�signals van-

ishes. An extension to a continuous state space and normal signals is presented

in the Appendix.

The main di¢ culty of constructing informative equilibria in a model with

noisy signals is that the senders�reports can di¤er even if they are truthful. The

receiver could threaten with delay as a function of the extent of the senders�

disagreement, which may provide the right incentives for them to report hon-

estly. However, once the threat of delay induces the senders to be truthful,

the receiver has no incentive to carry out any promised delay regardless of the

reports, and so this type of construction seems unworkable.

The solution to this problem involves two ideas. First, in the equilibria that

we construct, the senders do not disclose all their information at once. The

promise of learning more in the future makes the receiver willing to wait, if

needed, along the equilibrium path. Second, the senders slow down informa-

tion disclosure in case they notice a substantial disagreement, which provides

incentives for them to report truthfully, in order to avoid delay. In equilibrium,

neither sender can unilaterally accelerate disclosure because the receiver expects

them to proceed at the same pace.
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4.1 An instructive example with noisy signals

In this subsection only, let the state and the senders�signals be two-digit, pos-

itive integers: !;X1; X2 2 S = f10; : : : ; 99g. Noise in the senders�signals is
represented by " > 0 such that Pr (X1 = X2 = kj! = k) = 1 � ". Assume

that E [!jX1 = k;X2 = `] = (k + `)=2, and that (X1; X2) has full support on

f(x1; x2) 2 S2 : jx1 � x2j < 5g. The former assumption simpli�es the receiver�s
best response to truthful reports. The latter one rules out certain joint signal

realizations; however, for any realization of (X1; X2), the smallest set that is

commonly known by the senders to contain ! (or the signal values) is S.

Denote the receiver�s minimal willingness to wait to learn E[!jX1; X2] when

she knows only the second digits of X1 and X2 by D0. Recall that sender i�s

maximal willingness to wait to get policy yi(!) instead of y = ! immediately is

denoted by �i for i = 1; 2. Assume that at least two rounds of communication

are feasible at time 0.

We claim that if D0 is greater than �1 and �2, " > 0 is small, and the time

period lengths are su¢ ciently short, then there exists an equilibrium where

the receiver learns both senders�signals and carries out her ideal policy with

a positive expected delay. However, as the noise in the signals disappears, the

expected delay converges to zero. The equilibrium is constructed as follows.

At time t = 0, the senders �rst publicly announce the second digits of their

respective signals. If these reports match, then they immediately announce

E[!jX1; X2]. If the senders� reports about their signals� second digits di¤er

at t = 0, then they do not change their reports until D0, and then announce

E[!jX1; X2]. In either case, the receiver waits for agreement on E[!jX1; X2]

and carries out the corresponding policy.

In order to see that these strategies form an equilibrium under the given

conditions, the key observation is that the senders�reports about the second

digits of their respective signals establish common knowledge between them

about the (claimed) realizations of X1 and X2, without providing the same

information to the receiver.20 However, the receiver still does not know the �rst

20For example, if the reports are (4; 5) and X1 = 34, then sender 1 knows that sender 2
claims X2 = 35 (because jX1 �X2j < 5), and this is common knowledge between them.
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digits of X1, X2 and E[!jX1; X2], hence she is willing to wait until t = D0

for a full disclosure. At t = 0 or t = D0 depending on whether or not the

second digits of their signals match, the senders immediately and fully reveal

E[!jX1; X2], which is commonly known to them. They do so the same way that

they report the commonly-known state in Propositions 2-3. The argument is

completed by noting that the senders prefer to report the second digits of their

signals truthfully at t = 0 because otherwise they risk a mismatch and a costly

delay. The expected delay in equilibrium converges to zero as " ! 0 because

disagreements occur on the equilibrium path with vanishing probability.

This example demonstrates the key ingredients of our construction in the

more general case. The senders release information at a deliberate pace in

order to make it worth for the receiver to wait (expecting more information)

in case they have a disagreement. They implement the delay by slowing down

information disclosure in case of an initial mismatch. However, such delays

rarely occur on the equilibrium path when the signals are su¢ ciently precise.

4.2 A general, �nite state space model with noisy signals

Let the state space be a �nite subset of the unit interval: For a �xed N 2 N,

S =
�
!k = (2k � 1)=2N+1 j k = 1; : : : ; 2N

	
:

The distribution of ! can be arbitrary over this set. The �niteness of the

support of ! is not a restrictive assumption because we can approximate any

distribution on [0; 1] arbitrarily closely provided N is su¢ ciently large. Our

model and arguments also immediately generalize to �nite state spaces in Rn.
We now de�ne a family of information structures where the senders observe

correlated private signals, but never have common knowledge about the state

of nature. The signal structures in this family are naturally (partially) ordered

according to the precision of the senders�signals.

The senders�signals, (X1; X2), are random variables with full support on S2.

The full-support assumption guarantees that no realization of Xi rules out any

realization of Xj, which makes the construction of an informative equilibrium

more di¢ cult. (The condition fails in the environment of Section 4.1.) Let
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" be the lowest positive number such that for all k, the probability that the

state and the other sender�s signal both equal !k, given that one sender�s signal

realization is !k, is at least 1� ":

" = inf f~" : Pr (! = Xj = !kjXi = !k) � 1� ~"; 8k;8i 6= jg . (3)

For the sake of brevity, we omit the natural range of indices such as i, j 2 f1; 2g,
k 2 f1; : : : ; 2Ng. Note that (3) is not an assumption, just a de�nition of ". All
joint distributions of (X1; X2) conditional on ! are partially ordered by the

index ". The smaller the index ", the more precise the senders�signals are.

We make two simplifying assumptions on the signal structure. We do not

specify the joint distribution of (!;X1; X2) in more detail because it is not

necessary for obtaining our results.

Assumption 1 Nothing can be inferred about the state of nature from knowing
that the senders�signal realizations are di¤erent: For all k = 1; : : : ; 2N ,

Pr (! = !k j fX1 6= X2g) = Pr(! = !k). (4)

Assumption 2 If the senders�signal realizations di¤er, then it is most likely
that they fall near each other and the true state. For i = 1; 2,

Pr
�
jXi � !j � 2�N j fX1 6= X2g

�
> 1� ". (5)

These assumptions imply that for " > 0 small and N large, the receiver�s

willingness to wait to �nd out the realizations of the senders signals, given that

she knows they di¤er, is approximately �0. To see this, note that by (4), if

the receiver learns that the senders�signals are di¤erent, then her beliefs about

the state of nature remain unchanged. Furthermore, condition (5) implies that

the receiver knows, when the senders� signal realizations are di¤erent, they

are likely to be near each other and the true state !. Therefore, if the state

space is su¢ ciently dense (N is large), then learning where the non-equal signal

realizations fall is almost equivalent to learning !. But �0 is exactly the delay

that the receiver is willing to incur to �nd out !, given her prior beliefs about

the state.
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It is easy to construct examples where Assumptions 1-2 are satis�ed. Fix

the state distribution and " > 0, and suppose that with 50-50% chance one

of the senders is chosen to observe the realization of ! while the other sender

observes ! with probability 1� " and an adjacent realization on the grid with
probability ". The senders do not know whether or not they observed !. By

construction, given the realization of Xi, the probability that it matches both

! and Xj is 1� ", satisfying (3). Since the probability of Xi 6= Xj is 1� " for
all realizations of !, nothing can be inferred about ! in case the signals di¤er,

and so Assumption 1 holds. Finally, by construction, if Xi and Xj di¤er, then

they are at or next to ! on the grid, hence Assumption 2 is satis�ed.

Finally, we make an assumption on the availability of certain jointly observed

random variables. This randomization device could be a dimension of the state

about which the senders do have common knowledge, even though they only

observe other aspects of the state with noise. It can also be interpreted as a

pure �sunspot�.

Assumption 3 The senders (but not the receiver) jointly observe the realiza-
tion of 2N i.i.d. uniform random binary variables.

The role of these random variables is similar to that of the second digits of the

senders�signals in Section 4.1: They allow the senders to exchange information

without releasing it to the receiver using only public reports. The same could

be achieved by a single, one-way private message from one sender to the other.

In the analysis that follows, Assumption 3 can be dispensed with if private

communication is allowed.21

4.3 Results in the model with noisy signals

The main result of this section is that in our environment, if the signal structure

is su¢ ciently precise and the receiver�s willingness to wait to learn ! exceeds

the senders�willingness to wait to induce their ideal points, then there exists

21Private communication is usually not allowed in multi-sender cheap talk games. A notable
exception is Wolinsky (2002) who argues in a very di¤erent setup that private communication
between the senders can help the decision maker to elicit information.
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an equilibrium where the senders report their signals with a positive expected

delay. However, as the noise in the signal structure disappears, the expected

equilibrium delay converges to zero.

The �rst step towards proving this result is to show that using encoded public

messages, the senders can establish common knowledge between themselves

about their signal values without disclosing any information to the receiver.

Lemma 1 Using a simultaneous, public message, the senders can establish
common knowledge about their signal values between themselves while keeping

the receiver uninformed.

Proof. Denote the �rst N i.i.d. uniform binary random variables referred to in

Assumption 3 by �11; : : : ; �
1
N while the last N random bits by �21; : : : ; �

2
N .

Suppose that the realization of sender 1�s signal is !k while sender 2�s is !`.

Sender 1 represents k 2
�
1; : : : ; 2N

	
as a base-2 integer with N bits �11 ; : : : ; �

1
N ;

sender 2 represents ` in binary form with the bits �21 ; : : : ; �
2
N . Then, each sender

i simultaneously and publicly reports the integer represented by the N bits

ri1; : : : ; r
i
N , where r

i
n = �

i
n � �in; here � denotes the exclusive disjunction (xor)

operation (the binary addition of two, single-bit numbers without �carrying�).

Since sender j 6= i knows each �in, he can infer �in from rin for n = 1; : : : ; N .

However, the receiver learns nothing about �in by observing r
i
n but without

knowing the realization of �in. This is so because r
i
n = 1 if and only if either

�in = 1 and �
i
n = 0 or �

i
n = 0 and �

i
n = 1, Pr(�

i
n = 0) = Pr(�

i
n = 1) = 1=2, and

by Bayes�rule,

Pr
�
�in = 1jrin = 1

�
=

(1=2) Pr (�in = 1)

(1=2) Pr (�in = 1) + (1=2) Pr (�
i
n = 0)

= Pr
�
�in = 1

�
.

Similarly, Pr (�in = 1jrin = 0) = Pr (�in = 1).

In the �communication protocol�used in the proof of this lemma the senders

encode their signal values with the help of the commonly observed random

binary variables. When they publicly report the encoded signals, they can

decode each other�s messages while the receiver (without observing the random

key) is not able to do so. Provided that they report truthfully according to
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the protocol, they end up with common knowledge about their signals. This

protocol is used in the equilibrium construction of Proposition 5, and it will be

shown that in equilibrium, the senders indeed report truthfully.

Recall that �0 denotes the amount of delay that the receiver is willing to

incur to �nd out the state of nature, while �i is the maximum delay sender i

is willing to endure in order to induce his ideal point instead of an immediate

action matching the state. The main result of the section is the following.

Proposition 5 Assume that time is either continuous or discrete with arbitrar-
ily short periods, and there are at least two rounds of communication at time

t = 0. In our environment with noisy observation, if N is su¢ ciently large and

�0 > max f�1;�2g, then for " > 0 su¢ ciently small, there exists an equilib-

rium where the receiver learns the state of nature with an error of � 1=2N with
a probability greater than 1 � ", and chooses her ideal policy accordingly. The
equilibrium outcome converges to immediate, full revelation as "! 0.

Proof. The equilibrium play consists of three stages. First, at time 0, the

senders use the communication protocol of Lemma 1 to establish common knowl-

edge about their signal realizations between themselves while keeping the re-

ceiver uninformed. Second, but still at time 0, the senders implement a delay of

length d, such that max f�1;�2g < d < �0, in case their reported signal values

are di¤erent.22 They do so by keeping their reports the same for all t 2 [0; d);
meanwhile the receiver chooses inaction. Third, if and when the delay is over,

the senders simultaneously report the receiver�s ideal point conditional on the

information they shared between each other at time 0, and the receiver carries

out their recommendation.

The reason why this is indeed an equilibrium play is the following.

In the third stage of the game (when delay d, if incurred, is over), the

senders have common knowledge about the receiver�s ideal point conditional on

the signal values they exchanged at time 0. Therefore, immediate full revelation

of this information is an equilibrium outcome in the continuation, just like in

22For simplicity, in the equilibrium that we construct, any report by sender i at time 0 (even
silence) is known to be interpreted by all players as an announcement of an integer between 1
and 2N , which is then �deciphered�by the other sender to obtain sender i�s reported signal.
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the perfect observation case studied in Propositions 2-3. If the senders disagree

in the third stage, then the receiver simply waits until they agree, believing that

they will do so right away.

In the second stage of the game, if the senders�signals (as reported to each

other via the coded messages in stage 1) di¤er, then neither sender can do better

than report the same for all t 2 [0; d). This is so because all players believe that
neither sender reports anything informative for all t 2 [0; d). During this period
of delay, the receiver�s beliefs about the state are unchanged (coincide with her

prior beliefs) because, by Assumption 1, Xi 6= Xj reveals no information about

the state. In contrast, by Assumption 2, the receiver expects to learn ! at t = d

with an error of at most �1=2N with probability greater than 1 � ". If N is

large and " > 0 su¢ ciently small, then the receiver�s willingness to wait in this

stage is approximately �0 > d. Therefore it is a best response for the receiver

to remain inactive during the second stage of the proposed equilibrium play.

In the �rst stage, neither sender has an incentive to misrepresent his signal

to the other sender. This is so because by sending a message other than the

realization of Xi, sender i induces a delay d with a probability greater than

1� ". The best outcome that this sender can hope for after delay d is his ideal
point, yi(!). However, E [Ui(!; yi(!);�0)] < E [Ui(!; !; 0)] by �0 > �i, hence

a delay d close to �0 makes such a deviation unpro�table for sender i.

Finally, the expected equilibrium delay tends to zero as the noise in the

senders�signals vanishes, that is, "! 0. This is so because the probability that

the senders�signals di¤er aproaches zero as " goes to zero.

The signi�cance of Proposition 5 is that it demonstrates the robustness

of the immediate, fully-revealing equilibrium outcome to a small noise in the

senders�signals. Notice that there is no common knowledge about the payo¤-

relevant state of nature between the two senders, no matter how small the

noise in their signals is. As a result, the receiver cannot be sure to detect

lying, or any deviation from the equilibrium path. Nevertheless, the equilibrium

outcome with noisy signals converges to the perfect-observation limit as the

noise vanishes.

The construction works as long as the receiver�s willingness to wait to �nd

out the senders�signals is greater than the delay that the senders are willing
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to su¤er in order to implement their own ideal points instead of the receiver�s.

If this were not the case then a sender could �nd it pro�table to deviate even

if that results in a delay equal to the receiver�s willingness to wait. If learning

the senders�signals does not improve by much the receiver�s decision,23 while at

least one of the senders is patient and strongly dislikes the receiver�s ideal point,

then the equilibrium with almost-immediate full disclosure is not �credible�in

the sense that the patient sender could simply �outwait� the receiver. This

argument does not apply in the perfect-observation model; immediate truthful

reporting is and remains a perfect Bayesian equilibrium in that setting. How-

ever, in a reasonable perturbation of the model like the one of this section� with

imperfect signals and delay on the equilibrium path� this type of consideration

becomes relevant.

This analysis clearly demonstrates that the lack of common knowledge about

the state is not an insurmountable impediment to eliciting timely and truthful

reports from the experts. While we did assume that the senders have exclusive

common knowledge of certain random variables other than the state (Assump-

tion 3), this assumption can be eliminated by either assuming that the signals

do not have full support over the state space (see the example of Section 4.1),

or by allowing private communication between the senders.

Our model with noisy signals features a state distribution with �nite sup-

port. This is a useful technical assumption for two reasons. First, if the signals

are su¢ ciently precise, then a sender�s signal �swamps� the prior in a �nite-

states model.24 Second, there exists a simple punishment function (a �xed

delay following any disagreement regarding which realization of ! is the most

likely) that elicits truthful signal announcements. The results and the proof of

Proposition 5 can be extended to a model with a continuum of states as long as

these two properties generalize. In the Appendix we provide an example along

these lines.

23For example, because her prior is already precise, and/or the senders� signals are not,
and/or the receiver is impatient and/or does not really care about getting her ideal point.
24If the state space is �nite and the senders�signals are unbiased and su¢ ciently precise,

then each sender�s �best guess�for the realization of the state is the one nearest to his observed
signal value. With a continuum of states and a proper prior, the sender would always �shade�
his honest best guess towards the prior mean.
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5 Conclusion

We have shown that any information that is commonly known to the senders

can be immediately and fully revealed in a perfect Bayesian equilibrium of a

dynamic, multi-sender cheap talk game. In the static version of the model

such equilibria only exist under certain conditions on the state space and/or

the senders�biases. The �perfectness�of the equilibrium in our dynamic setup

implies that the construction does not rely on exogenous commitment to delay

the receiver�s decision. Instead, the equilibrium is sustained by the receiver�s

beliefs that even if the senders have disagreed in the past, they will agree soon

enough in the future� which they must be able to do as they have common

knowledge about the state.

We studied the robustness of this result to perturbations of the model. In

particular, we have shown that in certain environments where the senders have

noisy signals about the state, a sequence of perfect Bayesian equilibria (with

endogenous delay on the equilibrium path) converges to immediate, full reve-

lation as the noise in the senders�signals vanishes. The key idea there is that

by �pacing�information disclosure, the senders can create incentives for them-

selves to make truthful (yet partial) reports, and, at the same time provide an

incentive for the receiver to wait to see more information disclosed along the

equilibrium path.

The main �practical� conclusion of our inquiry is that as long as the re-

ceiver�s action space includes temporary, suboptimal policies (like �inaction�in

case the players have time preference), she can induce information transmission

from well-informed experts over time, even if their preferences are drastically

di¤erent from her own. Frequent communication and self-ful�lling beliefs in the

possibility of a building a �consensus�on the receiver�s part are the key elements

of the construction of dynamic, informative equilibria. We believe that these in-

sights arising from our formal model are applicable in political decision-making

processes and in other applications.

The result that immediate, fully-revealing equilibria exist in a dynamic

model of communication when they do not exist in comparable static mod-

els could be usefully applied in other communication games as well. Consider,
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for example, communication between a single sender and a receiver, where the

sender can send hard information.25 Even if such signals are available, a fully-

revealing equilibrium does not exist in the static game if there is no �worst

state� for the sender.26 This is the case, for instance, if the state of nature is

distributed on the circumference of a circle, and the receiver wants to match her

action to the state, which is diametrically opposite to the sender�s ideal point.

In the standard, static version of this game, there does not exist a fully-revealing

equilibrium because by truthfully and veri�ably revealing the state the sender

causes the receiver to implement the worst possible outcome for him. However,

there exists a fully-revealing perfect Bayesian equilibrium in the dynamic game

where the receiver believes that the sender will send a veri�able signal about

the state right away even if he has not done so in the past. This indeed induces

immediate full revelation on the sender�s part.

Communication models where the senders observe noisy signals of the state�

like the ones studied in Section 4� are realistic and o¤er a multitude of future

research questions. The model could be extended to more than two senders

and, among other things, the senders�incentives to acquire information could

be investigated. In realistic situations the receiver could also learn (privately

or publicly) about the state, which would provide an additional incentive for

her to wait along the equilibrium path. However, in all these variants of the

model, our environment with either perfect observation or a small noise in the

senders�signals should really be thought of as a benchmark case. It would be

interesting to study models where the state of nature evolves over time, and

so do the senders� imperfect signals about the state. In such models, unlike

in ours, we would expect that optimal communication equilibria would involve

non-negligible, positive delay.

25A hard (or veri�able) signal, as opposed to a soft (unveri�able) one, can only be sent by
the sender in a particular state of nature. See Milgrom (1981).
26See Milgrom (1981), Seidmann and Winter (1997).
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6 Appendix: Dynamic, Multi-Sender Cheap Talk

with Normal Inference

In this appendix we discuss an application with a continuum of states and

noisy observation. We show that as the noise in the senders�signals vanishes,

equilibrium play converges to immediate, full revelation.

The information structure parallels that of Battaglini (2004). The state of

nature is drawn from a uniform distribution on R, that is, the common prior
is di¤use.27 Sender i�s signal, Xi, is normal with mean ! and variance �2 for

i = 1; 2. The receiver�s ideal point is !, sender 1�s is ! + b, while sender 2�s is

! � b, where b > 0: All players have the same quadratic loss function. Time

preference arises as a result of a unit cost of waiting per unit time:

Ui(!; y; �) = �(y � yi(!))2 � � for i = 0; 1; 2: (6)

By the rules of normal inference, the receiver�s ideal point as a function of

the realization of the senders�signals is E[!jX1 = x1; X2 = x2] = (x1 + x2) =2.

Each sender believes that the state of nature is distributed normally around the

realization of his own signal with variance �2; they believe the other sender�s

signal is distributed around the state of nature with an additional normal noise

that has variance �2.

Purely as a thought-experiment, consider a mechanism where each sender

reports the realization of his signal, x̂1 and x̂2 respectively, the receiver waits for

a period of time d(x̂1� x̂2), and then carries out y = (x̂1+ x̂2)=2. The following
lemma states that there exists a wait-function d such that this mechanism is

incentive compatible for the senders.

Lemma 2 Suppose that the receiver can commit to a delay d as a function of
the di¤erence of the senders�signal reports before carrying out her ideal action

conditional on their reports. Truthful signal reports are elicited by setting d(x̂1�
x̂2) = 2bmax fx̂1 � x̂2; 0g, where x̂i is sender i�s report for i = 1; 2.

27This is a mathematically imprecise assumption, re�ecting the limiting case as the variance
of the receiver�s prior grows without bounds (the prior is completely uninformative).
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Proof. Suppose that sender 2 reports truthfully, x̂2 = x2, and compute sender
1�s expected utility from reporting x̂1 when his true signal is x1:

V1(x1; x̂1) =Z Z "
�
�
! + b� x̂1 + ! + z

2

�2
� 2b (x̂1 � ! � z)+

#
dF (!jx1)dF (zj0);

where F (�j�) is the cdf of a normal random variable with mean � and variance

�2, and the notational convention a+ = a1fa�0g is used. Maximizing this in x̂1
yields the �rst-order conditionZ Z �

b+
! � x̂1 � z

2
� 2b1f!�x̂1�zg

�
dF (!jx1)dF (zj0) = 0,

which needs to hold at x̂1 = x1 for incentive compatibility. (It is easy to check

that the second-order condition holds.) Using the facts that
R
!dF (!jx1) = x1,R

zdF (zj0) = 0, and
R
1f!�x1�zgdF (!jx1) = F (x1 � zjx1) = F (�zj0), we can

rewrite this condition as

b� 2b
Z
F (�zj0)dF (zj0) = 0: (7)

The incentive constraint for sender 2 (provided sender 1 reports truthfully) can

be derived similarly. The �rst-order condition of his problem becomes

�b+ 2b
Z
[1� F (�zj0)] dF (zj0) = 0: (8)

Since the integrands in equations (7) and (8) add up to 1 (for all z), by the

symmetry of the normal distribution and 1� F (�zj0) = F (zj0) we haveZ
F (�zj0)dF (zj0) =

Z
[1� F (�zj0)] dF (zj0) = 1

2
:

Hence both �rst-order conditions hold as claimed.

The outcome of this mechanism can be replicated in an equilibrium with no

commitment to delay on the receiver�s part. Formally:
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Proposition 6 Consider our model with di¤use !, normal signals, and equal,
opposite-sign biases. Assume that the senders can exchange a private message

at t = 0. There exists an equilibrium where the receiver learns the realizations

of the senders� signals with a positive expected delay and carries out her full-

information ideal action. As the precision of the senders�signals increases the

expected delay tends to zero, and the outcome converges to that of an immediate,

fully-revealing equilibrium.

The equilibrium is constructed as follows. On the equilibrium path, at time

t = 0, the senders privately report to each other their signals; denote the report

of sender i to the other sender by x̂i, for i = 1; 2. Then, at every point in

time (including t = 0) both senders send public messages. They babble for all

t 2 [0; d(x̂1 � x̂2)), and announce m� = (x̂1 + x̂2)=2 from t = d(x̂1 � x̂2) on.
The receiver takes the �null�action as long as the senders�reports disagree and

carries out their report as soon as they agree.

Clearly, if both senders make truthful private reports to each other at time

zero and follow their equilibrium strategy thereon, then the receiver learns and

implements E[!jX1 = x1; X2 = x2] with delay d(x1; x2) as claimed. By Lemma

2, neither sender has an incentive to misrepresent his signal in the private report-

ing stage. The receiver has no pro�table deviation either, because (due to the

di¤use prior assumption) her expected payo¤ from taking any action without

learning something about the state is �1. She needs to wait for the senders�
agreement in order to take any action. Therefore the proposed strategies indeed

form an equilibrium.

It is also clear that the expected value of d(x1 � x2) goes to zero as the
senders�signals become arbitrarily precise. That is, the equilibrium outcome

converges to full revelation and no delay.

The main reason why we �nd our model in Section 4 more attractive than the

setup discussed in this Appendix is that here, the state space is unbounded, the

prior is di¤use, and consequently the receiver�s willingness to wait to glean any

information from the senders is also unbounded. This is a strong assumption

both from a conceptual and a practical viewpoint.
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