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Abstract

In a competitive environment, switching costs have two effects.
First, they increase the market power of a seller with locked-in cus-
tomers. Second, they increase competition for new customers. The
conventional wisdom is that the first effect dominates the second one,
so that equilibrium prices are higher the greater switching costs are.
I provide sufficient conditions for the dynamic competition effect to
dominate, so that switching costs lead to more competitive markets.
The set of sufficient conditions includes low levels of switching costs
and high values of the discount factor. I also consider a meta-game
where sellers unilaterally choose the level of switching costs. I provide
sufficient conditions such that this game has the nature of a prisoner’s
dilemma.

∗Stern School of Business, 44 West Forth Street, New York, NY 10012; lcabral@
stern.nyu.edu. An earlier draft (April 2008) circulated under the title “Small Switch-
ing Costs Lead to Lower Prices.” While that title remains valid, the discovery of new
results makes it incomplete.



1 Introduction

Consumers frequently must pay a cost in order to switch from their current
supplier to a different supplier (Klemperer, 1995; Farrell and Klemperer,
2007). These costs motivate some interesting questions: are markets more
or less competitive in the presence of switching costs? Specifically, are prices
higher or lower under switching costs? How do firm profits and consumer
surplus vary as switching costs increase? Is there a difference between ex-
ogenous switching costs (given by the nature of the product or transaction)
and endogenous switching costs (created by sellers)?

Most of the economics literature has addressed the leading motivating
questions by solving some variation of a simple two-period model.1 The
equilibrium of this game typically involves a bargain-then-ripoff pattern: in
the second period, the seller takes advantage of a locked-in consumer and sets
a high price (rip-off). Anticipating this second-period profit, and having to
compete against rival sellers, the first-period price is correspondingly lowered
(bargain).

One limitation of two-period models is that potentially they distort the
relative importance of bargains and ripoffs. In particular, considering the na-
ture of many practical applications, two-period models unrealistically create
game-beginning and game-ending effects. To address this problem, I consider
an infinite-period model where the state variable indicates the firm to which
a given consumer is currently attached. The dynamic counterpart of the
bargain-then-ripoff pattern is given by two corresponding effects on a firm’s
dynamic pricing incentives: the harvesting effect (firms with locked-in cus-
tomers are able to price higher without losing demand) and the investment
effect (firms without locked-in customers are eager to cut prices in order to
attract new customers).

The harvesting and investment effects work in opposite directions in terms
of market average price. Which effect dominates? Conventional wisdom and
the received economics literature suggest that the harvesting effect dominates
(Farrell and Klemperer, 2007). However, recent research casts doubt on this
assertion (Doganoglu, 2005; Dubé, Hitsch and Rossi, 2007). In this paper,
I follow this line of research. I provide sufficient conditions such that the
dynamic competition effect dominates, so that switching costs lead to more
competitive markets. The set of sufficient conditions includes low levels of

1. See Section 2.3.1. in Farrell and Klemperer (2007) for a survey.
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switching costs and high values of the discount factor.
Some times, switching costs are given by the nature of the product or

transaction. Some other times, switching costs are artificially created by
sellers (e.g., by choosing rules of a frequent flyer program). If prices (and
profits) are lower with switching cots, then a natural follow up question
is, what level of switching costs should sellers choose if they can do so? I
provide sufficient conditions such that a unilateral increase in switching costs
increases a seller’s payoff. Together with the previous results, this implies
that the switching cost metagame has the structure of a prisoner’s dilemma.

Related literature. The classic reference on infinite period competi-
tion with switching cots is Beggs and Klemperer (1992). They show that
switching costs lead to higher equilibrium prices. My approach differs from
theirs in two important ways. First, they assume infinite switching costs (that
is, a locked-in customer never leaves its supplier). Second, unlike myself they
consider the case when the seller cannot discriminate between locked-in and
not locked-in consumers.2

In a recent paper, Dubé, Hitsch and Rossi (2007) show, by means of nu-
merical simulations, that if switching costs are small then the investment
effect dominates, that is, switching costs increase market competitiveness.
I analytically solve a version of their model. Analytical solution has two
advantages. First, it leads to more general results, that is, results that are
not dependent on specific assumptions regarding functional forms and pa-
rameter values. Second, the process of solving the model leads to a better
understanding of the mechanics underlying the result that the average mar-
ket price declines when switching costs increase. It also shows why there is
an important difference between small and large switching costs.

In a recent paper, Doganoglu (2005) considers the case of small switching
costs and shows that, along the equilibrium path, locked-in customers switch
to the rival seller with positive probability. Moreover, steady-state equilib-
rium prices are decreasing in switching costs. Doganoglu’s (2005) approach
differs from mine in various respects. He assumes uniformly distributed pref-
erences and linear pricing strategies; by contrast, I make very mild assump-
tions regarding the distribution of buyer preferences and the shape of the
seller’s pricing strategies. Moreover, my analysis goes beyond the case of
small switching costs.

2. Related papers include Farrell and Shapiro (1988), To (1995), and Padilla (1995).
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2 Model

Consider an industry where two sellers compete over an infinite number of
periods for sales to n infinitely lived buyers. Each buyer purchases one unit
each period from one of the sellers. A buyer’s valuation for seller i’s good is
given by zi, which I assume is stochastic and i.i.d. across sellers and periods.3

Moreover — and this a crucial element in the model — if the buyer previously
purchased from seller j, then his utility from buying from seller i in the
current period is reduced by s, the cost of switching between sellers.

In each period, sellers set prices simultaneously and then each buyer
chooses one of the sellers. I assume that sellers are able to discriminate
between locked-in and not locked-in buyers (that is, buyers who are locked
in to the rival seller). Without further loss of generality, I hereafter focus on
the sellers’ competition for a particular buyer. I focus on symmetric Markov
equilibria where the state indicates which seller made the sale in the previous
period. I denote the seller who made a sale in the previous period (the “in-
cumbent” seller) with the subscript 1, and the other seller (the “challenger”
seller) with the subscript 0.

Symmetry implies that the buyer’s continuation values from being locked
in to seller i or seller j are the same. This greatly simplifies the analysis. In
particular, in each period the buyer chooses the incumbent seller if and only
if

z1 − p1 ≥ z0 − p0 − s

Define

x ≡ z1 − z0

P ≡ p1 − p0 − s (1)

In words, x is the relative preference for the incumbent’s seller product,
whereas P is the price difference corrected for the switching cost. It follows
that the buyer chooses the incumbent if and only if x > P .

Define by q1 and q0 the probability that the buyer chooses the incumbent
or the entrant, respectively. If x is distributed according to F (x), then we

3. In this sense, my model differs from the literature on customer recognition, where
sellers learn about their buyers’ valuations. See Villas-Boas (1999, 2006), Fuden-
berg and Tirole (2000), Doganoglu (2005).
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have

q1 = 1− F (x)

q0 = F (x)

I make the following assumptions regarding the c.d.f. F and the correspond-
ing density f :

Assumption 1 (i) F (x) is continuously differentiable; (ii) f(x) = f(−x);
(iii) f(x) > 0, ∀x; (iv) f(x) is unimodal; (v) F (x)/f(x) is strictly increasing.

In the Appendix, I present a Lemma that proves a series of properties of
F (x) that are derived from Assumption 1.

In this paper, I will focus on symmetric Markov equilibria. My first result
shows that there exists only one such equilibrium. The proof of this and the
remaining results in the paper may be found in the Appendix.

Proposition 1 There exists a unique symmetric Markov equilibrium.

In the next two sections, I offer two sets of sufficient conditions for the
main result in the paper, namely that an increase in switching costs implies a
decrease in average equilibrium price. In the next section, I consider the case
of small switching costs. In Section 4, I consider the case of a high discount
factor.

3 Small switching costs

My main goal is to characterize equilibrium pricing as a function of switching
costs s. In this section, I consider the case of small switching costs and prove
that average price is decreasing in s. Let p be the average price paid by the
buyer, that is,

p = q1 p1 + q0 p0.

Proposition 2 If s is small, then p is decreasing in s.

To understand the intuition for Proposition 2, it is useful to look at the
sellers’ first-order conditions. The incumbent seller’s value function is given
by

v1 =
(
1− F (P )

)(
p1 + δ v1

)
+ F (P ) δ v0

4



where vi is seller i’s value. In words: with probability 1−F (P ), the incumbent
seller makes a sale. This yields a short-run profit of p1 and a the continuation
value of an incumbent, v1. With probability F (P ), the incumbent loses the
sale, makes zero short run profits, and earns a continuation value v0.

Maximizing with respect to p1, we get the incumbent seller’s first-order
condition:

p1 =
1− F (P )

f(P )
− δ V (2)

where V ≡ v1 − v0 is the difference, in terms of continuation value, between
winning and losing the current sale. In other words, −δ V is the “cost,” in
terms of discounted continuation value, of winning the current sale.

Since q1 = 1−F (P ) and P = p1− p0− s, we have d q1

d p1
= f(P ). It follows

that (2) may be re-written as

p1 − (−δ V )

p1

=
1

ε1

where ε1 ≡ d q1

d p1

p1

q1
. This is simply the “elasticity rule” of optimal pricing, with

one difference: the future discounted value from winning the sale appears as
a negative cost (or subsidy) on price.

We thus have two forces on optimal price, which might denoted by “har-
vesting” and “investing.” If the seller is myopic (δ = 0), then optimal price
is given by the first term in the right-hand side of (2). The greater the value
of s, the smaller the value of P (as shown in the proof of Proposition 2),
and therefore the greater the value of p1. We thus have harvesting, that is, a
higher switching cost implies a higher price (by the incumbent seller, which
is the more likely seller).

Suppose however that δ > 0. Then we have a second effect, investing,
which leads to lower prices. The greater the value of s, the greater the
difference between being an incumbent and being an entrant, that is, the
greater the value of V .

What is the relative magnitude of the harvesting and the investment
effects on average price? First notice that harvesting leads to a higher price
by the incumbent but lower by the entrant. If fact, by symmetry, the effects
are approximately of the same absolute value when s is close to zero. This
implies that, for s close to zero and in terms of average price, the harvesting
effects approximately cancel out, since for s = 0 incumbent and challenger
sell with equal probability.

5
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Figure 1: Switching cost and equilibrium price.

Not so with the dynamic effect. In fact, the entrant’s first-order condition
is given by

p0 =
F (P )

f(P )
− δ V

that is, the “subsidy” resulting from the value of winning is the same as for
the incumbent. It follows that the effect on average price is unambiguously
negative, and of first-order importance.

In other words, the harvesting effect is symmetric: the amount by which
the incumbent increases its price is the same as the amount by which the
outsider lowers its price. However, the investment effect is equal for both
sellers — and negative.

Figure 1 illustrates Proposition 2. (In this and in the remaining numerical
illustrations, I assume x is distributed according to a standardized normal.)
On the horizontal axis, the value of switching cost varies from zero to positive
values. On the vertical axis, three prices are plotted: the incumbent’s price,
the challenger’s price, and average price. The left-hand panel shows the case
when δ = 0. Since there is no future, only the harvesting effect applies. The
incumbent seller sets a price that is higher the higher the value of s. The
challenger sets a price that is lower the higher s is. This results in an average
price which is increasing in s. In other words, in a static world switching
costs imply higher prices.4 Notice however that the derivative of average
price with respect to s equals zero when s = 0. That is, for small values of
s the impact of s on p is of second-order magnitude.

4. This corresponds to the “ripoff effect” in two-period models. See Farrell and Klem-
perer (2007).
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The investment effect, by contrast, is of first-order magnitude even for
small values of s. This implies that, for a positive value of δ, the investment
effects dominates the harvesting effect for small values of s. This is illustrated
by the right-hand panel, where it can be seen that p is declining in s for small
values of s.

Dubé, Hitsch and Rossi (2006) claim that, for various products, the value
of switching cost lies in the region when the net effect of switching costs is
to decrease average price. In the next section, I show that, if the discount
factor is sufficiently close to one, then switching costs lead to lower prices for
any positive value of switching costs.

4 Endogenous switching costs

Suppose that only firm i creates a switching cost. In other words, it costs s
for a buyer to switch from seller i to seller j, but it costs zero for the buyer
to switch from seller j to seller i. Unlike the previous sections, I now must
differentiate between seller i’s and seller j’s prices and value functions. More-
over, I must explicitly consider the buyer’s dynamic optimization problem.
In fact, it is not indifferent for a buyer to be locked-in to seller i or to seller
j.

How does seller i’s value changes as it increases the value of s? My main
result in this section addresses this issue.

Proposition 3 If s is small, then a unilateral increase in s increases the
seller’s average value if and only if δ < 1

2
.

In what follows, I use the notation, for a generic variable y,

ŷ ≡ d y

d s

∣∣∣∣
s = 0

Note that, at s = 0, we have a symmetric outcome where xi = xj = 0,
ui = uj = u, and p1i = p0j = p0i = p1j = p. Differentiating the buyer value
functions with respect to s at s = 0, I then get

ûi =
1

2

(
δ ûi + δ ûj − p̂1i − p̂0j − 1

)

ûj =
1

2

(
δ ûi + δ ûj − p̂1j − p̂0i

)

7



This is intuitive: a buyer’s expected valuation increases by the increase in
expected valuation, δ 1

2
(ûi + ûj), minus the increase in expected price paid

this period, which is given by 1
2
(p̂1i + p̂0j) if the buyer is attached to seller i

and 1
2
(p̂1j + p̂0i) if the buyer is attached to seller j. Moreover, if the buyer is

attached to seller i, buyer welfare further decreases by an additional 1
2

s, the
probability that an immediate switch to seller j will take place.

x̂i = p̂1i − p̂0j − δ (ûi − ûj)− 1

x̂j = p̂1j − p̂0i − δ (ûj − ûi)

Substituting (15) for ûi − ûj and simplifying

x̂i = (p1i − p0j) + δ
1

2

(
p̂1i + p̂0j − p̂1j − p̂0i

)−
(

1− δ

2

)

x̂j = (p1j − p0i) + δ
1

2

(
p̂1j + p̂0i − p̂1i − p̂0j

)− δ

2

(3)

x̂i = −2− δ

6

x̂j = −δ

6

p̂1i =
1

2
− δ

2

p̂0i = −δ

2

p̂1j = −δ

6

p̂0j = −1

3
− δ

6

Recall that these are variations with respect to the equilibrium values at
s = 0. The above values indicate that, if δ is small, then seller i, by creating
a switching cost s, is able to increase its price when the buyer is locked-in,

specifically by
(

1
2
− δ

2

)
ds. If the buyer is locked-in to seller j, however, then

seller i must decrease its price by δ
2

ds. Moreover, as δ → 1, the size of the
price increase is equal to the size of the price decrease.

8



v̂1i =
2− 3 δ

6 (1− δ)

v̂0i =
−δ

6 (1− δ)

1

2

(
v̂0i + v̂1i

)
=

1− 2 δ

6 (1− δ)

For seller j, we have

v̂1j = − δ

6 (1− δ)

v̂0j = − 2− δ

6 (1− δ)
1

2

(
v̂0j + v̂1j

)
= − 1

6 (1− δ)

In words, seller i is better off in state one if and only if δ < 2
3
, and is better

on average if and only if δ < 1
2
. Seller j, in turn, is always worse off.

5 Hight discount factor

In the Section 3, I showed that, for any preference distribution F satisfying
Assumption 1 and any positive discount factor δ, if the switching cost s is
small enough then average price is decreasing in s. In this section, I provide
an alternative sufficient condition for competitive switching costs. I show
that, for any preference distribution F satisfying Assumption 1 and for any
positive value of the switching cost s, if the discount factor is sufficiently
close to 1 then average price is decreasing in s.

Proposition 4 If δ is close to 1, then p is decreasing in s.

Figure 2 illustrates Proposition 4. It plots average price as a function of
s for various values of δ. The curve corresponding to δ = .9 is identical to
Figure 1. It is U shaped: for small values of s, average price is decreasing
in s (Proposition 2). However, for high values of s, average price becomes
increasing in s. As we consider higher values of δ, the U shape becomes more

9
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Figure 2: Switching cost and equilibrium price as δ → 1.

and more extended, so that, for a given range [0, s̄] of values of s, average
price eventually becomes uniformly decreasing in s (Proposition 4).

I next attempt to provide an intuitive explanation for Proposition 4. In
discussing Proposition 2, we saw that equilibrium prices are given by

p1 =
1− F (P )

f(P )
− δ V

p0 =
F (P )

f(P )
− δ V

(4)

(As I mentioned earlier, this is just the “elasticity rule” with the added
element that sellers “subsidize” their cost by δ V .) We also saw that the
seller value functions are given by

v1 =
(
1− F (P )

)(
p1 + δ v1

)
+ F (P ) δ v0

v0 = F (P )
(
p0 + δ v1

)
+

(
1− F (P )

)
δ v0

Substituting equilibrium prices into the value functions and simplifying we
get

v1 =

(
1− F (P )

)2

f(P )
+ δ v0

v0 =
F (P )2

f(P )
+ δ v0

(5)

If δ = 0, seller value is given by short-run profit, the first term on the right-
hand side of the value functions. In a dynamic equilibrium, seller value is

10



given by these short-term profits plus δ v0, regardless of whether the seller
wins or loses the current sale.

This is an important point and one worth exploring in greater detail. To
understand the intuition, it may be useful to think of an auction with two
bidders with the same valuations. Specifically, each better gets w if he wins
the auctions and l if he loses. The Nash equilibrium is for both bidders to bid
w− l. If follows that equilibrium value is l for both bidders (winner or loser).
In other words, the extra gain a bidder receives from being the winner, w− l,
is bid away, so that a bidder can’t expect more than l.

In the dynamic game at hand the analog of l is the continuation value
if the seller loses the current sale, δ v0. So the idea is that all of the extra
gain in terms of future value, δ V = δ (v1− v0), is bid away in terms of lower
prices.

What does this imply in terms of equilibrium prices? From (5), we get

V = v1 − v0 =

(
1− F (P )

)2

f(P )
− F (P )2

f(P )
=

1− F (P )

f(P )
− F (P )

f(P )
(6)

Substituting for V in (4) we get

lim
δ→1

p1 =
1− F (P )

f(P )
− V =

F (P )

f(P )
(7)

But, as we can see from (4), the right-hand side of (7) is simply the equilib-
rium value of p0 when δ = 0. In words, as the discount factor tends to 1,
the incumbent’s price level converges to the the entrant’s static price level
(i.e., when δ = 0). But we know that, in a static model, increasing vertical
product differentiation (in particular, increasing the switching cost) leads to
a lower price by the “entrant” seller. That is, as we increase s from zero
to a positive value, keeping δ = 0, then the incumbent’s price increases and
the entrant’s price decreases. If s = 0, then equilibrium price is the same
regardless of the value of δ. Finally, putting it all together, we conclude that,
as δ → 1 and s > 0, the high price is at the level of the lower price when
s = 0; and so switching costs lead to lower average price.

The above argument is illustrated in Figure 3. If s = 0, then equilibrium
price is the same for incumbent and entrant; moreover, it is independent of
the value of δ. Now consider a positive switching cost, say s = 1. If δ = 0,
then we have a standard problem of vertical product differentiation. The

11



0

2

0.0 0.5 1.0



......................................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ..

p1 = p0 = p | s=0

p1| s=1

p0| s=1 p | s=1

p

δ

Figure 3: High price, low price, and average price as a function of the discount
factor, when s = 0 and when s = 1.

incumbent’s price is higher than under no switching costs, whereas the en-
trant’s price is lower than under no switching cost. Average price increases
with switching costs, for two reasons: first, the increase in the incumbent’s
price is greater than the decrease in the entrant’s price. Second, the incum-
bent sells with a higher probability.

As the value of δ increases, p1, p0 and p decrease (linearly in δ).5 When
δ = 1, p1 is at the level of p0 when δ = 0 (by the argument presented above).
We now have a series of inequalities: at δ = 1 and s = 1, average price is
lower than the high price (p |s=1,δ=1 < p1|s=1,δ=1). This in turn is equal to
the low price when δ = 0 (p1|s=1,δ=1 = p0|s=1,δ=0). This in turn is lower
than average price when s = 0, regardless of the value of the discount factor
(p0|s=1,δ=0 < p0|s=0). And so, for δ = 1, average price is lower with s = 1
than with s = 0, an implication of Proposition 5 (p |s=1,δ=1 < p |s=0,δ=1).

Discussion. Figure 4 summarizes the main results of Sections 3 and 5.
The SE curve represents the points at which the derivative of average price
with respect to switching cost is zero. At points to the SE of this curve, an
increase in switching cost implies a lower average price. Propositions 2 and 4
state two important properties of this curve: points with s sufficiently small
(Proposition 2) or δ sufficiently high (Proposition 4) below to region A. The

5. To understand why prices vary linearly with δ, notice that, from (6), V only depends
on P . Moreover, subtracting the two equations (4), we get P as a function of s
and V . It follows that the values of P and V depend on s but not on δ. Finally,
from (4) pi is linear in δ.
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Figure 4: In region A, an increase in switching costs leads to a lower average
equilibrium price. In regions A and B, average price is lower than it would
be if switching costs were zero.

figure suggests that this characterization is “tight,” that is, Propositions 2
and 4 describe the essential properties of the boundary of region A.

So far, I have examined how average price changes when switching costs
increase. An alternative interesting comparison is between average price with
s > 0 and average price when s = 0. The NW-most curve in Figure 4 depicts
points such that average price is the same as when s = 0. For points to the
SE of this curve, average price is lower with switching costs than without
switching costs.

6 Conclusion

This paper contributes several points to the understanding of switching costs
and market competition. First, I provide sufficient conditions such that
(symmetric) switching costs lead to lower seller prices and profits. Second,
I provide conditions such that a unilateral increase in switching costs in-
creases firm profits. Taken together, these points imply that the meta game
whereby firms choose their level of switching costs has the nature of a pris-
oner’s dilemma.

Although I make only very weak assumptions regarding the nature of
product differentiation, I do make some important assumptions regarding
the nature of pricing and the dynamics of buyer preferences. First, as men-
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tioned in the introduction, I assume that sellers can discriminate between
buyers who are locked in and buyers who are not. If sellers cannot discrim-
inate, then we must simultaneously consider all buyers (not just one) and
the seller’s optimal price will strike a balance between harvesting locked-in
buyers and investing on new buyers. Beggs and Klemperer (1992) argue that
the balance tends to favor higher prices than without switching costs. The
contrast between my result and that of Beggs and Klemperer (1992) bears
some relationship to the literature of oligopoly price discrimination (Corts,
1998). Oligopolists typically would like to commit not to price discriminate
as this would soften overall price competition.

Secondly, I assume buyer preferences are i.i.d. across periods. Other
models consider the possibility of serial correlation in buyer preferences. If
the seller can discriminate between buyers, then we have a case of “customer
recognition.” Basically, conditionally on having made a sale in the previous
period, a seller should expect its locked-in buyer to have a higher z than
the population distribution would suggest. Villas-Boas (1999), Fudenberg
and Tirole (2000), Doganoglu (2005) consider this possibility. It is not clear
what the combination of switching costs and customer recognition implies
for average prices.

Thirdly, I assume symmetry, both in terms of costs and in terms of buyer
preferences. This assumption is not innocuous. In fact, the argument under-
lying Proposition 2 depends crucially on symmetry: for low values of s and δ,
the increase in the incumbent’s price approximately cancels the decrease in
price by the entrant. If market shares are approximately 50%, then average
price changes by an amount that is of second-order magnitude. However, if
one of the sellers is much greater than the other one (either because it has
lower costs or a better product), then the same is no longer true. In other
words, in an industry with a dominant seller, switching costs are likely to
increase prices and reduce buyer welfare.

Having said that, I should also add that none of my results is knife-edged.
In other words, my results are based on strict inequalities. This implies that
I can slightly perturb the model and still get similar qualitative results.
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Appendix

The proofs of Propositions 1–4 will use repeatedly the following result, which
characterizes several properties of F that follow from Assumption 1:

Lemma 1 Under Assumption 1, the following are strictly increasing in x:

F (x)2

f(x)
,

F (x)− 1

f(x)
,

2 F (x)− 1

f(x)
.

Moreover, the following is increasing in x iff x > 0 (and constant in x at
x = 0): (

1− F (x)
)2

+
(
F (x)

)2

f(x)
.

Proof of Lemma 1: First notice that

F (x)2

f(x)
= F (x)

F (x)

f(x)
.

Since F (x) is increasing and F (x)
f(x)

is strictly increasing (by Assumption 1), it
follows that the product is strictly increasing.

Next notice that, by part (ii) Assumption 1,

F (x)− 1

f(x)
=
−F (−x)

f(x)
=
−F (−x)

f(−x)

Since F (x)
f(x)

is strictly increasing, −F (−x)
f(−x)

is strictly increasing too.
Next notice that

2 F (x)− 1

f(x)
=

F (x)− 1

f(x)
+

F (x)

f(x)
.

I have just proved that F (x)−1
f(x)

is strictly increasing. We thus has the sum
of two strictly increasing functions, the result being a strictly increasing
function.
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Finally, taking the derivative of the fourth expression I get

d

d x

((
1− F (x)

)2
+

(
F (x)

)2

f(x)

)
=

=

(− 2
(
1− F (x)

)
f(x) + 2 F (x) f(x)

)
f(x)

(
f(x)

)2
−

−
f ′(x)

((
1− F (x)

)2
+

(
F (x)

)2
)

(
f(x)

)2

= 4

(
F (x)− 1

2

)
− f ′(x) ξ,

where ξ =
((

1− F (x)
)2

+
(
F (x)

)2
)

/
(
f(x)

)2
is positive. The result then

follows from Assumption 1.

Proof of Proposition 1: The seller value functions are given by

v1 =
(
1− F (P )

)(
p1 + δ v1

)
+ F (P ) δ v0

v0 = F (P )
(
p0 + δ v1

)
+

(
1− F (P )

)
δ v0

(8)

The corresponding first-order conditions are

−f(P )
(
p1 + δ v1

)
+ 1− F (P ) + f(P ) δ v0 = 0

−f(P )
(
p0 + δ v1

)
+ F (P ) + f(P ) δ v0 = 0

(Recall that, from (1), d P
d p1

= 1 and d P
d p0

= −1.) Solving for optimal prices, I
get

p1 =
1− F (P )

f(P )
− δ V

p0 =
F (P )

f(P )
− δ V

(9)

where
V ≡ v1 − v0
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Substituting (9) for p1, p0 in (8) and simplifying, I get

v1 =

(
1− F (P )

)2

f(P )
+ δ v0

v0 =
F (P )2

f(P )
+ δ v0

It follows that

P =
1− F (P )

f(P )
− F (P )

f(P )
− s =

1− 2 F (P )

f(P )
− s (10)

V =

(
1− F (P )

)2

f(P )
− F (P )2

f(P )
=

1− 2 F (P )

f(P )
(11)

Equation (10) may be rewritten as

P +
2 F (P )− 1

f(P )
= −s (12)

By Lemma 1, the left-hand side is strictly increasing in P , ranging from −∞
to +∞ as P itself ranges from −∞ to +∞. This implies there exists a unique
solution P . From (11), there exists a unique V . Finally, from (9) there exist
unique p0, p1.

Proof of Proposition 2: Average price is given by

p ≡ q1 p1 + q0 p0 =
(
1− F (P )

)
p1 + F (P ) p0

Substituting (9) for p1, p0 and (11) for V , and simplifying, I get

p =
(
1− F (P )

) (
1− F (P )

f(P )
− δ V

)
+ F (P )

(
F (P )

f(P )
− δ V

)

=

(
1− F (P )

)2

f(P )
+

F (P )2

f(P )
− δ V

=

(
1− F (P )

)2
+ F (P )2

f(P )
+ δ

(
2 F (P )− 1

f(P )

)
(13)

Lemma 1 implies that, at s = 0, the first term on the right-hand side of (13)
is constant in P . It also implies that the second term on the right-hand side

of (13) is increasing in P . It follows that, if s is small, then
d p

d P
> 0.
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From (12) and the implicit function theorem, I get d P
d s

< 0. Finally, if s
is small then

d p

d s
=

(
d p

dP

)(
dP

d s

)
< 0,

which concludes the proof.

Proof of Proposition 3: Let v1i and v0i be seller i’s value when it is an
incumbent or an entrant, respectively. Let p1i and p0i be seller i’s price when
it is an incumbent or an entrant, respectively. A similar notation applies to
seller j. Let ui be the buyer’s value of being attached to seller i, measured
at the beginning of the period and before learning the valuations z for that
period.

The buyer, if currently locked-in to seller i, chooses seller i again if and
only if

zi − p1i + δ ui ≥ −s + zj − p0j + δ uj

or
zi − zj ≥ p1i − p0j − δ ui + δ uj − s

If the buyer is locked-in to seller j, however, then he chooses seller j if and
only if

zj − zi ≥ p1j − p0i − δ uj + δ ui

Notice the asymmetry between the two cases. Define by xi (resp. xj) the
critical level of zi − zj (resp. zj − zi) such that the buyer will prefer to stay
with his current seller, seller i (resp. j). We thus have

xi ≡ p1i − p0j − δ ui + δ uj − s

xj ≡ p1j − p0i − δ uj + δ ui

(14)

Finally, knowing that zi − zj is distributed according to F (·), we conclude
that the incumbent seller’s demand is given by q1k = 1 − F (xk) = F (−xk),
k = i, j. Specifically,

q1i = 1− F (xi) = F
(
p0j − p1i + δ ui − δ uj + s

)

q1j = 1− F (xj) = F
(
p0i − p1j + δ uj − δ ui

)

Let φ(·) be the distribution of zi (and zj) and define

E(x) ≡
∫

z−z′≥x

z dφ(z) dφ(z′)
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In words, E(x) is the buyer’s expected valuation given that he chooses a
particular seller by using the threshold x of differences in valuations (times

the probability of choosing that seller). Let e(x) ≡ d E(x)
d x

.
The buyer’s value functions, measured before the buyer learns his valua-

tions zi, zj, are recursively given by

ui = E(xi) + E(−xi) +
(
1− F (xi)

) (− p1i + δ ui

)
+ F (xi)

(− s− p0j + δ uj

)

uj = E(xj) + E(−xj) +
(
1− F (xj)

) (− p1j + δ uj

)
+ F (xj)

(− p0i + δ ui

)

In what follows, I use the notation, for a generic variable y,

ŷ ≡ d y

d s

∣∣∣∣
s = 0

Note that, at s = 0, we have a symmetric outcome where xi = xj = 0,
ui = uj = u, and p1i = p0j = p0i = p1j = p. Differentiating the buyer value
functions with respect to s at s = 0, I then get

ûi = e(0) x̂i − e(0) x̂i +
1

2

(− p̂1i + δ ûi

)− f(0) x̂i

(− p + δ u
)
+

+
1

2

(− 1− p̂0j + δ ûj

)
+ f(0) x̂i

(− p + δ u
)

=
1

2

(
δ ûi + δ ûj − p̂1i − p̂0j − 1

)

ûj =
1

2

(
δ ûi + δ ûj − p̂1j − p̂0i

)

Solving this system and simplifying, we get

ûi − ûj =
1

2

(
p̂1j + p̂0i − p̂1i − p̂0j − 1

)
(15)

Differentiating (14) with respect to s at s = 0, I get

x̂i = p̂1i − p̂0j − δ (ûi − ûj)− 1

x̂j = p̂1j − p̂0i − δ (ûj − ûi)

Substituting (15) for ûi − ûj and simplifying

x̂i = (p1i − p0j) + δ
1

2

(
p̂1i + p̂0j − p̂1j − p̂0i

)−
(

1− δ

2

)

x̂j = (p1j − p0i) + δ
1

2

(
p̂1j + p̂0i − p̂1i − p̂0j

)− δ

2

(16)
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Seller k’s value functions (k = i, j; ` 6= k) are given by

v1k =
(
1− F (xk)

) (
p1k + δ v1k

)
+ F (xk) δ v0k

v0k = F (x`)
(
p0k + δ v1k

)
+

(
1− F (x`)

)
δ v0k

The corresponding first-order conditions are

−f(xk)
(
p1k + δ v1k

)
+ 1− F (xk) + f(xk) δ v0k = 0

−f(x`)
(
p0k + δ v1k

)
+ F (x`) + f(x`) δ v0k = 0

Solving for p1k, p0k, we get

p1k =
1− F (xk)

f(xk)
− δ (v1k − v0k)

p0k =
F (x`)

f(x`)
− δ (v1k − v0k)

(17)

Plugging back into the value functions I get

v1k =

(
1− F (xk)

)2

f(xk)
+ δ v0k

v0k =
F (x`)

2

f(x`)
+ δ v0k

(18)

and so

v1k − v0k =

(
1− F (xk)

)2

f(xk)
− F (x`)

2

f(x`)

Plugging this back into the first-order conditions (17), we get

p1k =
1− F (xk)

f(xk)
− δ

(
1− F (xk)

)2

f(xk)
+ δ

F (x`)
2

f(x`)

p0k =
F (x`)

f(x`)
− δ

(
1− F (xk)

)2

f(xk)
+ δ

F (x`)
2

f(x`)

Differentiating with respect to s at s = 0, and noting that f ′(0) = 0, I get

p̂1k = −(1− δ) x̂k + δ x̂`

p̂0k = δ x̂k + (1 + δ) x̂`

(19)
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Equations (16) and (19) define a system of 6 equations with 6 unknowns. Its
solution is given by

x̂i = −2− δ

6

x̂j = −δ

6

p̂1i =
1

2
− δ

2

p̂0i = −δ

2

p̂1j = −δ

6

p̂0j = −1

3
− δ

6

(20)

Differentiating the system (18), I get

v̂1k = −x̂k + δ v̂0k

v̂0k = x̂` + δ v̂0k

Substituting (20) for xk, x`, and simplifying, I get, for seller i

v̂1i =
2− 3 δ

6 (1− δ)

v̂0i =
−δ

6 (1− δ)

1

2

(
v̂0i + v̂1i

)
=

1− 2 δ

6 (1− δ)

For seller j, we have

v̂1j = − δ

6 (1− δ)

v̂0j = − 2− δ

6 (1− δ)
1

2

(
v̂0j + v̂1j

)
= − 1

6 (1− δ)

In words, seller i is better off in state one if and only if δ < 2
3
, and is better

on average if and only if δ < 1
2
.
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Proof of Proposition 4: From (13),

lim
δ→1

p = 2
F (P )2

f(P )

Lemma 1 then implies that, if δ is sufficiently close to 1, then p is increasing
in P . From the proof of Proposition 2, P is decreasing in s. (Notice that
that statement does not depend on s being small.) The result then follows
by the chain rule of differentiation.
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