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Abstract

The market value of a firm can be decomposed into two fundamental parts: the value of

assets in place and the value of future growth opportunities. We propose a theoretically-

motivated procedure for measuring heterogeneity in growth opportunities across firms.

We identify firms with high growth opportunities based on the covariance of their stock

returns with the investment-specific productivity shock. We find that, empirically, our

procedure is able to identify economically significant and theoretically consistent dif-

ferences in firms’ investment behavior, as well as risk and risk premia in their stock

returns. Our empirical findings are quantitatively consistent with a calibrated struc-

tural model of firms’ growth.

1 Introduction

The market value of a firm can be decomposed into two fundamental parts: the value

of assets in place and the value of future growth opportunities. If the systematic risk of

growth opportunities differs from that of assets in place, heterogeneity in firms’ growth

option shares could help explain observed cross-sectional differences in stock returns. This
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basic observation underpins many of the theoretical models connecting firms’ characteristics

to the properties of their stock returns. Successful applications of this idea depend on the

quality of empirical measures of growth opportunities. We propose a theoretically-motivated

procedure for measuring growth option heterogeneity and document its empirical properties.

We find that, empirically, our procedure is able to identify economically significant and

theoretically consistent differences in firms’ investment behavior, as well as risk and risk

premia in their stock returns.

The literature on real determinants of economic growth has documented that a significant

fraction of observed growth variability can be attributed to productivity shocks in the capital

goods sector [Greenwood, Hercowitz and Krusell, 1997; Fisher, 2006]. Under certain assump-

tions, one can identify such shocks with the price of investment equipment. Greenwood et al.

(1997) show that the historical series of investment-goods prices is negatively correlated with

aggregate investment, both at business-cycle and lower frequencies. Our theoretical model

predicts (see Proposition 2 below) that stock returns of firms for which growth options ac-

count for a relatively large fraction of their market value (high-growth firms) respond more

to the investment-specific productivity shocks (z-shocks). Our empirical procedure is based

on this intuition, relating unobservable asset composition (growth options relative to assets

in place) to observed differences in stock price sensitivity to the z-shocks.

We sort firms on their stock return sensitivity to the z-shocks. The macroeconomic

literature has focused on the price of new equipment, where a positive z-shock refers to

a decline in the price of investment goods. However, since the data on investment-goods

prices is available only at the annual frequency, we instead use a portfolio mimicking z-

shocks, constructed according to our theoretical model. Specifically, we use a zero-investment

portfolio long the stocks of investment-good producers and short the stocks of consumption-

good producers (IMC).

Since growth opportunities are not directly observable, we use indirect metrics to assess

the success of our procedure. In particular, the key metric is the response of firms’ investment
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to the z-shock. Intuitively, firms with more growth opportunities should invest relatively

more in response to a favorable z-shock, since they have more potential projects to invest

in. In addition, high-growth firms have other observable characteristics. In most standard

models, such firms tend to have higher Tobin’s Q, higher average investment rates, and

higher market betas.

We find that the mimicking portfolio IMC betas (�imc) are able to identify heterogeneity

in firms’ investment responses to the z-shocks. High-�imc firms not only invest more on

average, but their investment increases more in response to a positive investment shock, as

measured by high returns on the IMC portfolio or a decline in investment-goods prices. Eco-

nomically, these effects are significant. The difference in investment-goods price sensitivity

between the high-beta and the low-beta firms is two to three times larger than the sensitiv-

ity of an average firm. The average investment rate of low-beta firms is twenty percent less

of that of the high-beta firms. High-�imc firms tend to have higher Tobin’s Q and higher

market beta, however, the investment-shock betas contain information about the firms’ asset

mix which is not reflected their Tobin’s Q or market beta. Moreover, consistent with our

economic intuition, high �imc firms hold more cash, pay less in dividends and invest more in

R&D.

We explore whether our measure for growth opportunities can capture heterogenous

firm response to other aggregate shocks that should affect investment. We find that high

�imc firms respond significantly more than low �imc firms to innovations in credit spreads,

implying that a tightening of credit conditions is more likely to affect high-growth firms. In

addition, we show that when the aggregate investment rate increases, the investment rate

of high-�imc firms increases significantly more than that of low �imc firms. This suggests

that, on average, a macroeconomic shock affecting aggregate investment impacts firms with

richer growth opportunities relatively more. These findings support our conjecture that �imc

is a valid empirical proxy for the z-shock beta and that the latter captures cross-sectional

differences in growth opportunities across firms.
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We show that our empirical findings are quantitatively consistent with a parsimonious

structural model of investment. In our partial-equilibrium model, firms derive value from

implementing positive-NPV projects, which arrive randomly. The price of capital goods

varies stochastically, affecting firms’ investment choices. Randomness in project arrival and

expiration leads to cross-sectional heterogeneity in the firms’ mix of growth opportunities

and assets in place. Our model matches the key qualitative and quantitative features of the

empirical data, including cross-sectional differences in firms’ response to investment-specific

shocks and their risk premia. In particular, we find that the beta of stock returns with

respect to the investment-specific shock positively predicts the sensitivity of firm investment

to such shocks. These effects are consistent in magnitude with the corresponding empirical

estimates. We also find that the cross-sectional differences in stock returns between portfolios

sorted by investment-shock betas and market-to-book ratios are quantitatively similar to the

data.

The rest of the paper is organized as follows. Section 2 relates our paper to existing work.

In Section 3 we present the structural model of investment. Section 4 presents empirical

results. In Section 6 we evaluate our model quantitatively using calibration.

2 Relation to the Literature

Our paper bridges and complements two distinct strands of the macroeconomic and finance

literature. The first argues for the importance of investment-specific shocks for aggregate

quantities and the second argues that differences in firm’s mix between growth options and

assets are important in understanding the cross-section of risk premia.

In macroeconomics, a number of studies have shown that investment-specific technolog-

ical shocks can account for a large fraction of the variability output and employment, both

in the long-run, as well as at business cycle frequencies [Greenwood et al., 1997; Greenwood,

Hercowitz and Krusell, 2000; Boldrin, Christiano and Fisher, 2001; Fisher, 2006; Justiniano,
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Giorgio and Tambalotti, 2008]. Investment shocks can be modelled as either shocks to the

marginal cost of capital as in Solow (1960) or as shocks to the productivity of a sector pro-

ducing capital goods as in Rebelo (1991) or Boldrin et al. (2001). Given that investment

shocks lead to an improvement in the real investment opportunity set in the economy, they

are a natural place to start to understand the heterogeneity in the risk of growth options

versus assets in place.

In financial economics, the idea that growth options may have different risk characteristics

than assets in place is not new. [Berk, Green and Naik, 1999; Gomes, Kogan and Zhang,

2003; Carlson, Fisher and Giammarino, 2004; Zhang, 2005]. These studies have argued

that decomposing value into assets in place versus growth opportunities may be useful in

understanding the cross-section of risk premia. In these models, assets in place are riskier

than growth options in bad times. A counter-cyclical price of risk may lead to value firms

having higher returns on average than growth firms. Our work complements this literature

by illustrating how a different mechanism can generate differences in risk premia between

assets in place and growth options. Papanikolaou (2008) shows that in a two-sector general

equilibrium model, investment shocks can generate a value premium. On the other hand,

there is no other source of firm heterogeneity in his model, whereas we explicitly model firm

heterogeneity in terms of the mix between growth options and assets in place.

Our work is also connected to the investment literature that links Tobin’s Q, a measure

of growth opportunities to firm investment. In order to generate a non-zero value for growth

opportunities, some investment friction is often assumed such as convex or fixed adjustment

costs, or investment irreversibility [Hayashi, 1982; Abel, 1985; Abel and Eberly, 1994; Abel

and Eberly, 1996; Abel and Eberly, 1998; Eberly, Rebelo and Vincent, 2008]. In these models,

marginal Q measures the valuation of an additional unit of capital invested in the firm, which

in the finance literature is closely linked to the notion of growth options. Tobin’s Q is often

proxied by the market value of capital divided by it’s historical cost. We contribute to this

literature by introducing a new empirical measure of growth opportunities that relies on
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stock price changes rather than levels.

3 The Model

In this section we develop a structural model of investment. We show that the value of assets

in place and the value of growth opportunities have different exposure to the investment-

specific productivity shocks. Thus, the relative weight of growth opportunities in a firm’s

value can be identified by measuring the sensitivity of its stock returns to investment-specific

shocks.

There are two sectors in our model, the consumption-good sector, and the investment-

good sector. Investment-specific shocks enter the production function of the investment-

good sector. We focus on heterogeneity in growth opportunities among consumption-good

producers.

3.1 Consumption-Good Producers

There is a continuum of measure one of infinitely lived firms producing a homogeneous

consumption good. Firms behave competitively and there is no explicit entry or exit in this

sector.

Assets in Place

Each firm owns a finite number of individual projects. Firms create projects over time

through investment, and projects expire randomly.1 Let ℱ denote the set of firms and J (f)

the set of projects owned by firm f .

Project j managed by firm f produces a flow of output equal to

yfjt = "ftujtxtK
�
j , (1)

1Firms with no current projects may be seen as firms that temporarily left the sector. Likewise, idle firms
that begin operating a new project can be viewed as new entrants. Thus, our model implicitly captures
entry and exit by firms.
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where Kj is physical capital chosen irreversibly at the project j’s inception date, ujt is the

project-specific component of productivity, "ft is the firm-specific component of productivity,

such as managerial skill of the parent firm, and xt is the economy-wide productivity shock

affecting output of all existing projects. We assume decreasing returns to scale at the project

level, � ∈ (0, 1). Projects expire according to independent Poisson processes with the same

arrival rate �.

The three components of projects’ productivity evolve according to

d"ft = −��("ft − 1) dt+ �e
√
"ft dBft

dujt = −�u(ujt − 1) dt+ �u
√
ujt dBjt

dxt = �x xt dt+ �xxt dBxt,

where dBft, dBjt and dBxt are independent standard Brownian motions. All idiosyncratic

shocks are independent of the aggregate shock, dBft ⋅ dBxt = 0 and dBjt ⋅ dBxt = 0. The

firm and project-specific components of productivity are stationary processes, while the

process for aggregate productivity follows a Geometric Brownian motion, generating long-

run growth.

Investment

Firms acquire new projects exogenously according to a Poisson process with a firm-specific

arrival rate �ft. The firm-specific arrival rate of new projects is

�ft = �f ⋅ �̃f,t (2)

where �̃ft follows a two-state, continuous time Markov process with transition probability

matrix between time t and t+ dt given by

P =

(
1− �L dt �L dt

�H dt 1− �H dt

)
. (3)
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We label the two states as [�H , �L], with �H > �L. Thus, at any point in time, a firm can

be either in the high-growth (�f ⋅ �H) or in the low-growth state (�f ⋅ �L), and �H dt and

�L dt denote the instantaneous probability of entering each state respectively. We impose

that E[�̃f,t] = 1, which translates to the restriction

1 = �L +
�H

�H + �L
(�H − �L) (4)

When presented with a new project at time t, a firm must make a take-it-or-leave-it decision.

If the firm decides to invest in a project, it chooses the associated amount of capital Kj and

pays the investment cost ztxtKj. The cost of capital relative to it’s average productivity, zt,

is assumed to follow a Geometric Brownian motion

dzt = �zzt dt+ �zzt dBzt, (5)

where dBzt ⋅ dBxt = 0. The z shock represents the component of the price of capital that

is unrelated to it’s current level of average productivity, x, and is the investment-specific

shock in our model. Finally, at the time of investment, the project-specific component of

productivity is at its long-run average value, ujt = 1.

Valuation

Let �t denote the stochastic discount factor. The time-0 market value of a cash flow stream

Ct is then given by E
[∫∞

0
(�t/�0)Ct dt

]
. For simplicity, we assume that the aggregate pro-

ductivity shocks xt and zt have constant prices of risk �x, �z, and the risk-free interest rate

r is also constant. Then,

d�t
�t

= −r dt− �x dBx,t − �z dBz,t. (6)

This form of the stochastic discount factor is motivated by a general equilibrium model

with with investment-specific technological shocks in Papanikolaou (2008). In Papanikolaou
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(2008), states with low cost of new capital are high marginal valuation states because of

improved investment opportunities. This is analogous to a positive value of �z. Our analysis

below shows that empirical properties of stock returns imply a positive value of �z. Finally,

we choose a price of risk of the aggregate productivity shock x is positive, which is consistent

with most equilibrium models and empirical evidence.

Firms’ investment decisions are based on a tradeoff between the market value of a new

project and the cost of physical capital. The time-t market value of an existing project j,

p("ft, ujt, xt, Kj), is computed using the discounted cash flow formula:

p("ft, ujt, xt, Kj) = Et

[∫ ∞
t

e−�(s−t)
�s
�t
"fsujsxsK

�
j ds

]
= A("ft, ujt)xtK

�
j , (7)

where

A(", u) =
1

r + � − �X
+

1

r + � − �X + �e
("− 1) +

1

r + � − �X + �u
(u− 1)

+
1

r + � − �X + �e + �u
("− 1)(u− 1)

Firms’ investment decisions are straightforward because the arrival rate of new projects

is exogenous and does not depend on their previous decisions. Thus, optimal investment

decisions are based on the NPV rule. Firm f chooses the amount of capital Kj to invest in

project j to maximize

p("ft, ujt, xt, Kj)− ztxtKj

Lemma 1 The optimal investment Kj in project j, undertaken by firm f at time t is

K∗("ft, zt) =

(
�A("ft, 1)

zt

) 1
1−�

.

The scale of firm’s investment depends on firm-specific productivity, "ft, and the price

of investment goods relative to average productivity, zt. Because our economy features

decreasing returns to scale at the project level, it is always optimal to invest a positive and

finite amount.
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The value of the firm can be computed as a sum of market values of its existing projects

and the present value of its growth opportunities. The former equals the present value of

cash flows generated by existing projects. The latter equals the expected discounted NPV of

future investments. Following the standard convention, we call the first component of firm

value the value of assets in place, V APft, and the second component the present value of

growth opportunities, PV GOft. The value of the firm then equals

Vft = V APft + PV GOft

The value of a firm’s assets in place is simply the value of its existing projects:

V APft =
∑
j∈Jf

p(eft, ujt, xt, Kj) = xt
∑
j∈Jf

A("ft, uj,t)K
�
j .

The present value of growth options is given by the following lemma.

Lemma 2 The value of growth opportunities for firm i

PV GOft = z
�
�−1

t xtG("ft, �ft)

G("ft, �ft) = C ⋅ Et
[∫ ∞

t

e−�(s−t) �fsA("fs)
1

1−� ds

]
= �f

(
G1("ft) +

�L
�L + �H

(�H − �L)G2("ft)

)
, �̃ft = �H

�f

(
G1("ft)−

�H
�L + �H

(�H − �L)G2("ft)

)
, �̃ft = �L,

where

� = r +
�

1− �(�z − �2
z/2)− �x −

�2�2
z

2(1− �)2
,

and

C = �
1

1−�
(
�−1 − 1

)
.
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The functions G1(") and G2(") solve

C ⋅ A(", 1)
1

1−� − �G1(")− ��("− 1)
d

d "
G1(") +

1

2
�2
e "

d2

d "2
G1(") = 0

C ⋅ A(", 1)
1

1−� − (�+ �H + �L)G2(")− ��("− 1)
d

d "
G2(") +

1

2
�2
e "

d2

d "2
G2(") = 0.

In addition to the aggregate and firm-specific productivity, the present value of growth

opportunities depends on the investment-specific shock, z, because the net present value of

future projects depends on the cost of new investment. In summary, the firm value in our

model is

Vft = V APft + PV GOft = xt
∑
j

A("ft, ujt)K
�
j + z

�
�−1

t xtG("ft, �ft) (8)

Risk and Expected Returns

Both assets in place and growth opportunities have constant exposure to systematic shocks

dBxt and dBzt. However, their betas with respect to the productivity shocks are different.

The value of assets in place is independent of the investment-specific shock and loads only

on the aggregate productivity shock. The present value of growth option depends positively

on aggregate productivity, and negatively on the unit cost of new capital. Thus, firm’s betas

with respect to the aggregate shocks are time-varying, and depend linearly on the fraction

of firm value accounted for by growth opportunities. Since, by assumption, the price of risk

of aggregate shocks is constant, expected excess return on a firm is an affine function of the

weight of growth opportunities in firm value, as shown in the following proposition.

Proposition 1 The expected excess return on firm f is

ERft − rf = �x�x −
�

1− ��z�z
PV GOft

Vft
(9)

Many existing models of the cross-section of stock returns generate an affine relationship

between expected stock return and firms’ asset composition similar to (9). It is easy to
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see, in the context of our model, how the relationship (9) can give rise to a value premium.

Assume that both prices of risk �x and �z are positive, which we justify in the following

sections. Then growth firms, which derive a relatively large fraction of their value from

growth opportunities, have relatively low expected excess returns because of their exposure

to investment-specific shocks. To the extent that firms’ book-to-market (B/M) ratios are

partially driven by the value of firms’ growth opportunities, firms with high B/M ratios tend

to have higher average returns than firms with low B/M ratios.

3.2 Investment-Good Producers

There is a continuum of firms producing new capital goods. We assume that these firms

produce the demanded quantity of capital goods at the current unit price zt. We assume that

profits of investment firms are a fraction � of total sales of new capital goods.2 Consequently,

profits accrue to investment firms at a rate of Πt = �zt xt �
∫
ℱ Kftdf , where � =

∫
ℱ �ft is

the average arrival rate of new projects among consumption-good producers. Even though

�ft is stochastic, it has a stationary distribution, so � is a constant.

Lemma 3 The price of the investment firm satisfies

VI,t = Γxt z
�
�−1

t

1

�I
(10)

where we assume

�I ≡ r − �X +
�

1− � �Z −
1

2

�

1− � �
2
Z −

1

2

�2 �2
Z

(1− �)2
> 0

and

Γ ≡ ���
1

1−�

(∫
A(ef , 1)

1
1−�df

)
.

The value of the investment firms will equal the present value of their cashflows. If we

assume that these firms incur proportional costs of producing their output, and given that

2Alternatively, one can specify a production function of investment firms so that zt is a market clearing
price and their profit is a fraction � of sales.

12



the market price of risk is constant for the two shocks, their value will be proportional to

cashflows or the aggregate investment expenditures in the economy. The stock returns of

the investment firms will then load on the investment shock (z) as well as the common

productivity shock (x).

We define an IMC portfolio in the model as a portfolio that is long the investment sector

and short the consumption sector. The beta of firm f with respect to the IMC portfolio

return is given by

�imcft =
covt(Rft, R

I
t −RC

t )

vart(RI
t −RC

t )

where RI
t −RC

t is the return on the IMC portfolio.

Proposition 2 The beta of firm i with respect to the IMC portfolio return is given by

�imcft = �0t

(
PV GOft

Vft

)
(11)

where

�0t =
V t

V AP t

Proposition 2 is the basis of our empirical approach to measuring growth opportunities.

The covariance of firm f ’s return with respect to the IMC portfolio return is proportional

to the fraction of firm f ’s value represented by its growth opportunities. Firms that have

few active projects but expect to create many projects in the future derive most of their

value from their future growth opportunities. These firms are anticipated to increase their

investment in the future, and their stock price reflects that. There is also an aggregate term

in (11) that depends on the fraction of aggregate value that is due to growth opportunities,

which affects the IMC portfolio’s correlation with the z-shock.
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4 Data and Empirical Procedures

Our analysis in Section 3 suggests that the firm-specific return-based measure of z-shock

sensitivity could be used to measure growth opportunities as a fraction of firm value. Our

theoretical model also predicts that returns on the IMC portfolio, which is long the stocks of

investment-good producers and short the stocks of consumption-good producers, should be a

valid proxy for the investment-specific shocks. In this section we investigate these predictions

empirically.

4.1 Investment-specific shocks

Based on the model developed in Section 3, we use the IMC portfolio as a mimicking portfolio

for the investment-specific shocks.3 We first classify industries as producing either investment

or consumption goods according to the NIPA Input-Output Tables. We then and match

firms to industries according to their NAICS codes. Gomes, Kogan and Yogo (2008) and

Papanikolaou (2008) describe the details of this classification procedure.

4.2 Estimation of �imc

We use the firm’s stock return beta with respect to the IMC portfolio returns as a measure of

this firm’s investment-specific shock sensitivity. For every firm in Compustat with sufficient

stock return data, we estimate a time-series of (�imcft ) from the following regression

rftw = �ft + �imcft rimctw + "ftw, w = 1 . . . 52. (12)

Here rftw refers to the (log) return of firm f in week w of year t, and rimcftw refers to the log

return of the IMC portfolio in week w of year t. Thus, �imcft is constructed using information

only in year t.

We omit firms with fewer than 50 weekly stock-return observations per year, firms in their

3Papanikolaou (2008) also uses IMC returns as a factor-mimicking portfolio for investment-specific shocks.
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first three years following the first appearance in COMPUSTAT, firms in the investment

sector, financial firms (SIC codes 6000-6799), utilities (SIC codes 4900-4949), firms with

missing values of CAPEX (Compustat item capx), PPE (Compustat item ppent), Tobin’s

Q, CRSP market capitalization, firms whose investment rate exceeds 1 in absolute value,

firms with Tobin’s Q greater than 100, firms with negative book values and firms where the

ratio of cashflows to capital exceeds 5 in absolute value. Our final sample contains 6,831

firms and 62,495 firm-year observations and covers the 1965-2007 period.

5 Empirical Findings

In this section we test the qualitative predictions of our model for the response of firm-level

investment to investment-specific shocks. Since the model implications for stock returns

depend on the quantitative assumptions, we postpone that discussion until Section 6, where

we compare our empirical findings to the output of the calibrated model.

5.1 Main Results

Summary statistics

We focus our analysis on firms in the consumption-good sector, following our theoretical

analysis above. Every year we split the universe of consumption-good producers into 10

portfolios based on their estimate of �imc. Table 2 reports the summary statistics for firms

in different �imc-deciles. The patterns across the deciles are consistent with our interpretation

of �imc as measuring heterogeneity in growth opportunities. High-�imc firms tend to have

higher investment rates (25.2% vs 20.1% for the low-�imc firms), higher Tobin’s Q (1.38 vs

1.13), higher R&D expenditures (6.0% vs 1.4%), and pay less in dividends (2.8% vs 9.0%),

although the latter relationship is hump-shaped. Furthermore, high �imc firms tend to be

smaller, both in terms of market capitalization as well as book value of capital. The highest

�imc portfolio accounts for a fraction of 3.9% and 2.8% of the total market capitalization and

book value of capital versus 9.8% and 8.8% for the low �imc portfolio. Moreover, high-�imc
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firms have higher market betas, which, as we show in Section 6 to be consistent with them

having more growth opportunities.

Response of firm-level investment to IMC returns

Since growth opportunities are not observable directly, we base our empirical tests on ob-

servable differences between firms with high and low growth opportunities. In particular,

our model makes an intuitive prediction that firms with high growth opportunities, being

better positioned to take advantage of positive investment-specific shocks, should increase

investment more in response to a positive investment shock than firms with low growth op-

portunities. While this prediction is easy to verify given the simple structure of our model,

one would expect it to hold much more generally.

We estimate the sensitivity of firms’ investment to z-shocks using the following econo-

metric specification:

ift = a1 +
5∑
d=2

adD(�imcf,t−1)d + b1 R̃
imc
t +

5∑
d=2

bdD(�imcf,t−1)d × R̃imc
t + cXf,t−1 + f + ut. (13)

where it ≡ It
Kt−1

is the firm’s investment rate, defined as capital Expenditures (Compustat

item capx) over Property Plant and Equipment (Compustat item ppent), R̃imc
t = Rimc

t +Rimc
t−1

refers to accumulated log returns on the factor-mimicking portfolio (IMC) and D(x)d is

a �imc-quintile dummy variable (D(�imci,t−1)n = 1 if the firm’s �imc belongs to the quintile

n in year t − 1). Xf,t−1 is a vector of controls, which includes the firm’s Tobin’s Q, its

lagged investment, leverage, cash flows and log of its capital stock relative to the aggregate

capital stock. Definitions of these variables are standard and are summarized in Table 1.

We standardize all independent variables to zero mean and unit standard deviation using

unconditional moments. The sample covers the 1962-2007 period.

The coefficients (a1, . . . , a5) and (b1, . . . , b5) on the dummy variables measure differences

in the level of investment and response of investment to z-shocks respectively. We estimate

the investment response both with and without firm- and industry-level fixed effects, and
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both with and without controlling for commonly used predictors of firm-level investment.

Our estimates of �imc are persistent, but exhibit sufficient variation over time to separate

the effect of �imc from firm-level fixed effects. Table 3 reports transition probabilities among

the �imc quintiles.

When computing standard errors we account for the fact that investment may contain

an unobservable firm and time component. Following Petersen (2009), we cluster standard

errors both by firm and time.4

We summarize the results in Table 4. The results show that for all specifications, firms

with high �imc invest more on average and their investment rate responds more to an

investment-specific shock. A single-standard-deviation IMC return shock changes firm-level

investment by 0.096 standard deviations on average. This number varies between 0.053 for

the low-�imc firms and 0.176 for the high-�imc firms. The spread between quintiles is econom-

ically significant, and equal to 0.123 standard deviations, which is larger than the average

sensitivity of investment rate to z-shocks. In response to a single-standard-deviation IMC

return shock, the level of the investment rate of low-�imc firms changes by 0.9%, compared

to the 3.1% response by the high-�imc firms. Fluctuations of this magnitude are substantial

compared to the unconditional volatility of the aggregate investment rate changes in our

sample, which is 2.4%. Figure 5.1 illustrates the magnitude of the effects by contrasting the

scatter plot of the average investment rate versus the lagged return on the IMC portfolio

with the analogous plot for the average difference in investment rates between the extreme

�imc-quintiles.

4Petersen (2009) suggests following Cameron, Gelbach and Miller (2006) and Thomson (2006) who es-
timate the variance-covariance matrix by combining the matrices obtained by separately clustering by firm
and by time.
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Figure 1: Portfolio investment rates vs R̃imc. The left panel shows the scatter plot of the
aggregate investment rate, defined as the total investment by firms in our sample normalized
by their total capital stock, īt =

∑
f∈Ft

Ift/
∑
f∈Ft

Kft−1, versus the lagged return on the IMC

portfolio, R̃imct−1 ≡
∑2
l=1R

imc
t−1. In the right panel, we replace the aggregate investment rate with

the difference in investment rates between the highes and the lowest �imc-quintile portfolios.
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When controlling for industry fixed effects and Tobin’s Q, lagged investment rate, lever-

age, cash flows and log capital, the difference in coefficients on the z-shock between the

extreme �imc quintiles of firms diminishes somewhat to 0.086, and it is at 0.089 once firm

fixed effects are included in the specification.

5.2 Additional Results and Robustness Checks

Investment response to price of equipment shocks

As our first robustness check, we consider the quality-adjusted price series of new equipment

as an alternative proxy for investment-specific shocks. This proxy has been used in the litera-

ture to measure the economic impact of investment-specific shocks on aggregate growth (e.g.,

[Greenwood et al., 1997; Greenwood et al., 2000; Fisher, 2006]), and is therefore intrinsically

interesting.

The quality-adjusted price series of new equipment has been constructed by Gordon
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(1990), Cummins and Violante (2002) and Israelsen (2008).5 We define investment-specific

technological changes as changes in the log relative price of new equipment goods.6 As Fisher

(2006) points out, the real equipment price experiences an abrupt increase in its average rate

of decline in 1982, which is likely due to the effect of more accurate quality adjustment in

more recent data [Moulton, 2001]. To address this issue, we remove the time trend from the

series of equipment prices. Specifically, we construct z by regressing the logarithm of the

quality-adjusted price of new equipment relative to the NIPA personal consumption deflator

on a piece-wise linear time trend:

pt = a0 + b011982 + (a1 + b111982) ⋅ t+ zt (14)

where 11982 is an indicator function that takes the value 1 post 1982. We then define

investment-specific technology shocks as increments of the de-trended series:

Δzt = zt − zt−1, (15)

Innovations in investment technology lead to a decline in the quality-adjusted price of new

equipment, therefore we refer to a negative realization of Δzt as a positive investment-specific

shock. The resulting series is weakly positively correlated with the series of returns on the

IMC portfolio. The historical correlation between the two series is 22.3% with a HAC-t-

statistic of 2.31.

Using the new measure of investment-specific technological changes, we estimate equa-

tion (13) with Δzt replacing R̃imc. We present the results in Table 6. A one-standard

deviation shock to Δzt increases firm-level investment on average by 0.035 standard devi-

ations, but the response differs in the cross-section and ranges from 0.007 to 0.069 for the

low- and high-�imc quintiles respectively. Thus, high-�imc firms invest more in response to

5Cummins and Violante (2002) extrapolate the quality adjustment of Gordon (1990) to construct a price
series for the period 1943-2000. Israelsen (2008) extends the price series through 2006.

6To compute relative prices, we normalize the price of new equipment by the NIPA consumption deflator.
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a decline in equipment prices, which further supports our interpretation of these firms as

having more growth opportunities.

Investment response to credit shocks

We show that IMC portfolio returns predict cross-sectional dispersion in investment rates be-

tween firms with high and low �imc. Using the same methodology, one can assess investment

response to a variety of economic shocks affecting the willingness of firms to investment.

Here we consider one important example: investment response to unexpected changes in

aggregate credit or liquidity conditions. Tightening credit conditions should have a similar

effect on investment as a negative investment-specific shock, effectively leading to increased

cost of investment. Thus, states with with tight credit are effectively states with low real

investment opportunities.

We consider the innovation in the spread between Baa and Treasury bonds as a measure

of innovation in the aggregate credit environment.Specifically, we use an AR(1) model of

credit spread dynamics to define innovations (Δst) in credit spreads:

Δst = crt − 0.784 crt−1, (16)

where crt is the yield spread between Baa and Treasury bonds. The correlation between

Δst and our two measures of investment shocks, R̃imc and Δz is equal to -0.36 and 0.14

respectively in the 1965-2007 sample.

We estimate cross-sectional differences in the firm-level investment response to changes

in credit spreads across the �imc-quintiles. Specifically, we estimate equation (13) with Δst

replacing R̃imc. Table 8 reports the results. On average, firms increase investment when

credit spreads fall, and the sensitivity of investment rate to credit shocks increases across

the �imc-quintiles. A single-standard-deviation positive credit shock increases the average

firm-level investment rate by 0.078 standard deviations. The difference in investment rate

responses between high- and low-�imc quintiles of firms is statistically significant and equal to
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0.064 standard deviations. With various additional controls, the latter estimate falls between

0.049 and 0.061.

Firm investment and aggregate investment shocks

In contrast to the stylized setting of the model, investment-specific shocks are not be the only

driver of investment in the data. Nevertheless, �imc may be informative regarding the re-

sponse of investment to aggregate shocks that do not necessarily originate in the investment-

goods sector. Thus, we explore how the investment rates of firms with different values of �imc

respond differently to shocks to the aggregate investment rate that is uncorrelated with R̃imc.

First, we estimate the part of aggregate investment that is not captured by IMC returns.

Then, we allow the response of firm-level investment to this component to vary with �imc

. The intuition is similar to the previous tests: firms with many growth opportunities are

likely to invest relatively more in response to an aggregate shock that increases economy-wide

investment, even if this shock does not originate in the investment-goods sector.

We first define the aggregate investment rate as īt =
∑Ft

f=1 Ift/
(∑Ft

f=1Kf,t−1
)

, where

Ft refers to the set of firms in our sample in date t. We define the shock to the aggregate

investment rate ī�t as the residual in the regression of aggregate investment rate on lagged

IMC return:

īt = a+ bR̃imc
t−1 + ī�t. (17)

IMC returns predict aggregate investment with a significant coefficient and the R2 of 29%.

We are interested in the relationship between the residual, unexplained by IMC returns,

and firm-level investment. Table 7 summarizes the results. The magnitude of the effects

is smaller than the investment response to IMC returns (Table 4), but �imc quintiles show

statistically significant differences in their response to aggregate investment rate shocks.
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Tobin’s Q, market �, and growth opportunities

Next, we investigate how well the Tobin’s Q or market � perform as alternative measures

of growth opportunities. Tobin’s Q, defined as the market value of the firm divided by the

replacement cost of its capital, is commonly used as an empirical proxy for growth oppor-

tunities. The underlying intuition is well known: firms with abundant growth opportunities

have relatively high market value compared to their physical assets, and thus tend to have

high Tobin’s Q.

We consider the firm’s market beta as the second alternative measure of growth oppor-

tunities. This is motivated by the lessons from real options literature. Typically, the part of

the firm’s value that is due to growth opportunities behaves as a levered claim on assets in

place, and therefore it has higher volatility and is more sensitive to aggregate shocks than

assets in place. Thus, real options models predict that high-growth-opportunity firms have

relatively high market betas. As we document in Table 2, high-�imc firms tend to have higher

market beta in the data, and we show below in Table 16 that our model shares this property.

We estimate equation (13) using either Tobin’s Q or the market beta instead of �imc. In

the first case, we also drop Tobin’s Q as a control.

Using Tobin’s Q as an alternative measure of growth options leads to results that are

qualitatively similar but noticeably weaker than those obtained with �imc, as we show in Ta-

ble 9. The difference in the response of the investment rate to the IMC return between high-

and low- Tobin’s Q firms is 0.056. Heterogeneity in Tobin’s Q does not lead to differential

response to credit shocks, as we show in Table 10.

Cross-sectional differences in market betas predict a statistically significant response of

investment to IMC returns, as can be seen in Table 11. Absent any controls, the difference in

response between the high and low �mkt portfolio to R̃imc is equal to 0.068, which is roughly

half of the effect for �imc deciles. Differences between �mkt quintiles decline when additional

controls are introduced, but remain statistically significant. Thus, we conclude that market
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betas to have some ability to predict differential response of firms to investment-specific

shocks, but are less informative than betas with respect to IMC returns.

Additional robustness checks

We perform a number of additional robustness checks. First, it is possible that �imc captures

firms’ financial constraints and not the differences in their real production opportunities.

This possibility is consistent with our approach, since financially constrained firms, defined

as firms with insufficient cash holdings and limited access to external funds, cannot take

advantage of investment opportunities and as such have effectively low growth opportunities.

Thus, future growth opportunities depend both on the firm’s financial constraints and its

real investment opportunities. To sharpen the interpretation of our empirical results, we

attempt to distinguish financial constraints from real effects. We replicate our empirical

analysis on a sample of firms relatively less likely to be constrained, namely, firms that have

been assigned a credit rating by Standard and Poor’s. This restricts our sample to 1, 336

firms and 13, 456 firm-year observations. We find that our results hold in this sample, with

the difference in the response of investment to R̃imc between the extreme �imc-quintiles of

0.205. This estimate is in fact greater than the one obtained for the entire sample of firms,

indicating that our findings are unlikely to be explained by financial constraints alone.

Second, we estimate �imc using stock return return data, while the theory suggests using

returns on the total firm value. Our findings could be explained by investment of highly

levered firms being relatively sensitive to investment shocks. The results in Table 2 suggest

that this is not likely to be the case, as there does not seem to be systematic differences

in leverage across portfolios. To address this discrepancy, we approximate �imc at the asset

level (de-lever the equity-based estimates) under the assumption that firms’ debt is risk-free.

We re-estimate Equation 13 using de-levered �imc. We find that the difference in investment

responses between the high- and low-�imc firms is statistically significant and equal to 0.097

and 0.118, depending on whether we use book or market leverage.
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Finally, we consider whether �imc may be capturing inter-industry differences in technol-

ogy instead of capturing meaningful differences in growth opportunities.7 We investigate this

possibility by defining �imc-quintiles based on the firms’ intra-industry �imc ranking, where

we use the 30 industry classification of Fama and French (1997). We find that our results are

driven by intra- rather than inter-industry variation. The difference in investment responses

between the firms in high- and low-�imc-quintiles relative to their industry peers is statisti-

cally significant and equal to 0.121. In contrast, intra-industry ranking of firms on market

betas leads to largely insignificant response differences between the �mkt quintiles. Thus,

cross-sectional differences in market betas may reflect heterogeneity in cyclicality across in-

dustries and not the heterogeneity in growth opportunities that we aim to capture. This

shows that IMC betas are superior to market betas at identifying cross-sectional differences

in growth opportunities.

To conserve space, we do not report the full details of the above robustness checks and

refer the reader to the web Appendix.

6 Calibration

We calibrate our model to approximately match moments of aggregate dividend growth and

investment growth, accounting ratios, and asset returns. Thus, most of the parameters are

chosen jointly based on the behavior of financial and real variables.

We pick � = 0.85, the parameters governing the projects’ cash flows (�" = 0.2, �e =

0.35, �u = 1.5, �u = 0.5) and the parameters of the distribution of �f jointly, to match the

average values and the cross-sectional distribution of the investment rate, the market-to-book

ratio, and the return to capital (ROE).

7This possibility is not addressed by the controls we use in estimation, since we do not allow the loadings
on quintile dummies to interact with the industry fixed effects.

24



We model the distribution of mean project arrival rates �f = E[�ft] across firms as

�f = �� � − ��� log(Xf ) Xf ∼ U [0, 1], (18)

We pick �� = �� = 2. Regarding the dynamics of the stochastic component of the firm-

specific arrival rate, �̃ft, we pick �H = 0.075 and �L = 0.16. We pick �H = 2.35, which

according to (4) implies �L = 0.35. These parameter values ensure that the firm grows about

twice than average in its high growth phase and about a third as fast in the low growth phase.

We set the project expiration rate � to 10%, to be consistent with commonly used values

for the depreciation rate. We set the interest rate r to 2.5%, which is close to the historical

average risk-free rate (2.9%). We choose the parameters governing the dynamics of the shocks

xt and zt to match the first two moments of the aggregate dividend growth and investment

growth. We choose � = 0.07 to match the relative size of the consumption and investment

sectors in the data.

Finally, the parameters of the pricing kernel, �x = 0.69 and �z = 0.35 are picked to match

approximately the average excess returns on the market portfolio and the IMC portfolio.

Given our calibration, the model produces a somewhat lower average return on the IMC

portfolio −3.9% vs −1.9% in the 1963− 2008 sample. However, investment firms tend to be

quite a bit smaller than consumption firms, so the size effect may the estimated return of

the IMC portfolio upwards. In fact, when excluding the month of January, which is when

the size effect is strongest, the average return on the IMC portfolio is −3.5%, whereas it’s �

with respect to the Small-minus-Big (SMB)) portfolio of Fama and French (1993) is −3.7%.

We simulate the model at a weekly frequency (dt = 1/52) and time-aggregate the data

to form annual observations. Each simulation sample contains 2,500 firms for 100 years. We

use the first half of each simulated sample for burn-in. We simulate 1,000 samples and report

averages of parameter estimates and t-statistics across simulations.
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6.1 Investment

We first evaluate how well our model accounts for the empirical properties of firms’ invest-

ment. We estimate equation 13 using the simulated data.

We define firm-level investment during year t as a sum of the investment expenses incurred

throughout that year, i.e. Ift =
∑

s∈t xszsK
∗
fs, where K∗fs refers to the capital of project

acquired by firm f at time s.

We define the book value of the firm as the replacement cost of its capital, Bft =

zt xt
∑

j∈JftKjt, where Kj refers to capital employed by project j, and Jft denotes the

set of projects owned by firm f at the end of year t.8

In the simulated data, we estimate firm-level �imc using the same methodology as in

our empirical results, namely by estimating equation (12) using weekly data every year. In

simulated data, the estimated �imc have similar if a bit higher persistence than in actual

data, as we show in Table 13.

We normalize all variables to zero mean and unit standard deviation and compute stan-

dard errors clustered by firm and time. We report the median coefficient estimates and

t-statistics across 1,000 simulations.

Table 14 shows that in simulated data, a single-standard-deviation investment shock

leads to an increase in firm-level investment of 0.056 standard deviations. However, as in the

actual data, the impact of investment shocks varies in the cross-section of firms from 0.026

to 0.110 between the low- and high-�imc firms respectively. The difference in coefficients

between the high- and low-�imc firms drops to 0.029 when we include Tobin’s Q and cash

flows in the specification. Thus, the magnitude of investment response to z-shocks in the

model is very similar to the empirical estimates in Table 4.

In section 5.2 we showed that the sensitivity of a firm’s investment rate to the aggregate

8As a robustness check, we also perform simulations with the book value of the firm defined as the
cumulative historical investment cost of its current portfolio of projects. Our results are essentially the same
under the two definitions.
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investment rate, the firm’s “investment beta”, was monotonically related to �imc . Firms

with more growth opportunities should exhibit higher sensitivity to aggregate shocks that

affect the aggregate investment rate. We verify that the same relationship holds true in the

model, by estimating equation (13) in the simulated data using the average investment rate,

īt, in place of R̃imc. We show the results in Table ??. A one standard deviation shock in the

average investment rate is associated with a 0.1 standard deviation increase in the average

firm’s investment rate. However, as in the data, this response varies in the cross-section from

0.049 to 0.208.

In the model, Tobin’s Q, or the market-to-book ratio, also contains information about

growth opportunities. To verify this, we estimate equation (13) in simulated data. We report

simulation averages of coefficients and t-statistics in Table 15. In simulated data, the effect

of a single-standard-deviation investment shock on firm investment varies from 0.12 for the

top Q-quintile to 0.02 for the bottom quintile. The difference in coefficients between the

high- and low-Q firms drops to 0.04 when we control directly for Tobin’s Q. From this, we

conclude that in the model, Tobin’s Q is a good proxy for growth opportunities. Of course,

this is partly because it is measured with accurately in simulations, whereas in the data it

might be contaminated by measurement error.

We conclude that our model is able to replicate the key empirical properties of firms’ in-

vestment, both qualitatively and quantitatively. Next, we verify that the model also captures

the properties asset returns reported in Section 4.

6.2 Stock Returns

As we show in Proposition 1, cross-sectional differences in the relative value of growth

opportunities of firms lead to cross-sectional differences in their risk premia. Furthermore, we

show in Proposition 2 that unobservable growth opportunities can be measured empirically

using the firms’ betas with respect to the IMC portfolio returns. We now verify that our

model implies empirically realistic behavior of stock returns in relation to the differences in
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growth opportunities (captured by �imc) across firms.

We sort firms annually into 10 value-weighted portfolios based on the past value of �imc.

Both in actual and simulated data, we estimate �imc using weekly returns, and rebalance the

portfolios at the end of every year. In each simulation, and for each portfolio p, we estimate

average excess returns E[Rpt]− rf , return standard deviations �(Rpt), and regressions

Rpt − rf = �p + �m,p(RMt − rf ) + �pt (19)

and

Rpt − rf = �p + �m,p(RMt − rf ) + �imcp (RIt −RCt) + �p,t, (20)

where RIt and RCt denote returns on the portfolios of investment-good producers and

consumption-good producers respectively.

Table 16 compares the properties of returns in historical and simulated data. The top

panel replicates the findings of Papanikolaou (2008), who shows that sorting firms into

portfolios based on �imc results in i) a declining pattern in average returns; ii) an increasing

pattern of return volatility and market betas; and iii) a declining patter of CAPM alphas.

The difference in average returns and CAPM alphas between the high and low �imc portfolios

is −3.2% and −7.1% respectively. The high-�imc portfolio has a standard deviation of 29.7%

and a market beta of 1.6 versus 15.8% and 0.75 respectively for the low-�imc portfolio.

The bottom panel of Table 16 contains the corresponding simulation-based estimates. The

difference in average returns and CAPM alphas between the high- and low-�imc portfolios is

−3.5% and −5.7% respectively. Moreover, the high-�imc portfolio has both a higher standard

deviation (20%)and market beta (1.2) than the low-�imc portfolio (14% and 0.8 respectively).

Furthermore, in simulated data, the estimates of �p in (20) are close to zero for the spread

portfolio, whereas in actual data the point estimate is −3.00% with a t-statistic of −1.25.

Thus, returns on the �imc-sorted portfolios are well described by a two-factor pricing model

that includes market returns and returns on the IMC portfolio.
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As we discuss in the introduction, many papers use the decomposition of firm’s value

into asset in place and growth options in an attempt to explain the value premium puzzleIt

is therefore useful to assess the ability of our model to replicate the empirical relationship

between stock returns and the book-to-market ratio. As we show in Section 3, as long as book

to market is a good proxy for PV GO/V , our model will exhibit a positive value premium.

We now investigate the model’s implications quantitatively.

The top panel in Table 17 replicates the empirical findings of Fama and French (1993).

The difference in average returns and CAPM alphas between value firms and growth firms is

6.5% and 6.8% respectively. Moreover, with the exception of the extreme value portfolio, the

CAPM beta tend to be negatively related to the book-to-market ratio. The bottom panel

presents corresponding simulation results. The difference in average returns and CAPM

alphas between the two extreme book-to-market portfolios is 4.3% and 6.3% respectively.

Moreover, as in the data, the CAPM betas decline across the book-to-market deciles. Thus,

our model replicates the failure of the CAPM to price the cross-section of book-to-market

portfolios. We also report the estimates of equation (20), where we use both the market

and the IMC portfolio as risk factors. The two-factor unconditional pricing model fails to

price the cross-section of book-to-market portfolios empirically. The difference in estimated

alphas between the extreme book-to-market deciles is 6.0%. The two-factor unconditional

specification works rather well in simulated data, where the difference in alphas between the

extreme book-to-market deciles is 0.8%.

7 Conclusion

In this paper we propose a novel measure of growth opportunities available to firms. Our

measure relies on the idea that firms with abundant growth opportunities benefit more from

investment-specific technological improvements than firms with few growth opportunities,

and therefore, stock returns of high-growth firms have higher exposure to investment-specific
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technological shocks. Our empirical tests support this conjecture. Investment rates of high-

growth firms, as identified by our measure, are relatively high on average and more sensitive

to investment-specific shocks than investment rates of low-growth firms. Our measure of

growth opportunities also captures cross-sectional differences in risk premia. Empirically,

high-growth firms have lower average returns than low-growth firms. Such return differences

are not explained by differences in market risk (CAPM), since, as discussed in Papanikolaou

(2008), investment-specific shocks represent a distinct risk factor. The return premium

on low-growth firms is distinct from the well-known value premium, and accounts for a

fraction of the latter. We use calibration to show that the observed empirical patterns are

quantitatively consistent with a stylized structural model of investment.
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Tables

Table 1: Data Definitions

Variable Source
Investment (I) Compustat item capx
capital (K) Compustat item ppent
Book Assets (A) Compustat item at
Book Debt (D) Compustat item dltt
Book Preferred Equity (EP) Compustat item pstkrv
Book Common Equity (EC) Compustat item ceq
Operating cashflows (CF) Compustat item dp + item ib
Inventories (INV) Compustat item invt
Deferred Taxes (T) Compustat item txdb
Market capitalization (MKCAP) CRSP December market cap
R&D Expenditures (R&D) Compustat item xrd
Cash Holdings (CASH) Compustat item che
Dividends (DIV) Compustat item dvc +item dvp
Share Repurchases (REP) Compustat item prstkc
Tobin’s Q (Q) (MKCAP + EP + D-INV)/(EC+EP + D)
Quality Adjusted Price of Investment Goods Israelsen (2008)
Consumption Deflator NIPA
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Table 2: Summary Statistics: �imc sorted portfolios

�imc sort I/K CASH/A D/A Tobin’s Q CF/K k/K m/M R&D/S DIV/CF �mkt

Low 20.1% 6.6% 16.1% 1.130 21.4% 9.8% 8.8% 1.4% 9.0% 0.75
2 19.1% 6.0% 17.2% 1.077 25.1% 16.0% 15.7% 1.2% 16.6% 0.77
3 19.4% 6.0% 17.5% 1.089 25.5% 15.9% 14.4% 1.2% 18.4% 0.79
4 19.5% 6.1% 17.5% 1.102 26.1% 13.0% 12.6% 1.3% 18.1% 0.85
5 19.9% 6.0% 17.6% 1.104 26.4% 11.9% 10.8% 1.5% 17.4% 0.92
6 20.4% 6.3% 17.7% 1.112 27.0% 10.0% 11.0% 1.5% 16.9% 1.02
7 21.0% 6.6% 17.7% 1.140 25.9% 8.9% 9.2% 1.8% 13.7% 1.06
8 22.3% 7.3% 17.3% 1.193 25.1% 7.0% 7.6% 2.4% 10.3% 1.20
9 23.4% 8.9% 17.2% 1.228 21.9% 4.9% 6.0% 3.7% 7.3% 1.40
High 25.2% 11.4% 14.6% 1.376 17.3% 2.8% 3.9% 6.0% 2.8% 1.61

Table 2 shows summary statistics for 10 portfolios of firms sorted by �imct−1 . �imct refers to the firm’s beta with

the investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping weekly returns

within year t. I/K is investment over capital, CASH/A refers to Cash Holdings over Assets, D/A is Debt over

Assets, Q refers to Tobin’s Q, CF/K refers to cashflows over lagged property, plant and equipment, k/ K

refers to the sum of property plant and equipment (PPE) within each portfolio as a fraction of the total PPE,

m/M refers to each portfolio’s market capitalization as a fraction of total market capitalization, R&D/A

refers to Research and Development over Sales, DIV/CF refers to Dividends plus Share Repurchases over

cashflows, and �mkt refers to the portfolio’s market beta estimated using monthly returns. When computing

DIV/CF, we drop firms with negative cashflows. For the firm-level variables we report the time series averages

of portfolio’s median characteristic. Sample period is 1965-2007 and excludes firms producing investment

goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 3: Portfolio Transition Probabilities: 5 Portfolios sorted on �imc

Sort(t-1)
Lo 2 3 4 Hi

Sort(t)

Lo 30.4% 23.1% 18.8% 15.0% 12.5%
2 24.2% 25.2% 23.1% 18.7% 11.7%
3 18.7% 23.3% 22.6% 22.3% 14.7%
4 15.1% 17.9% 21.9% 24.3% 21.7%

Hi 11.7% 10.5% 13.6% 19.7% 39.5%

Table 3 plots the transition probabilities across portfolio quintiles. Stocks are sorted into 5 portfolios based

on �imct−1 . �imct refers to the firm’s beta with the investment minus consumption portfolio (IMC) in year

t, estimated using non-overlapping weekly returns within year t. Sample period is 1965-2007 and excludes

firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 4: Response of I/K to Rimc: firms sorted by �imc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1039 -0.0909 -0.0815 -0.0440
(-6.18) (-5.52) (-4.34) (-4.06) (-2.30)

D(�imc)2 0.0380 0.0361 0.0361 0.0339 0.0275
(2.85) (2.84) (3.00) (2.83) (2.59)

D(�imc)3 0.0870 0.0818 0.0691 0.0658 0.0411
(5.26) (5.28) (5.02) (4.99) (3.15)

D(�imc)4 0.1794 0.1572 0.1385 0.1247 0.0676
(8.66) (7.69) (8.02) (7.35) (4.21)

D(�imc)5 0.2908 0.2448 0.2113 0.1833 0.0841
(11.00) (9.45) (9.26) (8.41) (4.10)

R̃imct−1 0.0959 0.0532 0.0491 0.0634 0.0592 0.0571
(4.90) (4.52) (4.01) (4.10) (3.88) (4.13)

D(�imc)2 × R̃imct−1 0.0014 0.0023 -0.0008 0.0004 0.0027
(0.12) (0.21) (-0.07) (0.04) (0.28)

D(�imc)3 × R̃imct−1 0.0256 0.0247 0.0125 0.0132 0.0144
(1.68) (1.79) (0.83) (0.96) (1.09)

D(�imc)4 × R̃imct−1 0.0641 0.0610 0.0411 0.0413 0.0394
(2.76) (2.85) (2.10) (2.25) (2.48)

D(�imc)5 × R̃imct−1 0.1226 0.1169 0.0862 0.0855 0.0885
(4.88) (5.59) (4.38) (5.13) (6.20)

Observations 62495 62495 62495 62495 62495 62495
R2 0.009 0.022 0.077 0.162 0.192 0.438

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 4 shows estimates of

ift = a1 +

5∑
d=2

adD(�imcf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(�imcf,t−1)d × R̃imct−1 + cXf,t−1 + f + uft,

where it ≡ It/Kt−1 is firm investment over the lagged capital stock, on cumulative log returns on the IMC

portfolio, R̃imct−1 ≡
∑2
l=1R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. D(�imci,t−1)d is a dummy

variable which takes the value of 1 if the firm falls in the d-th quintile in term of �imct−1 . �imct refers to the

firm’s beta with respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. Industries are defined at the 2-digit SIC code level. All variables

have been standardized to zero mean and unit standard deviation. We report t statistics in parenthesis

using standard errors clustered by firm and year. Sample period is 1965-2007 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 5: Response of I/K to Rimc: portfolios sorted by �imc

Dependent variable it (1) (2) (3) (4) (5)

Constant -0.588 -0.418 -0.515 -0.411
(-6.86) (-4.29) (-5.98) (-4.92)

D(�imc)2 0.157 0.138 0.100 0.165
(2.23) (2.20) (0.99) (2.05)

D(�imc)3 0.427 0.285 0.306 0.270
(5.51) (3.24) (3.04) (2.77)

D(�imc)4 0.862 0.576 0.733 0.552
(8.94) (5.18) (6.34) (5.01)

D(�imc)5 1.493 1.008 1.437 0.968
(12.35) (6.05) (10.70) (6.10)

R̃imct−1 0.492 0.271 0.159 0.279 0.188
(5.34) (4.43) (3.13) (5.01) (3.86)

D(�imc)2 × R̃imct−1 -0.0377 0.0239 -0.0718 -0.00913
(-0.58) (0.43) (-1.14) (-0.14)

D(�imc)3 × R̃imct−1 0.133 0.122 0.0357 0.0402
(1.78) (1.25) (0.35) (0.31)

D(�imc)4 × R̃imct−1 0.316 0.264 0.138 0.131
(2.91) (2.40) (1.12) (0.98)

D(�imc)5 × R̃imct−1 0.690 0.625 0.385 0.377
(4.86) (5.32) (2.55) (3.02)

Observations 205 205 205 205 205
R2 0.242 0.604 0.654 0.671 0.710

Controls (it−1) N N Y N Y
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y

Table 5 shows estimates of

ift = a1 +

5∑
d=2

adD(�imcf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(�imcf,t−1)d × R̃imct−1 + cXf,t−1 + f + uft,

where ift ≡ ift/Kit−1 is firm investment over the lagged capital stock, on cumulative log returns on the

IMC portfolio, R̃imct−1 ≡
∑2
l=1R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. �imct refers to the firm’s beta

with respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping

weekly returns within year t. Every year, we sort firms into 5 portfolios based on �imci,t−1. Portfolio-level

variables are constructed by averaging across firms within the portfolio. D(�imci,t−1)d is a portfolio indicator

variable, denoting the portfolio containing firms in the d-th quintile of �imct−1 . Industries are defined at the

2-digit SIC code level. All variables have been standardized to zero mean and unit standard deviation. We

report t statistics in parenthesis using standard errors clustered by year. Sample period is 1965-2007 and

excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 6: Response of I/K to z-shocks: firms sorted by �imc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1038 -0.0908 -0.0813 -0.0442
(-5.63) (-5.11) (-3.84) (-3.62) (-2.05)

D(�imc)2 0.0380 0.0361 0.0353 0.0332 0.0274
(2.91) (2.91) (3.03) (2.85) (2.56)

D(�imc)3 0.0870 0.0818 0.0683 0.0650 0.0406
(5.23) (5.26) (5.11) (5.09) (3.15)

D(�imc)4 0.1794 0.1570 0.1383 0.1244 0.0673
(8.02) (7.15) (7.88) (7.22) (4.18)

D(�imc)5 0.2908 0.2445 0.2124 0.1843 0.0856
(9.27) (7.87) (8.72) (7.82) (4.20)

−Δzt−1 0.0355 0.0070 0.0029 0.0170 0.0131 0.0156
(2.13) (0.55) (0.24) (0.76) (0.64) (0.60)

D(�imc)2 × (−Δzt−1) 0.0169 0.0155 0.0173 0.0162 0.0099
(1.66) (1.78) (2.22) (2.32) (0.99)

D(�imc)3 × (−Δzt−1) 0.0249 0.0241 0.0240 0.0236 0.0241
(2.40) (2.42) (2.85) (2.89) (2.46)

D(�imc)4 × (−Δzt−1) 0.0382 0.0360 0.0354 0.0340 0.0361
(2.66) (2.57) (3.74) (3.59) (2.96)

D(�imc)5 × (−Δzt−1) 0.0623 0.0541 0.0432 0.0386 0.0367
(3.13) (2.85) (2.61) (2.33) (2.24)

Observations 62495 62495 62495 62495 62495 62495
R2 0.001 0.013 0.068 0.155 0.184 0.432

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 6 shows estimates of

ift = a1 +

5∑
d=2

adD(�imci,t−1)d + b1 (−Δzt−1) +

5∑
d=2

bdD(�imci,t−1)d × (−Δzt−1) + cXit−1 + i + uit,

where it ≡ It/Kt−1 is firm investment over the lagged capital stock, on the innovation in the quality-

adjusted price of new equipment Δzt, and a vector of controls Xt which includes lagged values of log Tobin’s

Q, cashflows over lagged capital, log book equity over book assets, and log capital. �imct refers to the firm’s

beta with respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(�imci,t−1)d is a dummy variable which takes the value of 1 if the

firm falls in the d-th quintile in terms of �imct−1 . The innovation Δzt is the first difference of the detrended

quality-adjusted price of investment goods divided by the consumption deflator from Cummins and Violante

(2002) and extended by Israelsen (2008). Industries are defined at the 2-digit SIC code level. All variables

have been standardized to zero mean and unit standard deviation. We report t statistics in parenthesis

using standard errors clustered by firm and year. Sample period is 1965-2007 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 7: Firm investment and aggregate investment shocks: firms sorted by �imc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1040 -0.0902 -0.0811 -0.0436
(-6.47) (-5.71) (-4.81) (-4.41) (-2.44)

D(�imc)2 0.0380 0.0361 0.0378 0.0356 0.0289
(3.29) (3.24) (3.51) (3.26) (2.85)

D(�imc)3 0.0870 0.0819 0.0702 0.0669 0.0415
(5.50) (5.53) (5.38) (5.35) (3.27)

D(�imc)4 0.1795 0.1574 0.1378 0.1244 0.0673
(9.37) (8.33) (9.22) (8.48) (4.65)

D(�imc)5 0.2908 0.2452 0.2057 0.1788 0.0803
(11.59) (9.88) (9.99) (9.05) (4.13)

īet 0.0667 0.0336 0.0295 0.0706 0.0642 0.0798
(5.42) (2.26) (2.04) (5.09) (4.75) (5.14)

D(�imc)2 × īet 0.0367 0.0329 0.0305 0.0283 0.0185
(2.93) (2.76) (2.53) (2.38) (1.76)

D(�imc)3 × īet 0.0288 0.0273 0.0209 0.0204 0.0157
(2.61) (2.57) (1.78) (1.81) (1.30)

D(�imc)4 × īet 0.0487 0.0464 0.0418 0.0408 0.0351
(2.94) (2.87) (3.16) (3.12) (2.98)

D(�imc)5 × īet 0.0512 0.0418 0.0417 0.0362 0.0245
(3.02) (2.68) (2.65) (2.42) (1.65)

Observations 62495 62495 62495 62495 62495 62495
R2 0.014 0.027 0.081 0.172 0.199 0.446

Industry/Firm FE N N N I I F

Controls (R̃imc) Y Y Y Y Y Y
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 7 shows estimates of

ift = a1 +

5∑
d=2

adD(�imcf,t−1)d + b1 ī
�
t +

5∑
d=2

bdD(�imcf,t−1)d × ī�t + cXf,t−1 + f + uft.

it ≡ It/Kt−1 is firm investment over the lagged capital stock. ī�t is the residual in the regression of aggregate

average investment on lagged IMC returns, defined in (17). Xt is a vector of controls which includes lagged

values of log Tobin’s Q, cashflows over lagged capital, log book equity over book assets, and log capital.

D(�imci,t−1)d is a dummy variable which takes the value of 1 if the firm falls in the d-th quintile in term of

�imct−1 . �imct refers to the firm’s beta with respect to the investment minus consumption portfolio (IMC) in

year t, estimated using non-overlapping weekly returns within year t. Industries are defined at the 2-digit

SIC code level. All variables have been standardized to zero mean and unit standard deviation. We report

t statistics in parenthesis using standard errors clustered by firm and year. Sample period is 1965-2007 and

excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 8: Response of I/K to Credit Spreads: firms sorted by �imc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1038 -0.0911 -0.0816 -0.0911
(-6.27) (-5.74) (-4.07) (-3.88) (-4.07)

D(�imc)2 0.0380 0.0360 0.0356 0.0334 0.0356
(2.85) (2.85) (3.00) (2.83) (3.00)

D(�imc)3 0.0870 0.0818 0.0687 0.0654 0.0687
(5.15) (5.15) (5.02) (4.98) (5.02)

D(�imc)4 0.1794 0.1570 0.1387 0.1248 0.1387
(7.85) (6.92) (7.64) (6.91) (7.64)

D(�imc)5 0.2908 0.2444 0.2128 0.1844 0.2128
(9.34) (7.78) (8.82) (7.77) (8.82)

−Δst−1 0.0781 0.0565 0.0540 0.0476 0.0464 0.0476
(3.56) (3.27) (3.33) (1.96) (2.03) (1.96)

D(�imc)2 × (−Δst−1) 0.0046 0.0052 0.0121 0.0120 0.0121
(0.43) (0.51) (1.18) (1.20) (1.18)

D(�imc)3 × (−Δst−1) 0.0145 0.0157 0.0163 0.0170 0.0163
(0.99) (1.15) (1.52) (1.67) (1.52)

D(�imc)4 × (−Δst−1) 0.0247 0.0241 0.0192 0.0194 0.0192
(0.94) (0.95) (0.97) (0.98) (0.97)

D(�imc)5 × (−Δst−1) 0.0643 0.0612 0.0503 0.0491 0.0503
(2.12) (2.27) (2.33) (2.48) (2.33)

Observations 62495 62495 62495 62495 62495 62495
R2 0.006 0.018 0.073 0.158 0.188 0.158

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 8 shows estimates of the regression of the ratio of firm investment to its capital stock, it ≡ It/Kt−1,
on the innovation in the spread between Baa and Aaa bonds, �t, and a vector of controls Xit which includes
lagged values of log Tobin’s Q, cashflows over lagged capital, log Book Equity over Book Assets, and log
capital:

ift = a1 +

5∑
d=2

adD(�imcf,t−1)d + b1 (−Δst−1) +

5∑
d=2

bdD(�imcf,t−1)d × (−Δst−1) + cXf,t−1 + f + uft,

The innovation Δst is computed as the innovation of an AR(1) model on the difference between Baa and

Treasury bond yields. The data on bond yields are from the St. Louis Federal Reserve. �imct refers to

the firm’s beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(�imcf,t−1)d is a dummy variable which takes the value of 1 if

the firm falls in the d-th quintile in terms of �imct−1 . Industries are defined at the 2-digit SIC code level.

All variables have been standardized to zero mean and unit standard deviation. We report t statistics in

parenthesis using standard errors clustered by firm and year. Sample period is 1965-2007 and excludes firms

producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 9: Response of I/K to Rimc: firms sorted by Tobin’s Q

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.2491 -0.2217 -0.2588 -0.2371 -0.3211
(-12.01) (-11.26) (-12.02) (-11.47) (-13.85)

D(Q)2 0.0202 0.0107 0.0666 0.0560 0.1320
(1.54) (0.85) (4.66) (4.10) (7.92)

D(Q)3 0.1495 0.1295 0.2036 0.1847 0.2841
(8.42) (8.22) (11.73) (11.53) (13.08)

D(Q)4 0.3607 0.3246 0.3675 0.3394 0.4430
(16.88) (14.41) (18.18) (15.89) (15.59)

D(Q)5 0.7158 0.6448 0.6573 0.6064 0.7477
(25.81) (21.72) (25.93) (21.91) (22.72)

R̃imct−1 0.0959 0.0688 0.0635 0.0621 0.0584 0.0611
(4.90) (3.16) (3.01) (2.86) (2.78) (3.10)

D(Q)2 × R̃imct−1 0.0147 0.0139 0.0162 0.0153 0.0239
(0.99) (0.99) (0.95) (0.93) (1.70)

D(Q)3 × R̃imct−1 0.0364 0.0346 0.0338 0.0325 0.0321
(3.69) (3.78) (3.33) (3.37) (2.84)

D(Q)4 × R̃imct−1 0.0280 0.0302 0.0338 0.0351 0.0267
(1.36) (1.59) (1.64) (1.81) (1.53)

D(Q)5 × R̃imct−1 0.0563 0.0567 0.0677 0.0670 0.0536
(2.02) (2.05) (2.30) (2.30) (2.30)

Observations 62495 62495 62495 62495 62495 62495
R2 0.009 0.080 0.125 0.174 0.202 0.447

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 9 shows estimates of

ift = a1 +

5∑
d=2

adD(Qf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(Qf,t−1)d × R̃imct−1 + cXf,t−1 + f + uft,

where it ≡ It/Kt−1 is firm investment over lagged capital, on cumulative log returns on the IMC portfolio,

R̃imct−1 ≡
∑2
l=1R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q, cashflows over

lagged capital, log book equity over book assets, and log capital. D(Qi,t−1)d is a dummy variable which takes

the value of 1 if the firm falls in the d-th quintile in terms of Tobin’s Q. Industries are defined at the 2-digit

SIC code level. All variables have been standardized to zero mean and unit standard deviation. We report

t statistics in parenthesis using standard errors clustered by firm and year. Sample period is 1965-2007 and

excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 10: Response of I/K to Credit Spreads: firms sorted by Tobin’s Q

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.2490 -0.2215 -0.2592 -0.2373 -0.2592
(-12.41) (-12.28) (-12.67) (-12.64) (-12.67)

D(Q)2 0.0202 0.0106 0.0666 0.0559 0.0666
(1.52) (0.84) (4.60) (4.03) (4.60)

D(Q)3 0.1495 0.1294 0.2037 0.1846 0.2037
(8.10) (7.76) (11.23) (10.90) (11.23)

D(Q)4 0.3607 0.3243 0.3681 0.3398 0.3681
(16.69) (14.07) (17.85) (15.46) (17.85)

D(Q)5 0.7158 0.6443 0.6584 0.6070 0.6584
(24.78) (20.65) (23.84) (20.26) (23.84)

−Δst−1 0.0781 0.0763 0.0732 0.0687 0.0670 0.0687
(3.56) (3.75) (3.90) (3.54) (3.69) (3.54)

D(Q)2 × (−Δst−1) 0.0038 0.0047 0.0029 0.0035 0.0029
(0.37) (0.46) (0.26) (0.31) (0.26)

D(Q)3 × (−Δst−1) 0.0162 0.0162 0.0123 0.0123 0.0123
(1.24) (1.33) (1.01) (1.06) (1.01)

D(Q)4 × (−Δst−1) 0.0069 0.0065 0.0071 0.0065 0.0071
(0.41) (0.41) (0.52) (0.50) (0.52)

D(Q)5 × (−Δst−1) -0.0180 -0.0160 -0.0169 -0.0156 -0.0169
(-0.65) (-0.60) (-0.63) (-0.59) (-0.63)

Observations 62495 62495 62495 62495 62495 62495
R2 0.006 0.077 0.123 0.170 0.199 0.170

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 10 shows estimates of the regression of the ratio of firm investment to its lagged capital stock, it ≡
It/Kt−1, on the innovation in the spread between Baa and Treasury bonds, Δst, and a vector of controls
Xit which includes lagged values of log Tobin’s Q, cashflows over lagged capital, log book equity over book
assets, and log capital:

ift = a1 +

5∑
d=2

adD(Qf,t−1)d + b1 (−�t−1) +

5∑
d=2

bdD(Qf,t−1)d × (−�t−1) + cXf,t−1 + f + uft,

The innovation �t is computed as the innovation of an AR(1) model on the difference between Baa and

Treasury bond yields. The data on bond yields are from the St. Louis Federal Reserve. �imct refers to

the firm’s beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(Qf,t−1)d is a dummy variable which takes the value of 1 if the

firm falls in the d-th quintile in terms of Tobin’s Q. Industries are defined at the 2-digit SIC code level.

All variables have been standardized to zero mean and unit standard deviation. We report t statistics in

parenthesis using standard errors clustered by firm and year. Sample period is 1965-2007 and excludes firms

producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 11: Response of I/K to Rimc: firms sorted by �mkt

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1283 -0.1168 -0.1307 -0.1211 -0.0958
(-6.77) (-6.20) (-5.69) (-5.43) (-5.53)

D(�mkt)2 0.0499 0.0495 0.0593 0.0572 0.0431
(3.49) (3.59) (4.67) (4.51) (3.85)

D(�mkt)3 0.1175 0.1110 0.1197 0.1133 0.0655
(6.60) (6.61) (7.63) (7.36) (4.94)

D(�mkt)4 0.1885 0.1734 0.1814 0.1696 0.0965
(9.52) (8.63) (10.48) (9.40) (7.26)

D(�mkt)5 0.3485 0.3060 0.2951 0.2671 0.1543
(12.95) (10.58) (13.95) (11.62) (6.86)

R̃imct−1 0.0959 0.0841 0.0800 0.0873 0.0836 0.0731
(4.90) (6.09) (6.10) (4.82) (4.94) (5.24)

D(�mkt)2 × R̃imct−1 -0.0122 -0.0138 -0.0118 -0.0128 -0.0028
(-0.95) (-1.09) (-1.19) (-1.30) (-0.30)

D(�mkt)3 × R̃imct−1 0.0067 0.0042 0.0013 0.0001 0.0134
(0.41) (0.28) (0.10) (0.01) (1.03)

D(�mkt)4 × R̃imct−1 0.0162 0.0125 0.0134 0.0115 0.0229
(0.75) (0.59) (0.63) (0.54) (1.11)

D(�mkt)5 × R̃imct−1 0.0676 0.0665 0.0451 0.0469 0.0514
(2.87) (3.05) (2.29) (2.45) (2.35)

Observations 62495 62495 62495 62495 62495 62495
R2 0.009 0.025 0.077 0.166 0.193 0.434

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 11 shows estimates of

ift = a1 +

5∑
d=2

adD(�mktf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(�mktf,t−1)d × R̃imct−1 + cXf,t−1 + i + uft,

where it ≡ It/Kt−1 is firm investment over the lagged capital stock, on cumulative log returns on the IMC

portfolio, R̃imct−1 ≡
∑2
l=2R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. D(�mktf,t−1)d is a dummy

variable which takes the value of 1 if the firm falls in the d-th quintile in term of �mktt−1 , where firms are sorted

within industry, following the Fama and French (1997) 30-industry classifications. �mktt refers to the firm’s

beta with respect to the market portfolio in year t, estimated using non-overlapping weekly returns within

year t. Industry fixed effects are defined at the 2-digit SIC code level. All variables have been standardized to

zero mean and unit standard deviation. We report t statistics in parenthesis using standard errors clustered

by firm and year. Sample period is 1965-2007 and excludes firms producing investment goods, financial firms

(SIC6000-6799) and utilities (SIC4900-4949).
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Table 12: Parameter values and Calibration

parameter r �x �x �x �z �z �z � � �
value 0.025 0.010 0.13 0.69 -0.005 0.036 0.40 0.07 0.85 0.10
parameter �� �e �u �u �� �� �H �L �H �L
value 0.35 0.20 0.50 1.50 2.00 2.00 0.075 0.16 2.35 0.35

Moment Data Model

�(Dt)
0.025 (D)

0.017
0.038 (P)

�(Dt)
0.118 (D)

0.150
0.384 (P)

�(It) 0.047 0.035
�(It) 0.157 0.243
E(RM)− rf 0.059 0.056
�(RM) 0.161 0.165
E(RIMC) -0.019 -0.039
�(RIMC) 0.112 0.115
�(RIMC , RM − rf ) 0.267 0.522
Market Cap of I rel to C 0.149 0.140
Investment over Capital (mean) 0.202 0.128
Investment over Capital (IQR) 0.187 0.168
Cashflows over Capital (mean) 0.284 0.248
Cashflows over Capital (IQR) 0.359 0.223

Market-to-Book (median)
1.569 (E)

1.988
1.287 (A)

Market-to-Book (IQR)
1.437 (E)

1.564
0.967 (A)

�̂imc (median) 0.683 0.731

�̂imc (IQR) 0.990 0.639

The top panel of Table 12 shows the parameters in our calibration. The bottom panel shows sample moments.

We report mean and standard deviation of dividend growth [�(Dt), �(Dt)], mean and standard deviation

of investment growth [�(It), �(It)], mean and standard deviation of excess returns on the market portfolio

[E(RM )−rf , �(RM )], mean and standard deviation of the investment minus consumption portfolio [E(Rimc),

�(Rimc)], and the ratio of the market capitalization of the investment sector relative to the consumption

sector. We report separate moments for dividends (D) and net payout (P). Investment is real private

nonresidential investment in equipment and software. We report time series averages of the mean and inter-

quintile range (IQR) of the investment rate and cashflows over capital, and the median and inter-quintile

range of the market to book ratio. For market to book, we report moments separately for equity (E) and

assets (A). Stock return moments are estimated over the sample 1963-2008. The moments of investment

growth are estimated over the sample 1927-2008. Moments of firm-specific variables are estimated using

Compustat data over the 1963-2007 period. Moments of dividend growth are from the long sample in

Campbell and Cochrane (1999). Moments of net payout are from Larrain and Yogo (2008).
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Table 13: Model: Portfolio Transition Probabilities: 5 Portfolios sorted on �imc

Sort(t-1)
Lo 2 3 4 Hi

Sort(t)

Lo 49.1% 28.3% 14.4% 6.2% 1.9%
2 27.6% 32.6% 24.4% 12.0% 3.4%
3 14.0% 23.8% 30.7% 23.7% 8.0%
4 6.4% 11.4% 22.8% 36.6% 22.9%

Hi 2.7% 3.7% 7.7% 21.4% 63.6%

Table 3 plots the estimated transition probabilities across �imc portfolio quintiles in the model. We simulate

2,500 firms for 50 years and repeat the procedure 1,000 times. We report median estimates of the transition

probabilities across simulations. Data are simulated at weekly frequency (dt = 1/52) and then aggregated to

form annual values. �imct refers to the firm’s beta with the investment minus consumption portfolio (IMC)

in year t, estimated using non-overlapping weekly returns within year t.
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Table 14: Model: Response to Rimc: sorted by �imc

Dependent variable it (1) (2) (3) (4) (5)

Constant -0.122 -0.119 -0.063 0.072
(-18.34) (-19.01) (-5.35) (4.14)

D(�imc)2 0.026 0.024 0.015 -0.032
(7.41) (7.23) (3.84) (-4.63)

D(�imc)3 0.058 0.055 0.019 -0.071
(12.31) (11.84) (3.16) (-5.65)

D(�imc)4 0.113 0.109 0.036 -0.125
(15.85) (15.12) (3.63) (-5.87)

D(�imc)H 0.384 0.375 0.221 -0.152
(15.65) (14.86) (11.53) (-4.18)

R̃imct−1 0.053 0.026 0.025 0.017 -0.022
(4.40) (4.07) (4.05) (2.25) (-3.02)

D(�imc)2 × R̃imct−1 0.006 0.006 0.004 -0.005
(2.21) (2.18) (1.40) (-1.42)

D(�imc)3 × R̃imct−1 0.014 0.014 0.011 -0.008
(3.16) (3.13) (2.74) (-1.48)

D(�imc)4 × R̃imct−1 0.026 0.025 0.023 -0.008
(3.86) (3.81) (3.55) (-1.13)

D(�imc)H × R̃imct−1 0.084 0.083 0.082 0.029
(3.74) (3.71) (3.73) (1.91)

R2 0.003 0.025 0.026 0.037 0.074

Controls (it−1) N N Y Y Y
Controls (CFt−1,Kt−1) N N N Y Y
Controls (Qt−1) N N N N Y

Table 14 shows median coefficients and t-statistics across 1,000 simulations. We estimate a regression of
the ratio of the firm investment to its book value, it ≡ Ift/Bf,t−1, on cumulative log returns on the IMC

portfolio, R̃imct−1 ≡
∑2
l=2R

imc
t−1 and a vector of controls Xt, which includes lagged values of log Tobin’s Q, cash

flows over lagged capital, and log capital:

ift = a1 +

5∑
d=2

adD(�imcf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(�imcf,t−1)d × R̃imct−1 + cXf,t−1 + uft,

Data are simulated at weekly frequency (dt = 1/52) and then aggregated to form annual values. �imct refers

to the firm’s beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(�imcf,t−1)d is a dummy variable which takes the value of 1 if the

firm f falls in the d-th quintile in terms of �imct−1 . Investment by firm is computed as the sum of the market

value of new investment, i.e. Ift =
∑
s∈t xszsK

∗
fs, where K∗fs is the capital of project acquired by firm f

at time s. Book Value is computed as the replacement cost of capital, Bft = zt xt
∑
j∈Jft

Kjt, where Kj

refers to capital employed by project j, and Jft denotes the set of projects owned by firm f at the end of

year t.All variables have been standardized to zero mean and unit standard deviation. We report averages

across simulations of coefficients and t statistics (in parenthesis). Standard errors are clustered by firm and

time. Each simulation sample contains 2,500 firms for 50 years. We simulate 1,000 samples.
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Table 15: Model: Response to Rimc: sorted by Tobin’s Q
(1) (2) (3) (4) (5)

Constant -0.162 -0.159 -0.096 0.203
(-28.15) (-30.37) (-7.19) (5.99)

D(Q)2 0.052 0.049 0.026 -0.122
(16.97) (16.03) (5.37) (-7.35)

D(Q)3 0.096 0.091 0.041 -0.206
(21.61) (20.46) (5.02) (-7.09)

D(Q)4 0.154 0.149 0.066 -0.309
(24.07) (22.56) (-0.01) (-6.85)

D(Q)H 0.483 0.477 0.321 -0.408
(17.64) (17.01) (14.04) (-5.33)

R̃imct−1 0.053 0.020 0.018 0.013 -0.047
(4.40) (3.63) (3.64) (2.19) (-3.60)

D(Q)2 × R̃imct−1 0.011 0.011 0.009 -0.000
(3.75) (3.75) (3.14) (-0.00)

D(Q)3 × R̃imct−1 0.018 0.018 0.016 -0.002
(4.36) (4.36) (3.77) (-1.27)

D(Q)4 × R̃imct−1 0.028 0.029 0.026 -0.004
(4.76) (4.76) (4.34) (1.31)

D(Q)H × R̃imct−1 0.100 0.102 0.100 0.041
(4.00) (3.98) (3.95) (2.35)

R2 0.003 0.035 0.037 0.041 0.079
Controls (it−1) N N Y Y Y
Controls (CFt−1,Kt−1) N N N Y Y
Controls (Qt−1) N N N N Y

Table 15 shows median coefficients and t-statistics across 1,000 simulations. We estimate a regression of
the ratio of the firm investment to its book value, it ≡ Ift/Bf,t−1, on cumulative log returns on the IMC

portfolio, R̃imct−1 ≡
∑2
l=2R

imc
t−1 and a vector of controls Xt which includes cash flows over lagged capital, and

log capital:

ift = a1 +

5∑
d=2

adD(Qf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(Qf,t−1)d × R̃imct−1 + cXf,t−1 + uft,

Data are simulated at weekly frequency (dt = 1/52) and then aggregated to form annual values. Tobin’s Q

is computed as the ratio of the market value of the firm divided by Book Value. D(Qf,t−1)d is a dummy

variable which takes the value of 1 if the firm f falls in the d-th quintile in terms of Tobin’s Q. Investment

by firm is computed as the sum of the market value of new investment, i.e. Ift =
∑
s∈t xszsKfs, where Kfs

denotes the capital of project acquired by firm f at time s. Book value is computed as the replacement cost

of capital, Bft = zt xt
∑
j∈Jft

Kjt, where Kj refers to capital employed by project j, and Jft denotes the set

of projects owned by firm f at the end of year t. All variables have been standardized to zero mean and unit

standard deviation. We report averages across simulations of coefficients and t statistics (in parenthesis).

Standard errors are robust to heteroscedasticity and clustered at the firm level. Each simulation sample

contains 2,500 firms for 50 years.
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Table 16: 10 portfolios sorted on IMC beta

Data
�imc Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 5.62 5.51 6.36 6.72 5.43 5.15 4.84 4.83 4.15 2.42 -3.20

(2.31) (2.51) (2.89) (2.96) (2.26) (1.98) (1.76) (1.52) (1.10) (0.53) (-0.80)
� (%) 15.78 14.23 14.27 14.74 15.61 16.86 17.80 20.56 24.36 29.70 25.88
�MKT 0.75 0.77 0.79 0.85 0.92 1.02 1.06 1.20 1.40 1.61 0.86

(17.74) (27.77) (29.86) (36.37) (41.10) (59.01) (54.44) (50.65) (34.57) (27.40) (9.81)
�(%) 2.22 2.01 2.78 2.88 1.26 0.55 0.04 -0.61 -2.19 -4.88 -7.10

(1.40) (1.74) (2.56) (2.96) (1.48) (0.68) (0.04) (-0.53) (-1.37) (-2.10) (-2.13)
R2(%) 56.75 73.75 77.31 83.30 87.62 91.44 89.05 85.77 82.99 74.00 27.87
�MKT 0.86 0.86 0.88 0.92 0.99 1.04 1.06 1.14 1.27 1.39 0.53

(21.17) (34.96) (42.91) (54.68) (56.58) (58.23) (56.46) (62.21) (44.73) (36.52) (8.28)
�IMC -0.48 -0.39 -0.41 -0.33 -0.29 -0.08 -0.01 0.28 0.59 1.00 1.48

(-9.71) (-10.67) (-14.66) (-7.16) (-11.05) (-2.66) (-0.17) (4.42) (10.86) (10.99) (17.40)
�(%) 0.88 0.92 1.63 1.97 0.45 0.31 0.02 0.16 -0.55 -2.11 -2.99

(0.61) (0.97) (2.03) (2.56) (0.64) (0.40) (0.02) (0.13) (-0.45) (-1.26) (-1.25)
R2(%) 67.56 82.62 87.02 89.03 91.65 91.73 89.05 87.87 89.82 87.06 65.73

Model
�imc Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 7.50 7.29 7.03 6.78 6.50 6.20 5.83 5.41 4.84 3.99 -3.51

(3.72) (3.50) (3.30) (3.10) (2.88) (2.67) (2.42) (2.15) (1.81) (1.34) (-2.50)
�(%) 14.35 14.80 15.16 15.54 15.98 16.47 17.04 17.75 18.71 20.38 10.51
�MKT 0.82 0.87 0.89 0.92 0.95 0.98 1.02 1.06 1.11 1.19 0.36

(22.83) (29.91) (37.78) (48.46) (66.69) (91.27) (102.76) (75.40) (48.45) (30.98) (5.02)
�(%) 2.70 2.24 1.81 1.38 0.92 0.44 -0.13 -0.79 -1.65 -2.98 -5.67

(4.63) (4.80) (4.73) (4.48) (3.90) (2.40) (-0.82) (-3.33) (-4.39) (-4.70) (-4.85)
R2(%) 91.28 94.71 96.57 97.81 98.70 99.21 99.30 98.92 97.64 94.51 34.79
�MKT 0.96 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.03 0.06

(52.55) (68.83) (80.04) (86.59) (93.31) (92.06) (89.09) (87.59) (84.15) (83.47) (2.43)
�IMC -0.33 -0.27 -0.22 -0.17 -0.11 -0.05 0.02 0.10 0.21 0.38 0.71

(-11.57) (-12.57) (-12.16) (-10.76) (-8.04) (-3.82) (1.04) (6.03) (11.85) (21.23) (18.19)
�(%) 0.29 0.27 0.21 0.14 0.08 0.03 -0.04 -0.08 -0.11 -0.07 -0.36

(0.92) (1.07) (0.92) (0.64) (0.40) (0.10) (-0.21) (-0.36) (-0.45) (-0.23) (-0.79)
R2(%) 97.82 98.80 99.15 99.31 99.37 99.38 99.35 99.32 99.22 99.20 91.86

The top panel of Table 16 reports asset-pricing tests on 10 portfolios sorted on �imct−1 . �imct refers to the firm’s

beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping

weekly returns within year t. The construction of the IMC portfolio is detailed in Papanikolaou (2008).

Sample period is 1965-2008 and excludes firms producing investment goods, financial firms (SIC6000-6799)

and utilities (SIC4900-4949). Standard errors are computed using Newey-West with 1 lag, to adjust for

autocorrelation in returns. t-statistics are computed in parenthesis. We report annualized estimates of

mean returns and alphas by multiplying the monthly estimates by 12. The bottom panel reports the

corresponding estimates for simulated data. We report medians across 1,000 simulations of coefficients and

t-statistics. Each simulation sample contains 2,500 firms and has a length of 50 years. Returns of the market

portfolio are computed as average return of the investment and consumption sectors, weighted by their

market capitalization at time.
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Table 17: 10 portfolios sorted on BE/ME

Data
BE/ME Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 2.99 4.81 5.72 5.73 5.05 5.73 6.75 7.36 8.84 9.43 6.45

(1.04) (1.83) (2.22) (2.22) (2.09) (2.36) (2.83) (3.07) (3.46) (3.17) (2.65)
� (%) 18.55 17.01 16.67 16.77 15.67 15.74 15.43 15.54 16.54 19.30 15.77
�MKT 1.09 1.03 1.00 0.98 0.90 0.91 0.85 0.85 0.90 1.00 -0.09

(44.44) (55.69) (41.65) (36.21) (33.18) (34.54) (26.59) (24.06) (24.47) (20.27) (-1.30)
�(%) -1.93 0.16 1.21 1.29 1.00 1.60 2.90 3.51 4.76 4.91 6.84

(-1.72) (0.20) (1.39) (1.27) (0.92) (1.60) (2.41) (2.79) (3.61) (2.67) (2.60)
R2(%) 86.21 91.59 89.90 86.22 82.12 84.15 76.06 75.32 74.61 67.37 0.77
�MKT 1.01 1.04 1.05 1.07 1.00 1.00 0.97 0.98 1.00 1.06 0.05

(36.88) (55.57) (40.63) (42.44) (38.21) (41.50) (32.57) (30.21) (29.52) (20.57) (0.70)
�IMC 0.18 -0.03 -0.13 -0.22 -0.25 -0.21 -0.29 -0.30 -0.24 -0.15 -0.32

(6.49) (-1.17) (-3.96) (-5.69) (-8.45) (-7.59) (-7.95) (-7.96) (-6.09) (-2.71) (-4.96)
�(%) -1.49 0.08 0.88 0.75 0.37 1.09 2.18 2.77 4.17 4.55 6.04

(-1.40) (0.10) (1.03) (0.83) (0.39) (1.22) (2.11) (2.55) (3.41) (2.48) (2.36)
R2(%) 87.59 91.65 90.85 88.72 86.03 86.69 81.27 80.78 77.68 68.20 7.05

Model
BE/ME Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 3.62 4.65 5.26 5.72 6.12 6.46 6.78 7.06 7.40 7.90 4.28

(1.21) (1.76) (2.12) (2.40) (2.66) (2.89) (3.11) (3.31) (3.53) (3.83) (2.98)
�(%) 20.49 18.49 17.48 16.83 16.30 15.87 15.50 15.18 14.91 14.67 10.65
�MKT 1.19 1.09 1.04 1.00 0.97 0.94 0.92 0.90 0.87 0.84 -0.34

(29.75) (48.67) (75.39) (98.94) (87.67) (64.14) (48.75) (38.70) (31.12) (24.01) (-4.71)
�(%) -3.35 -1.76 -0.85 -0.17 0.42 0.92 1.40 1.83 2.31 2.98 6.34

(-5.16) (-4.88) (-3.70) (-1.01) (2.22) (3.85) (4.60) (4.94) (5.18) (5.33) (5.41)
R2(%) 93.81 97.65 98.93 99.29 99.14 98.59 97.71 96.56 94.90 91.60 31.02
�MKT 1.02 1.01 1.01 1.00 1.00 1.00 0.99 0.99 0.98 0.98 -0.04

(78.45) (76.73) (81.33) (88.22) (92.69) (93.95) (90.01) (81.18) (69.01) (54.13) (-1.30)
�IMC 0.41 0.20 0.09 0.00 -0.06 -0.12 -0.17 -0.22 -0.26 -0.33 -0.74

(20.54) (9.92) (4.84) (0.11) (-4.58) (-8.78) (-11.19) (-11.97) (-12.06) (-11.42) (-17.24)
�(%) -0.23 -0.30 -0.23 -0.17 -0.07 0.01 0.13 0.23 0.38 0.57 0.80

(-0.92) (-1.22) (-1.09) (-0.89) (-0.43) (0.01) (0.63) (1.06) (1.47) (1.83) (1.69)
R2(%) 99.22 99.13 99.27 99.34 99.39 99.37 99.27 99.12 98.77 97.88 91.17

The top panel of Table 17 reports asset-pricing tests on 10 portfolios sorted on Book to Market Equity. The

data come from Kenneth French’s website. The construction of the IMC portfolio is detailed in Papanikolaou

(2008). We use monthly data from January 1965 through December 2008. Standard errors are computed

using NW with 1 lag, to adjust for autocorrelation in returns. t-statistics are computed in parenthesis.

We report annualized estimates of mean returns and alphas. The bottom panel reports the corresponding

estimates for simulated data. Market Equity equals the value of the firm, Vft, and book to market equals

Book Value divided by Market Equity. Book Value is computed as the replacement cost of capital, Bft =

zt xt
∑
j∈Jft

Kjt, where Kj refers to capital employed by project j, and Jft denotes the set of projects

owned by firm f at the end of year t. We report medians across 1,000 simulations of coefficients and t-

statistics. Each simulation sample contains 2,500 firms and has a length of 50 years. Returns of the market

portfolio are computed as average return of the investment and consumption sectors, weighted by their

market capitalization at time.
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8 Appendix

8.1 Proofs and Derivations

Proof of Lemma 1. That is, Kf is the solution to the problem:

max
Kf

A("ft, 1)xtK
�
f − zt xtKf . (21)

The first order condition is

�A("ft, 1)K�−1
f = zt. (22)

Proof of Lemma 2. The value of growth options depends on the NPV of future projects.

When a project is financed, the value added net of investment costs is[
�

�
1−� − � 1

1−�
]
z

�
�−1

t xtA("ft, 1)
1

1−� = Cz
�
�−1

t xtA("ft, 1)
1

1−� .

The value of growth options for firm f equals the sum of the net present value of all future projects

PV GOft = EQt

[∫ ∞
t

e−r(s−t)�fsCz
�
�−1
s xsA("fs, 1)

1
1−� ds

]
= Cz

�
�−1

t xtE
Q
t

[∫ ∞
t

e−�(s−t)�fsA("fs, 1)
1

1−� ds

]
= Cz

�
�−1

t xtEt

[∫ ∞
t

e−�(s−t)�fsA("fs, 1)
1

1−� ds

]
= z

�
�−1

t xtG("ft, �ft),

where EQt denotes expectations under the risk-neutral measure Q, where

dQ
dP = exp

(
−�xBxt − �zBzt −

1

2
�2x t−

1

2
�2z t

)
.

The second to last equality follows from the fact that �ft and "ft are idiosyncratic, and thus have

the same dynamics under P and Q.

Let M be the infinitesimal matrix associated with the transition density [Karlin and Taylor,

1975] of �ft:

M =

(
−�L �L

�H −�H

)
The eigenvalues of M are 0 and −(�L + �H). Let U be the matrix of the associated eigenvectors,
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and define

Λ(u) =

(
1 0

0 e(−�L+�H)u

)
Then

Et[�fs] = �f ⋅U Λ(s− t) U−1
[
�H

�L

]
= �f ⋅

[
1 + �L

�L+�H
(�H − �L)e−(�L+�H)(s−t)

1− �H
�L+�H

(�H − �L)e−(�L+�H)(s−t)

]

and

G("ft, �ft) = C ⋅ Et
[∫ ∞

t
e−�(s−t) �fsA("fs, 1)

1
1−� ds

]
= C ⋅ Et

[∫ ∞
t

e−�(s−t)Et[�fs]A("fs, 1)
1

1−� ds

]

=

⎧⎨⎩ �f

(
G1("ft) + �L

�L+�H
(�H − �L)G2("ft)

)
, �̃ft = �H

�f

(
G1("ft)− �H

�L+�H
(�H − �L)G2("ft)

)
, �̃ft = �L

The second equality uses the fact the law of iterated expectations and the fact that �ft is indepen-

dent across firms. The functions G1(") and G2(") are defined as

G1("t) = C ⋅ Et
∫ ∞
t

e−�(s−t)A("s, 1)
1

1−� ds

G2("t) = C ⋅ Et
∫ ∞
t

e−(�+�L+�H)(s−t)A("s, 1)
1

1−� ds.

G1(") and G1(") will satisfy the ODEs:

C ⋅A(", 1)
1

1−� − �G1(")− ��("− 1)
d

d "
G1(") +

1

2
�2e "

d2

d "2
G1(") = 0

C ⋅A(", 1)
1

1−� − (�+ �H + �L)G2(")− ��("− 1)
d

d "
G2(") +

1

2
�2e "

d2

d "2
G2(") = 0.

Proof of Lemma 1. The risk premium on assets in place will be determined by the

covariance with the pricing kernel:

EtR
vap
ft − rf = −cov

(
dV APft
V APft

,
d�t
�t

)
= �x�x
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Similarly for growth options:

EtR
gro
ft − rf = −cov

(
dPV GOft

PV GOft

,
d�t
�t

)
= �x�x −

�

1− ��z�z

The risk premium on growth options will be lower than assets in place as long as �z > 0.

Consequently, expected returns excess returns of the firm are a weighted average of the risk

premia of its components

EtRft − rf =
V APft
Vft

(ERvap
ft − rf ) +

PV GOft

Vft
(ERgro

ft − rf )

Proof of Lemma 3. Profits accruing to the I-sector can be written as

Πt = � zt xt

∫
Kftdf

= �

(∫
A(eft, 1)

1
1−�df

)
�

1
1−� xt z

�
�−1

t

= �Γ ⋅ xt z
�
�−1

t

Kft is the solution to the first order condition 22. Because "ft has a stationary distribution,

Γ =
(∫

A(eft, 1)
1

1−�df
)

is a constant.

The price of the investment firm satisfies

VIt = EQt

∫ ∞
t

exp {−r(s− t)} �Πsds

= �ΓEQt

∫ ∞
t

exp {−r(s− t)} xs z
�
�−1
s ds

= �Γxt z
�
�−1

t EQt

∫ ∞
t

exp

{(
−r + �X −

1

2
�2
X −

��Z
1− � +

1

2

�

1− � �
2
Z

)
(s− t)+

+�X(Bxs −Bxt) +
��Z
�− 1

(Bzs −Bzt)

}
= �Γxt z

�
�−1

t

∫ ∞
t

exp

{(
−r + �X −

�

1− � �Z +
1

2

�

1− � �
2
Z +

1

2

�2 �2
Z

(1− �)2

)
(s− t)

}
VIt = �Γxt z

�
�−1

t

1

DI
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Proof of Lemma 2. Returns on the IMC portfolio follow:

RI
t −RC

t = (⋅) dt+ �XdBxt +
�

�− 1
�ZdBzt − �XdBxt −

PV GOt

V t

�

�− 1
�ZdBzt

= (⋅) dt+
V AP t

V t

�

�− 1
�ZdBzt

whereas the return of firm i in the consumption sector is:

Rft = (⋅) dt+
V APft
Vft

�XdB
x
t +

(
1− V APft

Vft

)(
�XdBxt +

�

�− 1
�ZdBzt

)
+ (⋅)dBft +

∑
j

(⋅)dBjt

= (⋅) dt+ �XdBxt +

(
1− V APft

Vft

)(
�

�− 1
�ZdBzt

)
+ (⋅)dBft +

∑
j

(⋅)dBjt

so

covt(Rft, R
I
t −RC

t ) =

(
PV GOft

Vft

)(
V AP ft

V ft

)
�2

(1− �)2
�2
Z

and

vart(R
I
t −RC

t ) =

(
V AP ft

V ft

)2
�2

(1− �)2
�2
Z

which implies that the beta of firm f with the IMC portfolio is increasing in firm f’s growth

options.
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