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We study costless pre-play communication of intentions among inexperienced
players. Using the level-k model of strategic thinking to describe players' be-
liefs, we fully characterize the effects of pre-play communication in symmetric
2� 2 games. One-way communication weakly increases coordination on Nash
equilibrium outcomes, although average payoffs sometimes decrease. Two-
way communication further improves payoffs in some games, but is detrimen-
tal in others. Moving beyond the class of symmetric 2� 2 games, we �nd that
communication facilitates coordination in common interest games with positive
spillovers and strategic complementarities, but there are also games in which
any type of communication hampers coordination.
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Some people �nd themselves in a new strategic situation. How can they best coordinate their
actions? Since they cannot rely on precedence, maybe they should start talking? If so, what
are the exact reasons why communication helps? These fundamental questions crop up in many
disciplines, including evolutionary biology, psychology, political science, and economics.1
Farrell (1987, 1988) and Matthew Rabin (1990, 1994) provide formal analyses of costless

communication, or cheap talk, as a means to convey intentions and thereby improve coordination
among rational players in games with complete information.2 While the models are insightful,
we argue that they make problematic assumptions concerning players' beliefs, and that recent
models of strategic thinking offer alternative assumptions that better �t our intuitions and the
available experimental evidence.
To put our arguments into perspective, let us brie�y review some of the literature. Farrell

(1987) studies communication in a Battle of the Sexes game (Figure 1). Farrell assumes that
behavior will correspond to the symmetric mixed strategy Nash equilibrium if players cannot
communicate. He also assumes that message pairs .�H�;�L�/ and .�L�;�H�/ that are consistent
with a pure strategy equilibriumwill induce play of that equilibrium. Based on these assumptions,
he shows that with two-way communication there are better symmetric mixed strategy equilibria
than the no-communication equilibrium. Payoffs improve with the number of communication
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(e-mail: tore.ellingsen@hhs.se). Östling: Institute for International Economic Studies, Stockholm University, SE�106
91 Stockholm, Sweden (e-mail: robert.ostling@iies.su.se). The paper grew out of Ellingsen and Östling (2006). A
previous version appeared as Paper 1 of Östling's (2008) Ph.D. dissertation. We have bene�ted greatly from the detailed
comments from Vincent P. Crawford and several anonymous referees. We are also grateful for helpful discussions with
Colin F. Camerer, Drew Fudenberg, Botond K�oszegi, Joseph Tao-yi Wang and many seminar participants. Financial
support from the Torsten and Ragnar Söderberg Foundation and the Jan Wallander and Tom Hedelius Foundation is
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1For evolutionary biology, see e.g., Steven Pinker and Paul Bloom (1990) and Martin A. Nowak (2006, Chapter
13); for psychology, see e.g., Norbert L. Kerr and Cynthia M. Kaufmann-Gilliland (1994); for political science, see e.g.,
Thomas C. Schelling (1966, Chapter 7), and for economics, see e.g., Joseph Farrell and Garth Saloner (1988) or David
Genesove and Wallace P. Mullin (2001).

2For a non-technical introduction to the literature on cheap talk about intentions, see Farell and Rabin (1996), espe-
cially pages 110�116. An early precursor is Robert J. Aumann (1974). See also Roger Myerson (1989), who emphasizes
that cheap talk can communicate both own intended actions (�promises�) and desires about others' actions (�requests�).
Like most of the literature, we focus on the former.
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H L
H 0; 0 3; 1
L 1; 3 0; 0

FIGURE 1. BATTLE OF THE SEXES

H L
H 9; 9 0; 8
L 8; 0 7; 7

FIGURE 2. STAG HUNT

rounds, but full ef�ciency is unattainable because players have con�icting interests over the two
ef�cient equilibria.
Although the symmetric Nash equilibrium assumption makes some sense in the Battle of the

Sexes, it is not generally a convincing assumption about the behavior of inexperienced players
in the absence of communication; rational reasoning alone is insuf�cient to support equilibrium
(see, e.g., Aumann and Adam Brandenburger 1995). In their subsequent work, Farrell and Rabin
instead make the weaker assumption that the outcome without communication will be ratio-
nalizable. One drawback of this approach is that rationalizability provides no prediction about
behavior in many games, including Battle of the Sexes. Absent a prediction for the game without
communication, a speci�c prediction for the game with communication does not suf�ce to say
whether communication improves coordination or not.
Another objection to Farrell and Rabin's approach is that one-way communication sometimes

works excessively well, especially in coordination games like Stag Hunt (Figure 2).3 In Stag
Hunt, all outcomes are again rationalizable without communication. Farrell (1988) suggests that
one-way communication suf�ces to attain coordination on the ef�cient outcome .H; H/, because
the message �H� is self-committing. That is, if sending the message �H� convinces the receiver
that the sender intends to play H , the best response is for the receiver to play H , and thus the
sender has an incentive to play according to the own message. Aumann (1990) objects that
even a sender who has decided to play L has an incentive to induce the opponent to play H .
That is, the message �H� is not self-signaling. Relatedly, Pei-yu Lo (2007) demonstrates that
the message �L� is weakly dominated under the two assumptions that players have common
knowledge about the meaning of the language and believe their opponent to behave rationally
given this knowledge. As a consequence, only message �H� is used, and both action H and L
survive iterated elimination of weakly dominated strategies.
Addressing Aumann's critique, Farrell and Rabin (1996, page 114) acknowledge that their

theory is not entirely satisfactory, but suggest that it has the right implications: �[A]lthough we
see the force of Aumann's argument, we suspect that cheap talk will do a good deal to bring [the
players] to the stag hunt.� Are Farrell and Rabin right? The experimental evidence on behavior in
Stag Hunt games is somewhat con�icting, but it consistently shows that communication improves
coordination. For example, in an experiment by Gary Charness (2000) one-way communication
induces substantial coordination on the ef�cient equilibrium. In the prior experiment by Russell
Cooper et al. (1992) one-way communication improves players willingness to play H , but two-
way communication does so to a greater extent; see Section III for a more detailed discussion of

3Since Stag Hunt is the prototype representation of coordinated hunting situations, it is an apt touchstone for theories
of communication. Indeed the bene�ts from coordinated hunting of large animals has been proposed as an explanation
for why language has emerged (see, e.g., Pinker and Bloom 1990, Section 5.3).
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H L
H 11; 11 0; 10
L 10; 10 10; 9

FIGURE 3. VULNERABILITY GAME

the evidence.
To summarize, Farrell and Rabin's approach leaves open at least three questions. First and

foremost, when does communication improve coordination? Second, why does communication
of intentions matter even in situations when messages apparently fail to be self-signaling? Third,
might bilateral communication sometimes generate more coordination than unilateral communi-
cation, and if so why?
In a nutshell, we argue that rationalizability is an inappropriate assumption about inexperi-

enced players' beliefs, and that more realistic assumptions help to answer all the above three
questions. One shortcoming of rationalizability we have already mentioned: Too often, it im-
poses no restriction on beliefs. Another shortcoming is that it sometimes imposes unrealistically
strong restrictions on beliefs. To �x ideas, consider the Vulnerability Game in Figure 3.4
In the Vulnerability Game, playing H is strategically risky for the row player, whereas L

is safe. We intuitively believe that many row players would be unwilling to risk losing 10 in
order to gain 1.5 We also believe that communication by the column player can increase the
row player's willingness to play H . By sending the pre-play message �H�, the column player
provides some reassurance to the row player, who as a result comes to regard action H less risky.
We think it is this sort of intuition that explains why communication has an effect in Stag Hunt.
However, the intuition is inadmissible in Farrell and Rabin's framework. Since L is a dominated
action for the column player, .H; H/ is the unique rationalizable outcome, and thus ought to
obtain whether players communicate or not. Rationalizability assumes not only that players are
rational, but also that players believe with probability 1 that their opponents are rational.6 In
the Vulnerability Game, the row player's �rm belief that the column player is rational eliminates
the need for communication. We propose instead that it is exactly the doubt about the column
player's rationality that induces the row player to pay attention to the column player's message.
If some players doubt that their opponent is rational, what do they believe? Data from Beauty

Contest games led Rosemarie Nagel (1995) to suggest that people's implicit beliefs about oth-
ers' behavior can often be characterized as follows: Some people believe that their opponents
randomize uniformly. Other people believe that their opponents best respond to the belief that
opponents randomize uniformly. Others again believe that their opponents believe that opponents
believe that opponents randomize uniformly. The corresponding formal model is known as the
level-k model. Level-0 players, who may or may not be assumed to exist in reality, randomize
uniformly. Level-1 players believe that their opponent is level-0. Level-2 players believe that
their opponents are level-1; and so on. The level-k model was �rst studied by Dale O. Stahl and
Paul W. Wilson (1994, 1995) and Nagel (1995) and has the virtue of offering a structural non-
equilibrium approach to the analysis of people's initial behavior in unfamiliar games. A natural
extension of the level-k model is to assume that a level-k player believes that the opponent is
drawn from a distribution of more primitive player types; see Colin F. Camerer, Teck-Hua Ho
and Juin-Kuan Chong (2004) for an analysis of the ensuing cognitive hierarchy model. These
models successfully organize data on the behavior of inexperienced players in a wide variety of

4The Vulnerability Game is inspired by the game in Figure 1.4 of Drew Fudenberg and Jean Tirole (1991).
5For related arguments and evidence, see Robert Rosenthal (1981), and T. Randolph Beard and Richard O. Beil Jr.

(1994).
6Indeed, all players are assumed to believe that all players believe that all players believe that...etc...all players are

rational.
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settings.7
The level-k model straightforwardly explains why some row players would play L in the Vul-

nerability Game. A level-1 row player thinks it is equally likely that the column player plays L
and H; and since 10 > 5:5 it is better for the row player to play L . A drawback of the level-k
model is that higher level row players all believe with probability 1 that their opponent under-
stands the game well enough to not play a dominated strategy. Thus, these players all prefer H ,
and would continue to do so independently of the difference between their .H; H/-payoff and
their .L ; H/-payoff, as long as it is positive. The cognitive hierarchy model, on the other hand,
predicts that the behavior of higher level player types is sensitive to this payoff difference, since
no player completely rules out the possibility that the opponent is of level-0. These considerations
notwithstanding, we focus attention on the error-free level-k model due to its greater simplicity.
See Appendix 3 (available online) for a detailed analysis applying the cognitive hierarchy model.
Observe that both the level-k model and the cognitive hierarchy model assume that all players

at level 1 or higher behave rationally given their beliefs. Thus, players' messages will also be
chosen to maximize expected payoffs. However, to fully pin down behavior we need to specify
the choice of message when players are indifferent between several messages. Following Stefano
Demichelis and Jörgen W. Weibull (2008), we assume that whenever the truthful message is in
the indifference set, players are truthful. That is, they have a weak (lexicographic) preference for
being honest.8 This weak preference for honesty is key to several of our results. For example, in
the Vulnerability Game, a level-1 row player is affected by the column player's message precisely
because it is believed to be honest.
The lexicographic truthfulness assumption is strong enough to determine the messages of level-

0. Since level-0 players are indifferent between all actions, they are also truthful. Observe that an
alternative and more direct justi�cation of level-0 truthfulness is to assume credulity on the part
of level-1; this is the essentially the approach taken by Crawford (2003). If level-0 does not exist,
except in the minds of level-1 players, the two assumptions are behaviorally similar.
In symmetric two-player games with one-way communication, we show that the truthfulness

of level-0 is contagious: A level-1 receiver plays a best response to the received message. Since
level-1 behavior constitutes level-2 players' model of the world, and the game is symmetric, a
level-2 sender will send a truthful message that corresponds to the sender's favorite Nash equi-
librium. Analogous reasoning proves that, in this class of games, all player types communicate
their intentions honestly under one-way communication. However, contagious honesty does not
imply that one-way communication suf�ces to induce an ef�cient outcome. For example, in the
Stag Hunt game above, level-1 players would send and play L .
Let us now brie�y describe our main results. For parameter choices that are typical in the

level-k literature, the following is true for symmetric 2 � 2 games: (i) One-way communication
improves average payoffs in Stag Hunt games with a con�ict between ef�ciency and strategic risk,
such as that in Figure 2, and in some but not all mixed motive (Chicken) games. (ii) Two-way
communication may yield higher average payoffs than one-way communication, but only in Stag
Hunt games with a con�ict between ef�ciency and strategic risk and in mixed motive games with

7See Stahl and Wilson (1994, 1995), Nagel (1995), Ho, Camerer and Keith Weigelt (1998), Miguel A. Costa-Gomes,
Vincent P. Crawford and Bruno Broseta (2001), Camerer, Ho and Chong (2004), Costa-Gomes and Crawford (2006),
Crawford and Nagore Iriberri (2007a), Costa-Gomes, Crawford and Iriberri (2009) for various normal form game ap-
plications of the level-k and cognitive hierarchy models based on laboratory data. Crawford and Iriberri (2007b) and
Isabelle Brocas et al. (2009) study games with private information using the level-k model. Crawford et al. (2009) use
it to study optimal auction design. Toshiji Kawagoe and Hirokazu Takizawa (2008) apply the level-k model to an exten-
sive form game, the centipede game. Östling et al. (2009) and Alexander L. Brown, Camerer and Dan Lovallo (2009)
estimate cognitive hierarchy and level-k models using �eld data. See also footnote 9 for references to level-k analyses of
communication.

8There is considerable experimental evidence that many people assign strictly positive utility to behaving honestly
(e.g., Ellingsen and Magnus Johannesson, 2004b and the references therein), and our results would be largely the same
with positive utility from honesty. However, the analysis is simpler if the preference is lexicographically small.
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high miscoordination payoffs. (iii) In mixed motive games with high miscoordination payoffs,
average payoffs can be lower with communication than without. An additional �nding is that if
players have suf�ciently high-level beliefs, both one-way and two-way communication entail the
ef�cient outcome in Stag Hunt. This conclusion holds not only in the limit as k goes to in�nity;
it suf�ces that both players perform at least two thinking steps.
Extending our analysis to larger games and/or relaxing the symmetry assumption, we �nd that

both one-way and two-way communication facilitates coordination in all two-player common
interest games: When both players make at least two thinking steps, there is always coordination
on (the best) Nash equilibrium in these games. If there are more than two players, a similar result
holds under the additional assumptions of positive spillovers and strategic complementarities.
On the other hand, it is easy to identify games in which communication erodes coordination.

The reason is that players have an incentive to deceive the opponent by misrepresenting their
intentions. Even if the game has a unique pure strategy equilibrium, players can obtain large non-
equilibrium payoffs if they successfully fool their opponent. When players make few thinking
steps, they may end up playing non-equilibrium strategies that are either more or less pro�table
than equilibrium.
Crawford (2003) is the seminal study of communication of intentions with level-k beliefs.

Crawford studies a special class of zero-sum games, namely Hide and Seek games, with one-way
communication. Our work adapts Crawford's approach in order to study a different (and larger)
class of games, while considering both one-way and two-way communication.9 The resulting
sets of applications are quite different. Where Crawford's paper studies deception, ours predom-
inantly studies mutually bene�cial coordination. Other related literature is discussed in Section
IV.

I. Model

Let G D hN ; A; ui denote some normal form game between jN j players where N denotes
the set of players, Ai denotes the �nite set of actions for player i , A D � j2N A j denotes the
set of feasible action pro�les, ui : A ! R is player i's von Neumann-Morgenstern utility func-
tion, and u is the vector of all players' utility functions. We refer to G as an action game. Let
0N� .G/ denote the game G preceded by one round of pre-play communication, where the subset
N� � N of the players are allowed (by nature) to send a message. Let Mi D Ai be the set of
feasible messages for a communicating player i and letMi D Ai [ �. Let M D � j2NM j and
M D � j2N M j denote the corresponding sets of feasible message pro�les. By convention, a
non-communicating player sends an empty message �. The nonempty messages are assumed
to articulate a statement about the sender's intention (rather than for example a statement about
which action the sender desires from the receiver).10 Let player i's message and action be de-
noted mi and ai , respectively. A strategy of the game 0N� .G/ for player i is a message mi 2Mi
and a mapping fi :M! Ai de�ning the action for any message pro�le.
To begin with, we focus attention on symmetric and generic 2 � 2 games.11 The two actions

are labeled H and L . The utilities associated with each outcome are denoted uHH , uHL , uLH and
uLL . In the game G preceded by one-way communication, 0I .G/, one of the players is allowed
to send one of two messages, h and l, before the action game G is played. Although from player

9Recently, ErikWengström (2008) has applied the level-k model to study communication in a price competition game.
Hongbin Cai and Joseph Tao-Yi Wang (2006), Kawagoe and Takizawa (2009) and Wang, Michael Spezio and Camerer
(2009) have adapted Crawford's model to study one-sided cheap talk in sender-receiver games with private information.
10Admittedly, the language we allow is quite restrictive, but it matches the communication protocol used in many

laboratory experiments. See Section II.C for a discussion of alternative protocols.
11There is a tension between genericity and symmetry, but none of our results are knife-edge with respect to symmetry.

For the purpose of this paper, we consider a game to be generic if no player obtains exactly the same payoff for two
different pure strategy pro�les. We restrict attention to symmetric and generic games merely in order to keep down the
number of cases under consideration. In section II.B, however, we discuss an asymmetric 2� 2 game.
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i's point of view, the game in which he is a receiver is quite separate from the game in which he
is a sender, it is convenient to write the two strategies jointly. From now on we thus say that a
strategy si for player i of the full game 0I .G/ prescribes what message mi to send and action
ai to take as sender, and a mapping fi : fh; lg ! fH; Lg from received messages to actions as
receiver. We write a pure strategy of player i (given the received message m j ) as

si D


mi ; ai ; fi

�
m j D h

�
; fi

�
m j D l

��
:

For example, s1 D hh; H; L ; Li means that player 1 sends the message h and takes the action H
if he is the sender, while playing L whenever acting as receiver.
Observe that we neglect unused strategy components by restricting attention to the reduced

normal form. In other words, we do not specify what action a player would take in the counter-
factual case when he sends another message than the message speci�ed by his strategy.
In the game with two-way communication, 0I I .G/, both players simultaneously send a mes-

sagemi 2 fh; lg before G is played.12 A strategy si for player i of the full game is therefore given
by a message mi and a mapping fi : fh; lg ! fH; Lg from the opponent's message to actions. A
pure strategy of player i (given the message m j sent by player j) can thus be written

si D


mi ; fi

�
m j D h

�
; fi

�
m j D l

��
:

For example, s1 D hh; H; Li means that player 1 sends the message h, but plays according to the
received message (i.e., plays H if player 2 sends message h and L if player 2 plays message l).
Players' behavior depends on their beliefs, which are given by the player's number of thinking

steps. A player of type 0 (or level-0), henceforth called a T0 player, is assumed to understand
only the set of strategies, and not how these strategies map into payoffs. Thus, T0 makes a
uniformly random action plan, sticking to this plan independently of any message from the oppo-
nent. (Hearing the opponent's intended action is of little help to a player who does not understand
which game is being played.) Importantly, since T0 players do not understand how their own or
their opponent's actions map into payoffs, or how their messages may affect their opponent's
action, they are indifferent concerning their own messages.13
For positive integers k, a Tk player chooses a best response to (the behavior that the Tk player

expects from) a Tk�1 opponent. In particular, T1 plays a best response to T0. When k � 2; Tk
players will sometimes observe unexpected messages. In this case Tk assumes that the message
comes from a Tk�l player, where l � k is the smallest integer that makes Tk's inference consis-
tent. (As we shall see, T0 sends all messages with positive probability, so l 2 f1; ::; kg always
exists.) Let pk denote the proportion of type k in the player population. As we shall see, players
who perform more than one thinking step often, but not always, behave alike. Therefore, it is
convenient to let TkC denote player types that perform at least k thinking steps. Below, we some-
times say that players with a higher k are more advanced than players with a lower k. However,
observe that the word �advanced� is a bit of a misnomer, since the beliefs of high k players will
often be incorrect in some games (e.g., the Beauty Contest). (In the cognitive hierarchy model,
higher level players also make more accurate predictions, and so are more truly advanced.)
When a player is indifferent about actions in G, we assume that the player randomizes uni-

formly. However, when the player is indifferent about what pre-play message to send, we assume
that there is randomization only in case the player is unable to predict the own action�which can

12Simultaneous messages may appear to be an arti�cial assumption. However, besides preserving symmetry, the case
of simultaneous messages may capture the notion from models with sequential communication that the �rst and the last
speaker may both have an impact.
13The only cognitive requirement for the T0 strategy, beyond knowing the set of actions, is memory of the own sent

message. Although some cognition is involved here, we take the view that memorizing a message is much simpler than
computing expected payoffs and linking them to actions.
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only happen under two-way communication. Otherwise, indifferent players send truthful mes-
sages (or more precisely, a message that conveys the action that the player expects to be playing).
The assumption re�ects the notion that people are somewhat averse to lying, but it does so with-
out incurring the notational burden of introducing explicit lying costs into the model. While such
lexicographic preference for truthfulness is an apparently weak assumption, one of its immediate
implications is that the message by T0 reveals the intended action. Or to put it even more starkly,
T1 believes in received messages. (In Section I.C we explore alternative assumptions regarding
how T0 treat messages.)
In Appendix 1 we explicitly characterize the strategies of all player types. Of course, some

player types are more representative of actual behavior than others; indeed, econometric studies
tend to identify signi�cant fractions of T1; T2 and T3 only (e.g., Costa-Gomes, Crawford and
Broseta 2001 and Costa-Gomes and Crawford 2006).14 For some of our results we thus refer to
type distributions consisting exclusively of players of these three types. Accordingly, we say that
p D .p0; p1; :::/ is a standard type distribution if pk > 0 for all k 2 f1; 2; 3g and pk D 0 for all
k =2 f1; 2; 3g.

A. Examples

Consider the Stag Hunt game in Figure 2. Absent communication, T1 best responds to the
uniformly randomizing T0 by playing the risk dominant action L . Understanding this, the best
response of T2 is to play L as well. Indeed, by induction any player T1C plays L . For any type
distributions with p0 D 0, the unique outcome is the risk dominant equilibrium .L ; L/.15 The
level-k model hence provides a rationale for why players play the risk dominant equilibrium in
two-player coordination games without communication.
If players can communicate, one-way communication suf�ces to induce play of H by all types

T2C. The analysis starts by considering the behavior of T0 (as imagined by T1). By assump-
tion, a T0 sender randomizes uniformly over L and H , while sending the corresponding truthful
message. A T0 receiver randomizes uniformly over L and H . As a sender, T1 best responds by
playing the risk dominant action L , and due to the lexicographic preference for truthfulness sends
the honest message l. As a receiver, T1 believes that messages are honest and thus plays L follow-
ing the message l and H following the message h. Consider now T2. A T2 sender believes to be
facing a T1 receiver who best responds to the message, so T2 sends h and plays H . A T2 receiver,
expects to receive an l message and therefore play L . If receiving a counterfactual h message,
T2 thinks it is sent by a truthful T0 sender and therefore plays H . It is easily checked that all
T2C behave like T2, implying that there will be coordination on the payoff dominant equilibrium
whenever two T2C players meet and communicate. In other words, the level-k model not only
shows that it is feasible for advanced players to coordinate on the payoff dominant equilibrium,
but that the unique outcome is that they will do so. Note in particular how reassurance plays a
crucial role in the example. When a receiver gets a message h, the receiver is reassured that the
sender will play H , and is therefore also willing to play H: Even if the message h is actually
only self-signaling for level-0 senders, it is self-committing for all other types, and this suf�ces
to attain ef�cient coordination as long as both parties perform at least two thinking steps.
In Stag Hunt, the reassurance role of communication is strengthened even more when both

players send messages. Under such two-way communication, T1 trusts the received message and
responds optimally to it. Expecting to play either action with equal probability, T1 sends both

14Empirical applications of the cognitive hierarchy model tend to yield a more sizeable fraction of T0. However, the
reason is typically that the model is estimated without an error term, or that the model imposes an assumption about the
distribution of types (e.g., Poisson).
15Note that this is not about equilibrium selection in the ordinary sense. Players do not select among the set of

equilibria, but best-respond to the behavior of lower-step thinkers. Their behavior ultimately results from the uniform
randomization of T0, which explains the parallel to risk dominance.
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TABLE 1�ACTION PROFILES PLAYED IN STAG HUNT WITH COMMUNICATION

0I .G/ (one-way communication) 0I I .G/ (two-way communication)
0R 1R � 2R 0 1 � 2

0S Uniform 1
2 HH;

1
2 LL

1
2 HH;

1
2 LL 0 Uniform 1

2 HH;
1
2 LL

1
2 HH;

1
2 LH

1S 1
2 LL ;

1
2 LH LL LL 1 1

2 HH;
1
2 LL Uniform HH

� 2S 1
2 HH;

1
2 HL HH HH � 2 1

2 HH;
1
2 HL HH HH

H L
H 0; 0 3; 1
L 1; 3 a; a

FIGURE 4. MIXED MOTIVE GAME

messages with equal probability. T2 believes that the opponent listens to messages, and therefore
sends h and plays H irrespective of the received message. T3C players believe that the opponent
will play H and they therefore play H and send an h message. If they receive an unexpected l
message, they believe it comes from T1 and therefore play H anyway (as T1 will respond to the
received h message by playing H ). Note that under two-way communication, T2C players are so
certain that the opponent will play H that they play H irrespective of the received message. This
is an important case in which the cognitive hierarchy model predicts a different strategy. Because
T2 players in the cognitive hierarchy model �nd it likely that the opponent is a truthful T0 player,
they respond to messages under reasonable parameter assumptions (see Appendix 3, available
online, for details).
Table 1 summarizes the action pro�les that will result in the Stag Hunt under one-way and

two-way communication. The notation 1S indicates a player of type 1 in the role of sender, and
so on. �Uniform� indicates that all four outcomes are equally likely.
Communication entails perfect coordination on the payoff dominant equilibrium whenever T2C

players meet. However, one-way and two-way communication differ in two respects whenever
T1 players are involved. With one-way communication, T1 senders play L and the risk dominant
equilibrium therefore results whenever T1 senders play against a T1C opponent. Under two-
way communication, however, there is miscoordination in half of the cases when two T1 players
meet. Thus, there is a trade-off when choosing the optimal communication structure between
coordination on either equilibria and achieving the payoff dominant equilibrium more often. For
standard type distributions, two-way communication entails higher expected payoffs than one-
way communication as long as p1 2 .0; 2=3/.
In Stag Hunt, communication increases players' payoff because it brings suf�ciently much

reassurance for players to coordinate on the risky but payoff dominant equilibrium. In mixed
motive games such as Battle of the Sexes and Chicken, communication instead serves the role
of con�ict resolution. To see this, consider the mixed motive game depicted in Figure 4, where
a < 3 and a 6D 2. If a D 0, then this is a Battle of the Sexes, whereas it is a Chicken game if
a > 0. The outcome for this game depends on whether L or H is the risk dominant action, i.e.,
whether a ? 2. For simplicity, we disregard the possibility that a D 2, but allow the �Battle of
the Sexes� possibility that a D 0 (although this makes the game non-generic).
First consider the case of no communication. T1 then plays the risk dominant action, i.e., L

if a > 2 and H if a < 2. T2 responds optimally by playing H if a > 2 and L if a < 2. The
behavior of more advanced players continues to alternate, odd types playing L if a > 2 and H
otherwise, whereas even types play H if a > 2 and L otherwise. The outcome therefore depends
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TABLE 2�ACTION PROFILES PLAYED IN MIXED MOTIVE GAMES (A > 2)

G (no communication) 0I .G/ (one-way communication)
0 Odd Even 0R 1R � 2R

0 Uniform 1
2 HL ;

1
2 LL

1
2 LH;

1
2 HH 0S Uniform 1

2 HL ;
1
2 LH

1
2 HL ;

1
2 LH

Odd 1
2 LH;

1
2 LL LL LH 1S 1

2 LH;
1
2 LL LH LH

Even 1
2 HL ;

1
2 HH HL HH � 2S 1

2 HL ;
1
2 HH HL HL

on the type distribution, but there will generally be many instances of miscoordination.16
One-way communication powerfully resolves the con�ict inherent in such games with two

pure asymmetric equilibria. If H is the risk dominant action, then T1C senders send h and play
H , whereas T1C receivers optimally respond to messages. If instead L is risk dominant, a T1
sender sends l and plays L , whereas T2C senders continue to send h and play H: One-way com-
munication therefore implies that T1C players always coordinate on an equilibrium. Except in
the case when L is risk dominant and the sender is of type T1; coordination is on the sender's
preferred equilibrium (supposing p0 D 0).
It is unsurprising that one-way communication can resolve the con�ict and achieve coordi-

nation in games with two asymmetric equilibria. However, our analysis also reveals the novel
possibility that in some versions of Chicken some players propose and play their least favorite
equilibrium. T1 senders play their risk-dominant action which may not correspond to their pre-
ferred equilibrium, whereas T2 senders are con�dent in reaching their preferred equilibrium.
Table 2 shows the outcomes that will result without communication and with one-way commu-
nication, demonstrating the improved coordination on equilibrium outcomes.
Although one-way communication entails more equilibrium coordination than no communica-

tion, more coordination need not raise players' average payoffs. If a > 2, then players prefer the
.L ; L/ outcome to ending up in either equilibrium with equal probability. If the type distribution
is such that the .L ; L/ outcome results suf�ciently often without communication, average payoffs
are thus higher without communication. For example, when a D 5=2 and there is a standard type
distribution with p2 < 1=3, then average payoffs are lower under one-way communication than
under no communication.
Suppose players could choose whether to engage in communication or not, and that the alloca-

tion of roles is random. Each player type k would then consider the own expected payoff in each
regime conditional on meeting a player of type k � 1. To illustrate that players may prefer not to
communicate, we consider the case when a D 0, i.e., the Battle of the Sexes. Absent communica-
tion, T3 believes that the opponent will play L and thus obtains the preferred equilibrium payoff.
With one-way communication and a random allocation of roles, however, T3 expects to end up in
either equilibrium with equal probability. That is, T3 expects to be better off if communication is
impossible.

B. Results

In this section we generalize the �ndings from the previous section to all symmetric and generic
2� 2 games, disregarding (the measure zero class of) games in which neither action is risk dom-
inant. Throughout the section, we assume that G belongs to this class of games. There are three
broad classes of such games. The �rst class of games are the dominance solvable ones, like
Prisoners' Dilemma. We use the convention of labelling the dominant action of these games
H (igh). The second class are coordination games, where we follow the example above and label

16The outcome without communication does generally not resemble the symmetric mixed strategy equilibrium, but
may happen to do so for certain combinations of payoff con�gurations and type distributions.
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the actions corresponding to the payoff dominant equilibrium H (igh). The third class of games
are mixed motive games like the one in Figure 4. For this class of games, we label the action
corresponding to a player's preferred equilibrium H (igh). In Appendix 1, we completely charac-
terize behavior of all player types k 2 N for these three classes of games. These characterizations
provide the foundation for the results in this section, where we focus on average outcomes under
standard type distributions.
Our �rst result states the conditions under which one-way communication serves to increase

players' average payoffs relative to no communication.

PROPOSITION 1: Given a standard type distribution, the average payoff associated with0I .G/
exceeds the average payoff associated with G if and only if (i) G is a coordination game with a
con�ict between risk and payoff dominance, or (ii) G is a mixed motive game that satis�es either
a. L is risk dominant and�

1
2
� p2 .1� p2/

�
.uHL C uLH / > p22uHH C .1� p2/

2 uLL ;

or
b. H is risk dominant and�

1
2
� p2 .1� p2/

�
.uHL C uLH / > .1� p2/2 uHH C p22uLL .

PROOF:
In Appendix 2.
If we replace p2 by pE , the probability that players think an even number of steps, Proposition

1 generalizes straightforwardly to all type distributions in which p0 D 0. In our examples, we
have already explained why one-way communication improves average payoffs in Stag Hunt,
and indicated why it sometimes fails to improve payoffs in mixed motive games. An implication
of Proposition 1 is that one-way communication raises the average payoff in the Battle of the
Sexes.17 (To see this, recall that in Battle of the Sexes 0 D uHH D uLL < uLH < uHL , which
implies that H is risk dominant and that condition (b) in Proposition 1 is satis�ed.) Proposi-
tion 1 also implies that communication does not improve average payoffs in dominance solvable
games. For Chicken, the impact of communication hinges more delicately on parameters, and
communication may even serve to reduce payoffs.

COROLLARY 2: Given a standard type distribution, the average payoff associated with 0I .G/
is smaller than the average payoff of G if and only if G is a game of Chicken that satis�es either
a. L is risk dominant and�

1
2
� p2 .1� p2/

�
.uHL C uLH / < p22uHH C .1� p2/

2 uLL ;

or
b. H is risk dominant and�

1
2
� p2 .1� p2/

�
.uHL C uLH / < .1� p2/2 uHH C p22uLL .

17Note that this does not contradict the statement at the end of Section I.A that T3 prefers not to communicate in the
Battle of the Sexes. Proposition 1 refers to payoffs averaged across player types, while the earlier remark referred only to
T3's payoff given that he is certain that he faces a T2 opponent.
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PROOF:
In Appendix 2.

Since H is risk dominant in Battle of the Sexes, one-way communication suf�ces to attain
perfect coordination on the speaker's preferred equilibrium outcome. Thus, we here have a case
in which the prediction from the level-k model coincides with the prediction from Farrell (1988).
The ineffectiveness of cheap talk in dominance solvable games is also analogous. More generally,
the two approaches share the property that communication, if anything, pulls players towards
Nash equilibria in symmetric 2� 2 games.

PROPOSITION 3: For any distribution of types, the frequency of coordination on pure strategy
Nash equilibrium pro�les is weakly greater in 0I .G/ than in G.

PROOF:
In Appendix 2.
The pull towards Nash equilibria is so strong that one-way communication entails equilibrium

play whenever two T1C meet. Moreover, T2C always play the action corresponding to the sender's
preferred equilibrium.

COROLLARY 4: For type distributions with p0 D 0, players in 0I .G/ always coordinate on
pure strategy Nash equilibrium pro�les. If in addition p1 D 0, players in 0I .G/ always coordi-
nate on the sender's preferred equilibrium.

PROOF:
Follows directly from Tables A1 to A4 in the proof of Proposition 3.

Unlike one-way communication, two-way communication may destroy not only average pay-
offs but also coordination on equilibrium outcomes. For example, suppose there are only T1
players and let G be a coordination game in which payoff and risk dominance coincide. Then
0I I .G/ entails miscoordination in half of the cases, because T1 sends random messages while
listening to received messages. By contrast, in G and in 0I .G/ two T1 players always play the
payoff and risk dominant equilibrium. Our model therefore captures the intuition that two-way
communication can bring noise in the form contradictory messages.
Nevertheless, there are important classes of games in which two-way communication outper-

forms one-way communication.

PROPOSITION 5: Given a standard type distribution, the average payoff associated with0I I .G/
exceeds the average payoff associated with 0I .G/ if and only if (i) G is a coordination game in
which L is the risk dominant action and .4� 3p1/ uHH C p1 .uLH C uHL/ > .4� p1/ uLL ; or
(ii) G is a mixed motive game with a type distribution satisfying the following condition:

1C
2 .p1 � 1/ .p1 � 1C 2p3/

p21 C 4p
2
3

<
uLL � uHH

uLH C uHL � 2uHH
:

PROOF:
In Appendix 2.

The Stag Hunt game in Figure 2 belongs to the �rst class of games identi�ed by Proposition 5.
For that particular game, two-way communication yields higher expected payoff than one-way
communication whenever p1 2 .0; 2=3/. The second class of games identi�ed in Proposition 5
is harder to specify because of the cycling patterns of behavior under two-way communication
in mixed motive games. However, for two-way communication to be bene�cial, the payoff when
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both players play L must be suf�ciently high (at least .uHL C uLH /=2) and in addition the type
distribution has to be such that the miscoordination outcome .L ; L/ happens suf�ciently often
with two-way communication. For example, with only T3 players, the outcome is .L ; L/ under
two-way communication, whereas such players coordinate on an asymmetric equilibrium with
one-way communication.

C. Robustness

How robust are our results to the assumptions that we have made about players' behavior?
The largest difference in comparison with other level-k applications is that we assume that

players have a weak preference for truthfulness. If players have no preference for truthfulness,
communication ceases to have any effect whatsoever in our model: behavior is the same in0I .G/,
0I I .G/ and G. This speci�cation is strongly at odds with the evidence that communication
matters in many game experiments.
Another alternative hypothesis is that all players prefer to be truthful, but that the most primi-

tive types also respond systematically to received messages. The idea is that (if the actions of both
players have the same label), the receiver could imitate or differentiate based on the sender's mes-
sage. The most natural way to account for such imitation is to allow heterogeneous T1 players,
some believing that receivers randomize, others believing that receivers imitate.18 With one-way
communication, this implies that some T1 players believe T0 receivers randomize, whereas others
believe that they imitate. With two-way communication, some T1 players believe that opponents
are truthful, whereas other believe they imitate. Let us now consider the consequences of this
speci�cation.
First consider the Stag Hunt in Figure 2. Under one-way communication, T1 senders who be-

lieve that receivers imitate send the message h and play H . This in turn implies that T2 receivers
respond to messages as if they were truthful irrespective of which kind of T1 sender they think
they face. Under one-way communication, the only difference compared to our original assump-
tion is that there will be somewhat more coordination on .H; H/ since some T1 senders now play
H . Under two-way communication, T1 players who believe that opponents imitate send h and
play H instead of responding to received messages. T2 players therefore optimally send h and
play H irrespective of which type of T1 player they meet. Since miscoordination only occurs
whenever two T1 players that send random messages meet, there will now be more equilibrium
coordination compared to the standard case.
Second, consider one-way communication in the Battle of the Sexes. While T1 receivers, and

hence T2 senders, behave as before, T1 senders that believe they face imitators now send l and
play H . This behavior seems implausible, and the fraction of such T1 players must therefore be
small. However, irrespective of how small a proportion they constitute, T2 receivers now play
L irrespective of what message they receive. This implies that T3 senders send h and play H .
Under a standard type distribution, the outcome in terms of observed action pro�les is thus the
same as before.
Although some details of the analysis change with the introduction of heterogeneous T1 play-

ers, we conclude that the main mechanisms are robust to this modi�cation.
Another cause for concern is our assumption about how unexpected messages are treated. An

alternative assumption to ours is that Tk believes that unexpected messages are truthful. This
would not change any our results for one-way communication, but with two-way communication

18An alternative is to let T1 assume that some fraction of T0 imitates rather than randomizes. In this case, T1 is
sophisticated enough to consider heterogeneity among T0. We do not think this is plausible, and the consequences are
counterfactual too: Consider one-way communication in the Battle of the Sexes. If there is heterogeneity among T0,
T1 will send l and play H�believing that some opponents ignore their message, whereas others imitate their message
and play L . Since p1 is typically estimated to be quite high, the implication is that sending l and playing H would be a
relatively common practice.
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X Y Z
U 5�; 5� �50;�50 2; 4
V �50;�50 2; 4� 4�; 3
W 4; 4� 3�; 3 3; 3

FIGURE 5. HIGH RISK GAME

it would imply that T3C responds to messages (rather than always playing H ) in coordination
games as well as slightly different behavior of T3C in mixed motive games. (See also the discus-
sion following Observation 7 about the sensitivity to the assumption about unexpected messages
for the behavior of T3C in mixed motive games.) In Appendix 3 (available online), we consider
the cognitive hierarchy model in which no messages are unexpected (because all players take
into account that the opponent might be T0) and show that, with the possible exception of T3C in
mixed motive games, our results are robust.

II. Extensions

So far, we have con�ned attention to symmetric 2� 2 games. In principle it is straightforward
to extend the analysis to games with more players and strategies. In this section, we show that the
reassurance property of communication extends to two-player games in which players' interests
are suf�ciently well aligned. When attractive non-equilibrium outcomes are present, however,
senders might try obtain these by deceiving the opponent. The possibility of deception implies
that one-way communication may hamper coordination on Nash equilibria. In addition, we show
that multilateral communication in N -player games facilitiates coordination in a class of common
interest games.

A. Two-player common interest games

The Stag Hunt example illustrates that pre-play communication facilitates the play of a risky
payoff dominant equilibrium. Since our model does not assume equilibrium play, it is also
applicable to situations in which players realistically fail to play a unique and ef�cient Nash
equilibrium�such as the High Risk game, devised by Margaret Gilbert (1990) and reproduced
in Figure 5 (in which best replies are marked with asterisks).19 Absent communication, the level-
k model predicts that two T5C players coordinate on the unique pure strategy equilibrium .U; X/,
whereas all lower level players fail to do so.20 In contrast, one-way and two-way communica-
tion implies that T2C coordinate on equilibrium. That is, substantially fewer thinking steps are
required to reach equilibrium with communication than without.21

19Experimental results of Anthony Burton and Martin Sefton (2004) con�rm the prevalence of coordination failure in
one-shot play of the High Risk game, but demonstrate that players learn to play the equilibrium after having played a
number of practice rounds with the same opponent.
20To see this, note that T1 plays W and Z since these are the risk dominant actions. Using the best responses indicated

in Figure 5 it follows that T2 plays V and X , T3 plays U and Y , T4 plays W and X , and �nally that T5C plays U and X .
A referee makes the following additional observation: �Replace 50 by x . If anyone is playing U or V in a �rst

encounter with the game [...], the number of such players should decline as x increases.� We agree. This is another case
in which the cognitive hierarchy model offers a richer and more realistic prediction than level-k.
21To see this, �rst consider one-way communication. A T1 row sender sends w and plays W , while a column sender

sends z and plays Z . A T1 receiver best responds to messages. A T2C row sender therefore sends u and plays U ,
while a column sender sends x and plays X , while a T2C receiver best responds to messages. Now consider two-
way communication. T1 believes the opponent is truthful and therefore best responds to messages and randomize what
message to send. A T2C row player therefore sends u and plays U while a column player sends x and plays X .
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Y Z
W 3�; 2� 4�; 0
X 0; 0 3; 1�

FIGURE 6. ASYMMETRIC 2 X 2 GAME

The positive effect of communication in the High Risk game extends to all �nite and normal
form two-player games which has a payoff dominant equilibrium that gives strictly higher payoffs
to both players than all other outcomes of a game, i.e., to all common interest games. For this class
of games it is straightforward to show that T2C coordinate on the payoff dominant equilibrium.
The underlying mechanism is that since T1 listens and best responds to messages, T2 can achieve
the best possible outcome by sending and playing the payoff dominant equilibrium.

PROPOSITION 6: Let G be a two-player common interest game. For type distributions with
p0 D p1 D 0, players in 0I .G/ and 0I I .G/ always coordinate on the payoff dominant Nash
equilibrium.

PROOF:
See Appendix 2.

B. Other two-player games

In common interest games and in symmetric 2� 2 games with one-way communication, play-
ers always represent their intentions truthfully. In other classes of games, however, this is not
necessarily the case. Crawford (2003) already shows how deception arises naturally in a level-k
model of communication in Hide-and-Seek games. Deception can also arise in an asymmetric
dominance solvable 2 � 2 game with a unique pure strategy equilibrium. Consider the game in
Figure 6.
The game's unique pure strategy equilibrium is .W; Y /. Since W and Y are the risk dominant

actions, T1C players coordinate on the .W; Y / equilibrium if they are not allowed to communi-
cate. Now consider one-way communication. Suppose that the row player acts as sender and the
column player acts as receiver. The T1 sender sends w and plays W , while a T1 receiver best
responds to received messages. A T2 sender therefore sends x , but plays W , while a T2 receiver
best responds to messages. T3 sends x but plays W , while a T3 receiver ignores messages and
always plays Y . Whenever T3C players meet, the resulting outcome is equilibrium play, unlike
when lower level players meet. In contrast to Proposition 3, one-way communication entails
less equilibrium coordination than no communication unless all players carry out three or more
thinking steps.
Proposition 3 does not generalize to symmetric two-player games with more than two actions

either. To see this, consider the game in Figure 7.22 This symmetric 3 � 3 game has a unique
pure strategy equilibrium, .H; H/, for all q > 1, but the game also has the asymmetric outcomes
.H; L/ and .L ; H/ that are attractive either to the row or column player. Since there is a third
strategy, D, which has L as its best response, some senders will try to use this strategy to deceive
the other player into playing L .
Speci�cally, consider the case when q D 1 and pre-play communication is not possible. In that

case T1 would play H since it is the best action to take if the opponent randomizes uniformly,
and T2C would best respond by playing H . One-way communication, however, makes it more
dif�cult to reach equilibrium. A T1 sender sends h and plays H , while a T1 receiver best responds

22This game is non-generic, but the analysis is analogous in the generic case.
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H L D
H 4=q�; 4=q� .4C 1=q/� ; 0 0; 0
L 0; .4C 1=q/� 0; 0 1�; 1
D 0; 0 1; 1� 0; 0

FIGURE 7. SYMMETRIC 3 X 3 GAME

H1 L1 D1 H2 L2 D2 � � � HQ LQ DQ
H1 4; 4 5; 0 0; 0 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
L1 0; 5 0; 0 1; 1 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
D1 0; 0 1; 1 0; 0 0; 0 0; 0 0; 0 � � � 0; 0 0; 0 0; 0
H2 0; 0 0; 0 0; 0 2; 2 4:5; 0 0; 0 � � � 0; 0 0; 0 0; 0
L2 0; 0 0; 0 0; 0 0; 4:5 0; 0 1; 1 � � � 0; 0 0; 0 0; 0
D2 0; 0 0; 0 0; 0 0; 0 1; 1 0; 0 � � � 0; 0 0; 0 0; 0
:::

:::
:::

:::
:::

:::
:::

: : : 0; 0 0; 0 0; 0
HQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 4

Q ;
4
Q 4C 1

Q ; 0 0; 0
LQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 4C 1

Q 0; 0 1; 1
DQ 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 0; 0 1; 1 0; 0

FIGURE 8. SYMMETRIC 3Q X 3Q GAME

(as indicated by the asterisks in Figure 7) to the received message. A T2 sender sends d , but
plays H , while a T2 receiver best responds to received messages. A T3 sender sends d and
plays H , while a T3 receiver plays H irrespective of the received message. A T4C sender is
indifferent about what message to send and is thus truthful, sending h and playing H ; a T4C
receiver ignores messages and plays H . We conclude that T3C coordinate on .H; H/ and that
one-way communication consequently lowers equilibrium coordination unless all players make
three or more thinking steps.
A modi�cation of the game illustrates how the number of thinking-steps required to reach

equilibrium may increase linearly with the size of the game. Consider the 3Q� 3Q game shown
in Figure 8. It has the game in Figure 7 on the main diagonal and zero payoffs elsewhere.
Let messages be denoted mq , with m 2 fh; l; dg and q 2 f1; 2; :::; Qg with Q > 1. Without

communication, T1C plays H1 as in the 3 � 3 game. However, when one-way communication
is allowed, all players must make at least 2Q C 2 thinking steps in order to coordinate on the
unique equilibrium .H1; H1/. To see why, note �rst that T1 through T3 will behave as in the 3�3
game, but that receivers will best-respond to all messages mq with q 2 f2; 3; :::; Qg; believing
those messages to come from T0. A T4 sender therefore sends d2 and plays H2 in order to get the
outcome .H2; L2/ which is preferred over .H1; H1/. T5 receivers do not believe in d2 messages
and therefore play H2 if either h2, l2 or d2 is played. In turn, T6 senders send d3 and play H3 in
order to induce the .H3; L3/ outcome. The inductive argument continues like this up until T2QC1
sends dQ and plays HQ . A T2QC2 sender cannot hope to get anything better than .H1; H1/ and
therefore sends h1 and plays H1, whereas a T2QC2 receiver plays Hq whenever hq ; dq or lq is
played (for all q).
This example illustrates that the number of thinking steps required to play equilibrium in-

creases with the size of the game. Since the number of thinking steps required is unrealistically
high, in these games players coordinate better if they are unable to communicate.
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C. Other communication protocols

Like much of the cheap talk literature, we have here considered communication of intentions.
Messages are of the form �I plan to play...�. What would happen if players communicated re-
quests instead, that is if messages were of the form �I want you to play...�? While the model still
admits a notion of truthfulness, the analysis would be quite different. For example, it is no longer
clear that T1 players should care about the messages that they receive, since T0 players' requests
may reveal nothing about their intentions. We thus expect that credulity will play a more impor-
tant role than truthfulness in this case. Speci�cally, communication might now affect behavior if
T1 senders believe that receivers are credulous in the sense that they ful�ll requests.
The paper only considers the communication of intentions by interested parties. A natural

avenue for future research is to study the communication of desires or recommendations, by
players themselves as well as by more or less interested third parties such as managers.23
We do not allow communicating players to be silent, but it is of course possible to do so. Since

players are assumed to have a slight preference for truthfulness, they might prefer to be silent
when they do not know what action they are going to take in the action game (as T1 under two-
way communication in coordination games). Thus, a suitably extended model will have speci�c
predictions regarding silence as well.
Another natural extension is to consider multiple rounds of communication. Crawford (2007)

has already used the level-k model to analyze longer conversations in the Battle of Sexes. He
demonstrates that longer bilateral conversations improve coordination rates in a way that is qual-
itatively similar to, but quantitatively and intuitively different from, the equilibrium analysis of
Farrell (1987).

D. Multilateral communication

Communication may also facilitate play of a potentially risky payoff dominant equilibrum in
games with more than two players. In this section we show that for all �nite common interest
games with strategic complementarities and positive spillovers, multilateral pre-play communi-
cation facilities play of the payoff dominant equilibrium whenever T2C play the game.
We restrict attention to games with unique best responses. The actions of each players are

assigned integers f1; 2; :::; ai g. Such a game has strategic complementarities if best responses
are non-decreasing in the opponents' actions, i.e., if a�i � a0�i implies BRi .a�i / � BRi

�
a0�i
�
.

Finally, a game has positive spillovers if the own payoff increases in the opponents' actions, i.e.,
if a�i � a0�i implies � i .ai ; a�i / � � i

�
ai ; a0�i

�
. Note that the payoff dominant equilibrium of a

common interest game with positive spillovers involves all players choosing their highest actions,
a D .a1; a2; :::; an/.24

PROPOSITION 7: Let G be a �nite common interest game with unique best responses, strategic
complementarities and positive spillovers. For type distributions with p0 D p1 D 0, players in
0N .G/ always coordinate on the payoff dominant Nash equilibrium of G.

PROOF:
See Appendix 2.

23For experimental evidence bearing on these issues, see for example John B. van Huyck, Ann B. Gillette and Raymond
C. Battalio (1992), Roberto Weber et al. (2001) and Jordi Brandts and David J. Cooper (2007).
24To see this, suppose the payoff dominant equilibrium is some pro�le a� 6D a. Then at least one player has an action

ai > a�i available that by positive spillovers gives the opponents the same or higher payoffs, contradicting the assumption
that a� is the payoff dominant equilibrium that yields strictly higher payoffs to all players than all other outcomes of the
game.
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To better understand the intution behind Proposition 7, consider the Weak-link game. In a
Weak-link game, each player picks an integer from 1 to M . Payoffs are such that all players
want to play the minimum of what the opponents play, but all players are better off if everybody
chooses higher numbers. Any strategy pro�le in which all players choose the same number
constitutes a Nash equilibrium, and the payoff dominant equilibrium involves all players playing
M . Note that the Weak-link game is essentially a Stag Hunt game with more than two strategies.
(For a more detailed exposition of theWeak-link game see for example Camerer 2003, Chapter 7.)
If the Weak-link game is preceeded by multilateral communication, T1 sends a random message
and best responds by playing the minimum of the received messages. A T2 player faces N � 1
opponents that play the minimum of the received messages, so T2C best responds by also playing
the minimum of all received messages, but sends the message m (so that the best outcome occurs
if all other players sent m). Hence, as long as there are no T0 and T1 players, there will be perfect
coordination on the payoff dominant equilibrium.
Note that the logic of this argument breaks down if only a subset of the players is allowed to

send a message. To see this, suppose that all but one player is allowed to send a message. Then it
is generally no longer optimal for T1 to play the minimum of the received message pro�le since
one opponent's action is unpredictable, which in turn implies that T2 does not play the minimum
of the received messages, which would be required to guarantee play of the payoff dominant
equilibrium.

III. Evidence

The level-k model of pre-play communication is primarily a model to explain initial responses,
i.e., the behavior of players that play a game for the �rst time. If players gain experience of the
game and the population of players, they are likely to change their model of opponents' behavior
or perhaps think further and proceed to higher levels of reasoning. In experimental work on pre-
play communication, players typically play the same game in several rounds. Strictly speaking,
most of the available evidence is thus inadequate for our purposes.
Another dif�culty is that experimenters rarely elicit subjects' von Neumann-Morgenstern util-

ities. Instead, payoffs are typically monetary. In order to interpret the behavior as evidence of
beliefs, experimenters thus have to assume a particular relationship between monetary allocations
and utility. For example, they may assume that subjects maximize their own expected monetary
payoff. However, subjects frequently have other goals; for example, it would be ludicrous to in-
terpret Dictator game giving as evidence that subjects are confused about the game's payoffs. In
principle, we should always distinguish games (involving utilities) from game forms (involving
monetary payoffs).
With these caveats in mind, and continuing to con�ate games and game forms, let us brie�y

discuss some of the most relevant communication experiments.
Two papers contrast one-way and two-way communication in Stag Hunt games. Cooper et

al. (1992) report that average coordination on the payoff dominant equilibrium is 0 percent
without communication, 53 percent with one-way communication and 91 percent with two-way
communication. This study therefore suggests that communication plays a reassurance role, as
emphasized by Crawford (1998).25 By contrast, in a Stag Hunt game with somewhat different
relative payoffs, Burton, Graham Loomes and Sefton (2005) �nd that one-way communication
results in 52 percent coordination on the payoff dominant equilibrium, whereas two-way com-
munication entailed average coordination on the payoff dominant equilibrium of only 34 percent.
Both papers �nd that behavior varies substantially across sessions, indicating that heterogeneity
in early rounds of the game affect players choices in later rounds. Burton, Loomes and Sefton
(2005) also collect data on some of their individual subjects' complete strategies (plans). By far

25Relatedly, Ellingsen and Johannesson (2004a) identi�es a reassurance role of communication in hold-up games with
multiple equilibria.
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the most common strategy, in our notation, is hh; H; Li. According to the level-k model, this
strategy should only be used by half of the T1 players. On the other hand, the strategy is used by
all T2C in the cognitive hierarchy model (under the weak assumption that the average of the type
distribution is below 7). Thus the cognitive hierarchy model �ts the data better.

In addition to the two studies comparing one-way and two-way communication, there are also
a few studies of the Stag Hunt game that investigate either one-way or two-way communication.
John Duffy and Nick Feltovich (2002) �nd that one-way communication entails coordination on
the payoff dominant equilibrium in 84 percent of the cases with one-way communication and
in 61 percent of the cases without communication. Charness (2000) studies the effect of one-
way communication in three versions of the Stag Hunt and �nds 86 percent coordination on the
payoff dominant equilibrium with one-way communication. Kenneth Clark, Stephen Kay and
Sefton (2001) study two-way communication in two different Stag Hunt games. In the �rst game,
based on Cooper et al. (1992), playing L yields the same payoff irrespective of the opponents
behavior. In this game, coordination on the payoff dominant equilibrium is 2 percent without
communication and 70 with two-way communication. In a more standard Stag Hunt game, they
�nd that coordination on the payoff dominant equilibrium occurs in only 19 percent of the cases
with two-way communication. Hence, it appears possible that the bene�cial effects of two-way
communication in Cooper et al. (1992) is sensitive to their choice of payoff matrix.

On the other hand, the hypothesis that multilateral communication plays a major role in creat-
ing reassurance is more consistently supported by evidence from Weak-link games (see the pre-
vious subsection for a de�nition); see in particular Andreas Blume and Andreas Ortmann (2007).
Camerer and Weber (2007) summarize the existing evidence as follows: �Taken together, the
above results suggest that communication can help solve even the most dif�cult coordination
problems, with relatively large numbers of players and where the minimum effort determines the
entire group's output. However, the communication required to get large groups to ef�ciency
is extreme�players must all send messages and have public knowledge of messages.� This is
precisely what Proposition 7 predicts, under the additional prerequisite that all players are suf�-
ciently advanced.

For mixed motive games the picture also seems clear, although the consistency in this case
may be due to the low number of studies. Cooper et al. (1989) �nd that one-way communication
results in a high degree of coordination in Battle of the Sexes. Averaged over several rounds of
play, Cooper et al. (1989) report that one-way communication increases coordination from 48
percent without communication to 95 percent with one-way communication. With one round of
two-way communication, coordination is 55 percent.26 For a comparison of this evidence with
the prediction of Rabin's (1994) cheap talk model, see Costa-Gomes (2002).

To summarize, we believe that more experimental work is needed in order to test the theory laid
out in this paper. Such a test should focus on players' initial responses to several different games,
which would allow a clearer separation of types. Costa-Gomes and Crawford (2006) illustrates
how this can be done. It would also be useful to directly test the assumption about T0 players.
Since T0 players mainly exist in the minds of other players, we need data on players' beliefs.
Such data can be generated not only through belief elicitation (e.g., Costa-Gomes and Georg
Weizsäcker 2008), but also by response time measurement (e.g., Camerer et al. 1993 and Ariel
Rubinstein 2007), information search (e.g., Camerer et al. 1993, Costa-Gomes, Crawford and
Broseta 2001 and Costa-Gomes and Crawford 2006) and through neuroimaging (e.g., Meghana
Bhatt and Camerer 2005).

26It should be noted, however, that Cooper et al. (1989) allow the players to be silent and that 27 percent of the players
in the two-way treatment, and 5 percent in the one-way treatment, choose to do so.
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IV. Other Related Literature

Throughout, we take for granted that players have access to a common language. That is, we
take an eductive approach to communication. A substantial fraction of the literature on cheap
talk starts from the opposite presumption that messages are not inherently meaningful; instead,
messages may or may not acquire meaning in equilibrium�where equilibrium is a steady state of
an evolutionary process of random matches between pre-programmed players; see, for example,
Akihiko Matsui (1991), Karl Wärneryd (1991), Yong-Gwan Kim and Joel Sobel (1995), Luca
Anderlini (1999) and Abhijit Banerjee and Weibull (2000). We view the eductive and evolution-
ary approaches as complementary. While the evolutionary approach can explain how language
emerges in �old� games, it is less appropriate for our question of how an existing language will
be used by inexperienced players in �new� games.
There are also evolutionary models in which language has some pre-existing meaning (Blume

1998 and Demichelis and Weibull 2008). Interestingly, Blume (1998) proves that two-way com-
munication can be superior to one-way communication in games with strategic risk, such as Stag
Hunt. Blume's result requires that messages have some small a priori information content. For
example, players may have a slight preference for playing .H; H/ if both players sent the mes-
sage �H� and the expected payoffs to playing H and L are otherwise equal. As Blume notes,
his assumption amounts to assuming some small amount of gullibility on the part of receivers. In
our eductive model, honesty of level-0 senders is instead what drives the superiority of two-way
communication in the Stag Hunt game. Note also the parallel between our Proposition 7 and
Blume's Proposition 5 which both demonstrate the effectiveness of multilateral communication
in common interest games. Demichelis and Weibull (2008) �nd that both one-way and two-
way communication induces ef�cient equilibria when players have lexicographic preferences for
truthfulness.
We focus on communication of intentions in complete information games and consequently

ignore communication of private information. Crawford and Sobel (1982) and Jerry R. Green
and Nancy L. Stokey (2007) (originally written in 1981) are seminal contributions to the study
of strategic information transmission. See Navin Kartik (2008) and the references therein for
analyses of strategic information transmission with positive lying costs.

V. Conclusion

Coordination of behavior in new strategic situations is facilitated by communication. Since
communication seeks to affect the beliefs of others, assumptions about initial beliefs are cen-
tral to the analysis. Our starting point is that prevailing assumptions about initial beliefs in the
strategic communication literature, as captured by the rationalizability assumption, are problem-
atic. Thus, we consider the role of communication within the two other general models of initial
beliefs that have won widespread acceptance, namely the level-k and cognitive hierarchy mod-
els. Our analysis demonstrates that these models generate sharp predictions that are often, if not
always, intuitively plausible.
We see two immediate avenues for future research. First, there is a need for evidence that

systematically distinguishes the effects of preferences, beliefs and rationality. In particular, iden-
ti�cation of beliefs is only possible when preferences and rationality are controlled for. The
task is not easy, since direct elicitation of beliefs tends to yield quite different measures than
revealed measures of beliefs, possibly because direct elicitation affect the depth of subjects'
strategic thinking; see Costa-Gomes and Weizsäcker (2008). Cleaner evidence would help us
to evaluate existing models of beliefs and to suggest new ones, and it would clarify the status
of previously puzzling experimental evidence concerning the effect of communication in games
like Stag Hunt. Secondly, we entirely lack evidence concerning the effects of communication
in many of the other games studied in this paper. Experimental evidence on such games would
allow a true out-of-sample test of the theory.
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Appendix 1: Characterization of Behavior

We here characterize behavior in all symmetric and generic 2 � 2 games using the level-k
model. Consider the symmetric 2� 2 game in Figure A1.
We assume that this game is generic in the sense that none of the four different payoffs

(uHH ; uHL ; uLH and uLL ) are identical. Depending on the relations uHH 7 uLH and uLL 7
uHL , we can divide the class of generic 2� 2 games into three familiar types of games as shown
in Figure A2.27
If we were only interested in Nash equilibria, there would be only one prediction for each of

these games. For the level-k model, however, these games will be divided into subclasses with
different predictions. The most important distinction is indicated by the dashed line in Figure A2.
This condition corresponds to whether uLL � uHL 7 uHH � uLH , i.e., whether uLH C uLL 7
uHH C uHL . This means that action H is risk dominant above the dashed line in Figure A2,
whereas action L is risk dominant below it. For tractability, we disregard the cases when neither
action is risk dominant throughout the paper.

27The classi�cation of symmetric games follows Weibull (1995, Section 1.5.3) closely.
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FIGURE A2. THE FOUR TYPES OF GENERIC AND SYMMETRIC 2 X 2 GAMES

Dominance solvable games

Dominance solvable games are easiest to analyze, but also least interesting. In a dominance
solvable game, players always have an incentive to play the dominant action, and neither one-way
or two-way communication affect the actions players take.
We assume uHL > uLL and uHH > uLH so that H (igh) is the dominant action. The case

when L is the dominant action is symmetric.

OBSERVATION 1: If players cannot communicate, T1C plays the dominant action H. If players
can communicate, then both one-way and two-way communication implies that T1C sends h and
plays H irrespective of any received messages.

PROOF:
Since H is a dominant action, T1C players play H irrespective of the believed behavior of the

opponent. With the possibility to communicate, this also implies that there are no players that
respond to messages, and T1C players are therefore indifferent about sending h or l. (Sending l
would have been bene�cial if some players responded to messages and uHL > uHH as in the
Prisoners' Dilemma.) However, since players have a lexicographic preference for truthfulness,
they send h.

For dominance solvable 2� 2 games, communication plays no role. Except for some miscoor-
dination due to T0 playing the dominated action, all players play the dominant action. Since the
proof only relies on the fact that each player has a strictly dominant strategy, the result extends to
all normal form two-player games in which both players have a strictly dominant action.

Coordination games

Behavior in coordination games depends crucially on payoff and risk dominance. Since we
restrict attention to generic games, one of the equilibria has to be payoff dominant. Let us without
loss of generality assume that H (igh) is the payoff dominant equilibrium, i.e., uHH > uLL .

OBSERVATION 2: (No communication) T1C plays the risk dominant action.
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PROOF:
T1 players believe that the opponent randomizes uniformly and therefore plays the risk domi-

nant action. T2 players best respond and play the same risk dominant action, and so on.

Absent communication, T1 plays the best response to a uniformly randomizing T0 opponent,
which is the risk dominant action. Since this is a coordination game, more advanced players best
respond by playing the same action.

OBSERVATION 3: (One-way communication) If H is the risk dominant action, T1C sends h
and plays H as sender and responds to messages as receiver. If L is the risk dominant action, T1
sends l and plays L as sender and responds to messages as receiver. T2C sends h and plays H as
sender and responds to messages as receiver.

PROOF:
First consider the case when H is risk dominant. T1 plays hh; H; H; Li (facing randomizing

T0 receivers and truthful T0 senders). A T2 sender believes that the receiver best-responds to the
sent message and therefore sends h and plays H . A T2 receiver believes that the sender will send
h and play H , but if T2 receives message l, he believes it comes from a truthful T0 sender. T2C
therefore plays hh; H; H; Li.
Now consider the case when L is risk dominant. Then, T1 plays hl; L ; H; Li. T2C believes

that the opponent responds to messages and that all messages are truthful and therefore play
hh; H; H; Li.

When risk and payoff-dominance coincide, one-way communication is suf�cient to achieve
coordination among T1C players. When there is a con�ict between risk and payoff dominance,
there is still perfect coordination among T1C players, but there is more play of the risk dominant
equilibrium (since a T1 sender plays the action corresponding to that equilibrium).

OBSERVATION 4: (Two-way communication) T1 randomizes messages and responds to re-
ceived messages, whereas T2C sends h and plays H.

PROOF:
T1 believes that the opponent is truthful and therefore best responds to the received message,

while sending random messages (not knowing what action will be taken). T2 believes that the
opponent responds to messages and therefore sends and plays H irrespective of the message
received (since T1 sends a random message). T3 therefore sends h and plays H . Receiving an
unexpected l message, T3 also plays H , believing the opponent to be T1. More advanced players
reason in the same way and thus also play hh; H; Hi.

Mixed motive games

Two common examples of 2�2 mixed motive games are Chicken or Hawk-Dove and Battle of
the Sexes. In order for the game to have mixed motive, we assume uHL > uLL and uLH > uHH .
Without loss of generality, we further assume that uHL > uLH so that each player prefer the
equilibrium where he is the one to play H (igh). If uLL D uHH D 0, then this game is the Battle
of the Sexes, whereas it is a Chicken game if uLL > uHH . Battle of the Sexes is a non-generic
game, but the results in this section hold also for the Battle of the Sexes.

OBSERVATION 5: (No communication) If H is the risk dominant action, then Tk plays H if k
is odd and L if k is even. If L is the risk dominant action, then Tk plays L if k is odd and H if k
is even.
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PROOF:
T1 plays the risk dominant action and Tk best-responds to the behavior of Tk�1, which generates

the alternating behavior.

With no possibility to communicate, there is little players can do to coordinate on either of the
asymmetric equilibria and behavior therefore alternates over thinking steps. One-way communi-
cation, on the other hand, provides a way to resolve the con�ict in the game.

OBSERVATION 6: (One-way communication) If H is the risk dominant action, then T1C sends
h and plays H as sender and responds to messages as receiver. If L is the risk dominant action,
then T1 sends l and plays L as sender and responds to messages as receiver. T2C sends h and
plays H as sender and responds to messages as receiver.

PROOF:
First let H be the risk dominant action. A T1 sender faces a randomizing receiver and therefore

plays H and sends h. A T1 receiver, on the other hand, responds to the sent message, believing it
comes from a truthful T0 opponent. T2C can get the preferred equilibrium as sender and therefore
sends h and plays H , while responding to messages as receiver. If instead L is the risk dominant
action, a T1 sender instead sends and plays L , but otherwise behavior is unchanged.

In general, senders play their preferred equilibrium and receivers yield and play their least
preferred equilibrium. However, if the preferred equilibrium does not coincide with the risk
dominant action, T1 senders send and play their least preferred equilibrium.28

OBSERVATION 7: (Two-way communication) T1 sends h and l with equal probabilities and
responds to messages. The behavior of T2C players cycles in thinking steps of six as follows:
hh; H; Hi,hl; L ; Li,hh; L ; Hi,hh; H; Hi,hl; L ; Hi,hh; L ; Hi.

PROOF:
T1 believes that the opponent is truthful and therefore sends random messages, but responds

to the message sent. T2 believes that the opponent responds to messages and therefore plays
hh; H; Hi. T3 expects to receive a truthful h message, and thus sends l and plays L . If receiving
an l message, T3 believes it comes from a T1 opponent and therefore plays L (believing the
opponent will play H ). T4 expects to play H and therefore sends h. If receiving the message
h, T4 believes it comes from a T2 opponent and therefore responds by playing L . T5 thinks
the opponent responds to messages and therefore plays H and sends h. Believing an l message
comes from a T3 opponent, T5 subsequently plays H . T6 expects to play L and therefore sends
l, but plays H upon receiving an l message (believing it comes from a T3 opponent). T7 expects
to play H and sends an h message, playing L if receiving an h message. T8 sends h and plays
H; playing H if he receives an l message, just like T2. T9 plays hl; L ; Li just like T3. Since the
behavior of eight and nine-level players is just like two- and three-level players, and the rationale
for T4C did not depend on the behavior of T0 or T1, behavior continues to cycle like this.

Note that the behavior of T0; T1; T2, and T3 is identical to Crawford (2007). However, T4
responds to received messages in our model, but always plays H in Crawford (2007). The differ-
ence stems from the fact that we assume that whenever T4 receives the message h, the inference

28The result when L is risk dominant is sensitive to the assumption that T1C players have lexicographic preferences
for truthfulness. Without that preference, level-1 senders would send random messages. Then, the behavior of higher
level players would alternate and entail many instances of miscoordination.
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is that it comes from a T2 player that will actually play H , whereas Crawford (2007) assumes
that T4 believes an h message is a mistake by a T3 opponent who will play L anyway.29
Comparing one-way and two-way communication, it is clear that two-way communication will

lead to several instances of miscoordination. However, as pointed out by Crawford (2007), the
degree of coordination may still be higher than predicted by Farrell (1987) and Rabin (1994).
Finally, note the parallel to coordination games that risk-dominance only plays a role with

one-way communication. The underlying reason is the strategic uncertainty resulting from ran-
domizing T0 receivers.

Appendix 2: Proofs

Proof of Proposition 1

From Observation 1 we know that communication has no effect in dominance solvable games.
Similarly, for coordination games when H is risk dominant, Observation 2 and 3 show that com-
munication has no effect. In coordination games when L is risk dominant, however, Observation
2 and 3 show that one-way communication results in either .L ; L/ or .H; H/, whereas no com-
munication results in .L ; L/. As long as there is a positive fraction of T2C players, one-way
communication therefore results in higher expected payoffs.
For mixed motive games, �rst suppose L is risk dominant. From Observation 6 we know that

one-way communication always induces coordination when T1C play, so the expected payoff for
a player playing the game is .uHL C uLH /=2. However, as noted in Observation 5, no communi-
cation results in miscoordination when two odd-level players meet as well as when two even-level
players meet. Under the standard type distribution, a player's average payoff is

p22uHH C p2 .1� p2/ uHL C .1� p2/ p2uLH C .1� p2/
2 uLL :

One-way communication results in higher expected payoff whenever�
1
2
� p2 .1� p2/

�
.uHL C uLH / > p22uHH C .1� p2/

2 uLL .

Now let H be the risk dominant outcome. The expected payoff for communicating players is
unchanged, whereas the condition for one-way communication to result in higher expected payoff
is �

1
2
� p2 .1� p2/

�
.uHL C uLH / > .1� p2/2 uHH C p22uLL :

Proof of Corollary 2

From the proof of Proposition 1 it follows directly that one-way communication only decreases
average payoffs if one of the conditions hold with opposite inequality. To see why the correspond-
ing game is a Chicken, suppose �rst that L is risk dominant. The �rst condition in Proposition 1
for one-sided communication to decrease expected payoffs is

(1)
�
1
2
� p2 .1� p2/

�
.uHL C uLH / < p22uHH C .1� p2/

2 uLL :

29Also note that although our T3 behaves as in Crawford (2007), the rationale for their behavior is slightly different.
T3 in our framework believes an l message comes from a T1 opponent that sends random messages. Since T3 sent the
message l, the player believes that the opponent will play H and they therefore play L . In Crawford (2007), a T3 player
that receives the counterfactual message l believes that it was a mistake by the T2 opponent and therefore plays L anyway.
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TABLE A1�ACTION PROFILES PLAYED IN COORDINATION GAMES (L RISK DOMINANT)

G (no communication) 0I .G/ (one-way communication)
0 � 1 0R 1R � 2R

0 Uniform 1
2 LL ;

1
2 LH 0S Uniform 1

2 HH;
1
2 LL

1
2 HH;

1
2 LL

� 1 1
2 LL ;

1
2 LH LL 1S 1

2 LL ;
1
2 LH LL LL

� 2S 1
2 HH;

1
2 HL HH HH

TABLE A2�ACTION PROFILES PLAYED IN COORDINATION GAMES (H RISK DOMINANT)

G (no communication) 0I .G/ (one-way communication)
0 � 1 0R � 1R

0 Uniform 1
2 HH;

1
2 HL 0S Uniform 1

2 HH;
1
2 LL

� 1 1
2 HH;

1
2 HL HH � 1S 1

2 HH;
1
2 HL HH

We know that uHL > uLL , uLH > uHH and uHL > uLH , implying uHH < .uLH C uHL/ =2.
Suppose that uLL � .uLH C uHL/ =2. Then the right hand side of (1) satis�es

p22uHH C .1� p2/
2 uLL < p22

1
2
.uLH C uHL/C

1
2
.1� p2/2 .uLH C uHL/

D

�
1
2
� p2 .1� p2/

�
.uLH C uHL/ :

This implies that (1) cannot hold, and therefore the condition fails unless uLL > .uLH C uHL/ =2.
This implies that uLL > uHH , which implies that it is a Chicken. An analogous argument can be
made when H is risk dominant.

Proof of Proposition 3

From Observation 1 we know that communication has no effect in dominance solvable games.
From Observation 2 and 3, we know that the outcomes of coordination games in which L is

the risk dominant action. These are given in Table A1. Pairwise comparison of the cells in Table
A1 reveals that one-way communication entails weakly more coordination.
If instead H is risk dominant, the outcomes are given in Table A2. The degree of coordination

is again the same or higher with one-way communication than without communication.
Now consider mixed motive games. Observations 5 and 6 yield the outcomes reported in Table

A3 when L is risk dominant. Pairwise comparisons of cells reveal that the degree of coordination
is the same or higher with one-way communication.

TABLE A3�ACTION PROFILES PLAYED IN MIXED MOTIVE GAMES (L RISK DOMINANT)

G (no communication) 0I .G/ (one-way communication)
0 Odd Even 0R 1R � 2R

0 Uniform 1
2 HL ;

1
2 LL

1
2 LH;

1
2 HH 0S Uniform 1

2 HL ;
1
2 LH

1
2 HL ;

1
2 LH

Odd 1
2 LH;

1
2 LL LL LH 1S 1

2 LH;
1
2 LL LH LH

Even 1
2 HL ;

1
2 HH HL HH � 2S 1

2 HL ;
1
2 HH HL HL
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TABLE A4�ACTION PROFILES PLAYED IN MIXED MOTIVE GAMES (H RISK DOMINANT)

G (no communication) 0I .G/ (one-way communication)
0 Odd Even 0R � 1R

0 Uniform 1
2 LH;

1
2 HH

1
2 HL ;

1
2 LL 0S Uniform 1

2 HL ;
1
2 LH

Odd 1
2 HL ;

1
2 HH HH HL � 1S 1

2 HL ;
1
2 HH HL

Even 1
2 LH;

1
2 LL LH LL

TABLE A5�ACTION PROFILES PLAYED IN MIXED MOTIVE GAMES

0I I .G/ (two-way communication)
1 2 3

1 Uniform LH HL
2 HL HH HL
3 LH LH LL

Finally, when H is risk dominant, the outcomes are given in Table A4. Again the degree of
coordination is the same or higher for one-way communication for all combinations of types.

Proof of Proposition 5

As Observation 1 shows, communication plays no role in dominance solvable games, so two-
way communication cannot increase expected payoffs. In coordination games in which H is risk
dominant, Observation 3 and 4 imply that 0I .G/ and 0I I .G/ yield identical outcomes unless two
T1 players meet. In 0I .G/, players then coordinate on .H; H/, whereas there is miscoordination
in 0I I .G/. Thus 0I .G/ is weakly better than 0I I .G/ in this case. When instead L is the risk
dominant action, T1 senders always play L . The average payoff associated with 0I .G/ is thus

p1 .1� p1/ uLL C p1 .1� p1/ uHH C .1� p1/ .1� p1/ uHH C p21uLL :

The average payoff associated with 0I I .G/ is

2p1 .1� p1/ uHH C .1� p1/ .1� p1/ uHH C
1
4
p21 .uLL C uHH C uLH C uHL/ :

Two-way communication thus yields higher payoff whenever

.4� 3p1/ uHH C p1 .uLH C uHL/ > .4� p1/ uLL .

Now consider mixed motive games. Observation 6 shows that for T1C players, 0I .G/ entails
perfect coordination, implying an average payoff of .uLH C uHL/ =2. As shown in Observation
7, matters are generally more complicated for 0I I .G/ since behavior cycles over six thinking
steps. Table A5 provides the resulting outcomes when con�ning attention to standard type distri-
butions.
We know that .uLH C uHL/ =2 > uHH . However, if uLL > .uLH C uHL/ =2 then two-

way communication might be preferable. Two-way communication is preferable to one-way
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communication whenever�
p2 p1 C p1 p3 C p2 p3 C

1
4
p21

�
.uHL C uLH /C

�
p23 C

1
4
p21

�
uLL C

�
p22 C

1
4
p21

�
uHH

>
1
2
.uLH C uHL/ :

Letting p2 D .1� p1 � p3/ we can rewrite this as

uLL � uHH
uLH C uHL � 2uHH

> 1C
2 .p1 � 1/ .p1 � 1C 2p3/

p21 C 4p
2
3

:

A necessary condition for this inequality to hold is that uLL > .uLH C uHL/ =2. This follows
from the fact that the minimum of the right hand side is 1=2, whereas the left hand side can only
be larger than 1=2 if uLL > .uLH C uHL/ =2.

Proof of Proposition 6

First consider 0I .G/. A T1 sender sends and plays the action that is optimal given that the
opponent randomizes uniformly over actions. If there are several optimal actions, T1 plays each
of them with equal probability and sends a truthful message. As a receiver, T1 best responds
to messages. Since the payoff dominant equilibrium gives the highest possible payoff, T2 sends
and plays the corresponding action as sender, while best responding to messages as receiver. It
follows that T3C behaves as T2. Now consider 0I I .G/. T1 believes the opponent is truthful and
therefore best responds to messages, but sends a random message. T2C believes the opponent
best responds and therefore sends and plays the payoff dominant equilibrium irrespective of the
received message.

Proof of Proposition 7

First suppose that ai is not strictly dominant for any player. A T1 player faces truthful T0
senders, so T1 sends a random message and best responds to the message pro�le received. In
particular, if m�i D a�i , then T1 plays ai since a is the payoff dominant equilibrium. T2 conse-
quently believes that the opponents best-respond to messages. Since G has strategic complemen-
tarities, BRi .m�i / is non-decreasing in m�i , and since there are positive spillovers, it is weakly
dominant for a T2 player to send the message mi D ai . However, since a gives strictly higher
payoff than all other outcomes of the game, it is strictly dominant to send the message mi D ai
and play ai if m�i D a�i . T3C similarly achieves the highest payoff by sending ai and playing
ai if m�i D a�i .
If the action ai is strictly dominant for some player i , a T1 player i truthfully sends the message

mi D ai and plays ai . If a j is strictly dominant for all other players j 6D i , then a T2 player i is
indifferent about what message to send, but since a T2 player i expects to play ai , he sends ai .
(If only some other players have strictly dominant strategies, the same argument for the behavior
of T2's message as in the previous paragraph hold.) T2C consequently sends ai and plays ai if
m�i D a�i also in the presence of strictly dominant actions.


