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Abstract

Bayesian inference is a process of eliminating parameter values that do not

explain the data and shifting posteriors towards values that do explain them.

There is no room in it for ‘discovery’. I study belief processes that allow for

discovery. I then ask when one can approximate discovery-induced beliefs by

a Bayesian belief mechanism. This allows us to define optimal decisions and

rational valuations in environments with discovery.

PRELIMINARY

1 Introduction

Learning and discovery appear to be two qualitatively different ways in which beliefs

change. By ‘learning’ we shall mean the usual form of statistical updating of beliefs

in light of evidence. By a ‘discovery’ we shall mean a change in beliefs such that the

posterior puts positive mass on an event on which the prior had a zero mass. Bayes

learning is learning from experience alone. Such ‘experience learning’ leaves no room

for ‘insight’ which brings about a new hypothesis never before conceived of. More

precisely, it provides no way for evidence to convert a zero-probability event into one

to which one would assign a positive probability.1

This paper shows that in a class of models previously discussed by Easley and

Kiefer (1988) in which discovery can be modeled in a standard way. In this model, if

∗I thank L. Blume, T. Cogley, S. Galanis, A. Kochov, M. Kredler, R. Lucas, Y. Nyarko, E. Ozbay,
R. Radner, J. Schlossberger, J. Stoye, H. Tretvoll and A. Tsyvinski for comments and the Kauffman

Foundation and the NSF for support.
1Let  be an event to which the agent assigns a probability zero, i.e.,  () = 0. Then for any

other event ,

 ( ∩) =  ( | ) () = 0
so that  ()  0 =⇒  ( | ) = 0, whereas if  () = 0,  ( | ) is undefined.
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a Bayesian receives a large signal pointing to an event to which he assigned a negligible

but positive prior belief, the resulting shift in beliefs will be indistinguishable from

one that results from a discovery.In other words, discovering a new state has roughly

the same implications for observables as does a strong signal pointing to a state that

received a positive but very low prior weight. This equivalence then allows us to place

an value to information in such situations. And such situations are firm that invests

in basic research.

The paper proceeds in three steps, described in Sections 2, 3 and 4. Section

2 develops a model of belief evolution when discoveries can occur over time. It

adds an awareness-growth mechanism to the Easley Kiefer (1988) formulation of

the Bayes decision model. Assuming a hypothetical prior covering the entire state

space, the prior is then restricted to have its support on a strict subset of the state

space. That subset is the agent’s initial awareness. Awareness is said to grow when

this conditioning set grows. An exogenous mechanism for discovery is introduced.

Together with the initial prior, this mechanism implies that beliefs can evolve in a

non-Bayesian way, with a discovery mass appearing on sets that were previously of

measure zero. .

Section 3 asks when one can approximate discovery-induced beliefs arbitrarily

closely by a Bayesian belief mechanism. This can be done if we are allowed to intro-

duce a new set of signals. Having approximated the discovery process in this way,

we obtain a model of decisions and valuations in situations in which something like

discovery takes place, but which we can model in the standard way.

Section 4 does the reverse; it asks when models of learning can be approximated by

models of discovery. In particular, it shows how two standard models of technological

progress — Telser (1982) or Muth (1986) on the one hand, and Prescott and Mehra

(1994) on the other — can be re-cast in a model in which the agent discovers new

technologies, thereby improving his decisions.

Section 5 formulates the equivalence question more generally, but there is no

general result yet. Section 6 discusses how one may wish to restrict the discovery

process in light of previous research on similar topics.

Related work divides into several strands. Decision theory stresses that unaware-

ness of an event is different from having beliefs that assign a probability zero to it.

Dekel, Lipman and Rustichini (1998), Li (2008), Galanis (2008) and Ozbay (2008,

Sec. 4) discuss this point and they further discuss many other related papers. Ap-

plied work also routinely deals with environments in which there discoveries such as

inventions; it typically assumes that agents form beliefs over payoffs, costs or pro-

ductivity. Models of technological improvement arising from research such as Telser

(1982), Muth (1986) and Kortum (1997) proceed in this way, as do research-driven-

growth models of Romer (1990) and Aghion and Howitt (1992). Empirical work on

patents on a firm’s stock price value by Pakes (1985) assumed that the firm invents

something; the content of that invention does not matter, only the amount by which

it lowers production costs and raises the firm’s value. In other studies summarized
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by Griliches (2000), basic research is held as having a higher probability than applied

research of producing an outcome in the right tail of the payoff distribution.

The (exogenously-timed) introduction of a new parameter value into the prior

leads to a re-evaluation of the evidence and a possibly a dramatic shift in beliefs.

Other models that feature dramatic shifts in beliefs are the Bayesian model of Cogley

and Sargent (2005), and non-Bayesian models of Young (02, Sec. 8.3) and Cho and

Kasa (2009) who study how agents would periodically switch models whenever they

fail a statistical test and Kocherlakota (2007) has a related discussion. Nyarko (1991)

and Evans and Honkapohja (2001) extensively discuss learning of (sometimes) mis-

specified equilibrium models. Venezia (1985) and Auerswald et al. (2000) discuss

other learning algorithms, and a paper on paradigm shift is Bramoullé and Saint

Paul (2007).

All this relates to the issue of the “directedness” of discovery. Sometimes an

agent’s awareness grows as a result of an action taken by an opponent in the game,

an action that may simply be a self-interested announcement by another agent as in

Ozbay (2008), and in this sense directed towards that agent’s interests. Sims (1971)

and Radner (2002) offer non-Bayesian treatments of model revision, with each revised

model having more parameters than the previous model, so that model revision is

directed towards the next layer of complexity. Under full awareness Rothschild (1974),

Jovanovic and Rob (1990) and Jovanovic and Nyarko (1996) used information theory

to study directed search in variations of the multi-armed bandit model.

2 Model

We shall introduce discovery into the model of Easley and Kiefer (1988). Let us first

review that model with some minimal modifications. Time is discrete. In each period

 the decision-maker chooses an action  ∈  At the end of the period  he observes

 ∈  and receives a reward  ( )  The discount factor is . The random variable

 has density

 ∼  ( |  ) (1)

where  ∈ Θ is a parameter. Define the one-step-ahead Bayes map

0 =  (  ) =
 ( |  ) ()R

Θ
 ( |  )  ()  (2)

This first-order difference equation for  leads to the Bellman equation

 () = max
∈

Z


[ ( ) +  ( (  ))]  ( |  )  ()  (3)

Equations (1)-(3) represent the Easley-Kiefer model. Let us now modify it by

adding limited awareness into the model. By ‘Awareness’ we shall mean simply the
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subset of Θ on which beliefs have their support. ‘Unawareness’ of a subset of Θ is

equivalent to having beliefs that assign measure zero to that subset.2

Awareness- beliefs.–With awareness  ⊂ Θ, the agent’s actual belief is the

restriction of  to his awareness set, :

 () =  ( | ) =
(

()

()
for  ∈ 

0 for  6∈ 
(4)

A growth in awareness then occurs when  gets larger.3 In order for  to continue to

be defined for any  ⊂ Θ,  must be defined over all of Θ. This means that we must

start with a hypothetical prior over Θ from which we can iterate using (2) conditional

on .4

3 Discovery approximated by standard learning

We now give two examples in which discovery differs from learning, but in which the

two can produce the same outcomes for the variables that an outsider could observe.

3.1 Example 1: Investments with Binomial outcomes

A gamble pays a dollar each time a coin comes up heads, and nothing if it comes up

tails. Let  be the probability of heads, and let  be zero, so that the coin always

comes up tails. Let  ∈ {0 1} be the gross payoff to the gamble, so that  = 0 is
observed by the agents for all . We shall ask how this evidence, tails for ever, will

affect the evolution of beliefs of two risk-neutral agents, Agent 1 and Agent 2. Agent

1 experiences a discovery whereas Agent 2 does not.

Let Θ = {1 2} where 1 = 12 and 2 = 0. This is the universe of the states

that  can assume. We choose the prior 0 so that it assigns equal probability to the

two events.

Agent 1.–Let Agent 1’s initial awareness be 0 = {1}. Substituting 0 for  in
(4) we see that Agent 1 starts out believing dogmatically that the coin is fair, i.e.,

that  = 1 = 05. At date  , the agent discovers that  could be zero. He never

conceived of such a possibility before date  but, having discovered it, he considers

it as likely a priori as the possibility that  = 12. Absent any evidence, that is, he

2I use “awareness” for want of a better term, recognizing that decision theorists have stressed

that unawareness of an event and the assignment of a zero probability to that event, are qualitatively

different — e.g., Dekel et al. (1998), Galanis (2008), Li (2008) and Ozbay (2008).
3To simplify, let  ( |  )  0 for all (  ) ∈  ×  × Θ. Then no observation is logically

impossible for any  ∈ Θ, and the support of beliefs over Θ cannot shrink.
4This hypothetical prior is similar in nature to the ‘belief function’ in Ozbay (2008). More

generally, it is similar to how in games one specifies beliefs over types that take a particular off-

equilibrium action.
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assigns equal probabilities over the two events. Then his prior is 0.5 on  = 12 and

05 on  = 0. With these new priors and the evidence that the coin came up tails 

periods in a row, his expected gross payoff,  ()  falls suddenly from 0.5 for   

to 1
1+2

for  ≥  :

 () =

½
1
2

for   
1

1+2
for  ≥ 



Let us plot this as a function of  for three alternative discovery dates  = 2 12 21

These are the three heavy purple lines in Fig. 1.

Agent 2.–Now consider agent 2 who, from the outset, is aware of the possibility

that  = 0, who has a prior of  that  = 0 and 1 −  that  = 12 His posterior

belief over  = 0 is

 ( = 0 |  tails and no heads) = 

+ (1− )
¡
1
2

¢ = 2

2 + 1− 

Agent 2’s expected gross payoff is

∗ () =
1

2

µ
1− 2

2 + 1− 

¶
=
1

2

1− 

2 + 1− 

In Figure 1 we plot ∗ () for six values of  = {10−1 10−2  10−6}  We find that
even as  becomes quite small and the possibility of the coin being biased becomes

quite remote, the model cannot generate the sudden drop in expected values. The

drop takes place mostly over about 10 periods. This Figure and the resons for the

shape of the curves are similar to Figures 3 and 9 of Cogley and Sargent (2005).

Actions.–Suppose that taking the gamble costs 25 /. This can be thought of as

the cost of investing in the project and the up-front costs of hiring the factors or

production. Then until date  , firm 1 would keep losing money and then after date

 investment would cease. For firm 2, investment would cease when ∗ drops below
0.25. The optimal stopping boundary is strictly below 025 (because of the incentive

to experiment and the option of stopping if the news is unfavorable) and approaches

025 as →∞.
Value of firm.–If we choose  so that we fit actions, output and profits, clearly

the Bayesian model with full awareness is unable to match the stock-price drop. If

the business was public and if the public had the same beliefs, the market value of

that business would experience a sudden crash in the first model, and would take at

least 10 periods to do so in the second. On the other hand if one is interested in

the behavior of the price of a stock of such a company and is willing to tweak the

model and assume that some periods produce a larger number of signals, then a faster

market crash is possible in the Bayesian model. For instance, if in Figure 1 we take

the right-most curve corresponding to  = 10−6, we could assume that at  = 17 the
agent receives not one signal but ten. This would produce a rapid crash of the stock

price, but would interfere on observations at the frequency at which trials actually

took place. Therefore the signals would need to be unrelated to the firm’s output.

5



0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.1

0.2

0.3

0.4

0.5

t

E, E*

Figure 1: The Binomial case

3.2 Example 2: Normal outcomes

Since the normal distribution is a limit of additions of small binomial trials, we shall

in this second example reach conclusions similar to those reached in the binomial

case. Consider a sequence of normally-distributed gambles that pay

 =  +  (5)

for  = 0 1  where  ∼  (0 2). Again, let Θ = {1 2} where 1 = 12 and

2 = 0, and again 0 assigns equal probability to the two events. To correspond to

the above case, we suppose that the true  = 0 and ask how evidence generated this

time by (5) will affect the evolution of beliefs of Agent 1 and Agent 2.

Agent 1.–He again believes dogmatically that  = 05, and again at date  he

discovers that  could be zero, and assigns equal prior probabilities over  = 0 and

 = 05. Let ̄ =
1


−1X
=0

. In contrast to the Binomial case, conditional on the true

 being zero, the evidence, ̄ ∼ 
¡
0 1


2
¢
is a random variable. There must always

be a positive drop at the date  but the size of the drop of Agent 1’s expectations

of  at date  is then also a random variable, shifting from 0.5 to

 ( ) =
1

2

1

1 + exp
n
− 
22

h
̄2 −

¡
̄ − 1

2

¢2io
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Figure 2: The Normal case

At the median, ̄ = 0, and so the median post-discovery expected payoff is

MED () =
1

2

1

1 + exp
¡


82

¢ for  ≥ 

Assuming that  = 1, let us plot this as a function of  for three alternative discovery

dates  ∈ {2 60 115}. These are the three heavy purple lines in Fig. 2.

min (1max (0  − ))
1

2
+ (1−min (1max (0  − )))

1

2

1

1 + exp
¡

8

¢ 
Agent 2.–From the outset this agent assigns probability  that  = 0, and 1− 

that  = 12. His date- posterior expectation is

∗ () =
1

2

1

1 + 1−

exp

n
− 
22

h
̄2 −

¡
̄ − 1

2

¢2io 
At the median, ̄ = 0, and so the median post-discovery expected payoff is

∗MED () =
1

2

1

1 + 

1− exp
¡


82

¢ 
In Figure 2 we plot∗MED () for  = 1, six values of



1− = {10−1 10−2  10−6} When
 = 1, learning is very protracted and the full-awareness model cannot replicate a
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sudden drop in expectations. But when  is small, information accumulates rapidly,

because evidence accumulates at the rate and a combination of a small  and small

 can indeed generate a precipitous drop in expectations. Of course we are not gen-

erally free to choose  — it is determined by the properties of the  sequence. Again,

one could add a signal at date  other than , a signal not observed by the analyst,

and thereby allow the full-awareness Bayesian model to fit the data.

3.3 Example 3: A learning curve

A particularly transparent effect of simulating a discovery at some date by endowing

agents with a precise signal at that date is in the context of learning curves. As in

Jovanovic and Nyarko (1996) suppose that  is an action,  a random variable and

that output (and utility) is

 ( ) = 1− ( − )
2


where

 =  + 

Let  ∼  (0 2) and suppose that the agent observes not only the realizations of

output, but  itself. Let Θ =  and let 0 = 
¡
̄ 2

¢
be the normal prior over Θ.

Agent 1.–For any subset 0 ⊂ Θ, Agent 1 has the prior 0 ( | 0)  Optimal
decisions of an agent with awareness  are that

 =

Z
 ( | )

If awareness were never to change so that  were for ever to remain fixed, decisions

would converge to the “best” point in , i.e.,

 →∈ argmin
∈

|  − ∗ | 

and expected output and utility would converge to

 () = 1− 2 −min
∈

( − ∗)2

If awareness would then grow to 0, expected output would generally increase to
1−2−min∈0 ( − ∗)2. Thus the learning curve would generally exhibit a jump at
any discovery that was closer to the true  Clearly, such a learning curve would have

concave portions interrupted by upward jumps, roughly as found in some empirical

work summarized in Muth (1986).
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Figure 3: The effect on expected output of four precision units

Agent 2.–A standard learning structure with a normal prior 0 ∼ 
¡
̄ 2

¢
on

 produces a posterior  = 
¡
 

2


¢
, where the posterior mean and variance are

 =

−2 + −2

−1X
=0



−2 + −2 
, and 2 =

1

−2 + −2 
.

The optimal decision is  = , and expected output at date  is

 () = 1− 2 − 2 (6)

The learning curve (6) is plotted for 2 = 2 = 05 Each curve in Fig. 3 is a horizontal

displacement to the left by two time units or four information-precision units. The

vertical distances between each pair of curves represent the jump in expected output

that would result from the a sudden arrival of four precision units of information.

4 Learning approximated by discovery

In this section we start with a standard learning setup and ask what the corresponding

discovery model would be. Both examples involve sampling technologies or wages

from an urn as in Burdett (1978), Telser (1982), and Muth (1986).
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4.1 Example 4: Search

First we present the search model and then show that the outcomes of search can be

generated by a model in which the parameters of a production function are gradually

discovered.

4.1.1 Search

Suppose a risk-neutral agent samples  from a distribution  (), for  ∈ [0 1].

Suppose that  is the output of a technology if it is used for production. New

technologies are sampled (with no resource cost) at the rate of one per period. The

technology in use is then the highest sampled to date so that one i.i.d. sample is

taken per period. The distribution of the maximum of  draws

 = max
0≤≤−1

()

is

Pr ( ≤  ) =  ( )

If one can also produce while sampling, , then  ( ) is also the distribution of

output at date . When there is no sampling cost, this is the model of Burdett (1978)

and Muth (1985), and when there is a sampling cost it is the model of McCall (1965).

4.1.2 Discovery

Now we show that the same decision problem can be framed in the discovery model.

Assume that  is output produced using the production function

 = 1− ( − )
2
+  (7)

where  ∈  is a ‘production’ decision (later there will also be a ‘discovery’ decision,

 ∈ {0 1}),  ∈ Θ ⊆  is a parameter, and  ∈  is an i.i.d. disturbance. The

agent does not know , however. Instead, he is aware of a finite subset  of Θ, and

his prior, denoted by  (), is uniform over  so that

 () =

½
1
#

for  ∈ 

0 for  6∈ 
(8)

If the agent’s awareness were to grow from  to 0, say, where 0 is a superset of ,
then prior beliefs would again be given by (8) but with 0 in place of .

The discovery process.–Let discovery occur via i.i.d. sampling of  from a distrib-

ution with C.D.F. () that has supportΘ. This means that discovery is ‘undirected’

in the sense that the true  is not involved. Then instead of writing (36) and (37) in

distribution form, it is easier to write the difference equation for 0

0 =  ∪  with prob.  () (9)
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 x  x  θ 1 

 
1 

 
 

Log TFP 

 

 

 θ 2 

y 

Figure 4: Any ( ) implies that  ∈ {1 2}

so that awareness remains unchanged with prob.
R

 ().

The role of .–If  ≡ 0 the agent would quickly be able to learn the true ; (7)
has two solutions for :

 =  ±
p
1− 

These two solutions are illustrated as 1 and 2 in Figure 4. Therefore one needs just

two independent observations of ( ) to solve for , and this would contradict the

slower discovery process that we shall posit below.

We now proceed in two steps. First, we show that conditional on deciding to

discover a new , the distribution sampling, the distribution of  as given by (7) will

be  () different way of deriving  ( ) as the distribution of the largest  sampled.

4.1.3 Deriving  () via discovery

Additional signals on .–Before starting out, the agent has seem  signals  with

density

 ( | ) = 1√
22

−
1

22
(−)2 (10)

for5  = −− + 1 −1.
5The idea is that the agent already has  observations of  at date  = 0
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Optimal decisions.–Since (9) does not involve , the production decision is static.

Being risk neutral, the agent solves at each date

min
∈


¡
( − )

2 |   ¢
where  =

¡
  

¢
and where

 = (0  −1) , 
 = (0  −1) , and  = (−  −+1  −1) 

The solution is to set  to equal the date- expectation of :

 = 
¡
 |   ¢  (11)

Now let  get large. Then the information in the history of  dominates any

information that will be received via (). Ignoring the information in  would mean

that the expectation in (11) would be taken with respect to the posterior distribution

which, in light of the uniform prior reads


¡
 |   ¢ =

−1Y
=−

 ( | )

P
∈

−1Y
=−

 ( | )
 (12)

for  ∈  where  is defined in (10).

Let ∗ denote the true value of . Then as  →∞ and the information becomes

perfect, the posterior mean converges to


¡
 |  ¢ a.s.→ argmax

∈

Z
ln  ( | )  ( | ∗)  (13)

which also is the limit of the maximum-likelihood estimate of  restricted to .

Although he has unlimited information that should clearly indicate ∗ when ∗ ∈ ,

when ∗ 6∈  the agent obstinately treats that information as having arisen from an

unlikely sequence ( ) governed by that value of  ∈  that best explains  .

Then

 = 
¡
 |  ¢ a.s.→∈ argmin

∈

| − ∗| (14)

We include the additional ‘∈’ in (14) because there may be more than one argmin.
Now let 2 → 0, in which case, since 

i.p.→ 0.6 In that case we can easily show

equivalence of the discovery model and the search model.

6This simplifies the relation between  and . The probabilistic removal of  will mean that we
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Figure 5: The Technology correspondence (15)

Equivalence.–Therefore for each  () there exists a discovery process generating

the same observations, in probability. If the agent starts with 0 = ∅ and if he were
to make one discovery per period, call it  such that

 = 1− ( − ∗)2 

then the sequences of outputs will be the same at each date.

The technology correspondence.–For each output level   1, there are two tech-

nologies that give rise to it. Therefore we have the technology correspondence

 = ∗ ±
p
1−  (15)

which is depicted in Figure 5. If any measurable selection  () from this correspon-

dence is consistent with  ()  in the sense the the distribution over Θ that it gives

can associate output deterministically with the pair (∗ ) as we shall see below. In the theory of
search by which new methods of production, as summarized by the cost of production, are drawn

from a distribution (Telser (1982), Muth (1986), Kortum (1997)), the technology in use is the most

efficient hitherto sampled, and it is used until a still better technology is discovered. In this approach,

a sampled technology is an ‘inspection good’ — having discovered a new technology, the potential

user does not have to try it in order to be able to evaluate it and compare it to the other technologies

that he knows. Since most technologies must be tried before their full potential is known and is

realized, this approach may work if time periods are long enough so that any experimentation can

be treated as occupying a negligible fraction of any period, and that the bulk of the time in each

period, the technology used is the best hitherto tried.
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rise to, call it  ()  is consistent with , then then all selections are consistent

with . That is, for any subset  ⊂ Θ,

 () = 
¡
−1 ()

¢
 (16)

Let us focus on just two selections from the technology correspondence: The smallest

and the largest.

The discovery process that generates  ().–It is enough that we find just one

selection from (15). The selection that maximizes  of course obtains when, for

each , we take the larger solution in (15) for  i.e.,  () = ∗ +
√
1− . Then

 ≤  ⇐⇒  ≥ 1− ( − ∗)2, and the CDF for  needed to generate  is

+ () = 1−
¡
1− ( − ∗)2

¢
for  ∈ [∗ ∗ + 1] 

Alternatively, consider the smaller solution in (15) for  i.e.,  = ∗−√1− . Then

 ≤  ⇐⇒  ≤ 1− (∗ − )
2
, and the CDF for  needed to generate  is

− () = 
¡
1− (∗ − )

2
¢

for  ∈ [∗ − 1 ∗] 

It does not matter which is chosen or, indeed, if a linear combination of the two is

chosen as follows

 (;) = {[∗−1∗]}
− () + (1− ) {[∗∗+1]}

+ () (17)

for  ∈ [0 1]. If all we can observe are the ’s, the parameter  is not identified, and
neither, of course is the selection .

Example of a uniform .–To illustrate (17), assume  () =  for  ∈ [0 1], and
suppose that ∗ = 0 Then

+ () = 2 for  ∈ [0 1] and
− () = 1− 2 for  ∈ [−1 0]

and the densities are

+ () = 2 for  ∈ [∗ ∗ + 1] and
− () = −2 for  ∈ [∗ − 1 ∗] (18)

and we illustrate them in Figure 6, where we also have extended their definition to

the interval [−1 1]. Then any density of the form

 () = − () + (1− )+ () (19)

 ∈ [0 1] also generates the C.D.F.  () = .
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Figure 6: Two discovery densities consistent with a uniform  ()

4.1.4 Sampling costs and the search/discovery decision

While the production decision is static, when there is a sampling cost , the search

decision is dynamic. But having derived  () via the distribution  in (17) and, for

a specific example, in (18), it is straightforward to add a search-investment decision

 ∈ {0 1}  The decision is  = ¡ ¢  As  →∞, so that
 ( ) =  − 

As  → 0

 → 1− ( − ∗)2 = 1−min
∈

(− ∗)2 (20)

That is, as  → 0, the following three truths emerge

•  ( |  ) becomes degenerate, and we substitute  out in (38) via (20),
•  ( | ) has converged with all its mass to argmin ( − ∗)2

•  becomes stationary as  being fully informative about ∗, no longer matters.
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Then (38) reads

 () = max
()∈×{01}

½∙Z


µ
 ( ) + 

Z
B(Θ)

 (0)  (0 |   )
¶
 ( | )

¸¾
= 1− min

∈
( − ∗)2 + max

∈{01}

½
− + max

Z
Θ

 ( ∪ )  ()
¾

= 1− [ ( ∗)]2 +max
½
 () −+ 

Z
Θ

 ( ∪ )  ()
¾

(21)

where

 ( ∗) = min
∈

| − ∗| (22)

is the Hausdorff distance between  and  in the Euclidean norm. Then since the

operator is a contraction, we find that  must be of the form  () = ̂ ( [ ∗]) 
Then (21) reads

 () = 1− 2 +max

½
 () −+ 

Z ∞

0

 (min ( 0))  (0)

¾
 (23)

where  (0) is the distribution of 0 implied by  () Change variables from  to

̂ () = 1−2 and note that any  () satisfying (16) then gives rise to the transform

 () =  (). Then define  by


¡
1− 2

¢
=  ()

Then (23) reads

 () =  +max

½
 () −+ 

Z ∞

0

 (max ( 0))  (0)

¾
and the discovery decision then is

 =

½
1 for   ∗

0 for  ≥ ∗
(24)

where ∗ solves the equation

 = 

Z ∞

0

[ (0)−  ()]  (0)  (25)

The decision rule characterized by (24) and (25) is the optimal stopping rule for

an infinitely-lived agent who samples at a cost  from a distribution  that he knows.

then his search decisions and reservation  would be the same as if discovery was

i.i.d., with distribution  given in (17).
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So far we assumed that the agent’s guess about  is correct, which then allows the

model to generate search from a distribution  that the agent knows. If the agent

does not know  and learns about it along the way, then this would have a counterpart

in search theory of the agent learning about . Rothschild (1974) showed there would

be a sequence of stopping set
¡
 


¢
such that the agent stops sampling when  ∈  



for the first time. In the discovery model the agent would have stopping sets
¡
Θ


¢
such that he would stop sampling when  ∈ Θ

 for the first time.

4.2 Example 5: Growth in the Prescott-Mehra model

As with Example 4, we first outline the usual assumptions about the stochastic

process, and we then show how it may arise via a process of discovery. Only a sketch

will be provided here because the development is quite similar to that in Example 4.

4.2.1 Exogenous growth

Let  be output and consumption (there is no saving). Let

 =
+1



be the growth factor of output. Suppose, as Mehra and Prescott (1985) do, that  is

first-order Markov:

Pr (+1 ≤ 0 |  = ) =  (0 )  (26)

Assume, additionally, that  ≥ 1.

4.2.2 Discovery

We now derive (26) via discovery. The following procedure works if  is non-

decreasing. Let utility be iso-elastic

() =
1−

1− 
 and  =

1

| − | +  (27)

where, again,  ∈  is a decision,  ∈ Θ ⊆  an unknown parameter, and  an i.i.d.

disturbance. Then

 () = − | − |(−1)
 − 1 + ̂ (28)

so that

 =
2

 − 1 =⇒  () = −(− )

 − 1
2

+ ̂ (29)

Optimal decisions.–Discovery occurs exogenously, independently of the action

taken. When (29) holds, it is again optimal to set the decision at the posterior mean
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of . Discovery again occurs exogenously, and we shall assume that a very precise

signal of  is available, as in Example 1, in the sense that  gets large, leading to

(11), and (13). Assuming (10) and (29) the optimal policy again given by (14). We

shall henceforth send the  to zero in probability and ignore them. As in Example

1, their role is to avoid logical difficulties for the agent. Then output is

 =
1

min∈
|− ∗|

Growth.–The growth factor between  and + 1 is

 =

µ | − ∗|
|+1 − ∗|

¶

(30)

Since  − ∗ is non-increasing, this construction can work only if  ≥ 1 for all .
Assuming that this is true, we can devise a process for  such (30) holds. As in

example 1, define  again as in (22) to obtain

 = | − ∗|

as the fraction of the gap between ideal practice, ∗, and best practice , i.e., the
knowledge left undiscovered. Then the stochastic process  must be non-increasing

and satisfies

∆ ln  = −
1


ln  ≤ 0

If, for example,  ∈ (1  ) can take on  states and that it is a first-order

Markov chain, as in Mehra and Prescott (1985) who assumed that  = 2 then∆ ln 
is itself a first-order Markov chain taking on values

∆ ln  ∈
½
− ln 1


 − ln 



¾


The process  is once again not uniquely determined, for the same reason that an

entire family of densities for  in (19) is a solution to the search problem.

5 General approach

Can the Bayesian model reproduce the time paths of payoffs (e.g., gambling profits),

actions (e.g., decisions of whether to put up the ante and gamble again) and value

(the present value of profits)? We seek a Bellman equation such as (3), but with 

replaced by , and yet where discovery is possible.
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Law of motion for .–We now derive conditions under which  obeys a first-

order representation of the form

0 = ̂ ( 0)  (31)

which generalizes (2) to allow for discovery.

If 0 =  ̂ is the Bayes map, but when 0 ⊃ , determining 0 (0 −) in

general requires knowledge of the entire sequence  = ( ) which would then be

used to update  according to (4) with 0 in place of . But (31) will hold if we can
invert  to obtain all the information about  that 

 contains. By an application

of the inverse function theorem the latter will generically be true if the number of

sufficient statistics is less than the number of elements of .

Let  (
 ) =

−1Y
=0

 ( |  ) denote the likelihood function. Assume that under
repeated sampling from (1), the information in ( ) has a -vector of sufficient sta-

tistics,  () ∈ T ⊆ . Denote the law of motion for  by  (+1) =  (   ()),

or simply by7

 0 =  (   )  (32)

Since  is sufficient for , Fisher-Neyman factorization states that


¡
 

¢
= 1

¡

¢
2
¡
 

¡

¢¢

(33)

for all , and

 () =  ( | ) = 2 (  )0 ()R

2 (

0  ) 0 (
0)
for  ∈  (34)

Let ∆ (Θ) be the set of full-awareness beliefs reachable from 0 by observing some

feasible ().8.

Let ∆ (Θ) denote the subset of ∆ (Θ) entailing a support of at least  elements.

These are the feasible beliefs of someone who is aware of at least  distinct ’s. Let

M be the set of measures over this set.

Now define the map (34) as

 =  ( ) 

so that  :  → ∆ (Θ). The next result concerns the invertibility of this map for 

fixed. When can we recover  from  that has a support ?

Proposition 1 For  ∈ ̂ ⊂M as given in (34) assume that the Jacobian of the

#-equation system on the RHS of (34) satisfies

rank

∙
 ( | )



¸
#A × k

=  (35)

7Examples are provided below.
8Thus ∆ (Θ) is the union of the posteriors obtainable at any date from the supports of  as ∞

ranges over its feasible set.
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Then −1 () exists on ̂ and the representation (31) exists on · (Θ).

Proof. Then the inverse function theorem implies that for each  ∈ ̂ there is a

function −1 : ̂ →  giving  = −1 (). Now let

0 () = 
¡
 |  £  −10 ()¤  0¢ for  ∈ 0

≡ ̂ ( 0) 

which is of the form (31) as desired.

Examples are provided in the Appendix.

5.0.3 Discovery and the Generalized Bayes map

It remains for us to specify a process for  which we shall combine with that defined

by (31).

The law of motion for .–Discovery thus should depend on  and on  which

reflect the agent’s awareness and his beliefs over the models he is aware of, and

on the possible conflict between these models and the evidence, — such a conflict

presumably stimulates new discovery. And  is the support of . Therefore, the

evolution of  depends on  alone, in addition to possibly depending on . Then,

for any 0 ∈ B (Θ), let

Pr (+1 = 0 |  =   = ) =  (0 )  (36)

Combining this with (31), we obtain the generalized Bayes operator

0 =  ( ) ,

where

 ( ) =

Z
B(0)

̂ (  0) (0 ) 0 (37)

This ‘generalized’ Bayes map only exists when the likelihood function offers sufficient

statistics. We stress it only because it will deliver us a Bellman equation analogous

to (3).

Preferences.–The agent’s utility is

∞X
=0

 ( ) but he does not maximize



( ∞X
=0

 ( )

)
where  is the standard expectations operator. But this opera-

tor does not allow extension of mass to sets of zero measure. For reasons we discussed

at the outset, the standard updating of probabilities would preclude the agent from

realizing that discoveries are possible and, hence, would exclude any motive for the

agent to take actions that would raise the chances of making such discoveries. It also
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would lead to a different (and probably lower) lifetime utility. The agent will evaluate

the current reward using awareness , but he also will recognize the evolution of 

in the sense to be made precise below.

The Bellman equation

We write the Bellman equation corresponding to these preferences. It differs from

the standard treatment in just one respect: Instead of using the Bayes map (2), we

use the generalized Bayes map (37). Preferences are defined recursively:

 () = max
∈

Z


[ ( ) +  ( ( ))]  ( |  )  ()  (38)

This approach has two arguably desirable features

() the agent’s action be independent of states whose possible existence is not yet

discovered.

() he correctly judges the consequences for tomorrow’s continuation value of the

discoveries that may occur as a result of the actions taken today.

General comparison

The first three examples show that it will not do for the Bayes counterpart to

have only  as the signal. We need a proxy for the discovery shock.

Discovery Bayes

utility  ( )

likelihood  ( |  ) ;  ∈ Θ  (  |  ) ;  ∈ Γ

prior 0 ( | ) 0 ()

updating 0|0 =  (   | 0)
awareness growth 0 = 

¡
  |

¢
0 =  (   )

 ≡ |
 ( ) =

R
B(Θ) ̂

0

policy function  =  ()  =  ()

value  ()  ()

where  =  () and  solve,

 () = max
∈

½Z
Γ××

[ ( ) +  ( (   ))  (  |  )]  ()
¾
(39)

Nothing is said about the dimension of Γ relative to that of Θ.
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6 Restricting the discovery process

The new primitive concept added in this paper is the discovery process. We showed

that once such a process is specified, we can then construct a Bayes model with no

discovery that is observationally equivalent. But now we think about some reasonable

ways of restricting the discovery process, based on related work which we divide into

several topics.

Undirected search.–In this approach the action  would be the sampling rate.

Conditional on a draw, a value 0 would be drawn from Θ or a subset of Θ Perhaps

new ideas 0 ∈ Θ are generated via a stochastic process that is perhaps influenced

by beliefs  (which have support ) and by decisions  such as R&D effort. Let

 (0 ) be a distribution over 0 conditional on  which states that if the agent thinks
of  today, then 0 will occur to him tomorrow. Let  be the number of ideas  with
 = {1 2  } sampled and suppose that each idea is drawn from

Prob { ≤ 0 ∈ Θ | } =
Z


 (0 )  (40)

Then any  6∈  is a discovery. If the process in  is highly autocorrelated and if the

dispersion of 0 is small, the agent can search only a small neighborhood of , with
most of the ideas sampled being duplicates of old ones. Examples of this approach

are Telser (1982), Muth (1986) and Kortum (1997).

Directed search.–Bayesian treatments of the bandit problem and its various elabo-

rations are in Rothschild (1974), Jovanovic and Rob (1990) and Jovanovic and Nyarko

(1996). There is no discovery in these models in the sense that the parameter space

is known from the outset.

Hypothesis testing and model revision.–Discovery could, however, be more di-

rected, such as the algorithms for model revision proposed by Sims (1971) and more

formally by Radner (2002). The agent from time to time enlarges the set of model

parameters that he wishes to entertain. One may limit discoveries to those that im-

prove the agent’s understanding of the world according to some statistical criterion.

He may assign zero probability to any new idea that seems improbable enough in

light of the evidence. For example, the discovery it should pass a likelihood-ratio

test. Thus one could constrain

Admissible discoveries =

½
0 ∈ Θ |  ( 0)

max∈  ( )
≥ 

¾
 (41)

The parameter  ≥ 0 indicates the height of the hurdle that a discovery must clear.
Indeed, if   1 with probability 1 discovery must stop short of the true . For any

, the process is in line with the view of Galanis (2008 Section 6, page 17) argues

that awareness grows when observing something which you thought was impossible.

We can think of “impossibility” as a zero denominator.
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Let us describe Radner (2002) in more detail. Hew proposes a model-revision

procedure. Let  and  be positive integers and let  () be the set of -state

Markov chains of order . Let Θ = ∪∞=0 () and  = ∪=0 ()  Radner assumes

that  is augmented to +1 at a pre-specified date  where () is a sequence

increasing in . Since the dimension of the parameter space increases geometrically

with , +1 −  must also increase with  if the agent is to get to learn much of

anything. Radner’s term ‘model revision’ is equivalent to a ‘discovery’ in our sense.

Let us relate this to eq. (4) in particular. Now  () can be considered as a zero-

measure subset of  ( + 1). and ∆ ( ()) the set of measures over  (). Then

letting  ∈ ∆ ( ()), let the full-awareness prior be

0 =

∞X
=0



Substituting this expression for  on the RHS of (4) leads to


() =

X
=0

 ()

R


X
=0

 ()

for  ∈  and  () = 0 for  6∈ 

Game theory and decision theory.–When revelations of elements of Θ −  are

made strategically, one can specify the subjective probability ̂ using information

about the opponent’s incentives to reveal various states, as Ozbay (2008) argues.

Kochov (2009) provides axioms that one would find reasonable in the context of

unawareness, and discusses optimal decisions that way.

7 Conclusion

The paper defined discovery as an extension of the support of beliefs. It then showed

that one can approximate discovery-induced beliefs by a Bayesian belief mechanism

featuring precise signals pointing to events having small but positive probability. This

made it possible to define optimal decisions and rational valuations in environments

with discovery.

All this was shown in the context of several examples, and still to be derived

is a general result concerning the correspondence between models of discovery and

differently parametrized models with no discovery.
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7.0.4 Appendix: Examples of (32)-(35)

TO BE COMPLETED

Example 1: Normal distribution.–Let  =  +  +  and let  ∼  (0 2) so

that

 ( |  ) = 1p
22

exp

µ
− 1

22
( − − )

2

¶


and suppose that  is known. Let ̄ − ̄ ≡  be the sample mean of  -adjusted

signals. Then let  ≡ ( ) ∈ 2 be the sufficient statistic for . Thus  = 2. The

transition function (32) for  is

 0 ≡  (   ) =

µ
1

+1
( +  − )

+ 1

¶


Example 2: Binomial distribution.–Let  be constant (i.e., no decision) and let

(1) be given by

 =

½
1 with Prob 

0 with Prob. 1− 

with  ∈ [0 1]. Then in  trials and  successes the likelihood is  (1− )
− ≡

2 (  ), where  = ( ). The transition (32) reads

 0 ≡  (  ) =

µ
 + {=1}

+ 1

¶


where  is the indicator function.
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